1
|
Guzmán-Ruíz MA, Guerrero Vargas NN, Ramírez-Carreto RJ, González-Orozco JC, Torres-Hernández BA, Valle-Rodríguez M, Guevara-Guzmán R, Chavarría A. Microglia in physiological conditions and the importance of understanding their homeostatic functions in the arcuate nucleus. Front Immunol 2024; 15:1392077. [PMID: 39295865 PMCID: PMC11408222 DOI: 10.3389/fimmu.2024.1392077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Microglia are highly dynamic cells that have been mainly studied under pathological conditions. The present review discusses the possible implication of microglia as modulators of neuronal electrical responses in physiological conditions and hypothesizes how these cells might modulate hypothalamic circuits in health and during obesity. Microglial cells studied under physiological conditions are highly diverse, depending on the developmental stage and brain region. The evidence also suggests that neuronal electrical activity modulates microglial motility to control neuronal excitability. Additionally, we show that the expression of genes associated with neuron-microglia interaction is down-regulated in obese mice compared to control-fed mice, suggesting an alteration in the contact-dependent mechanisms that sustain hypothalamic arcuate-median eminence neuronal function. We also discuss the possible implication of microglial-derived signals for the excitability of hypothalamic neurons during homeostasis and obesity. This review emphasizes the importance of studying the physiological interplay between microglia and neurons to maintain proper neuronal circuit function. It aims to elucidate how disruptions in the normal activities of microglia can adversely affect neuronal health.
Collapse
Affiliation(s)
- Mara A Guzmán-Ruíz
- Programa de Becas Post-doctorales, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Natalí N Guerrero Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ricardo Jair Ramírez-Carreto
- Unidad de Medicina Experimental "Ruy Pérez Tamayo", Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Michelle Valle-Rodríguez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Medicina Experimental "Ruy Pérez Tamayo", Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Sowa JE, Tokarski K, Hess G. Activation of the CXCR4 Receptor by Chemokine CXCL12 Increases the Excitability of Neurons in the Rat Central Amygdala. J Neuroimmune Pharmacol 2024; 19:9. [PMID: 38430337 DOI: 10.1007/s11481-024-10112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Primarily regarded as immune proteins, chemokines are emerging as a family of molecules serving neuromodulatory functions in the developing and adult brain. Among them, CXCL12 is constitutively and widely expressed in the CNS, where it was shown to act on cellular, synaptic, network, and behavioral levels. Its receptor, CXCR4, is abundant in the amygdala, a brain structure involved in pathophysiology of anxiety disorders. Dysregulation of CXCL12/CXCR4 signaling has been implicated in anxiety-related behaviors. Here we demonstrate that exogenous CXCL12 at 2 nM but not at 5 nM increased neuronal excitability in the lateral division of the rat central amygdala (CeL) which was evident in the Late-Firing but not Regular-Spiking neurons. These effects were blocked by AMD3100, a CXCR4 antagonist. Moreover, CXCL12 increased the excitability of the neurons of the basolateral amygdala (BLA) that is known to project to the CeL. However, CXCL12 increased neither the spontaneous excitatory nor spontaneous inhibitory synaptic transmission in the CeL. In summary, the data reveal specific activation of Late-Firing CeL cells along with BLA neurons by CXCL12 and suggest that this chemokine may alter information processing by the amygdala that likely contributes to anxiety and fear conditioning.
Collapse
Affiliation(s)
- Joanna Ewa Sowa
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, Krakow, 31-343, Poland.
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, Krakow, 31-343, Poland
| | - Grzegorz Hess
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, Krakow, 31-343, Poland
| |
Collapse
|
3
|
Cianciosi D, Diaz YA, Gaddi AV, Capello F, Savo MT, Palí Casanova RDJ, Martínez Espinosa JC, Pascual Barrera AE, Navarro‐Hortal M, Tian L, Bai W, Giampieri F, Battino M. Can alpha‐linolenic acid be a modulator of “cytokine storm,” oxidative stress and immune response in SARS‐CoV‐2 infection? FOOD FRONTIERS 2024; 5:73-93. [DOI: 10.1002/fft2.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractAlpha‐linolenic acid (ALA) is a long‐chain polyunsaturated essential fatty acid of the Ω3 series found mainly in vegetables, especially in the fatty part of oilseeds, dried fruit, berries, and legumes. It is very popular for its preventive use in several diseases: It seems to reduce the risk of the onset or decrease some phenomena related to inflammation, oxidative stress, and conditions of dysregulation of the immune response. Recent studies have confirmed these unhealthy situations also in patients with severe coronavirus disease 2019 (COVID‐19). Different findings (in vitro, in vivo, and clinical ones), summarized and analyzed in this review, have showed an important role of ALA in other various non‐COVID physiological and pathological situations against “cytokines storm,” chemokines secretion, oxidative stress, and dysregulation of immune cells that are also involved in the infection of the 2019 novel coronavirus. According to the effects of ALA against all the aforementioned situations (also present in patients with a severe clinical picture of severe acute respiratory syndrome‐(CoV‐2) infection), there may be the biologic plausibility of a prophylactic effect of this compound against COVID‐19 symptoms and fatality.
Collapse
Affiliation(s)
- Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
| | - Yasmany Armas Diaz
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
| | | | - Fabio Capello
- International Study Center of Society of Telemedicine and Digital Health Bologna Italy
| | | | - Ramón del Jesús Palí Casanova
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Universidad Internacional Iberoamericana Arecibo Puerto Rico USA
| | - Julio César Martínez Espinosa
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Fundación Universitaria Internacional de Colombia Bogotá Colombia
| | - Alina Eugenia Pascual Barrera
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Fundación Universitaria Internacional de Colombia Bogotá Colombia
| | - Maria‐Dolores Navarro‐Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre University of Granada Armilla Spain
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection Jinan University Guangzhou China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection Jinan University Guangzhou China
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
- Research Group on Food, Nutritional Biochemistry and Health Universidad Europea del Atlántico Santander Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
- Research Group on Food, Nutritional Biochemistry and Health Universidad Europea del Atlántico Santander Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri‐Products Processing Jiangsu University Zhenjiang China
| |
Collapse
|
4
|
Emmons H, Wallace C, Fordahl S. Interleukin-6 and tumor necrosis factor-α attenuate dopamine release in mice fed a high-fat diet, but not medium or low-fat diets. Nutr Neurosci 2023; 26:864-874. [PMID: 35900193 PMCID: PMC9883593 DOI: 10.1080/1028415x.2022.2103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic low-grade inflammation is associated with a state of diet-induced obesity that impacts systemic tissues and can cross the blood-brain barrier to act directly on the brain. The extent to which pro-inflammatory cytokines released in these conditions affect dopamine presynaptic neurotransmission has not been previously investigated. The purpose of this study was to examine how dopamine terminals are affected by pro-inflammatory cytokines, and to determine if dietary fat consumption potentiates cytokine effects on dopamine release and reuptake rate in the nucleus accumbens (NAc). Male and female C57BL/6J mice were fed high, medium, or low-fat diets (60%, 30%, or 10% total kcals from fat, respectively) for six weeks. Fast scan cyclic voltammetry (FSCV) was used to measure dopamine release and reuptake rate in the NAc core from ex vivo coronal brain slices. Electrically evoked dopamine release and the maximal rate of dopamine reuptake (Vmax) were significantly lower in mice fed the 30% and 60% high-fat diets compared to the 10% low-fat group (p < 0.05). IL-6 5 or 10 nM or TNFα 30 or 300 nM was added to artificial cerebrospinal fluid (aCSF) bathed over brain slices during FSCV. No effect on dopamine release or Vmax was observed with lower concentrations. However, 10 nM IL-6 and 300 nM TNFα significantly reduced dopamine release in the 60% fat group (p < 0.05). No effect of added cytokine was observed on Vmax. Overall, these data provide evidence that dietary fat increases neural responsiveness to cytokines, which may help inform comorbidities between diet-induced obesity and depression or other mood disorders.
Collapse
Affiliation(s)
- H.A. Emmons
- UNC Greensboro, Department of Nutrition, Greensboro NC
| | - C.W. Wallace
- UNC Greensboro, Department of Nutrition, Greensboro NC
- Wake Forest School of Medicine, Physiology and Pharmacology, Winston-Salem NC
| | - S.C. Fordahl
- UNC Greensboro, Department of Nutrition, Greensboro NC
| |
Collapse
|
5
|
Yasmin N, Collier AD, Abdulai AR, Karatayev O, Yu B, Fam M, Leibowitz SF. Role of Chemokine Cxcl12a in Mediating the Stimulatory Effects of Ethanol on Embryonic Development of Subpopulations of Hypocretin/Orexin Neurons and Their Projections. Cells 2023; 12:1399. [PMID: 37408233 PMCID: PMC10216682 DOI: 10.3390/cells12101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Studies in zebrafish and rats show that embryonic ethanol exposure at low-moderate concentrations stimulates hypothalamic neurons expressing hypocretin/orexin (Hcrt) that promote alcohol consumption, effects possibly involving the chemokine Cxcl12 and its receptor Cxcr4. Our recent studies in zebrafish of Hcrt neurons in the anterior hypothalamus (AH) demonstrate that ethanol exposure has anatomically specific effects on Hcrt subpopulations, increasing their number in the anterior AH (aAH) but not posterior AH (pAH), and causes the most anterior aAH neurons to become ectopically expressed further anterior in the preoptic area (POA). Using tools of genetic overexpression and knockdown, our goal here was to determine whether Cxcl12a has an important function in mediating the specific effects of ethanol on these Hcrt subpopulations and their projections. The results demonstrate that the overexpression of Cxcl12a has stimulatory effects similar to ethanol on the number of aAH and ectopic POA Hcrt neurons and the long anterior projections from ectopic POA neurons and posterior projections from pAH neurons. They also demonstrate that knockdown of Cxcl12a blocks these effects of ethanol on the Hcrt subpopulations and projections, providing evidence supporting a direct role of this specific chemokine in mediating ethanol's stimulatory effects on embryonic development of the Hcrt system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
6
|
Leptin Increases: Physiological Roles in the Control of Sympathetic Nerve Activity, Energy Balance, and the Hypothalamic-Pituitary-Thyroid Axis. Int J Mol Sci 2023; 24:ijms24032684. [PMID: 36769012 PMCID: PMC9917048 DOI: 10.3390/ijms24032684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
It is well established that decreases in plasma leptin levels, as with fasting, signal starvation and elicit appropriate physiological responses, such as increasing the drive to eat and decreasing energy expenditure. These responses are mediated largely by suppression of the actions of leptin in the hypothalamus, most notably on arcuate nucleus (ArcN) orexigenic neuropeptide Y neurons and anorexic pro-opiomelanocortin neurons. However, the question addressed in this review is whether the effects of increased leptin levels are also significant on the long-term control of energy balance, despite conventional wisdom to the contrary. We focus on leptin's actions (in both lean and obese individuals) to decrease food intake, increase sympathetic nerve activity, and support the hypothalamic-pituitary-thyroid axis, with particular attention to sex differences. We also elaborate on obesity-induced inflammation and its role in the altered actions of leptin during obesity.
Collapse
|
7
|
Chang GQ, Yasmin N, Collier AD, Karatayev O, Khalizova N, Onoichenco A, Fam M, Albeg AS, Campbell S, Leibowitz SF. Fibroblast growth factor 2: Role in prenatal alcohol-induced stimulation of hypothalamic peptide neurons. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110536. [PMID: 35176416 PMCID: PMC8920779 DOI: 10.1016/j.pnpbp.2022.110536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
Abstract
Prenatal alcohol exposure (PAE) increases alcohol consumption and risk for alcohol use disorder. This phenomenon in rodents is suggested to involve a stimulatory effect of PAE, in female more than male offspring, on neurogenesis and density of neurons expressing neuropeptides in lateral hypothalamus (LH), including melanin-concentrating hormone (MCH), known to promote alcohol intake. With evidence suggesting a role for fibroblast growth factor 2 (FGF2) and its receptor FGFR1 in stimulating neurogenesis and alcohol drinking, we investigated here whether the FGF2-FGFR1 system is involved in the PAE-induced increase in MCH neurons, in postnatal offspring of pregnant rats given ethanol orally (embryonic day 10-15) at a low-moderate (2 g/kg/day) or high (5 g/kg/day) dose. Our results demonstrate that PAE at the low-moderate but not high dose stimulates FGF2 and FGFR1 gene expression and increases the density of MCH neurons co-expressing FGF2, only in females, but FGFR1 in both sexes. PAE induces this effect in the dorsal but not ventral area of the LH. Further analysis of FGF2 and FGFR1 transcripts within individual MCH neurons reveals an intracellular, sex-dependent effect, with PAE increasing FGF2 transcripts positively related to FGFR1 in the nucleus as well as cytoplasm of females but transcripts only in the cytoplasm of males. Peripheral injection of FGF2 itself (80 μg/kg, s.c.) in pregnant rats mimics these effects of PAE. Together, these results support the involvement of the FGF2-FGFR1 system in mediating the PAE-induced, sex dependent increase in density of MCH neurons, possibly contributing to increased alcohol consumption in the offspring.
Collapse
Affiliation(s)
- Guo-Qing Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Nushrat Yasmin
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Nailya Khalizova
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Amanda Onoichenco
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Milisia Fam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Avi S Albeg
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Samantha Campbell
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America.
| |
Collapse
|
8
|
Yamindago A, Lee N, Lee N, Jo Y, Woo S, Yum S. Fluoxetine in the environment may interfere with the neurotransmission or endocrine systems of aquatic animals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112931. [PMID: 34715500 DOI: 10.1016/j.ecoenv.2021.112931] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Antidepressants are extensively used to treat the symptoms of depression in humans, and the environmentally discharged drugs potentially threaten aquatic organisms. In this study, the acute toxic effects of fluoxetine (FLX) were investigated in two aquatic organisms, the freshwater polyp (Hydra magnipapillata) and Javanese medaka (Oryzias javanicus). The median lethal concentration (LC50) of FLX in H. magnipapillata was 3.678, 3.082, and 2.901 mg/L after 24, 48, and 72 h, respectively. Morphological observations of the FLX-exposed H. magnipapillata showed that 1.5 mg/L FLX induced the contraction of the tentacles and body column. The LC50 of FLX in O. javanicus was 2.046, 1.936, 1.532, and 1.237 mg/L after 24, 48, 72, and 96 h, respectively. Observation of the behavior of the FLX-exposed fish showed that FLX reduced their swimming performance at a minimum concentration of 10 µg/L. The half-maximal effective concentration (EC50) of FLX for swimming behavior in O. javanicus was 0.135, 0.108, and 0.011 mg/L after 12, 24, and 96 h, respectively. Transcriptomic analyses indicated that FLX affects various physiological and metabolic processes in both species. FLX exposure induced oxidative stress, reproductive deficiency, abnormal pattern formation, DNA damage, and neurotransmission disturbance in H. magnipapillata, whereas it adversely affected O. javanicus by inducing oxidative stress, DNA damage, endoplasmic reticulum stress, and mRNA instability. Neurotransmission-based behavioral changes and endocrine disruption were strongly suspected in the FLX-exposed fish. These results suggest that FLX affects the behavior and metabolic regulation of aquatic organisms.
Collapse
Affiliation(s)
- Ade Yamindago
- CORECT Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia; Study Program of Marine Science, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia.
| | - Nayun Lee
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Nayoung Lee
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Yejin Jo
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Seonock Woo
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Seungshic Yum
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; KIOST School, University of Science and Technology, Geoje 53201, Republic of Korea.
| |
Collapse
|
9
|
Cellular, synaptic, and network effects of chemokines in the central nervous system and their implications to behavior. Pharmacol Rep 2021; 73:1595-1625. [PMID: 34498203 PMCID: PMC8599319 DOI: 10.1007/s43440-021-00323-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Accumulating evidence highlights chemokines as key mediators of the bidirectional crosstalk between neurons and glial cells aimed at preserving brain functioning. The multifaceted role of these immune proteins in the CNS is mirrored by the complexity of the mechanisms underlying its biological function, including biased signaling. Neurons, only in concert with glial cells, are essential players in the modulation of brain homeostatic functions. Yet, attempts to dissect these complex multilevel mechanisms underlying coordination are still lacking. Therefore, the purpose of this review is to summarize the current knowledge about mechanisms underlying chemokine regulation of neuron-glia crosstalk linking molecular, cellular, network, and behavioral levels. Following a brief description of molecular mechanisms by which chemokines interact with their receptors and then summarizing cellular patterns of chemokine expression in the CNS, we next delve into the sequence and mechanisms of chemokine-regulated neuron-glia communication in the context of neuroprotection. We then define the interactions with other neurotransmitters, neuromodulators, and gliotransmitters. Finally, we describe their fine-tuning on the network level and the behavioral relevance of their modulation. We believe that a better understanding of the sequence and nature of events that drive neuro-glial communication holds promise for the development of new treatment strategies that could, in a context- and time-dependent manner, modulate the action of specific chemokines to promote brain repair and reduce the neurological impairment.
Collapse
|
10
|
Ullah R, Rauf N, Nabi G, Yi S, Yu-Dong Z, Fu J. Mechanistic insight into high-fat diet-induced metabolic inflammation in the arcuate nucleus of the hypothalamus. Biomed Pharmacother 2021; 142:112012. [PMID: 34388531 DOI: 10.1016/j.biopha.2021.112012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
A high-fat diet (HFD) is linked with cytokines production by non-neuronal cells within the hypothalamus, which mediates metabolic inflammation. These cytokines then activate different inflammatory mediators in the arcuate nucleus of the hypothalamus (ARC), a primary hypothalamic area accommodating proopiomelanocortin (POMC) and agouti-related peptide (AGRP) neurons, first-order neurons that sense and integrate peripheral metabolic signals and then respond accordingly. These mediators, such as inhibitor of κB kinase-β (IKKβ), suppression of cytokine signaling 3 (SOCS3), c-Jun N-terminal kinases (JNKs), protein kinase C (PKC), etc., cause insulin and leptin resistance in POMC and AGRP neurons and support obesity and related metabolic complications. On the other hand, inhibition of these mediators has been shown to counteract the impaired metabolism. Therefore, it is important to discuss the contribution of neuronal and non-neuronal cells in HFD-induced hypothalamic inflammation. Furthermore, understanding few other questions, such as the diets causing hypothalamic inflammation, the gender disparity in response to HFD feeding, and how hypothalamic inflammation affects ARC neurons to cause impaired metabolism, will be helpful for the development of therapeutic approaches to prevent or treat HFD-induced obesity.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Naveed Rauf
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Ghulam Nabi
- Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China; Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Shen Yi
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Zhou Yu-Dong
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; National Clinical Research Center for Child Health, Hangzhou 310052, China; National Children's Regional Medical Center, Hangzhou 310052, China.
| |
Collapse
|
11
|
Microglia-Neuron Crosstalk in Obesity: Melodious Interaction or Kiss of Death? Int J Mol Sci 2021; 22:ijms22105243. [PMID: 34063496 PMCID: PMC8155827 DOI: 10.3390/ijms22105243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Diet-induced obesity can originate from the dysregulated activity of hypothalamic neuronal circuits, which are critical for the regulation of body weight and food intake. The exact mechanisms underlying such neuronal defects are not yet fully understood, but a maladaptive cross-talk between neurons and surrounding microglial is likely to be a contributing factor. Functional and anatomical connections between microglia and hypothalamic neuronal cells are at the core of how the brain orchestrates changes in the body's metabolic needs. However, such a melodious interaction may become maladaptive in response to prolonged diet-induced metabolic stress, thereby causing overfeeding, body weight gain, and systemic metabolic perturbations. From this perspective, we critically discuss emerging molecular and cellular underpinnings of microglia-neuron communication in the hypothalamic neuronal circuits implicated in energy balance regulation. We explore whether changes in this intercellular dialogue induced by metabolic stress may serve as a protective neuronal mechanism or contribute to disease establishment and progression. Our analysis provides a framework for future mechanistic studies that will facilitate progress into both the etiology and treatments of metabolic disorders.
Collapse
|
12
|
Collier AD, Khalizova N, Chang GQ, Min S, Campbell S, Gulati G, Leibowitz SF. Involvement of Cxcl12a/Cxcr4b Chemokine System in Mediating the Stimulatory Effect of Embryonic Ethanol Exposure on Neuronal Density in Zebrafish Hypothalamus. Alcohol Clin Exp Res 2020; 44:2519-2535. [PMID: 33067812 DOI: 10.1111/acer.14482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Embryonic exposure to ethanol (EtOH) produces marked disturbances in neuronal development and alcohol-related behaviors, with low-moderate EtOH doses stimulating neurogenesis without producing apoptosis and high doses having major cytotoxic effects while causing gross morphological abnormalities. With the pro-inflammatory chemokine system, Cxcl12, and its main receptor Cxcr4, known to promote processes of neurogenesis, we examined here this neuroimmune system in the embryonic hypothalamus to test directly if it mediates the stimulatory effects low-moderate EtOH doses have on neuronal development. METHODS We used the zebrafish (Danio rerio) model, which develops externally and allows one to investigate the developing brain in vivo with precise control of dose and timing of EtOH delivery in the absence of maternal influence. Zebrafish were exposed to low-moderate EtOH doses (0.1, 0.25, 0.5% v/v), specifically during a period of peak hypothalamic development from 22 to 24 hours postfertilization, and in some tests were pretreated from 2 to 22 hpf with the Cxcr4 receptor antagonist, AMD3100. Measurements in the hypothalamus at 26 hpf were taken of cxcl12a and cxcr4b transcription, signaling, and neuronal density using qRT-PCR, RNAscope, and live imaging of transgenic zebrafish. RESULTS Embryonic EtOH exposure, particularly at the 0.5% dose, significantly increased levels of cxcl12a and cxcr4b mRNA in whole embryos, number of cxcl12a and cxcr4b transcripts in developing hypothalamus, and internalization of Cxcr4b receptors in hypothalamic cells. Embryonic EtOH also caused an increase in the number of hypothalamic neurons and coexpression of cxcl12a and cxcr4b transcripts within these neurons. Each of these stimulatory effects of EtOH in the embryo was blocked by pretreatment with the Cxcr4 antagonist AMD3100. CONCLUSIONS These results provide clear evidence that EtOH's stimulatory effects at low-moderate doses on the number of hypothalamic neurons early in development are mediated, in part, by increased transcription and intracellular activation of this chemokine system, likely due to autocrine signaling of Cxcl12a at its Cxcr4b receptor within the neurons.
Collapse
Affiliation(s)
- Adam D Collier
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Nailya Khalizova
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Guo-Qing Chang
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Soe Min
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Samantha Campbell
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Gazal Gulati
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Sarah F Leibowitz
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| |
Collapse
|
13
|
Lee CH, Suk K, Yu R, Kim MS. Cellular Contributors to Hypothalamic Inflammation in Obesity. Mol Cells 2020; 43:431-437. [PMID: 32392909 PMCID: PMC7264480 DOI: 10.14348/molcells.2020.0055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
The hypothalamus is a crucial organ for the maintenance of appropriate body fat storage. Neurons in the hypothalamic arcuate nucleus (ARH) detect energy shortage or surplus via the circulating concentrations of metabolic hormones and nutrients, and then coordinate energy intake and expenditure to maintain energy homeostasis. Malfunction or loss of hypothalamic ARH neurons results in obesity. Accumulated evidence suggests that hypothalamic inflammation is a key pathological mechanism that links chronic overconsumption of a high-fat diet (HFD) with the development of obesity and related metabolic complications. Interestingly, overnutrition-induced hypothalamic inflammation occurs specifically in the ARH, where microglia initiate an inflammatory response by releasing proinflammatory cytokines and chemokines in response to excessive fatty acid flux. Upon more prolonged HFD consumption, astrocytes and perivascular macrophages become involved and sustain hypothalamic inflammation. ARH neurons are victims of hypothalamic inflammation, but they may actively participate in hypothalamic inflammation by sending quiescence or stress signals to surrounding glia. In this mini-review, we describe the current state of knowledge regarding the contributions of neurons and glia, and their interactions, to HFD-induced hypothalamic inflammation.
Collapse
Affiliation(s)
- Chan Hee Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University College of Medicine, Daegu 41944, Korea
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Korea
| | - Min-Seon Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
14
|
Poon K. Behavioral Feeding Circuit: Dietary Fat-Induced Effects of Inflammatory Mediators in the Hypothalamus. Front Endocrinol (Lausanne) 2020; 11:591559. [PMID: 33324346 PMCID: PMC7726204 DOI: 10.3389/fendo.2020.591559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Excessive dietary fat intake has extensive impacts on several physiological systems and can lead to metabolic and nonmetabolic disease. In animal models of ingestion, exposure to a high fat diet during pregnancy predisposes offspring to increase intake of dietary fat and causes increase in weight gain that can lead to obesity, and without intervention, these physiological and behavioral consequences can persist for several generations. The hypothalamus is a region of the brain that responds to physiological hunger and fullness and contains orexigenic neuropeptide systems that have long been associated with dietary fat intake. The past fifteen years of research show that prenatal exposure to a high fat diet increases neurogenesis of these neuropeptide systems in offspring brain and are correlated to behavioral changes that induce a pro-consummatory and obesogenic phenotype. Current research has uncovered several potential molecular mechanisms by which excessive dietary fat alters the hypothalamus and involve dietary fatty acids, the immune system, gut microbiota, and transcriptional and epigenetic changes. This review will examine the current knowledge of dietary fat-associated changes in the hypothalamus and the potential pathways involved in modifying the development of orexigenic peptide neurons that lead to changes in ingestive behavior, with a special emphasis on inflammation by chemokines.
Collapse
|
15
|
Abstract
Under conditions leading to aging and metabolic syndrome, the hypothalamus atypically undergoes proinflammatory signaling activation leading to a chronic and stable background inflammation, referred to as "hypothalamic microinflammation." Through the past decade of research, progress has been made to causally link this hypothalamic inflammation to the mechanism of aging as well as metabolic syndrome, promoting the "hypothalamic microinflammation" theory, which helps characterize the consensus of these epidemic health problems. In general, it is consistently appreciated that hypothalamic microinflammation emerges during the early stages of aging and metabolic syndrome and evolves to be multifaceted and advanced alongside disease progression, while inhibition of key inflammatory components in the hypothalamus has a broad range of effects in counteracting these disorders. Herein, focusing on aging and metabolic syndrome, this writing aims to provide an overview of and insights into the mediators, signaling components, cellular impacts, and physiological significance of this hypothalamic microinflammation.
Collapse
|
16
|
Rahman MH, Kim MS, Lee IK, Yu R, Suk K. Interglial Crosstalk in Obesity-Induced Hypothalamic Inflammation. Front Neurosci 2018; 12:939. [PMID: 30618568 PMCID: PMC6300514 DOI: 10.3389/fnins.2018.00939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/29/2018] [Indexed: 12/29/2022] Open
Abstract
Glial cells have recently gained particular attention for their close involvement in neuroinflammation and metabolic disorders including obesity and diabetes. In the central nervous system (CNS), different types of resident glial cells have been documented to express several signaling molecules and related receptors, and their crosstalks have been implicated in physiology and pathology of the CNS. Emerging evidence illustrates that malfunctioning glia and their products are an important component of hypothalamic inflammation. Recent studies have suggested that glia–glia crosstalk is a pivotal mechanism of overnutrition-induced chronic hypothalamic inflammation, which might be intrinsically associated with obesity/diabetes and their pathological consequences. This review covers the recent advances in the molecular aspects of interglial crosstalk in hypothalamic inflammation, proposing a central role of such a crosstalk in the development of obesity, diabetes, and related complications. Finally, we discuss the possibilities and challenges of targeting glial cells and their crosstalk for a better understanding of hypothalamic inflammation and related metabolic dysfunctions.
Collapse
Affiliation(s)
- Md Habibur Rahman
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, University of Ulsan College of Medicine, Seoul, South Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, South Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
17
|
Adedeji TG, Olapade-Olaopa EO. Dietary macronutrient content affects inflammatory and fibrotic factors in normal and obstructed bladders. Life Sci 2018; 210:192-200. [DOI: 10.1016/j.lfs.2018.08.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
|
18
|
Hypothalamic CCL2/CCR2 Chemokine System: Role in Sexually Dimorphic Effects of Maternal Ethanol Exposure on Melanin-Concentrating Hormone and Behavior in Adolescent Offspring. J Neurosci 2018; 38:9072-9090. [PMID: 30201767 DOI: 10.1523/jneurosci.0637-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/21/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023] Open
Abstract
Clinical and animal studies show that ethanol exposure and inflammation during pregnancy cause similar behavioral disturbances in the offspring. While ethanol is shown to stimulate both neuroimmune and neurochemical systems in adults, little is known about their anatomical relationship in response to ethanol in utero and whether neuroimmune factors mediate ethanol's effects on neuronal development and behavior in offspring. Here we examined in female and male adolescent rats a specific population of neurons concentrated in lateral hypothalamus, which coexpress the inflammatory chemokine C-C motif ligand 2 (CCL2) or its receptor CCR2 with the orexigenic neuropeptide, melanin-concentrating hormone (MCH), that promotes ethanol drinking behavior. We demonstrate that maternal administration of ethanol (2 g/kg/d) from embryonic day 10 (E10) to E15, while having little impact on glia, stimulates expression of neuronal CCL2 and CCR2, increases density of both large CCL2 neurons colocalizing MCH and small CCL2 neurons surrounding MCH neurons, and stimulates ethanol drinking and anxiety in adolescent offspring. We show that these neuronal and behavioral changes are similarly produced by maternal administration of CCL2 (4 or 8 μg/kg/d, E10-E15) and blocked by maternal administration of a CCR2 antagonist INCB3344 (1 mg/kg/d, E10-E15), and these effects of ethanol and CCL2 are sexually dimorphic, consistently stronger in females. These results suggest that this neuronal CCL2/CCR2 system closely linked to MCH neurons has a role in mediating the effects of maternal ethanol exposure on adolescent offspring and contributes to the higher levels of adolescent risk factors for alcohol use disorders described in women.SIGNIFICANCE STATEMENT Ethanol consumption and inflammatory agents during pregnancy similarly increase alcohol intake and anxiety in adolescent offspring. To investigate how neurochemical and neuroimmune systems interact to mediate these disturbances, we examined a specific population of hypothalamic neurons coexpressing the inflammatory chemokine CCL2 and its receptor CCR2 with the neuropeptide, melanin-concentrating hormone. We demonstrate in adolescent offspring that maternal administration of CCL2, like ethanol, stimulates these neurons and increases ethanol drinking and anxiety, and these effects of ethanol are blocked by maternal CCR2 antagonist and consistently stronger in females. This suggests that neuronal chemokine signaling linked to neuropeptides mediates effects of maternal ethanol exposure on adolescent offspring and contributes to higher levels of adolescent risk factors for alcohol use disorders in women.
Collapse
|
19
|
Reduced learning and memory performances in high-fat treated hamsters related to brain neurotensin receptor1 expression variations. Behav Brain Res 2018; 347:227-233. [DOI: 10.1016/j.bbr.2018.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
|
20
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
21
|
Abdelwahed OM, Tork OM, Gamal El Din MM, Rashed L, Zickri M. Effect of glucagon-like peptide-1 analogue; Exendin-4, on cognitive functions in type 2 diabetes mellitus; possible modulation of brain derived neurotrophic factor and brain Visfatin. Brain Res Bull 2018; 139:67-80. [PMID: 29421245 DOI: 10.1016/j.brainresbull.2018.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 12/17/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Brain derived neurotrophic factor (BDNF) is one of the most essential neurotrophic factors in the brain. BDNF is involved in learning, memory and locomotion suggesting it as a target in type 2 diabetes mellitus (T2DM) associated cognitive changes. Visfatin; an adipokine discovered to be expressed in the brain; was found to have multiple effects including its participation in keeping energy supply to the cell and is consequentially involved in cell survival. Its role in cognitive functions in T2DM was not studied before. Recent studies point to the possible neuro-protective mechanisms of glucagon-like peptide 1 analogue: Exendin-4 (Ex-4) in many cognitive disorders, but whether BDNF or Visfatin are involved or not in its neuro-protective mechanisms; is still unknown. AIMS to study the changes in cognitive functions in T2DM, either not treated or treated with Glucagon-like peptide 1 (GLP-1) analogue: Ex-4, and to identify the possible underlying mechanisms of these changes and whether BDNF and brain Visfatin are involved. METHODS A total of 36 adult male wistar albino rats were divided into 4 groups; Control, Exendin-4 control, Diabetic and Exendin-4 treated groups. At the end of the study, Y-maze and open field tests were done the day before scarification to assess spatial working memory and locomotion, respectively. Fasting glucose and insulin, lipid profile and tumor necrosis factor- alpha (TNF-α) were measured in the serum. Homeostasis model assessment insulin resistance was calculated. In the brain tissue, malondialdehyde (MDA) level, gene expression and protein levels of BDNF and Visfatin, area of degenerated neurons, area of glial cells and area % of synaptophysin immunoexpression were assessed. RESULTS Compared with the control, the untreated diabetic rats showed insulin resistance, dyslipidemia and elevation of serum TNF-α. The brain tissue showed down-regulation of BDNF gene expression and reduction of its protein level, up-regulation of Visfatin gene expression and elevation of its protein level, increase in MDA, area of degenerated neurons and area of glial cells and reduction in area % of synaptophysin immunoexpression. These changes were paralleled with significant deterioration in spatial working memory and locomotion. Treatment of diabetic rats with Ex-4 reversed all these changes. CONCLUSION T2DM has a negative impact on cognitive functions through different pathological and subcellular mechanisms. The current study provides evidence for involvement of BDNF and brain Visfatin in T2DM- associated cognitive dysfunction. BDNF and brain Visfatin were also found to contribute to the neuro-protective effect of Ex-4 via modulation of inflammation, oxidative stress, neuro-degeneration and synaptic function.
Collapse
Affiliation(s)
- O M Abdelwahed
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - O M Tork
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - M M Gamal El Din
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - L Rashed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - M Zickri
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
22
|
Carbone LD, Bůžková P, Fink HA, Robbins JA, Bethel M, Hamrick MW, Hill WD. Association of Plasma SDF-1 with Bone Mineral Density, Body Composition, and Hip Fractures in Older Adults: The Cardiovascular Health Study. Calcif Tissue Int 2017; 100:599-608. [PMID: 28246930 PMCID: PMC5649737 DOI: 10.1007/s00223-017-0245-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/30/2017] [Indexed: 12/21/2022]
Abstract
Aging is associated with an increase in circulating inflammatory factors. One, the cytokine stromal cell-derived factor 1 (SDF-1 or CXCL12), is critical to stem cell mobilization, migration, and homing as well as to bone marrow stem cell (BMSC), osteoblast, and osteoclast function. SDF-1 has pleiotropic roles in bone formation and BMSC differentiation into osteoblasts/osteocytes, and in osteoprogenitor cell survival. The objective of this study was to examine the association of plasma SDF-1 in participants in the cardiovascular health study (CHS) with bone mineral density (BMD), body composition, and incident hip fractures. In 1536 CHS participants, SDF-1 plasma levels were significantly associated with increasing age (p < 0.01) and male gender (p = 0.04), but not with race (p = 0.63). In multivariable-adjusted models, higher SDF-1 levels were associated with lower total hip BMD (p = 0.02). However, there was no significant association of SDF-1 with hip fractures (p = 0.53). In summary, circulating plasma levels of SDF-1 are associated with increasing age and independently associated with lower total hip BMD in both men and women. These findings suggest that SDF-1 levels are linked to bone homeostasis.
Collapse
Affiliation(s)
- Laura D Carbone
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
- Department of Medicine, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
| | - Petra Bůžková
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Howard A Fink
- Veterans Affairs Health Care System, Geriatric Research Education & Clinical Center, Minneapolis, MN, USA
- Veterans Affairs Health Care System, Center for Chronic Disease Outcomes Research, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - John A Robbins
- Department of Medicine, University of California - Davis, Sacramento, CA, USA
| | - Monique Bethel
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
- Department of Medicine, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
| | - Mark W Hamrick
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
- Department of Orthopaedic Surgery, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Sanders Research Building, CB1119 1459 Laney-Walker Blvd., Augusta, Georgia, 30912-2000, USA
| | - William D Hill
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA.
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA.
- Department of Orthopaedic Surgery, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA.
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Sanders Research Building, CB1119 1459 Laney-Walker Blvd., Augusta, Georgia, 30912-2000, USA.
| |
Collapse
|
23
|
Poon K, Barson JR, Shi H, Chang GQ, Leibowitz SF. Involvement of the CXCL12 System in the Stimulatory Effects of Prenatal Exposure to High-Fat Diet on Hypothalamic Orexigenic Peptides and Behavior in Offspring. Front Behav Neurosci 2017; 11:91. [PMID: 28567007 PMCID: PMC5434113 DOI: 10.3389/fnbeh.2017.00091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/28/2017] [Indexed: 01/09/2023] Open
Abstract
Exposure to a high fat diet (HFD) during gestation stimulates neurogenesis and expression of hypothalamic orexigenic neuropeptides that affect consummatory and emotional behaviors. With recent studies showing a HFD to increase inflammation, this report investigated the neuroinflammatory chemokine, CXCL12, and compared the effects of prenatal CXCL12 injection to those of prenatal HFD exposure, first, by testing whether the HFD affects circulating CXCL12 in the dam and the CXCL12 system in the offspring brain, and then by examining whether prenatal exposure to CXCL12 itself mimics the effects of a HFD on hypothalamic neuropeptides and emotional behaviors. Our results showed that prenatal exposure to a HFD significantly increased circulating levels of CXCL12 in the dam, and that daily injections of CXCL12 induced a similar increase in CXCL12 levels as the HFD. In addition, prenatal HFD exposure significantly increased the expression of CXCL12 and its receptors, CXCR4 and CXCR7, in the hypothalamic paraventricular nucleus (PVN) of the offspring. Finally, the results revealed strong similarities in the effects of prenatal HFD and CXCL12 administration, which both stimulated neurogenesis and enkephalin (ENK) expression in the PVN, while having inconsistent or no effect in other regions of the hypothalamus, and also increased anxiety as measured by several behavioral tests. These results focus attention specifically on the CXCL12 chemokine system in the PVN of the offspring as being possibly involved in the stimulatory effects of prenatal HFD exposure on ENK-expressing neurons in the PVN and their associated changes in emotional behavior.
Collapse
Affiliation(s)
- Kinning Poon
- Laboratory of Behavioral Neurobiology, Rockefeller UniversityNew York, NY, USA
| | - Jessica R Barson
- Laboratory of Behavioral Neurobiology, Rockefeller UniversityNew York, NY, USA.,Department of Neurobiology and Anatomy, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Huanzhi Shi
- Laboratory of Behavioral Neurobiology, Rockefeller UniversityNew York, NY, USA
| | - Guo Qing Chang
- Laboratory of Behavioral Neurobiology, Rockefeller UniversityNew York, NY, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, Rockefeller UniversityNew York, NY, USA
| |
Collapse
|
24
|
Le Thuc O, Stobbe K, Cansell C, Nahon JL, Blondeau N, Rovère C. Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines. Front Endocrinol (Lausanne) 2017; 8:197. [PMID: 28855891 PMCID: PMC5557773 DOI: 10.3389/fendo.2017.00197] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
The hypothalamus is a key brain region in the regulation of energy balance as it controls food intake and both energy storage and expenditure through integration of humoral, neural, and nutrient-related signals and cues. Many years of research have focused on the regulation of energy balance by hypothalamic neurons, but the most recent findings suggest that neurons and glial cells, such as microglia and astrocytes, in the hypothalamus actually orchestrate together several metabolic functions. Because glial cells have been described as mediators of inflammatory processes in the brain, the existence of a causal link between hypothalamic inflammation and the deregulations of feeding behavior, leading to involuntary weight loss or obesity for example, has been suggested. Several inflammatory pathways that could impair the hypothalamic control of energy balance have been studied over the years such as, among others, toll-like receptors and canonical cytokines. Yet, less studied so far, chemokines also represent interesting candidates that could link the aforementioned pathways and the activity of hypothalamic neurons. Indeed, chemokines, in addition to their role in attracting immune cells to the inflamed site, have been suggested to be capable of neuromodulation. Thus, they could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators involved in the maintenance of energy balance. This review discusses the different inflammatory pathways that have been identified so far in the hypothalamus in the context of feeding behavior and body weight control impairments, with a particular focus on chemokines signaling that opens a new avenue in the understanding of the major role played by inflammation in obesity.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
- Helmholtz Diabetes Center (HDC), German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Katharina Stobbe
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Céline Cansell
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Jean-Louis Nahon
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Nicolas Blondeau
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Carole Rovère
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
- *Correspondence: Carole Rovère,
| |
Collapse
|
25
|
Le Thuc O, Cansell C, Bourourou M, Denis RG, Stobbe K, Devaux N, Guyon A, Cazareth J, Heurteaux C, Rostène W, Luquet S, Blondeau N, Nahon JL, Rovère C. Central CCL2 signaling onto MCH neurons mediates metabolic and behavioral adaptation to inflammation. EMBO Rep 2016; 17:1738-1752. [PMID: 27733491 DOI: 10.15252/embr.201541499] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022] Open
Abstract
Sickness behavior defines the endocrine, autonomic, behavioral, and metabolic responses associated with infection. While inflammatory responses were suggested to be instrumental in the loss of appetite and body weight, the molecular underpinning remains unknown. Here, we show that systemic or central lipopolysaccharide (LPS) injection results in specific hypothalamic changes characterized by a precocious increase in the chemokine ligand 2 (CCL2) followed by an increase in pro-inflammatory cytokines and a decrease in the orexigenic neuropeptide melanin-concentrating hormone (MCH). We therefore hypothesized that CCL2 could be the central relay for the loss in body weight induced by the inflammatory signal LPS. We find that central delivery of CCL2 promotes neuroinflammation and the decrease in MCH and body weight. MCH neurons express CCL2 receptor and respond to CCL2 by decreasing both electrical activity and MCH release. Pharmacological or genetic inhibition of CCL2 signaling opposes the response to LPS at both molecular and physiologic levels. We conclude that CCL2 signaling onto MCH neurons represents a core mechanism that relays peripheral inflammation to sickness behavior.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Céline Cansell
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Miled Bourourou
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Raphaël Gp Denis
- Univ Paris Diderot Sorbonne Paris Cité Unité de Biologie Fonctionnelle et Adaptative CNRS UMR 8251, Paris, France
| | - Katharina Stobbe
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Nadège Devaux
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Alice Guyon
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Julie Cazareth
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | | | - William Rostène
- Institut de la Vision UMRS 968-Université Pierre et Marie Curie, Paris, France
| | - Serge Luquet
- Univ Paris Diderot Sorbonne Paris Cité Unité de Biologie Fonctionnelle et Adaptative CNRS UMR 8251, Paris, France
| | - Nicolas Blondeau
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Jean-Louis Nahon
- Université Côte d'Azur, Nice, France .,CNRS, IPMC, Sophia Antipolis, France.,Station de Primatologie UPS846 CNRS, Rousset-sur-Arc, France
| | - Carole Rovère
- Université Côte d'Azur, Nice, France .,CNRS, IPMC, Sophia Antipolis, France
| |
Collapse
|