1
|
Arizanovska D, Emodogo JA, Lally AP, Palavicino-Maggio CB, Liebl DJ, Folorunso OO. Cross species review of the physiological role of D-serine in translationally relevant behaviors. Amino Acids 2023; 55:1501-1517. [PMID: 37833512 PMCID: PMC10689556 DOI: 10.1007/s00726-023-03338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Bridging the gap between preclinical models of neurological and psychiatric disorders with their human manifestations is necessary to understand their underlying mechanisms, identify biomarkers, and develop novel therapeutics. Cognitive and social impairments underlie multiple neuropsychiatric and neurological disorders and are often comorbid with sleep disturbances, which can exacerbate poor outcomes. Importantly, many symptoms are conserved between vertebrates and invertebrates, although they may have subtle differences. Therefore, it is essential to determine the molecular mechanisms underlying these behaviors across different species and their translatability to humans. Genome-wide association studies have indicated an association between glutamatergic gene variants and both the risk and frequency of psychiatric disorders such as schizophrenia, bipolar disorder, and autism spectrum disorder. For example, changes in glutamatergic neurotransmission, such as glutamate receptor subtype N-methyl-D-aspartate receptor (NMDAR) hypofunction, have been shown to contribute to the pathophysiology of schizophrenia. Furthermore, in neurological disorders, such as traumatic brain injury and Alzheimer's disease, hyperactivation of NMDARs leads to synaptic damage. In addition to glutamate binding, NMDARs require the binding of a co-agonist D-serine or glycine to the GluN1 subunit to open. D-serine, which is racemized from L-serine by the neuronal enzyme serine racemase (SRR), and both SRR and D-serine are enriched in cortico-limbic brain regions. D-serine is critical for complex behaviors, such as cognition and social behavior, where dysregulation of its synthesis and release has been implicated in many pathological conditions. In this review, we explore the role of D-serine in behaviors that are translationally relevant to multiple psychiatric and neurological disorders in different models across species.
Collapse
Affiliation(s)
- Dena Arizanovska
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jada A Emodogo
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Anna P Lally
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA, USA
| | - Caroline B Palavicino-Maggio
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Neurobiological Mechanisms of Aggression Laboratory, McLean Hospital, Belmont, MA, USA
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oluwarotimi O Folorunso
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
2
|
Ping J, Wan J, Huang C, Yu J, Luo J, Xing Z, Luo X, Du B, Jiang T, Zhang J. DNMT1 SNPs (rs2114724 and rs2228611) associated with positive symptoms in Chinese patients with schizophrenia. Ann Gen Psychiatry 2023; 22:40. [PMID: 37833704 PMCID: PMC10576382 DOI: 10.1186/s12991-023-00466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVE Schizophrenia is a serious mental disorder with complex clinical manifestations, while its pathophysiological mechanism is not fully understood. Accumulated evidence suggested the alteration in epigenetic pathway was associated with clinical features and brain dysfunctions in schizophrenia. DNA methyltransferases (DNMTs), a key enzyme for DNA methylation, are related to the development of schizophrenia, whereas the current research evidence is not sufficient. The aim of study was to explore the effects of gene polymorphisms of DNMTs on the susceptibility and symptoms of schizophrenia. METHODS The study was case-control study that designed and employed the Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) as the diagnostic standard. 134 hospitalized patients with schizophrenia in the Third People's Hospital of Zhongshan City from January 2018 to April 2020 (Case group) as well as 64 healthy controls (Control group) from the same region were involved. Single nucleotide polymorphisms (SNPs) of DNMT1 genes (r s2114724 and rs 2228611) and DNMT3B genes (rs 2424932, rs 1569686, rs 6119954 and rs 2424908) were determined with massARRAY. Linkage disequilibrium analysis and haplotype analysis were performed, and genotype and allele frequencies were compared. The Hardy-Weinberg equilibrium was tested by the Chi-square test in SPSS software (version 20.0, SPSS Inc., USA). The severity of clinical symptoms was assessed by the Positive and Negative Syndrome Scale (PANSS). The correlation between DNMT1 genes (rs 2114724 and rs 2228611) and DNMT3B genes (rs2424932, rs1569686, rs6119954 and rs2424908) and clinical features was analyzed. RESULTS There were no significant differences in genotype, allele frequency and haplotype of DNMT1 genes (rs 2114724 and rs 2228611) and DNMT3B genes (rs 2424932, rs 1569686, rs 6119954 and rs 2424908) between the case and healthy control group. There were significant differences in the PANSS total positive symptom scores, P3 (hallucinatory behavior), P6 (suspicious/persecution), G7 (motor retardation), and G15 (preoccupation) in patients with different DNMT1 gene rs 2114724 and rs 2228611 genotypes. The linkage disequilibrium analysis of gene polymorphic loci revealed that rs 2114724-rs 2228611 was complete linkage disequilibrium, and rs 1569686-rs 2424908, rs 2424932-rs 1569696 and rs 2424932-rs 2424908 were strongly linkage disequilibrium. CONCLUSION The polymorphisms alteration in genetic pathway may be associated with development of specific clinical features in schizophrenia.
Collapse
Affiliation(s)
- Junjiao Ping
- Department of Psychiatry, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China
- Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China
| | - Jing Wan
- Department of Early Intervention, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China
| | - Caiying Huang
- Department of Early Intervention, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China
| | - Jinming Yu
- Department of Psychiatry, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China
| | - Jiali Luo
- Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China
| | - Zhiqiang Xing
- Department of Psychiatry, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Baoguo Du
- Department of Clinical Psychology, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China
| | - Tingyun Jiang
- Department of Psychiatry, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China.
| | - Jie Zhang
- Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China.
- Department of Psychiatry, Gannan Medical University, Ganzhou, 341000, Jiangxi , People's Republic of China.
| |
Collapse
|
3
|
Driskill CM, Childs JE, Itmer B, Rajput JS, Kroener S. Acute Vagus Nerve Stimulation Facilitates Short Term Memory and Cognitive Flexibility in Rats. Brain Sci 2022; 12:brainsci12091137. [PMID: 36138873 PMCID: PMC9496852 DOI: 10.3390/brainsci12091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Vagus nerve stimulation (VNS) causes the release of several neuromodulators, leading to cortical activation and deactivation. The resulting preparatory cortical plasticity can be used to increase learning and memory in both rats and humans. The effects of VNS on cognition have mostly been studied either in animal models of different pathologies, and/or after extended VNS. Considerably less is known about the effects of acute VNS. Here, we examined the effects of acute VNS on short-term memory and cognitive flexibility in naïve rats, using three cognitive tasks that require comparatively brief (single session) training periods. In all tasks, VNS was delivered immediately before or during the testing phase. We used a rule-shifting task to test cognitive flexibility, a novel object recognition task to measure short-term object memory, and a delayed spontaneous alternation task to measure spatial short-term memory. We also analyzed exploratory behavior in an elevated plus maze to determine the effects of acute VNS on anxiety. Our results indicate that acute VNS can improve memory and cognitive flexibility relative to Sham-stimulation, and these effects are independent of unspecific VNS-induced changes in locomotion or anxiety.
Collapse
|
4
|
D-Amino Acids as a Biomarker in Schizophrenia. Diseases 2022; 10:diseases10010009. [PMID: 35225861 PMCID: PMC8883943 DOI: 10.3390/diseases10010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
D-amino acids may play key roles for specific physiological functions in different organs including the brain. Importantly, D-amino acids have been detected in several neurological disorders such as schizophrenia, amyotrophic lateral sclerosis, and age-related disorders, reflecting the disease conditions. Relationships between D-amino acids and neurophysiology may involve the significant contribution of D-Serine or D-Aspartate to the synaptic function, including neurotransmission and synaptic plasticity. Gut-microbiota could play important roles in the brain-function, since bacteria in the gut provide a significant contribution to the host pool of D-amino acids. In addition, the alteration of the composition of the gut microbiota might lead to schizophrenia. Furthermore, D-amino acids are known as a physiologically active substance, constituting useful biomarkers of several brain disorders including schizophrenia. In this review, we wish to provide an outline of the roles of D-amino acids in brain health and neuropsychiatric disorders with a focus on schizophrenia, which may shed light on some of the superior diagnoses and/or treatments of schizophrenia.
Collapse
|
5
|
Magwai T, Shangase KB, Oginga FO, Chiliza B, Mpofana T, Xulu KR. DNA Methylation and Schizophrenia: Current Literature and Future Perspective. Cells 2021; 10:2890. [PMID: 34831111 PMCID: PMC8616184 DOI: 10.3390/cells10112890] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by dissociation of thoughts, idea, identity, and emotions. It has no central pathophysiological mechanism and precise diagnostic markers. Despite its high heritability, there are also environmental factors implicated in the development of schizophrenia. Epigenetic factors are thought to mediate the effects of environmental factors in the development of the disorder. Epigenetic modifications like DNA methylation are a risk factor for schizophrenia. Targeted gene approach studies attempted to find candidate gene methylation, but the results are contradictory. Genome-wide methylation studies are insufficient in literature and the available data do not cover different populations like the African populations. The current genome-wide studies have limitations related to the sample and methods used. Studies are required to control for these limitations. Integration of DNA methylation, gene expression, and their effects are important in the understanding of the development of schizophrenia and search for biomarkers. There are currently no precise and functional biomarkers for the disorder. Several epigenetic markers have been reported to be common in functional and peripheral tissue. This makes the peripheral tissue epigenetic changes a surrogate of functional tissue, suggesting common epigenetic alteration can be used as biomarkers of schizophrenia in peripheral tissue.
Collapse
Affiliation(s)
- Thabo Magwai
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
- National Health Laboratory Service, Department of Chemical Pathology, University of Kwa-Zulu Natal, Durban 4085, South Africa
| | - Khanyiso Bright Shangase
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwa-Zulu Natal, Durban 4001, South Africa;
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Khethelo Richman Xulu
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| |
Collapse
|
6
|
Protocol for a systematic review on the role of the gut microbiome in paediatric neurological disorders. Acta Neuropsychiatr 2021; 33:211-216. [PMID: 33818352 DOI: 10.1017/neu.2021.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION The gut-brain axis refers to the bidirectional communication that occurs between the intestinal tract and central nervous system (CNS). Through a series of neural, immune, endocrine, and metabolic signalling pathways, commensal microbiota are able to influence CNS development and neurological function. Alterations in gut microbiota have been implicated in various neuropathologies. The purpose of this review is to evaluate and summarise existing literature assessing the role of specific bacterial taxa on the development of neurodevelopmental, neuropsychiatric, and neurodegenerative pathologies of childhood. We will also discuss microbiota-based therapies dietary interventions and their efficacy. METHODS AND ANALYSIS We will search PubMed, Cochrane Library, and OVID electronic databases for articles published between January 1980 and February 2021. A search method involving two rounds of reviewing the literature using a three-step method in each round will be performed. Two researchers will be selected, and screen titles and abstracts independently. The full text of selected articles will be assessed against inclusion criteria. Data will be extracted and evaluated using the appropriate Critical Appraisal Skills Programme (CASP) checklist. ETHICS AND DISSEMINATION Findings from this study will be shared across relevant paediatric neurology and gastroenterology societies and submitted for peer review. This study did not require institutional ethics approval.
Collapse
|
7
|
Altidor LKP, Bruner MM, Deslauriers JF, Garman TS, Ramirez S, Dirr EW, Olczak KP, Maurer AP, Lamb DG, Otto KJ, Burke SN, Bumanglag AV, Setlow B, Bizon JL. Acute vagus nerve stimulation enhances reversal learning in rats. Neurobiol Learn Mem 2021; 184:107498. [PMID: 34332068 DOI: 10.1016/j.nlm.2021.107498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/24/2021] [Indexed: 01/19/2023]
Abstract
Cognitive flexibility is a prefrontal cortex-dependent neurocognitive process that enables behavioral adaptation in response to changes in environmental contingencies. Electrical vagus nerve stimulation (VNS) enhances several forms of learning and neuroplasticity, but its effects on cognitive flexibility have not been evaluated. In the current study, a within-subjects design was used to assess the effects of VNS on performance in a novel visual discrimination reversal learning task conducted in touchscreen operant chambers. The task design enabled simultaneous assessment of acute VNS both on reversal learning and on recall of a well-learned discrimination problem. Acute VNS delivered in conjunction with stimuli presentation during reversal learning reliably enhanced learning of new reward contingencies. Enhancement was not observed, however, if VNS was delivered during the session but was not coincident with presentation of to-be-learned stimuli. In addition, whereas VNS delivered at 30 HZ enhanced performance, the same enhancement was not observed using 10 or 50 Hz. Together, these data show that acute VNS facilitates reversal learning and indicate that the timing and frequency of the VNS are critical for these enhancing effects. In separate rats, administration of the norepinephrine reuptake inhibitor atomoxetine also enhanced reversal learning in the same task, consistent with a noradrenergic mechanism through which VNS enhances cognitive flexibility.
Collapse
Affiliation(s)
| | - Matthew M Bruner
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Tyler S Garman
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Saúl Ramirez
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Elliott W Dirr
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Kaitlynn P Olczak
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Andrew P Maurer
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA; Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA
| | - Damon G Lamb
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA; Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, USA
| | - Kevin J Otto
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Argyle V Bumanglag
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA.
| |
Collapse
|
8
|
Walter EE, Fernandez F, Barkus E. Not all stress is created equal: Acute, not ambient stress, impairs learning in high schizotypes. Psych J 2021; 11:179-193. [PMID: 33915603 DOI: 10.1002/pchj.452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/08/2022]
Abstract
Learning from feedback is essential for daily functioning, with factors that impact learning having implications for healthy and clinical populations. Reinforcement learning appears impaired across the psychosis continuum, with deficits reported in patients with psychotic disorders as well as high schizotypes from the general population. Stress can impair learning, and sensitivity to stress is present along the psychosis continuum. The aim of the present study was to understand if stress impairs reinforcement learning in those at the lower end of the psychosis continuum. We investigated both naturalistic stress in everyday life using daily hassles (Study 1: n = 70; 31% male, M age = 22.67 years) and acute psychosocial stress using the Trier Social Stress Test (Study 2: n = 57; 32% male, M age = 22.43 years). In the presence of naturalistic stress, learning did not differ across schizotypes. However, under acute psychosocial stress, high schizotypes experienced impaired learning. Our results suggest trail-and-error learning is robust to the ebbs and flows of everyday stress for high schizotypes; however, acute stress is associated with decrements in learning. This indicates that the magnitude of stressors should be considered when designing cognitive and functional interventions for those along the psychosis continuum.
Collapse
Affiliation(s)
- Emma E Walter
- School of Psychology, University of Wollongong, Wollongong, New South Wales, Australia
| | - Francesca Fernandez
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Emma Barkus
- School of Psychology, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
9
|
Bitzenhofer SH, Pöpplau JA, Chini M, Marquardt A, Hanganu-Opatz IL. A transient developmental increase in prefrontal activity alters network maturation and causes cognitive dysfunction in adult mice. Neuron 2021; 109:1350-1364.e6. [PMID: 33675685 PMCID: PMC8063718 DOI: 10.1016/j.neuron.2021.02.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
Disturbed neuronal activity in neuropsychiatric pathologies emerges during development and might cause multifold neuronal dysfunction by interfering with apoptosis, dendritic growth, and synapse formation. However, how altered electrical activity early in life affects neuronal function and behavior in adults is unknown. Here, we address this question by transiently increasing the coordinated activity of layer 2/3 pyramidal neurons in the medial prefrontal cortex of neonatal mice and monitoring long-term functional and behavioral consequences. We show that increased activity during early development causes premature maturation of pyramidal neurons and affects interneuronal density. Consequently, altered inhibitory feedback by fast-spiking interneurons and excitation/inhibition imbalance in prefrontal circuits of young adults result in weaker evoked synchronization of gamma frequency. These structural and functional changes ultimately lead to poorer mnemonic and social abilities. Thus, prefrontal activity during early development actively controls the cognitive performance of adults and might be critical for cognitive symptoms in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Jastyn A Pöpplau
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Annette Marquardt
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
10
|
Ciullo V, Spalletta G, Caltagirone C, Banaj N, Vecchio D, Piras F, Piras F. Transcranial Direct Current Stimulation and Cognition in Neuropsychiatric Disorders: Systematic Review of the Evidence and Future Directions. Neuroscientist 2020; 27:285-309. [PMID: 32644874 DOI: 10.1177/1073858420936167] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been implemented in neuropsychiatric disorders characterized by cognitive impairment. However, methodological heterogeneity challenges conclusive remarks. Through a critical analysis of previous conflicting findings and in the light of current neurobiological models of pathophysiology, we qualitatively assessed the effects of tDCS in neuropsychiatric disorders that share neurobiological underpinnings, as to evaluate whether stimulation can improve cognitive deficits in patients' cohorts. We performed a systematic review of tDCS studies targeting cognitive functions in mental disorders and pathological cognitive aging. Data from 41 studies, comprising patients with diagnosis of mood disorders, schizophrenia-spectrum disorders, Alzheimer's disease (AD), and mild cognitive impairment (MCI), were included. Results indicate that tDCS has the capacity to enhance processing speed, working memory, and executive functions in patients with mood and schizophrenia-spectrum disorders. The evidence of a positive effect on general cognitive functioning and memory is either inconclusive in AD, or weak in MCI. Future directions are discussed for developing standardized stimulation protocols and for translating the technique therapeutic potential into effective clinical practice.
Collapse
Affiliation(s)
- Valentina Ciullo
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Carlo Caltagirone
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nerisa Banaj
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Daniela Vecchio
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
11
|
Colizzi M, Tosato S, Ruggeri M. Cannabis and Cognition: Connecting the Dots towards the Understanding of the Relationship. Brain Sci 2020; 10:brainsci10030133. [PMID: 32120842 PMCID: PMC7139821 DOI: 10.3390/brainsci10030133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/27/2022] Open
Abstract
Several studies have advanced the understanding of the effects of cannabis on cognitive function. A comprehensive reappraisal of such literature may help in drawing conclusions about the potential risks associated with cannabis use. In summary, the evidence suggests that earlier age of use, high-frequency and high-potency cannabis use, as well as sustained use over time and use of synthetic cannabinoids, are all correlated with a higher likelihood of developing potentially severe and persistent executive function impairments. While the exact mechanisms underlying the adverse effects of cannabis on cognition are not completely clear, Magnetic Resonance Imaging (MRI) studies support the presence of both structural and functional alterations associated with cannabis use. Cognitive dysfunction is also a core feature of many neuropsychiatric disorders and care must be taken regarding the effects of cannabis use in these patient populations. Cognitive impairments affect patients’ daily functions, sociability, and long-term outcome, posing elevated economic, social, and clinical burdens. There is, thus, a compelling case for implementing behavioral and cognitive rehabilitation therapies for these patients, as well as investigating the endocannabinoid system in the development of new psychopharmacological treatments.
Collapse
Affiliation(s)
- Marco Colizzi
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- Correspondence: ; Tel.: +39-045-812-6832
| | - Sarah Tosato
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Mirella Ruggeri
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| |
Collapse
|
12
|
Vafadari B, Mitra S, Stefaniuk M, Kaczmarek L. Psychosocial Stress Induces Schizophrenia-Like Behavior in Mice With Reduced MMP-9 Activity. Front Behav Neurosci 2019; 13:195. [PMID: 31555105 PMCID: PMC6726971 DOI: 10.3389/fnbeh.2019.00195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
Understanding gene-environment interactions in the pathogenesis of schizophrenia remains a major research challenge. Matrix metalloproteinase-9 (MMP-9) has been previously implicated in the pathophysiology of schizophrenia. In the present study, adolescent Mmp-9 heterozygous mice, with a genetically lower level of MMP-9, were subjected to resident-intruder psychosocial stress for 3 weeks and then examined in behavioral tests that evaluated cognitive deficits and positive- and negative-like symptoms of schizophrenia. Cognitive and positive symptoms in unstressed Mmp-9 heterozygous mice were unaffected by stress exposure, whereas negative symptoms were manifested only after stress exposure. Interestingly, negative symptoms were ameliorated by treatment with the antipsychotic drug clozapine. We describe a novel gene × environment interaction mouse model of schizophrenia. Lower MMP-9 levels in the brain might be a risk factor for schizophrenia that, in combination with environmental factors (e.g., psychosocial stress), may evoke schizophrenia-like symptoms that are sensitive to antipsychotic treatment.
Collapse
Affiliation(s)
- Behnam Vafadari
- BRAINCITY, Nencki Institute, Warsaw, Poland.,Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich, Helmholtz Zentrum München, Augsburg, Germany
| | | | | | | |
Collapse
|
13
|
Albertini G, Walrave L, Demuyser T, Massie A, De Bundel D, Smolders I. 6 Hz corneal kindling in mice triggers neurobehavioral comorbidities accompanied by relevant changes in c-Fos immunoreactivity throughout the brain. Epilepsia 2017; 59:67-78. [DOI: 10.1111/epi.13943] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Giulia Albertini
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information; Center for Neurosciences; Vrije Universiteit Brussel; Brussels Belgium
| | - Laura Walrave
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information; Center for Neurosciences; Vrije Universiteit Brussel; Brussels Belgium
| | - Thomas Demuyser
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information; Center for Neurosciences; Vrije Universiteit Brussel; Brussels Belgium
| | - Ann Massie
- Department of Pharmaceutical Biotechnology and Molecular Biology; Center for Neurosciences; Vrije Universiteit Brussel; Brussels Belgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information; Center for Neurosciences; Vrije Universiteit Brussel; Brussels Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information; Center for Neurosciences; Vrije Universiteit Brussel; Brussels Belgium
| |
Collapse
|
14
|
Bijanzadeh M. The recurrence risk of genetic complex diseases. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2017; 22:32. [PMID: 28461818 PMCID: PMC5390543 DOI: 10.4103/1735-1995.202143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/30/2016] [Accepted: 12/18/2016] [Indexed: 12/19/2022]
Abstract
Complex inherited diseases affected by an interaction between collective effects of the genotype at one or multiple loci either to increase or to lower susceptibility to disease, combined with a variety of environmental exposures that may trigger, accelerate, exacerbate, or protect against the disease process. The new aspects of genetic techniques have been opened for diagnosis and analysis of inherited disorders. While appropriate Mendelian laws is applied to estimate the recurrence risk of single gene diseases, using empirical recurrence risks are the most important and available method to evaluate pedigree of complex (multifactorial), chromosomal, and unknown etiology disorders. Although, generally, empirical recurrent risks are not accurate, either because of the difference of gene frequencies and environmental factors among populations or heterogeneity of disease; using results of plenty family population studies, computerized estimating programs, genotyping technologies, and Genome-wide association studies (GWASs) of single nucleotide polymorphisms (SNPs), can make it possible nowadays to estimate these risks. The specific family situation and importance recurrence risks of some common complex genetic diseases will be presented in this review and some important multifactorial disorders’ recurrence risks will be summarized to help genetic counselors for supporting families and representing better view of genetic disorders.
Collapse
Affiliation(s)
- Mahdi Bijanzadeh
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|