1
|
Rostami M, Lee A, Frazer AK, Akalu Y, Siddique U, Pearce AJ, Tallent J, Kidgell DJ. Determining the effects of transcranial alternating current stimulation on corticomotor excitability and motor performance: A sham-controlled comparison of four frequencies. Neuroscience 2025; 568:12-26. [PMID: 39798837 DOI: 10.1016/j.neuroscience.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/11/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Transcranial alternating current stimulation (tACS) modulates brain oscillations and corticomotor plasticity. We examined the effects of four tACS frequencies (20 Hz, 40 Hz, 60 Hz, and 80 Hz) on motor cortex (M1) excitability and motor performance. In a randomised crossover design, 12 adults received 20-minute tACS sessions, with Sham as control. Corticomotor and intracortical excitability was measured up to 60-minutes post-tACS. Motor performance was evaluated using the Grooved Pegboard Test (GPT) and sensorimotor assessments. Our findings demonstrated frequency-dependent modulation of corticomotor excitability based on MEP amplitude. 20 Hz and 40 Hz tACS reduced MEPs, while 60 Hz and 80 Hz increased MEPs. Inhibition (cortical silent period, SP) was reduced across all tACS frequencies compared to Sham, with 20 Hz and 40 Hz showing consistent reductions, 60 Hz showing effects at post-0 and post-30, and 80 Hz at post-60. Furthermore, 60 Hz tACS decreased intracortical inhibition at post-0, while intracortical facilitation increased with 20 Hz and 60 Hz at post-0, and 40 Hz at post-60. Motor performance remained unaffected across frequencies. Regression analyses revealed that shorter SP at 60 min post 60 Hz tACS predicted faster reaction times, while greater MEP amplitudes at 60 min following 80 Hz tACS predicted improved hand dexterity. Overall, beta and gamma tACS frequencies modulate M1 excitability, with consistent effects on SP, suggesting potential use in conditions involving SP elongation, such as stroke and Huntington's disease. These findings highlight 60 Hz tACS as a potential tool for motor rehabilitation therapies.
Collapse
Affiliation(s)
- Mohamad Rostami
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Annemarie Lee
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Ashlyn K Frazer
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Yonas Akalu
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia; Department of Human Physiology School of Medicine University of Gondar Ethiopia
| | - Ummatul Siddique
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Alan J Pearce
- School of Health Science Swinburne University of Technology Melbourne Australia
| | - Jamie Tallent
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia; School of Sport Rehabilitation and Exercise Sciences University of Essex Colchester UK
| | - Dawson J Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia.
| |
Collapse
|
2
|
Deng Q, Wu C, Parker E, Zhu J, Liu TCY, Duan R, Yang L. Mystery of gamma wave stimulation in brain disorders. Mol Neurodegener 2024; 19:96. [PMID: 39695746 DOI: 10.1186/s13024-024-00785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neuronal oscillations refer to rhythmic and periodic fluctuations of electrical activity in the central nervous system that arise from the cellular properties of diverse neuronal populations and their interactions. Specifically, gamma oscillations play a crucial role in governing the connectivity between distinct brain regions, which are essential in perception, motor control, memory, and emotions. In this context, we recapitulate various current stimulation methods to induce gamma entrainment. These methods include sensory stimulation, optogenetic modulation, photobiomodulation, and transcranial electrical or magnetic stimulation. Simultaneously, we explore the association between abnormal gamma oscillations and central nervous system disorders such as Alzheimer's disease, Parkinson's disease, stroke, schizophrenia, and autism spectrum disorders. Evidence suggests that gamma entrainment-inducing stimulation methods offer notable neuroprotection, although somewhat controversial. This review comprehensively discusses the functional role of gamma oscillations in higher-order brain activities from both physiological and pathological perspectives, emphasizing gamma entrainment as a potential therapeutic approach for neuropsychiatric disorders. Additionally, we discuss future opportunities and challenges in implementing such strategies.
Collapse
Affiliation(s)
- Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Emily Parker
- Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jing Zhu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Kang Q, Talesh AR, Lang EJ, Sahin M. Transsynaptic modulation of cerebellar nuclear cells: theta AC-burst stimulation. J Neural Eng 2024; 21:066028. [PMID: 39637565 PMCID: PMC11638969 DOI: 10.1088/1741-2552/ad9ad1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/04/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Objectives.Transcranial alternating current stimulation (tACS) and its variants are being tested in clinical trials for treatment of neurological disorders, and cerebellar tACS (ctACS) in particular has garnered much interest because of the involvement of the cerebellum in these disorders. The main objective of this study was to investigate the frequency tuning curves for the entrainment of the Purkinje cells (PCs) and the cerebellar nuclear (CN) cells by their axonal projections. In addition, we aimed to investigate the temporal and steady-state characteristics of the PC-CN transsynaptic modulation under clinically relevant stimulation waveforms.Approach.Experiments were conducted in anesthetized rats with the electrical stimulations applied to the cerebellar cortex while the spiking activity of PC and CN cells were recorded extracellularly. The PC-CN modulation was tested in a wide range of AC frequencies (1-1000 Hz). Furthermore, high-frequency AC stimulation (40-400 Hz) repeated at 4 Hz, that we termedtheta AC-Burst Stimulation, was tested for its transient and steady-state responses.Main results. The CN cell firing patterns suggest that the population of projecting PCs that is entrained by the surface stimulation consists of the cells that are entrained in 180° opposite phases to each other. The CN cell spiking activity in general follows the entrainment pattern of the projecting PCs in the transient response. The CN entrainment during the steady-state turns into suppression at high frequencies of the stimulation. The PC responses could be explained with a simple statistical model that suggested that low-frequency (as well as DC) and high-frequency AC modulation may be operating through different neural mechanisms.Significance.High-frequency AC stimulation with a low-frequency envelope can be leveraged to induce CN modulation at theta frequencies. These results may explain some of the clinical findings and provide insight for future clinical trials of ctACS.
Collapse
Affiliation(s)
- Qi Kang
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Amir Roshani Talesh
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Eric J Lang
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Mesut Sahin
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America
| |
Collapse
|
4
|
Figueroa-Taiba P, Álvarez-Ruf J, Ulloa P, Bruna-Melo T, Espinoza-Maraboli L, Burgos PI, Mariman JJ. Potentiation of Motor Adaptation Via Cerebellar tACS: Characterization of the Stimulation Frequency. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2487-2496. [PMID: 39433720 PMCID: PMC11585488 DOI: 10.1007/s12311-024-01748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/23/2024]
Abstract
Motor adaptation is critical to update motor tasks in new or modified environmental conditions. While the cerebellum supports error-based adaptations, its neural implementation is partially known. By controlling the frequency of cerebellar transcranial alternating current stimulation (c-tACS), we can test the influence of neural oscillation from the cerebellum for motor adaptation. Two independent experiments were conducted. In Experiment 1, 16 participants received four c-tACS protocols (45 Hz, 50 Hz, 55 Hz, and sham) on four different days while they practiced a visuomotor adaptation task (30 degrees CCW) with variable intensity (within-subject design). In Experiment 2, 45 participants separated into three groups received the effect of 45 Hz, 55 Hz c-tACS, and sham, respectively (between-subject design), performing the same visuomotor task with a fixed intensity (0.9 mA). In Experiment 1, 45 Hz and 50 Hz of c-tACS accelerated motor adaptation when participants performed the task only for the first time, independent of the time interval between sessions or the stimulation intensity. The effect of active c-tACS was ratified in Experiment 2, where 45 Hz c-tACS benefits motor adaptation during the complete practice period. Reaction time, velocity, or duration of reaching are not affected by c-tACS. Cerebellar alternating current stimulation is an effective strategy to potentiate visuomotor adaptations. Frequency-dependent effects on the gamma band, especially for 45 Hz c-tACS, ratify the oscillatory profile of cerebellar processes behind the motor adaptation. This can be exploited in future interventions to enhance motor learning.
Collapse
Affiliation(s)
- Paulo Figueroa-Taiba
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Laboratorio de Biomecánica Clínica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Carrera de Kinesiología, Santiago, Chile
| | - Joel Álvarez-Ruf
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Laboratorio de Biomecánica Clínica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Carrera de Kinesiología, Santiago, Chile
| | - Paulette Ulloa
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Trinidad Bruna-Melo
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Fisioterapia en Movimiento, Grupo de investigación Multiespecialidad (PTinMOTION), Departamento de Fisioterapia, Facultad de Fisioterapia, Universidad de Valencia, Valencia, 46010, España
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Liam Espinoza-Maraboli
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Pablo Ignacio Burgos
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Laboratorio de Neurorrehabilitación y control motor, Departamento de Neurociencias, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Balance Disorder Lab, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, OP-32, Portland, OR, 97239, USA
| | - Juan J Mariman
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Núcleo de Bienestar y Desarrollo Humano, Centro de Investigación en Educación (CIE- UMCE), Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.
| |
Collapse
|
5
|
Spampinato DA, Casula EP, Koch G. The Cerebellum and the Motor Cortex: Multiple Networks Controlling Multiple Aspects of Behavior. Neuroscientist 2024; 30:723-743. [PMID: 37649430 DOI: 10.1177/10738584231189435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The cerebellum and its thalamic projections to the primary motor cortex (M1) are well known to play an essential role in executing daily actions. Anatomic investigations in animals and postmortem humans have established the reciprocal connections between these regions; however, how these pathways can shape cortical activity in behavioral contexts and help promote recovery in neuropathological conditions remains not well understood. The present review aims to provide a comprehensive description of these pathways in animals and humans and discuss how novel noninvasive brain stimulation (NIBS) methods can be used to gain a deeper understanding of the cerebellar-M1 connections. In the first section, we focus on recent animal literature that details how information sent from the cerebellum and thalamus is integrated into an broad network of cortical motor neurons. We then discuss how NIBS approaches in humans can be used to reliably assess the connectivity between the cerebellum and M1. Moreover, we provide the latest perspectives on using advanced NIBS approaches to investigate and modulate multiple cerebellar-cortical networks involved in movement behavior and plasticity. Finally, we discuss how these emerging methods have been used in translation research to produce long-lasting modifications of cerebellar-thalamic-M1 to restore cortical activity and motor function in neurologic patients.
Collapse
|
6
|
Warthen KG, Walker NC, Wicklund BD, Gonzalez MM, Ramirez N, Gee SC, Al-Dasouqi H, Madore MR. Neuromodulation of the Cerebellum for Motor Applications: A Systematic Review. J Integr Neurosci 2024; 23:195. [PMID: 39473161 DOI: 10.31083/j.jin2310195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 11/14/2024] Open
Abstract
BACKGROUND Despite the connections and clear importance of the cerebellum in motor function, research utilizing cerebellar neuromodulation for treatment of movement disorders is still underdeveloped. Here we conduct a systematic review to investigate non-invasive neurostimulation of the cerebellum and its potential impact on motor systems and its function. Our aim is to give a general review of each neurostimulation study focusing on the cerebellum as a treatment target in the past five years at time of search, in order to update the field on current findings and inspire similar cerebellar neurostimulation research without unnecessary repetition. METHODS Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, our search included articles over the past five years that evaluated neurostimulation of the cerebellum (e.g., transcranial magnetic stimulation, transcranial direct current stimulation, and transcranial alternating current stimulation, etc.). Inclusion criteria included: (1) neurostimulation (repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS)) of the cerebellum; (2) only original articles, and (3) outcomes focused on motor functions. Exclusion criteria included: (1) neurostimulation with the goal of targeting any brain structure other than the cerebellum and (2) reviews and conference abstracts. RESULTS The search revealed 82 distinct articles relevant to the research question. Included are 17 articles concerning rTMS, 56 articles concerning tDCS, and 9 articles concerning tACS. The majority of the studies are controlled trials of varying types, with 79, with two case studies and one pilot study. CONCLUSIONS Many studies showed significant effects on motor function and circuitry via non-invasive neurostimulation of the cerebellum. Common targets of cerebellar neurostimulation include visuomotor control, stroke rehabilitation for improvements in balance and coordination, and motor skill acquisition. The field is still exploring ideal parameters of neurostimulation for each disorder or function of interest. Future research areas should include the inclusion of individual anatomy, including functional connectivity, and improving stimulation selectivity.
Collapse
Affiliation(s)
- Katherine G Warthen
- Mental Illness Research, Education, and Clinical Center, VA Palo Alto Healthcare System, Palo Alto, CA 94304, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicole C Walker
- Mental Illness Research, Education, and Clinical Center, VA Palo Alto Healthcare System, Palo Alto, CA 94304, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bo Dehm Wicklund
- Mental Illness Research, Education, and Clinical Center, VA Palo Alto Healthcare System, Palo Alto, CA 94304, USA
| | - Mia M Gonzalez
- Mental Illness Research, Education, and Clinical Center, VA Palo Alto Healthcare System, Palo Alto, CA 94304, USA
| | - Nathan Ramirez
- Mental Illness Research, Education, and Clinical Center, VA Palo Alto Healthcare System, Palo Alto, CA 94304, USA
| | - Stephanie C Gee
- Mental Illness Research, Education, and Clinical Center, VA Palo Alto Healthcare System, Palo Alto, CA 94304, USA
| | - Hanaa Al-Dasouqi
- Mental Illness Research, Education, and Clinical Center, VA Palo Alto Healthcare System, Palo Alto, CA 94304, USA
| | - Michelle R Madore
- Mental Illness Research, Education, and Clinical Center, VA Palo Alto Healthcare System, Palo Alto, CA 94304, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
McNally M, Byczynski G, Vanneste S. An overview of the effects and mechanisms of transcranial stimulation frequency on motor learning. J Neuroeng Rehabil 2024; 21:157. [PMID: 39267118 PMCID: PMC11391832 DOI: 10.1186/s12984-024-01464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
Many studies over the recent decades have attempted the modulation of motor learning using brain stimulation. Alternating currents allow for researchers not only to electrically stimulate the brain, but to further investigate the effects of specific frequencies, in and beyond the context of their endogenous associations. Transcranial alternating current stimulation (tACS) has therefore been used during motor learning to modulate aspects of acquisition, consolidation and performance of a learned motor skill. Despite numerous reviews on the effects of tACS, and its role in motor learning, there are few studies which synthesize the numerous frequencies and their respective theoretical mechanisms as they relate to motor and perceptual processes. Here we provide a short overview of the main stimulation frequencies used in motor learning modulation (e.g., alpha, beta, and gamma), and discuss the effect and proposed mechanisms of these studies. We summarize with the current state of the field, the effectiveness and variability in motor learning modulation, and novel mechanistic proposals from other fields.
Collapse
Affiliation(s)
- Michelle McNally
- Department of Physiology, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Gabriel Byczynski
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
- School of Psychology, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland.
- School of Psychology, Trinity College Dublin, Dublin, D02 PN40, Ireland.
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, D02 PN40, Ireland.
| |
Collapse
|
8
|
Antonioni A, Raho EM, Straudi S, Granieri E, Koch G, Fadiga L. The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neurosci Biobehav Rev 2024; 164:105830. [PMID: 39069236 DOI: 10.1016/j.neubiorev.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mirror neurons show activity during both the execution (AE) and observation of actions (AO). The Mirror Neuron System (MNS) could be involved during motor imagery (MI) as well. Extensive research suggests that the cerebellum is interconnected with the MNS and may be critically involved in its activities. We gathered evidence on the cerebellum's role in MNS functions, both theoretically and experimentally. Evidence shows that the cerebellum plays a major role during AO and MI and that its lesions impair MNS functions likely because, by modulating the activity of cortical inhibitory interneurons with mirror properties, the cerebellum may contribute to visuomotor matching, which is fundamental for shaping mirror properties. Indeed, the cerebellum may strengthen sensory-motor patterns that minimise the discrepancy between predicted and actual outcome, both during AE and AO. Furthermore, through its connections with the hippocampus, the cerebellum might be involved in internal simulations of motor programs during MI. Finally, as cerebellar neuromodulation might improve its impact on MNS activity, we explored its potential neurophysiological and neurorehabilitation implications.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy; Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara 44121, Italy.
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy; Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy
| |
Collapse
|
9
|
Feng T, Zhang L, Wu Y, Tang L, Chen X, Li Y, Shan C. Exploring the Therapeutic Effects and Mechanisms of Transcranial Alternating Current Stimulation on Improving Walking Ability in Stroke Patients via Modulating Cerebellar Gamma Frequency Band-a Narrative Review. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1593-1603. [PMID: 37962773 PMCID: PMC11269344 DOI: 10.1007/s12311-023-01632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
The cerebellum plays an important role in maintaining balance, posture control, muscle tone, and lower limb coordination in healthy individuals and stroke patients. At the same time, the relationship between cerebellum and motor learning has been widely concerned in recent years. Due to the relatively intact structure preservation and high plasticity after supratentorial stroke, non-invasive neuromodulation targeting the cerebellum is increasingly used to treat abnormal gait in stroke patients. The gamma frequency of transcranial alternating current stimulation (tACS) is commonly used to improve motor learning. It is an essential endogenous EEG oscillation in the gamma range during the swing phase, and rhythmic movement changes in the gait cycle. However, the effect of cerebellar tACS in the gamma frequency band on balance and walking after stroke remains unknown and requires further investigation.
Collapse
Affiliation(s)
- Tingyi Feng
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lichao Zhang
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwei Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Tang
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xixi Chen
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanli Li
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlei Shan
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Wilkins EW, Pantovic M, Noorda KJ, Premyanov MI, Boss R, Davidson R, Hagans TA, Riley ZA, Poston B. Motor Learning in a Complex Motor Task Is Unaffected by Three Consecutive Days of Transcranial Alternating Current Stimulation. Bioengineering (Basel) 2024; 11:744. [PMID: 39199702 PMCID: PMC11351210 DOI: 10.3390/bioengineering11080744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Transcranial alternating current stimulation (tACS) delivered to the primary motor cortex (M1) can increase cortical excitability, entrain neuronal firing patterns, and increase motor skill acquisition in simple motor tasks. The primary aim of this study was to assess the impact of tACS applied to M1 over three consecutive days of practice on the motor learning of a challenging overhand throwing task in young adults. The secondary aim was to examine the influence of tACS on M1 excitability. This study implemented a double-blind, randomized, SHAM-controlled, between-subjects experimental design. A total of 24 healthy young adults were divided into tACS and SHAM groups and performed three identical experimental sessions that comprised blocks of overhand throwing trials of the right dominant arm concurrent with application of tACS to the left M1. Performance in the overhand throwing task was quantified as the endpoint error. Motor evoked potentials (MEPs) were assessed in the right first dorsal interosseus (FDI) muscle with transcranial magnetic stimulation (TMS) to quantify changes in M1 excitability. Endpoint error was significantly decreased in the post-tests compared with the pre-tests when averaged over the three days of practice (p = 0.046), but this decrease was not statistically significant between the tACS and SHAM groups (p = 0.474). MEP amplitudes increased from the pre-tests to the post-tests (p = 0.003), but these increases were also not different between groups (p = 0.409). Overall, the main findings indicated that tACS applied to M1 over multiple days does not enhance motor learning in a complex task to a greater degree than practice alone (SHAM).
Collapse
Affiliation(s)
- Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA
| | - Milan Pantovic
- Health and Human Performance Department, Utah Tech University, St. George, UT 84770, USA;
| | - Kevin J. Noorda
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.J.N.); (M.I.P.); (R.B.); (R.D.); (T.A.H.)
| | - Mario I. Premyanov
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.J.N.); (M.I.P.); (R.B.); (R.D.); (T.A.H.)
| | - Rhett Boss
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.J.N.); (M.I.P.); (R.B.); (R.D.); (T.A.H.)
| | - Ryder Davidson
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.J.N.); (M.I.P.); (R.B.); (R.D.); (T.A.H.)
| | - Taylor A. Hagans
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.J.N.); (M.I.P.); (R.B.); (R.D.); (T.A.H.)
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
11
|
Yamamoto S, Miyaguchi S, Ogawa T, Inukai Y, Otsuru N, Onishi H. Effects of transcranial alternating current stimulation to the supplementary motor area on motor learning. Front Behav Neurosci 2024; 18:1378059. [PMID: 38741685 PMCID: PMC11089168 DOI: 10.3389/fnbeh.2024.1378059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Transcranial alternating current stimulation (tACS) is a noninvasive method for brain stimulation that artificially modulates oscillatory brain activity in the cortical region directly beneath the electrodes by applying a weak alternating current. Beta (β) oscillatory activity in the supplementary motor area (SMA) is involved in motor planning and maintenance, whereas gamma (γ) oscillatory activity is involved in the updating of motor plans. However, the effect of applying tACS to the SMA on motor learning has not yet been investigated. This study assessed the effects of applying tACS to the SMA on motor learning. Forty-two right-handed healthy adults (age 20.6 ± 0.5 years, 24 men and 18 women) were included. Motor learning was assessed using a visuomotor tracking task with pinch tension of the right thumb and right forefinger. Each trial lasted 60 s, and the error rates were measured. Conductive rubber electrodes were attached to the SMA and the left shoulder for tACS. Stimulation was applied at an intensity of 1.0 mA and frequencies of 70 and 20 Hz in the γ-tACS and β-tACS treatment groups, respectively. The sham group was only administered a fade-in/out. The visuomotor tracking task was performed for 10 trials before tACS and 10 trials after tACS. Two trials were conducted on the following day to determine motor skill retention. The average deviation measured during 60 s was considered the error value. Pre-stimulation learning rate was calculated as the change in error rate. Post-stimulation learning rate and retention rate were calculated as the change in error rate after stimulation and on the day after stimulation, respectively. In both the stimulation groups, differences in pre-stimulation learning, post-stimulation learning, and retention rates were not significant. However, in the γ-tACS group, baseline performance and pre-stimulation learning rate were positively correlated with post-stimulation learning rate. Therefore, applying γ-tACS to the SMA can increase post-stimulation learning rate in participants exhibiting low baseline performance and high pre-stimulation learning rate. Our findings suggest that motor learning can be effectively enhanced by applying γ-tACS to the SMA based on an individual's motor and learning abilities.
Collapse
Affiliation(s)
- Shunpei Yamamoto
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Takuma Ogawa
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
12
|
Meng H, Houston M, Zhang Y, Li S. Exploring the Prospects of Transcranial Electrical Stimulation (tES) as a Therapeutic Intervention for Post-Stroke Motor Recovery: A Narrative Review. Brain Sci 2024; 14:322. [PMID: 38671974 PMCID: PMC11047964 DOI: 10.3390/brainsci14040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Stroke survivors often have motor impairments and related functional deficits. Transcranial Electrical Stimulation (tES) is a rapidly evolving field that offers a wide range of capabilities for modulating brain function, and it is safe and inexpensive. It has the potential for widespread use for post-stroke motor recovery. Transcranial Direct Current Stimulation (tDCS), Transcranial Alternating Current Stimulation (tACS), and Transcranial Random Noise Stimulation (tRNS) are three recognized tES techniques that have gained substantial attention in recent years but have different mechanisms of action. tDCS has been widely used in stroke motor rehabilitation, while applications of tACS and tRNS are very limited. The tDCS protocols could vary significantly, and outcomes are heterogeneous. PURPOSE the current review attempted to explore the mechanisms underlying commonly employed tES techniques and evaluate their prospective advantages and challenges for their applications in motor recovery after stroke. CONCLUSION tDCS could depolarize and hyperpolarize the potentials of cortical motor neurons, while tACS and tRNS could target specific brain rhythms and entrain neural networks. Despite the extensive use of tDCS, the complexity of neural networks calls for more sophisticated modifications like tACS and tRNS.
Collapse
Affiliation(s)
- Hao Meng
- Department of Physical Medicine & Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA;
| | - Sheng Li
- Department of Physical Medicine & Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| |
Collapse
|
13
|
Pantovic M, Lidstone DE, de Albuquerque LL, Wilkins EW, Munoz IA, Aynlender DG, Morris D, Dufek JS, Poston B. Cerebellar Transcranial Direct Current Stimulation Applied over Multiple Days Does Not Enhance Motor Learning of a Complex Overhand Throwing Task in Young Adults. Bioengineering (Basel) 2023; 10:1265. [PMID: 38002389 PMCID: PMC10669324 DOI: 10.3390/bioengineering10111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Cerebellar transcranial direct current stimulation (tDCS) enhances motor skill and learning in relatively simple motor tasks, but it is unclear if c-tDCS can improve motor performance in complex motor tasks. The purpose of this study was to determine the influence of c-tDCS applied over multiple days on motor learning in a complex overhand throwing task. In a double-blind, randomized, between-subjects, SHAM-controlled, experimental design, 30 young adults were assigned to either a c-tDCS or a SHAM group. Participants completed three identical experiments on consecutive days that involved overhand throwing in a pre-test block, five practice blocks with concurrent c-tDCS, and a post-test block. Overhand throwing endpoint accuracy was quantified as the endpoint error. The first dorsal interosseous muscle motor evoked potential (MEP) amplitude elicited by transcranial magnetic stimulation was used to quantify primary motor cortex (M1) excitability modulations via c-tDCS. Endpoint error significantly decreased over the 3 days of practice, but the magnitude of decrease was not significantly different between the c-tDCS and SHAM group. Similarly, MEP amplitude slightly increased from the pre-tests to the post-tests, but these increases did not differ between groups. These results indicate that multi-day c-tDCS does not improve motor learning in an overhand throwing task or increase M1 excitability.
Collapse
Affiliation(s)
- Milan Pantovic
- Health and Human Performance Department, Utah Tech University, St. George, UT 84770, USA;
| | - Daniel E. Lidstone
- Center for Neurodevelopment and Imaging Research, Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Lidio Lima de Albuquerque
- School of Health and Applied Human Sciences, University of North Carolina Wilmington, Wilmington, NC 28403, USA;
| | - Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (E.W.W.); (J.S.D.)
| | - Irwin A. Munoz
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (I.A.M.); (D.G.A.); (D.M.)
| | - Daniel G. Aynlender
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (I.A.M.); (D.G.A.); (D.M.)
| | - Desiree Morris
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (I.A.M.); (D.G.A.); (D.M.)
| | - Janet S. Dufek
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (E.W.W.); (J.S.D.)
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (E.W.W.); (J.S.D.)
| |
Collapse
|
14
|
De Guzman KA, Young RJ, Contini V, Clinton E, Hitchcock A, Riley ZA, Poston B. The Influence of Transcranial Alternating Current Stimulation on Fatigue Resistance. Brain Sci 2023; 13:1225. [PMID: 37626581 PMCID: PMC10452200 DOI: 10.3390/brainsci13081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Previous research has shown that some forms of non-invasive brain stimulation can increase fatigue resistance. The purpose of this study is to determine the influence of transcranial alternating current stimulation (tACS) on the time to task failure (TTF) of a precision grip task. The study utilized a randomized, double-blind, SHAM-controlled, within-subjects design. Twenty-six young adults completed two experimental sessions (tACS and SHAM) with a 7-day washout period between sessions. Each session involved a fatiguing isometric contraction of the right hand with a precision grip with either a tACS or SHAM stimulation applied to the primary motor cortex (M1) simultaneously. For the fatiguing contraction, the participants matched an isometric target force of 20% of the maximum voluntary contraction (MVC) force until task failure. Pre- and post-MVCs were performed to quantify the force decline due to fatigue. Accordingly, the dependent variables were the TTF and MVC force decline as well as the average EMG activity, force error, and standard deviation (SD) of force during the fatiguing contractions. The results indicate that there were no significant differences in any of the dependent variables between the tACS and SHAM conditions (p value range: 0.256-0.820). These findings suggest that tACS does not increase the TTF during fatiguing contractions in young adults.
Collapse
Affiliation(s)
- Kayla A. De Guzman
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
| | - Richard J. Young
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
- Optum Labs, Minnetonka, MN 55343, USA
| | - Valentino Contini
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
| | - Eliza Clinton
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
| | - Ashley Hitchcock
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University—Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
| |
Collapse
|
15
|
de Albuquerque LL, Pantovic M, Clingo M, Fischer K, Jalene S, Landers M, Mari Z, Poston B. A Single Application of Cerebellar Transcranial Direct Current Stimulation Fails to Enhance Motor Skill Acquisition in Parkinson's Disease: A Pilot Study. Biomedicines 2023; 11:2219. [PMID: 37626716 PMCID: PMC10452618 DOI: 10.3390/biomedicines11082219] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that leads to numerous impairments in motor function that compromise the ability to perform activities of daily living. Practical and effective adjunct therapies are needed to complement current treatment approaches in PD. Transcranial direct current stimulation applied to the cerebellum (c-tDCS) can increase motor skill in young and older adults. Because the cerebellum is involved in PD pathology, c-tDCS application during motor practice could potentially enhance motor skill in PD. The primary purpose was to examine the influence of c-tDCS on motor skill acquisition in a complex, visuomotor isometric precision grip task (PGT) in PD in the OFF-medication state. The secondary purpose was to determine the influence of c-tDCS on transfer of motor skill in PD. The study utilized a double-blind, SHAM-controlled, within-subjects design. A total of 16 participants completed a c-tDCS condition and a SHAM condition in two experimental sessions separated by a 7-day washout period. Each session involved practice of the PGT concurrent with either c-tDCS or SHAM. Additionally, motor transfer tasks were quantified before and after the practice and stimulation period. The force error in the PGT was not significantly different between the c-tDCS and SHAM conditions. Similarly, transfer task performance was not significantly different between the c-tDCS and SHAM conditions. These findings indicate that a single session of c-tDCS does not elicit acute improvements in motor skill acquisition or transfer in hand and arm tasks in PD while participants are off medications.
Collapse
Affiliation(s)
- Lidio Lima de Albuquerque
- School of Health and Applied Human Sciences, University of North Carolina Wilmington, Wilmington, NC 28403, USA;
| | - Milan Pantovic
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (M.P.); (K.F.); (S.J.)
| | - Mitchell Clingo
- School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Katherine Fischer
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (M.P.); (K.F.); (S.J.)
| | - Sharon Jalene
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (M.P.); (K.F.); (S.J.)
| | - Merrill Landers
- Department of Physical Therapy, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Zoltan Mari
- Movement Disorders Program, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (M.P.); (K.F.); (S.J.)
| |
Collapse
|
16
|
Yan X, Boudrias MH, Mitsis GD. Investigation of Methodologies for Extracting Individual Brain Oscillations: Comparisons & Insights. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083732 DOI: 10.1109/embc40787.2023.10340684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
There is increasing evidence that the effects of non-invasive brain stimulation can be maximized when the applied intervention matches internal brain oscillations. Extracting individual brain oscillations is thus a necessary step for implementing personalized brain stimulation. In this context, different methods have been proposed for obtaining subject-specific spectral peaks from electrophysiological recordings. However, comparing the results obtained using different approaches is still lacking. Therefore, in the present work, we examined the following methodologies in terms of obtaining individual motor-related EEG spectral peaks: fast Fourier Transform analysis, power spectrum density analysis, wavelet analysis, and a principal component based time-frequency analysis. We used EEG data obtained when performing two different motor tasks - a hand grip task and a hand opening- and-closing task. Our results showed that both the motor task type and the specific method for performing the analysis had considerable impact on the extraction of subject-specific oscillation spectral peaks.Clinical Relevance-This exploratory study provides insights into the potential effects of using different methods to extract individual brain oscillations, which is important for designing personalized brain-machine-interfaces.
Collapse
|
17
|
Whittier TT, Patrick CM, Fling BW. Somatosensory Information in Skilled Motor Performance: A Narrative Review. J Mot Behav 2023; 55:453-474. [PMID: 37245865 DOI: 10.1080/00222895.2023.2213198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/30/2023]
Abstract
Historically, research aimed at improving motor performance has largely focused on the neural processes involved in motor execution due to their role in muscle activation. However, accompanying somatosensory and proprioceptive sensory information is also vitally involved in performing motor skills. Here we review research from interdisciplinary fields to provide a description for how somatosensation informs the successful performance of motor skills as well as emphasize the need for careful selection of study methods to isolate the neural processes involved in somatosensory perception. We also discuss upcoming strategies of intervention that have been used to improve performance via somatosensory targets. We believe that a greater appreciation for somatosensation's role in motor learning and control will enable researchers and practitioners to develop and apply methods for the enhancement of human performance that will benefit clinical, healthy, and elite populations alike.
Collapse
Affiliation(s)
- Tyler T Whittier
- Sensorimotor Neuroimaging Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Christopher M Patrick
- Sensorimotor Neuroimaging Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO, USA
| | - Brett W Fling
- Sensorimotor Neuroimaging Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
18
|
Benussi A, Batsikadze G, França C, Cury RG, Maas RPPWM. The Therapeutic Potential of Non-Invasive and Invasive Cerebellar Stimulation Techniques in Hereditary Ataxias. Cells 2023; 12:cells12081193. [PMID: 37190102 DOI: 10.3390/cells12081193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The degenerative ataxias comprise a heterogeneous group of inherited and acquired disorders that are characterized by a progressive cerebellar syndrome, frequently in combination with one or more extracerebellar signs. Specific disease-modifying interventions are currently not available for many of these rare conditions, which underscores the necessity of finding effective symptomatic therapies. During the past five to ten years, an increasing number of randomized controlled trials have been conducted examining the potential of different non-invasive brain stimulation techniques to induce symptomatic improvement. In addition, a few smaller studies have explored deep brain stimulation (DBS) of the dentate nucleus as an invasive means to directly modulate cerebellar output, thereby aiming to alleviate ataxia severity. In this paper, we comprehensively review the clinical and neurophysiological effects of transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and dentate nucleus DBS in patients with hereditary ataxias, as well as the presumed underlying mechanisms at the cellular and network level and perspectives for future research.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Carina França
- Movement Disorders Center, Department of Neurology, University of São Paulo, São Paulo 05508-010, Brazil
| | - Rubens G Cury
- Movement Disorders Center, Department of Neurology, University of São Paulo, São Paulo 05508-010, Brazil
| | - Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
19
|
Wessel MJ, Draaisma LR, Hummel FC. Mini-review: Transcranial Alternating Current Stimulation and the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2023; 22:120-128. [PMID: 35060078 DOI: 10.1007/s12311-021-01362-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 02/01/2023]
Abstract
Oscillatory activity in the cerebellum and linked networks is an important aspect of neuronal processing and functional implementation of behavior. So far, it was challenging to quantify and study cerebellar oscillatory signatures in human neuroscience due to the constraints of non-invasive cerebellar electrophysiological recording and interventional techniques. The emerging cerebellar transcranial alternating current stimulation technique (CB-tACS) is a promising tool, which may partially overcome this challenge and provides an exciting non-invasive opportunity to better understand cerebellar physiology.Several studies have successfully demonstrated that CB-tACS can modulate the cerebellar outflow and cerebellum-linked behavior. In the present narrative review, we summarize current studies employing the CB-tACS approach and discuss open research questions. Hereby, we aim to provide an overview on this emerging electrophysiological technique and strive to promote future research in the field. CB-tACS will contribute in the further deciphering of cerebellar oscillatory signatures and its role for motor, cognitive, or affective functions. In long term, CB-tACS could develop into a therapeutic tool for retuning disturbed oscillatory activity in cerebellar networks underlying brain disorders.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland. .,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland. .,Department of Neurology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| | - Laurijn R Draaisma
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland.,Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
20
|
Chen X, Shi X, Wu Y, Zhou Z, Chen S, Han Y, Shan C. Gamma oscillations and application of 40-Hz audiovisual stimulation to improve brain function. Brain Behav 2022; 12:e2811. [PMID: 36374520 PMCID: PMC9759142 DOI: 10.1002/brb3.2811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Audiovisual stimulation, such as auditory stimulation, light stimulation, and audiovisual combined stimulation, as a non-invasive stimulation, which can induce gamma oscillation, has received increased attention in recent years, and it has been preliminarily applied in the clinical rehabilitation of brain dysfunctions, such as cognitive, language, motor, mood, and sleep dysfunctions. However, the exact mechanism underlying the therapeutic effect of 40-Hz audiovisual stimulation remains unclear; the clinical applications of 40-Hz audiovisual stimulation in brain dysfunctions rehabilitation still need further research. OBJECTIVE In order to provide new insights into brain dysfunction rehabilitation, this review begins with a discussion of the mechanism underlying 40-Hz audiovisual stimulation, followed by a brief evaluation of its clinical application in the rehabilitation of brain dysfunctions. RESULTS Currently, 40-Hz audiovisual stimulation was demonstrated to affect synaptic plasticity and modify the connection status of related brain networks in animal experiments and clinical trials. Although its promising efficacy has been shown in the treatment of cognitive, mood, and sleep impairment, research studies into its application in language and motor dysfunctions are still ongoing. CONCLUSIONS Although 40-Hz audiovisual stimulation seems to be effective in treating cognitive, mood, and sleep disorders, its role in language and motor dysfunctions has yet to be determined.
Collapse
Affiliation(s)
- Xixi Chen
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Shi
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwei Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqing Zhou
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songmei Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlei Shan
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
21
|
Hu K, Wan R, Liu Y, Niu M, Guo J, Guo F. Effects of transcranial alternating current stimulation on motor performance and motor learning for healthy individuals: A systematic review and meta-analysis. Front Physiol 2022; 13:1064584. [PMID: 36467691 PMCID: PMC9715745 DOI: 10.3389/fphys.2022.1064584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2023] Open
Abstract
Objective:Previous behavioral studies have reported the potential of transcranial alternating current stimulation in analyzing the causal relationship between neural activity and behavior. However, the efficacy of tACS on motor performance and learning in healthy individuals remains unclear. This systematic reviewexamines the effectiveness of tACS on motor performance and motor learning in healthy individuals. Methods: Literature was systematically searched through the Cochrane Library, PubMed, EMBASE, and Web of Science until 16 October 2022. Studies were eligible for review if they were randomized, parallel, or crossover experimental designs and reported the efficacy of tACS on motor performance and motor learning in healthy adults. Review Manager 5.3 was used to evaluate the methodological quality and analyze the combined effect. Results: Ten studies (270 participants) met all the inclusion criteria. The results showed that motor performance was not significantly greater than that with sham tACS stimulation [I2 = 44%, 95% CI (-0.01, 0.35), p = 0.06, standardized mean difference = 0.17], whereas motor learning ability improved significantly [I2 = 33%, 95% CI (-1.03, -0.31), p = 0.0002, SMD = -0.67]. Subgroup analysis found that gamma bend tACS could affect the changes in motor performance (I2 = 6%, 95% CI (0.05, 0.51), p = 0.02, SMD = 0.28), and online tACS did as well [I2 = 54%, 95% CI (0.12, 0.56), p = 0.002, SMD = 0.34]. Conclusion: The results showed that tACS effectively improves motor performance (gamma band and online mode) and motor learning in healthy individuals, which indicates that tACS may be a potential therapeutic tool to improve motor behavioral outcomes. However, further evidence is needed to support these promising results. Systematic Review Registration: PROSPERO, identifier CRD42022342884.
Collapse
Affiliation(s)
- Kun Hu
- College of Human Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruihan Wan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ying Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Maolin Niu
- College of Human Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
| | - Jianrui Guo
- College of Human Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
| | - Feng Guo
- College of Human Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
22
|
Pham MV, Saito K, Miyaguchi S, Watanabe H, Ikarashi H, Nagasaka K, Yokota H, Kojima S, Inukai Y, Otsuru N, Onishi H. Changes in excitability and GABAergic neuronal activity of the primary somatosensory cortex after motor learning. Front Neurosci 2022; 16:794173. [PMID: 36203802 PMCID: PMC9530600 DOI: 10.3389/fnins.2022.794173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction It is widely known that motor learning changes the excitability of the primary motor cortex. More recently, it has been shown that the primary somatosensory cortex (S1) also plays an important role in motor learning, but the details have not been fully examined. Therefore, we investigated how motor skill training affects somatosensory evoked potential (SEP) in 30 neurologically healthy subjects. Methods SEP N20/P25_component and N20/P25 SEP paired-pulse depression (SEP-PPD) were assessed before and immediately after complex or simple visuomotor tasks. Results Motor learning was induced more efficiently by the complex visuomotor task than by the simple visuomotor task. Both the N20/P25 SEP amplitude and N20/P25 SEP-PPD increased significantly immediately after the complex visuomotor task, but not after the simple visuomotor task. Furthermore, the altered N20/P25 SEP amplitude was associated with an increase in motor learning efficiency. Conclusion These results suggest that motor learning modulated primary somatosensory cortex excitability.
Collapse
Affiliation(s)
- Manh Van Pham
- Department of Physical Therapy, Hai Duong Medical Technical University, Hai Duong, Vietnam
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
- *Correspondence: Kei Saito,
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hiraku Watanabe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
- Division of Physical Therapy and Rehabilitation Medicine, University of Fukui Hospital, Fukui, Japan
| | - Hitomi Ikarashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
23
|
Ponce GV, Klaus J, Schutter DJLG. A Brief History of Cerebellar Neurostimulation. CEREBELLUM (LONDON, ENGLAND) 2022; 21:715-730. [PMID: 34403075 PMCID: PMC9325826 DOI: 10.1007/s12311-021-01310-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 12/28/2022]
Abstract
The first attempts at using electric stimulation to study human brain functions followed the experiments of Luigi Galvani and Giovanni Aldini on animal electricity during the eighteenth century. Since then, the cerebellum has been among the areas that have been studied by invasive and non-invasive forms of electrical and magnetic stimulation. During the nineteenth century, animal experiments were conducted to map the motor-related regions of cerebellar cortex by means of direct electric stimulation. As electric stimulation research on the cerebellum moved into the twentieth century, systematic research of electric cerebellar stimulation led to a better understanding of its effects and mechanism of action. In addition, the clinical potential of cerebellar stimulation in the treatment of motor diseases started to be explored. With the introduction of transcranial electric and magnetic stimulation, cerebellar research moved to non-invasive techniques. During the twenty-first century, following on groundbreaking research that linked the cerebellum to non-motor functions, non-invasive techniques have facilitated research into different aspects of cerebellar functioning. The present review provides a brief historical account of cerebellar neurostimulation and discusses current challenges and future direction in this field of research.
Collapse
Affiliation(s)
- Gustavo V Ponce
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands
| | - Jana Klaus
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands
| | - Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands.
| |
Collapse
|
24
|
Mc Laughlin M, Khatoun A, Asamoah B. Detection of tACS Entrainment Critically Depends on Epoch Length. Front Cell Neurosci 2022; 16:806556. [PMID: 35360495 PMCID: PMC8963722 DOI: 10.3389/fncel.2022.806556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/11/2022] [Indexed: 11/26/2022] Open
Abstract
Neural entrainment is the phase synchronization of a population of neurons to an external rhythmic stimulus such as applied in the context of transcranial alternating current stimulation (tACS). tACS can cause profound effects on human behavior. However, there remain a significant number of studies that find no behavioral effect when tACS is applied to human subjects. To investigate this discrepancy, we applied time sensitive phase lock value (PLV) based analysis to single unit data from the rat motor cortex. The analysis revealed that detection of neural entrainment depends critically on the epoch length within which spiking information is accumulated. Increasing the epoch length allowed for detection of progressively weaker levels of neural entrainment. Based on this single unit analysis, we hypothesized that tACS effects on human behavior would be more easily detected in a behavior paradigm which utilizes longer epoch lengths. We tested this by using tACS to entrain tremor in patients and healthy volunteers. When the behavioral data were analyzed using short duration epochs tremor entrainment effects were not detectable. However, as the epoch length was progressively increased, weak tremor entrainment became detectable. These results suggest that tACS behavioral paradigms that rely on the accumulation of information over long epoch lengths will tend to be successful at detecting behavior effects. However, tACS paradigms that rely on short epoch lengths are less likely to detect effects.
Collapse
|
25
|
Miyaguchi S, Inukai Y, Mitsumoto S, Otsuru N, Onishi H. Gamma-transcranial alternating current stimulation on the cerebellum and supplementary motor area improves bimanual motor skill. Behav Brain Res 2022; 424:113805. [PMID: 35182606 DOI: 10.1016/j.bbr.2022.113805] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Bimanual movements require sophisticated coordination of both hands. For improving bimanual motor skills, previous studies employed non-invasive brain stimulation methods to evaluate their effects on symmetrical and/or gross bimanual motor skills. However, asymmetrical and elaborate movements were not sufficiently improved. Studies using non-invasive brain stimulation have examined the effects of stimulation on the primary and supplementary motor areas (SMA),) but not on the cerebellar regions. OBJECTIVE We investigated whether the transcranial alternating current stimulation (tACS), which modulates oscillations in the cerebral cortex, of the cerebellum and SMA improves bimanual movements. METHODS Bimanual movements were assessed in 22 healthy young adults (mean age: 21.3 ± 1.5 years) via 13 trials of the Purdue Pegboard Test (PPT). A DC stimulator delivered 70Hz tACS (γ-tACS) at 1mA intensity via electrodes placed over the SMA, cerebellum and left shoulder in 5s fade in/out cycles of 5s for a total stimulus duration of 60s for in each trial. Four stimulation conditions were applied and compared for statistical differences. RESULTS The γ-tACS of the cerebellum, γ-tACS of the SMA and simultaneous stimulation of both regions caused significant improvement in PPT performance scores. The γ-tACS of the cerebellum improved PPT performance in all subjects and was more effective than the γ-tACS of the SMA. CONCLUSION The γ-tACS of the cerebellum effectively and reliably improves complex bimanual motor skills. Although the neural mechanisms of the stimulation effect remain unclear, these results can guide the future development of new stimulation methods for improving bimanual motor skills.
Collapse
Affiliation(s)
- Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shuji Mitsumoto
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
26
|
Schubert C, Dabbagh A, Classen J, Krämer UM, Tzvi E. Alpha oscillations modulate premotor-cerebellar connectivity in motor learning: Insights from transcranial alternating current stimulation. Neuroimage 2021; 241:118410. [PMID: 34303797 DOI: 10.1016/j.neuroimage.2021.118410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
Alpha oscillations (8-13 Hz) have been suggested to play an important role in dynamic neural processes underlying learning and memory. The goal of this study was to scrutinize the role of alpha oscillations in communication within a cortico-cerebellar network implicated in motor sequence learning. To this end, we conducted two EEG experiments using a serial reaction time task. In the first experiment, we explored changes in alpha power and cross-channel alpha coherence as subjects learned a motor sequence. We found a gradual decrease in spectral alpha power over left premotor cortex (PMC) and sensorimotor cortex (SM1) during learning blocks. In addition, alpha coherence between left PMC/SM1 and left cerebellar crus I was specifically decreased during sequence learning, possibly reflecting a functional decoupling in the broader motor learning network. In the second experiment in a different cohort, we applied 10Hz transcranial alternating current stimulation (tACS), a method shown to entrain local oscillatory activity, to left M1 (lM1) and right cerebellum (rCB) during sequence learning. We observed a tendency for diminished learning following rCB tACS compared to sham, but not following lM1 tACS. Learning-related alpha power following rCB tACS was increased in left PMC, possibly reflecting increase in local inhibitory neural activity. Importantly, learning-specific alpha coherence between left PMC and right cerebellar lobule VIIb was enhanced following rCB tACS. These findings provide strong evidence for a causal role of alpha oscillations in controlling information transfer in a premotor-cerebellar loop during motor sequence learning. Our findings are consistent with a model in which sequence learning may be impaired by enhancing premotor cortical alpha oscillation via external modulation of cerebellar oscillations.
Collapse
Affiliation(s)
- Christine Schubert
- Department of Neurology, University of Leipzig, Liebigstraße 20, Leipzig 04103, Germany
| | - Alhuda Dabbagh
- Department of Neurology, University of Leipzig, Liebigstraße 20, Leipzig 04103, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Liebigstraße 20, Leipzig 04103, Germany
| | - Ulrike M Krämer
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany; Department of Psychology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany; Center for Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Elinor Tzvi
- Department of Neurology, University of Leipzig, Liebigstraße 20, Leipzig 04103, Germany.
| |
Collapse
|
27
|
Hoshi H, Kojima S, Otsuru N, Onishi H. Effects of transcranial random noise stimulation timing on corticospinal excitability and motor function. Behav Brain Res 2021; 414:113479. [PMID: 34302882 DOI: 10.1016/j.bbr.2021.113479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/07/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Although transcranial random noise stimulation (tRNS) to the primary motor cortex (M1) increases corticospinal excitability and improves motor function, the effects of tRNS timing have not been clarified when combined with motor training. The purpose of this study was to clarify the effects of different tRNS timing on corticospinal excitability and motor function. We applied tRNS to the left M1 using a frequency of 0.1-640 Hz for 10 min to 15 healthy subjects. Subjects performed visuomotor tracking tasks with right hand for 10 min and participated in the following four conditions based on the timing of tRNS: (1) "before" condition, tRNS was performed before motor training; (2) "during" condition, tRNS was performed during motor training; (3) "after" condition, tRNS was performed after motor training; and (4) sham condition, the control group. Motor evoked potential (MEP) amplitudes were recorded from the right first dorsal interosseous muscle using transcranial magnetic stimulation. MEP amplitudes were assessed by baseline followed by three sessions at 10 min intervals. The motor function was assessed before and after tRNS and motor training. The MEP amplitude increased after tRNS in the before and during conditions but not in the after condition. Motor function after motor training improved in all conditions, but there were no significant differences between these conditions. The present study revealed that the timing of tRNS affects corticospinal excitability but not motor learning.
Collapse
Affiliation(s)
- Haruki Hoshi
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata-City, Niigata 950-3198, Japan; TMG Asaka Medical Center, 1340-1 Mizonuma, Asaka-City, Saitama 351-0023, Japan.
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata-City, Niigata 950-3198, Japan.
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata-City, Niigata 950-3198, Japan.
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata-City, Niigata 950-3198, Japan.
| |
Collapse
|
28
|
New Horizons on Non-invasive Brain Stimulation of the Social and Affective Cerebellum. THE CEREBELLUM 2021; 21:482-496. [PMID: 34270081 DOI: 10.1007/s12311-021-01300-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
The cerebellum is increasingly attracting scientists interested in basic and clinical research of neuromodulation. Here, we review available studies that used either transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) to examine the role of the posterior cerebellum in different aspects of social and affective cognition, from mood regulation to emotion discrimination, and from the ability to identify biological motion to higher-level social inferences (mentalizing). We discuss how at the functional level the role of the posterior cerebellum in these different processes may be explained by a generic prediction mechanism and how the posterior cerebellum may exert this function within different cortico-cerebellar and cerebellar limbic networks involved in social cognition. Furthermore, we suggest to deepen our understanding of the cerebro-cerebellar circuits involved in different aspects of social cognition by employing promising stimulation approaches that have so far been primarily used to study cortical functions and networks, such as paired-pulse TMS, frequency-tuned stimulation, state-dependent protocols, and chronometric TMS. The ability to modulate cerebro-cerebellar connectivity opens up possible clinical applications for improving impairments in social and affective skills associated with cerebellar abnormalities.
Collapse
|
29
|
Sasaki R, Watanabe H, Miyaguchi S, Otsuru N, Ohno K, Sakurai N, Kodama N, Onishi H. Contribution of the brain-derived neurotrophic factor and neurometabolites to the motor performance. Behav Brain Res 2021; 412:113433. [PMID: 34175359 DOI: 10.1016/j.bbr.2021.113433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 01/04/2023]
Abstract
Individual motor performance ability is affected by various factors. Although the key factor has not yet completely been elucidated, the brain-derived neurotrophic factor (BDNF) genotype as well as neurometabolites may become contibuting factors depending on the learning stage. We investigated the effects of the Met allele of the BDNF gene and those of the neurometabolites on visuomotor learning. In total, 43 healthy participants performed a visuomotor learning task consisting of 10 blocks using the right index finger (Val66Val, n = 15; Val66Met, n = 15; and Met66Met, n = 13). Glutamate plus glutamine (Glx) concentrations in the primary motor cortex, primary somatosensory cortex (S1), and cerebellum were evaluated using 3-T magnetic resonance spectroscopy in 19 participants who participated in the visuomotor learning task. For the learning stage, the task error (i.e., learning ability) was significantly smaller in the Met66Met group compared with that observed in the remaining groups, irrespective of the learning stage (all p values < 0.003). A significant difference was observed between the Val66Val and Met66Met groups in the learning slope (i.e., learning speed) in the early learning stage (p = 0.048) but not in the late learning stage (all p values> 0.54). Moreover, positive correlations were detected between the learning slope and Glx concentrations in S1 only in the early learning stage (r = 0.579, p = 0.009). The BDNF genotype and Glx concentrations in S1 partially contribute to interindividual variability on learning speed in the early learning stage.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.
| | - Hiraku Watanabe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Ken Ohno
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Noriko Sakurai
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Naoki Kodama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| |
Collapse
|
30
|
Giustiniani A, Battaglia G, Messina G, Morello H, Guastella S, Iovane A, Oliveri M, Palma A, Proia P. Transcranial Alternating Current Stimulation (tACS) Does Not Affect Sports People's Explosive Power: A Pilot Study. Front Hum Neurosci 2021; 15:640609. [PMID: 33994980 PMCID: PMC8116517 DOI: 10.3389/fnhum.2021.640609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose: This study is aimed to preliminary investigate whether transcranial alternating current stimulation (tACS) could affect explosive power considering genetic background in sport subjects. Methods: Seventeen healthy sports volunteers with at least 3 years of sports activities participated in the experiment. After 2 weeks of familiarization performed without any stimulation, each participant received either 50 Hz-tACS or sham-tACS. Before and after stimulation, subjects performed the following tests: (1) the squat jump with the hands on the hips (SJ); (2) countermovement jump with the hands on the hips (CMJ); (3) countermovement jump with arm swing (CMJ-AS); (4) 15-s Bosco's test; (5) seated backward overhead medicine ball throw (SBOMBT); (6) seated chest pass throw (SCPT) with a 3-kg rubber medicine ball; and (7) hand-grip test. Additionally, saliva samples were collected from each participant. Genotyping analysis was carried out by polymerase chain reaction (PCR). Results: No significant differences were found in sport performance of subjects after 50 Hz-tACS. Additionally, we did not find any influence of genetic background on tACS-related effect on physical performance. These results suggest that tACS at gamma frequency is not able to induce an after-effect modulating sport performance. Further investigations with larger sample size are needed in order to understand the potential role of non-invasive brain stimulation techniques (NIBS) in motor performances. Conclusions: Gamma-tACS applied before the physical performance fails to improve explosive power in sport subjects.
Collapse
Affiliation(s)
- Andreina Giustiniani
- IRCCS San Camillo Hospital, Venice, Italy.,NEUROFARBA Department, University of Florence, Florence, Italy.,Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Battaglia
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Messina
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Hely Morello
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | | | - Angelo Iovane
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Massimiliano Oliveri
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
31
|
Midfrontal theta as moderator between beta oscillations and precision control. Neuroimage 2021; 235:118022. [PMID: 33836271 DOI: 10.1016/j.neuroimage.2021.118022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Control of movements using visual information is crucial for many daily activities, and such visuomotor control has been revealed to be supported by alpha and beta cortical oscillations. However, it has been remained to be unclear how midfrontal theta and occipital gamma oscillations, which are associated with high-level cognitive functions, would be involved in this process to facilitate performance. Here we addressed this fundamental open question in healthy young adults by measuring high-density cortical activity during a precision force-matching task. We manipulated the amount of error by changing visual feedback gain (low, medium, and high visual gains) and analyzed event-related spectral perturbations. Increasing the visual feedback gain resulted in a decrease in force error and variability. There was an increase in theta synchronization in the midfrontal area and also in beta desynchronization in the sensorimotor and posterior parietal areas with higher visual feedback gains. Gamma de/synchronization was not evident during the task. In addition, we found a moderation effect of midfrontal theta on the positive relationship between the beta oscillations and force error. Subsequent simple slope analysis indicated that the effect of beta oscillations on force error was weaker when midfrontal theta was high. Our findings suggest that the midfrontal area signals the increased need of cognitive control to refine behavior by modulating the visuomotor processing at theta frequencies.
Collapse
|
32
|
Giustiniani A, Tarantino V, Bracco M, Bonaventura RE, Oliveri M. Functional Role of Cerebellar Gamma Frequency in Motor Sequences Learning: a tACS Study. THE CEREBELLUM 2021; 20:913-921. [PMID: 33822311 PMCID: PMC8674154 DOI: 10.1007/s12311-021-01255-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/28/2021] [Indexed: 12/28/2022]
Abstract
Although the role of the cerebellum in motor sequences learning is widely established, the specific function of its gamma oscillatory activity still remains unclear. In the present study, gamma (50 Hz)-or delta (1 Hz)-transcranial alternating current stimulation (tACS) was applied to the right cerebellar cortex while participants performed an implicit serial reaction time task (SRTT) with their right hand. The task required the execution of motor sequences simultaneously with the presentation of a series of visual stimuli. The same sequence was repeated across multiple task blocks (from blocks 2 to 5 and from blocks 7 to 8), whereas in other blocks, new/pseudorandom sequences were reproduced (blocks 1 and 6). Task performance was examined before and during tACS. To test possible after-effects of cerebellar tACS on the contralateral primary motor cortex (M1), corticospinal excitability was assessed by examining the amplitude of motor potentials (MEP) evoked by single-pulse transcranial magnetic stimulation (TMS). Compared with delta stimulation, gamma-tACS applied during the SRTT impaired participants' performance in blocks where the same motor sequence was repeated but not in blocks where the new pseudorandom sequences were presented. Noteworthy, the later assessed corticospinal excitability was not affected. These results suggest that cerebellar gamma oscillations mediate the implicit acquisition of motor sequences but do not affect task execution itself. Overall, this study provides evidence of a specific role of cerebellar gamma oscillatory activity in implicit motor learning.
Collapse
Affiliation(s)
- A Giustiniani
- NEUROFARBA Department, University of Firenze, 50139, Firenze, Italy.,IRCCS San Camillo Hospital, 30126, Venezia, Italy.,Department of Psychology, Educational Science and Human Movement, University of Palermo, Viale delle Scienze, Edificio 15, 90128, Palermo, Italy
| | - V Tarantino
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Viale delle Scienze, Edificio 15, 90128, Palermo, Italy.
| | - M Bracco
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Viale delle Scienze, Edificio 15, 90128, Palermo, Italy.,Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, UK
| | - R E Bonaventura
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Viale delle Scienze, Edificio 15, 90128, Palermo, Italy
| | - M Oliveri
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Viale delle Scienze, Edificio 15, 90128, Palermo, Italy.,NeuroTeam Life and Science, Via Libertà 112, 90144, Palermo, Italy
| |
Collapse
|
33
|
Yokota H, Otsuru N, Saito K, Kojima S, Miyaguchi S, Inukai Y, Nagasaka K, Onishi H. Region-Specific Effects of 10-Hz Transcranial Alternate Current Stimulation Over the Left Posterior Parietal Cortex and Primary Somatosensory Area on Tactile Two-Point Discrimination Threshold. Front Neurosci 2021; 15:576526. [PMID: 33679291 PMCID: PMC7930224 DOI: 10.3389/fnins.2021.576526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Changes in α-band cortical oscillatory activity (8-13 Hz) affect perception; however, how these changes in the left posterior parietal cortex (PPC) and primary somatosensory cortex (S1), which play different roles in determining the two-point discrimination (TPD) threshold, affect TPD threshold remains unelucidated. Therefore, to determine TPD threshold, we aimed to investigate the function of the left PPC and S1 by applying α-band transcranial alternating current stimulation (α-tACS; 10 Hz). TPD threshold was examined at the pad of the right index finger, contralateral to the stimulation site, in 17 healthy adults using a custom-made, computer-controlled, two-point tactile stimulation device, with random application of either active or sham α-tACS over the left PPC (Experiment 1) and left S1 (Experiment 2). Then, 50% TPD threshold was obtained in the active and sham conditions via logistic regression analysis. Afterward, we compared the difference between the active and sham conditions at 50% TPD threshold in each region and found that α-tACS reduced TPD threshold when applied over the left PPC (P = 0.010); however, its effect was insignificant when applied over the left S1 (P = 0.74). Moreover, a comparison of the change in 50% TPD threshold among the regions revealed that α-tACS applied over the left PPC significantly reduced TPD threshold compared with that applied over the left S1 (P = 0.003). Although we did not reveal the actual changes in cortical activity induced by α-tACS, this is the first empirical evidence that α-tACS applied over the left PPC and left S1 exerts region-specific effects on determining TPD threshold assessed in the contralateral index finger pad by stimulation.
Collapse
Affiliation(s)
- Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
34
|
Pham MV, Miyaguchi S, Watanabe H, Saito K, Otsuru N, Onishi H. Effect of Repetitive Passive Movement Before Motor Skill Training on Corticospinal Excitability and Motor Learning Depend on BDNF Polymorphisms. Front Hum Neurosci 2021; 15:621358. [PMID: 33633556 PMCID: PMC7901944 DOI: 10.3389/fnhum.2021.621358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
A decrease in cortical excitability tends to be easily followed by an increase induced by external stimuli via a mechanism aimed at restoring it; this phenomenon is called “homeostatic plasticity.” In recent years, although intervention methods aimed at promoting motor learning using this phenomenon have been studied, an optimal intervention method has not been established. In the present study, we examined whether subsequent motor learning can be promoted further by a repetitive passive movement, which reduces the excitability of the primary motor cortex (M1) before motor learning tasks. We also examined the relationship between motor learning and the brain-derived neurotrophic factor. Forty healthy subjects (Val/Val genotype, 17 subjects; Met carrier genotype, 23 subjects) participated. Subjects were divided into two groups of 20 individuals each. The first group was assigned to perform the motor learning task after an intervention consisting in the passive adduction–abduction movement of the right index finger at 5 Hz for 10 min (RPM condition), while the second group was assigned to perform the task without the passive movement (control condition). The motor learning task consisted in the visual tracking of the right index finger. The results showed that the corticospinal excitability was transiently reduced after the passive movement in the RPM condition, whereas it was increased to the level detected in the control condition after the motor learning task. Furthermore, the motor learning ability was decreased immediately after the passive movement; however, the motor performance finally improved to the level observed in the control condition. In individuals carrying the Val/Val genotype, higher motor learning was also found to be related to the more remarkable changes in corticospinal excitability caused by the RPM condition. This study revealed that the implementation of a passive movement before a motor learning tasks did not affect M1 excitatory changes and motor learning efficiency; in contrast, in subjects carrying the Val/Val polymorphism, the more significant excitatory changes in the M1 induced by the passive movement and motor learning task led to the improvement of motor learning efficiency. Our results also suggest that homeostatic plasticity occurring in the M1 is involved in this improvement.
Collapse
Affiliation(s)
- Manh Van Pham
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Graduate School, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Hai Duong Medical Technical University, Hai Duong, Vietnam
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hiraku Watanabe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Graduate School, Niigata University of Health and Welfare, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
35
|
Spampinato D, Avci E, Rothwell J, Rocchi L. Frequency-dependent modulation of cerebellar excitability during the application of non-invasive alternating current stimulation. Brain Stimul 2021; 14:277-283. [PMID: 33482375 PMCID: PMC7970622 DOI: 10.1016/j.brs.2021.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
Background it is well-known that the cerebellum is critical for the integrity of motor and cognitive actions. Applying non-invasive brain stimulation techniques over this region results in neurophysiological and behavioural changes, which have been associated with the modulation of cerebellar-cerebral cortex connectivity. Here, we investigated whether online application of cerebellar transcranial alternating current stimulation (tACS) results in changes to this pathway. Methods thirteen healthy individuals participated in two sessions of cerebellar tACS delivered at different frequencies (5Hz and 50Hz). We used transcranial magnetic stimulation to measure cerebellar-motor cortex (M1) inhibition (CBI), short-intracortical inhibition (SICI) and short-afferent inhibition (SAI) before, during and after the application of tACS. Results we found that CBI was specifically strengthened during the application of 5Hz cerebellar tACS. No changes were detected immediately following the application of 5Hz stimulation, nor at any time point with 50Hz stimulation. We also found no changes to M1 intracortical circuits (i.e. SICI) or sensorimotor interaction (i.e. SAI), indicating that the effects of 5Hz tACS over the cerebellum are site-specific. Conclusions cerebellar tACS can modulate cerebellar excitability in a time- and frequency-dependent manner. Additionally, cerebellar tACS does not appear to induce any long-lasting effects (i.e. plasticity), suggesting that stimulation enhances oscillations within the cerebellum only throughout the stimulation period. As such, cerebellar tACS may have significant implications for diseases manifesting with abnormal cerebellar oscillatory activity and also for future behavioural studies. Cerebellar tACS increases the inhibitory tone that the cerebellum exerts over M1 (CBI). CBI changes were found only during the online application of 5Hz tACS and not immediately following stimulation. The effects are specific to the cerebellum, as no changes were found in intracortical measures (e.g. SICI and SAI).
Collapse
Affiliation(s)
- Danny Spampinato
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom; Non-invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00142, Rome, Italy.
| | - Esin Avci
- Department of Sport and Sport Science, Institute of Biology, University of Freiburg, Germany
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom
| |
Collapse
|
36
|
Asan AS, Lang EJ, Sahin M. Entrainment of cerebellar purkinje cells with directional AC electric fields in anesthetized rats. Brain Stimul 2020; 13:1548-1558. [PMID: 32919090 PMCID: PMC7722055 DOI: 10.1016/j.brs.2020.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/06/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Transcranial electrical stimulation (tES) shows promise to treat neurological disorders. Knowledge of how the orthogonal components of the electric field (E-field) alter neuronal activity is required for strategic placement of transcranial electrodes. Yet, essentially no information exists on this relationship for mammalian cerebellum in vivo, despite the cerebellum being a target for clinical tES studies. OBJECTIVE To characterize how cerebellar Purkinje cell (PC) activity varies with the intensity, frequency, and direction of applied AC and DC E-fields. METHODS Extracellular recordings were obtained from vermis lobule 7 PCs in anesthetized rats. AC (2-100 Hz) or DC E-fields were generated in a range of intensities (0.75-30 mV/mm) in three orthogonal directions. Field-evoked PC simple spike activity was characterized in terms of firing rate modulation and phase-locking as a function of these parameters. t-tests were used for statistical comparisons. RESULTS The effect of applied E-fields was direction and intensity dependent, with rostrocaudally directed fields causing stronger modulations than dorsoventral fields and mediolaterally directed ones causing little to no effect, on average. The directionality dependent modulation suggests that PC is the primary cell type affected the most by electric stimulation, and this effect was probably given rise by a large dendritic tree and a soma. AC stimulation entrained activity in a frequency dependent manner, with stronger phase-locking to the stimulus cycle at higher frequencies. DC fields produced a modulation consisting of strong transients at current onset and offset with an intervening plateau. CONCLUSION Orientation of the exogenous E-field critically determines the modulation depth of cerebellar cortical output. With properly oriented fields, PC simple spike activity can strongly be entrained by AC fields, overriding the spontaneous firing pattern.
Collapse
Affiliation(s)
- Ahmet S Asan
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, Science Building, New York, NY, 07102, USA
| | - Mesut Sahin
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA.
| |
Collapse
|
37
|
Miyaguchi S, Inukai Y, Takahashi R, Miyashita M, Matsumoto Y, Otsuru N, Onishi H. Effects of stimulating the supplementary motor area with a transcranial alternating current for bimanual movement performance. Behav Brain Res 2020; 393:112801. [PMID: 32652107 DOI: 10.1016/j.bbr.2020.112801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 11/27/2022]
Abstract
Transcranial alternating current stimulation (tACS) can regulate the frequency of neuronal activity in the cerebral cortex. Beta (β) activity in the supplementary motor area (SMA) is involved in motor planning and maintenance while gamma (γ) activity is involved in updating motor plans. We investigated the effect of tACS in the β- and γ-bands (β-tACS and γ- tACS) applied to the SMA on bimanual movement performance. This study included 32 right-handed healthy participants performing a Purdue Pegboard Test (PPT) during the administration of either β-tACS (20 Hz), γ-tACS (80 Hz), or sham stimulation over the SMA. Each participant performed nine PPT trials during each stimulation condition. The linear approximation of the number of parts and their differences for the 9 trials performed by each participant was calculated. A significant positive correlation was found between the difference from linear approximation for the β-tACS condition and the intercept of the linear approximation (p = 0.007, Pearson's r = 0.464), and significant negative correlation was found for the γ-tACS condition (p = 0.012, Pearson's r = -0.438). In the low-performance subgroup, the mean values of the difference from linear approximation under the γ-tACS condition was significantly larger than that under the β-tACS condition (p = 0.048). These results were opposite for the high-performance subgroup (p = 0.002) and sham group (p = 0.014). We demonstrated that the effect of tACS over the SMA depended on the stimulus frequency and the participant's motor performance and may modulate the maintenance and updating of motor plans.
Collapse
Affiliation(s)
- Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan.
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | - Ryo Takahashi
- Department of Physical Therapy, Niigata University of Health and Welfare, Japan
| | - Mai Miyashita
- Department of Physical Therapy, Niigata University of Health and Welfare, Japan
| | - Yuya Matsumoto
- Department of Physical Therapy, Niigata University of Health and Welfare, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| |
Collapse
|
38
|
Cerebellar transcranial alternating current stimulation in the gamma range applied during the acquisition of a novel motor skill. Sci Rep 2020; 10:11217. [PMID: 32641706 PMCID: PMC7343806 DOI: 10.1038/s41598-020-68028-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/16/2020] [Indexed: 11/11/2022] Open
Abstract
The development of novel strategies to augment motor training success is of great interest for healthy persons and neurological patients. A promising approach is the combination of training with transcranial electric stimulation. However, limited reproducibility and varying effect sizes make further protocol optimization necessary. We tested the effects of a novel cerebellar transcranial alternating current stimulation protocol (tACS) on motor skill learning. Furthermore, we studied underlying mechanisms by means of transcranial magnetic stimulation and analysis of fMRI-based resting-state connectivity. N = 15 young, healthy participants were recruited. 50 Hz tACS was applied to the left cerebellum in a double-blind, sham-controlled, cross-over design concurrently to the acquisition of a novel motor skill. Potential underlying mechanisms were assessed by studying short intracortical inhibition at rest (SICIrest) and in the premovement phase (SICImove), intracortical facilitation at rest (ICFrest), and seed-based resting-state fMRI-based functional connectivity (FC) in a hypothesis-driven motor learning network. Active stimulation did not enhance skill acquisition or retention. Minor effects on striato-parietal FC were present. Linear mixed effects modelling identified SICImove modulation and baseline task performance as the most influential determining factors for predicting training success. Accounting for the identified factors may allow to stratify participants for future training-based interventions.
Collapse
|
39
|
Kayarian FB, Jannati A, Rotenberg A, Santarnecchi E. Targeting Gamma-Related Pathophysiology in Autism Spectrum Disorder Using Transcranial Electrical Stimulation: Opportunities and Challenges. Autism Res 2020; 13:1051-1071. [PMID: 32468731 PMCID: PMC7387209 DOI: 10.1002/aur.2312] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
A range of scalp electroencephalogram (EEG) abnormalities correlates with the core symptoms of autism spectrum disorder (ASD). Among these are alterations of brain oscillations in the gamma-frequency EEG band in adults and children with ASD, whose origin has been linked to dysfunctions of inhibitory interneuron signaling. While therapeutic interventions aimed to modulate gamma oscillations are being tested for neuropsychiatric disorders such as schizophrenia, Alzheimer's disease, and frontotemporal dementia, the prospects for therapeutic gamma modulation in ASD have not been extensively studied. Accordingly, we discuss gamma-related alterations in the setting of ASD pathophysiology, as well as potential interventions that can enhance gamma oscillations in patients with ASD. Ultimately, we argue that transcranial electrical stimulation modalities capable of entraining gamma oscillations, and thereby potentially modulating inhibitory interneuron circuitry, are promising methods to study and mitigate gamma alterations in ASD. Autism Res 2020, 13: 1051-1071. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Brain functions are mediated by various oscillatory waves of neuronal activity, ranging in amplitude and frequency. In certain neuropsychiatric disorders, such as schizophrenia and Alzheimer's disease, reduced high-frequency oscillations in the "gamma" band have been observed, and therapeutic interventions to enhance such activity are being explored. Here, we review and comment on evidence of reduced gamma activity in ASD, arguing that modalities used in other disorders may benefit individuals with ASD as well.
Collapse
Affiliation(s)
- Fae B. Kayarian
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Miyaguchi S, Inukai Y, Matsumoto Y, Miyashita M, Takahashi R, Otsuru N, Onishi H. Effects on motor learning of transcranial alternating current stimulation applied over the primary motor cortex and cerebellar hemisphere. J Clin Neurosci 2020; 78:296-300. [PMID: 32402616 DOI: 10.1016/j.jocn.2020.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive method of brain stimulation that modulates oscillatory neural activity in the cortical area under the electrodes. Gamma (γ)-tACS applied over the primary motor cortex (M1) and cerebellar hemisphere is known to improve motor performance; however, it is not yet known whether it affects motor learning. Thus, here we investigated whether γ-tACS applied over the M1 and cerebellar hemisphere affects motor learning. This study involved 30 healthy subjects (14 females, 16 males) performing a visuomotor control task (eight trials) during an administration of either γ-tACS or a sham stimulation (15 subjects per condition) over their right M1 and left cerebellar hemisphere. Each subject performed five trials after 24 h. The motor learning efficiency, motor learning retention and re-motor learning efficiency in each condition were compared. The motor learning retention in the γ-tACS condition was significantly higher than that in the sham condition (p = 0.031). Thus, subjects who were administered γ-tACS maintained their motor performance the next day better than sham-stimulated subjects. There was no significant difference between the conditions in the motor learning efficiency and those in the re-motor learning efficiency. Our results demonstrate that γ-tACS administered over the M1 and cerebellar hemisphere during a motor learning task can enhance motor learning retention.
Collapse
Affiliation(s)
- Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan.
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | - Yuya Matsumoto
- Department of Physical Therapy, Niigata University of Health and Welfare, Japan
| | - Mai Miyashita
- Department of Physical Therapy, Niigata University of Health and Welfare, Japan
| | - Ryo Takahashi
- Department of Physical Therapy, Niigata University of Health and Welfare, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| |
Collapse
|
41
|
Wang H, Zhang W, Zhao W, Wang K, Wang Z, Wang L, Peng M, Xue Q, Leng H, Ding W, Liu Y, Li N, Dong K, Zhang Q, Huang X, Xie Y, Chu C, Xue S, Huang L, Yao H, Ding J, Zhan S, Min B, Fan C, Zhou A, Sun Z, Yin L, Ma Q, Baskys A, Jorge RE, Song H. The efficacy of transcranial alternating current stimulation for treating post-stroke depression: Study Protocol Clinical Trial (SPIRIT Compliant). Medicine (Baltimore) 2020; 99:e19671. [PMID: 32311940 PMCID: PMC7220515 DOI: 10.1097/md.0000000000019671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The treatment of post-stroke depression (PSD) with anti-depressant drugs is partly practical. Transcranial alternating current stimulation (tACS) offers the potential for a novel treatment modality for adult patients with PSD. In this study, we will assess the efficacy and safety of tACS for treating PSD and explore its effect on gamma and beta-oscillations involving in emotional regulation. METHODS The prospective study is an 8-week, double-blind, randomized, placebo-controlled trial. Seventy eligible participants with mild to moderate PSD aged between 18 years and 70 years will be recruited and randomly assigned to either active tACS intervention group or sham group. Daily 40-minute, 77.5-Hz, 15-mA sessions of active or sham tACS targeting the forehead and both mastoid areas on weekdays for 4 consecutive weeks (week 4), and an additional 4-week observational period (week 8) will be followed up. The primary outcome is the proportion of participants having an improvement at week 8 according to the Hamilton Depression Rating Scale 17-Item (HAMD-17) score, including the proportion of participants having a decrease of ≥ 50% in HAMD-17 score or clinical recovery (HAMD-17 score ≤ 7). Secondary outcomes include neurological function, independence level, activities of daily living, disease severity, anxiety, and cognitive function. The exploratory outcomes are gamma and beta-oscillations assessed at baseline, week 4, and week 8. Data will be analyzed by logistical regression analyses and mixed-effects models. DISCUSSION The study will be the first randomized controlled trial to evaluate the efficacy and safety of tACS at a 77.5-Hz frequency and 15-mA current in reducing depressive severity in patients with PSD. The results of the study will present a base for future studies on the tACS in PSD and its possible mechanism. TRIAL REGISTRATION NUMBER NCT03903068, pre-results.
Collapse
Affiliation(s)
- Hongxing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University
- Beijing Key Laboratory of Neuromodulation
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University
| | - Wenrui Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Wenfeng Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Kun Wang
- Department of Neurology, Beijing Puren Hospital
| | - Zu Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Li Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Mao Peng
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Qing Xue
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Haixia Leng
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Weijun Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Yuan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Ning Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Kai Dong
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Qian Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Xiaoqin Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Yunyan Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Changbiao Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Sufang Xue
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Liyuan Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Hui Yao
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Jianping Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Shuqin Zhan
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Baoquan Min
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Chunqiu Fan
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Aihong Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Zhichao Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Lu Yin
- Medical Research & Biometrics Centre, National Centre for Cardiovascular Diseases Cardiovascular
| | - Qingfeng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| | - Andrius Baskys
- Andrius Baskys, Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA
| | - Ricardo E. Jorge
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University
| |
Collapse
|
42
|
Benussi A, Pascual-Leone A, Borroni B. Non-Invasive Cerebellar Stimulation in Neurodegenerative Ataxia: A Literature Review. Int J Mol Sci 2020; 21:ijms21061948. [PMID: 32178459 PMCID: PMC7139863 DOI: 10.3390/ijms21061948] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Cerebellar ataxias are a heterogenous group of degenerative disorders for which we currently lack effective and disease-modifying interventions. The field of non-invasive brain stimulation has made much progress in the development of specific stimulation protocols to modulate cerebellar excitability and try to restore the physiological activity of the cerebellum in patients with ataxia. In light of limited evidence-based pharmacologic and non-pharmacologic treatment options for patients with ataxia, several different non-invasive brain stimulation protocols have emerged, particularly employing repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) techniques. In this review, we summarize the most relevant rTMS and tDCS therapeutic trials and discuss their implications in the care of patients with degenerative ataxias.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
| | - Alvaro Pascual-Leone
- Arthur and Hinda Marcus Institute for Aging Brain, Hebrew SeniorLife and Department of Neurology, Harvard Medical School, Boston, MA 02131, USA;
- Guttmann Brain Health Institute, Institute Guttmann, Universitat Autonoma, 08027 Barcelona, Spain
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Correspondence: ; Tel.: +39-030-3995632
| |
Collapse
|
43
|
Han YL, Dai ZP, Ridwan MC, Lin PH, Zhou HL, Wang HF, Yao ZJ, Lu Q. Connectivity of the Frontal Cortical Oscillatory Dynamics Underlying Inhibitory Control During a Go/No-Go Task as a Predictive Biomarker in Major Depression. Front Psychiatry 2020; 11:707. [PMID: 32848905 PMCID: PMC7416643 DOI: 10.3389/fpsyt.2020.00707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/06/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by core functional deficits in cognitive inhibition, which is crucial for emotion regulation. To assess the response to ruminative and negative mood states, it was hypothesized that MDD patients have prolonged disparities in the oscillatory dynamics of the frontal cortical regions across the life course of the disease. METHOD A "go/no-go" response inhibition paradigm was tested in 31 MDD patients and 19 age-matched healthy controls after magnetoencephalography (MEG) scanning. The use of minimum norm estimates (MNE) examined the changes of inhibitory control network which included the right inferior frontal gyrus (rIFG), pre-supplementary motor area (preSMA), and left primary motor cortex (lM1). The power spectrum (PS) within each node and the functional connectivity (FC) between nodes were compared between two groups. Furthermore, Pearson correlation was calculated to estimate the relationship between altered FC and clinical features. RESULT PS was significantly reduced in left motor and preSMA of MDD patients in both beta (13-30 Hz) and low gamma (30-50 Hz) bands. Compared to the HC group, the MDD group demonstrated higher connectivity between lM1 and preSMA in the beta band (t = 3.214, p = 0.002, FDR corrected) and showed reduced connectivity between preSMA and rIFG in the low gamma band (t = -2.612, p = 0.012, FDR corrected). The FC between lM1 and preSMA in the beta band was positively correlated with illness duration (r = 0.475, p = 0.005, FDR corrected), while the FC between preSMA and rIFG in the low gamma band was negatively correlated with illness duration (r = -0.509, p = 0.002, FDR corrected) and retardation factor scores (r = -0.288, p = 0.022, uncorrected). CONCLUSION In this study, a clinical neurophysiological signature of cognitive inhibition leading to sustained negative affect as well as functional non-recovery in MDD patients is highlighted. Duration of illness (DI) plays a key role in negative emotional processing, heighten rumination, impulsivity, and disinhibition.
Collapse
Affiliation(s)
- Ying-Lin Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhong-Peng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Mohammad Chattun Ridwan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Pin-Hua Lin
- Medical School of Nanjing University, Nanjing Brain Hospital, Nanjing, China
| | - Hong-Liang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hao-Fei Wang
- Department of Psychology, Jiangsu Province Hospital Affiliated to Nanjing Medical University , Nanjing, China
| | - Zhi-Jian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Medical School of Nanjing University, Nanjing Brain Hospital, Nanjing, China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|
44
|
Maas RPPWM, Helmich RCG, van de Warrenburg BPC. The role of the cerebellum in degenerative ataxias and essential tremor: Insights from noninvasive modulation of cerebellar activity. Mov Disord 2019; 35:215-227. [PMID: 31820832 PMCID: PMC7027854 DOI: 10.1002/mds.27919] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
Over the last three decades, measuring and modulating cerebellar activity and its connectivity with other brain regions has become an emerging research topic in clinical neuroscience. The most important connection is the cerebellothalamocortical pathway, which can be functionally interrogated using a paired‐pulse transcranial magnetic stimulation paradigm. Cerebellar brain inhibition reflects the magnitude of suppression of motor cortex excitability after stimulating the contralateral cerebellar hemisphere and therefore represents a neurophysiological marker of the integrity of the efferent cerebellar tract. Observations that cerebellar noninvasive stimulation techniques enhanced performance of certain motor and cognitive tasks in healthy individuals have inspired attempts to modulate cerebellar activity and connectivity in patients with cerebellar diseases in order to achieve clinical benefit. We here comprehensively explore the therapeutic potential of these techniques in two movement disorders characterized by prominent cerebellar involvement, namely the degenerative ataxias and essential tremor. The article aims to illustrate the (patho)physiological insights obtained from these studies and how these translate into clinical practice, where possible by addressing the association with cerebellar brain inhibition. Finally, possible explanations for some discordant interstudy findings, shortcomings in our current understanding, and recommendations for future research will be provided. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roderick P P W M Maas
- Department of Neurology & Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rick C G Helmich
- Department of Neurology & Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology & Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
45
|
Naro A, Billeri L, Cannavò A, De Luca R, Portaro S, Bramanti P, Calabrò RS. Theta burst stimulation for the treatment of obsessive–compulsive disorder: a pilot study. J Neural Transm (Vienna) 2019; 126:1667-1677. [DOI: 10.1007/s00702-019-02098-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/16/2019] [Indexed: 01/23/2023]
|
46
|
Time course of bilateral corticospinal tract excitability in the motor-learning process. Neurosci Lett 2019; 711:134410. [PMID: 31425823 DOI: 10.1016/j.neulet.2019.134410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 11/20/2022]
Abstract
Although it is known that motor learning changes the corticospinal tract excitability, the time course of bilateral corticospinal tract excitability in the motor-learning process has not been clarified. The study aimed to investigate the time course of bilateral corticospinal tract excitability during the motor-learning process. Sixteen subjects performed 10 trials of the visuomotor tracking task by using their right index finger for one minute. The movement intensity of the visuomotor tracking task ranged from 5%-17% of the maximum index finger abduction force and the movement frequency was 0.5 Hz. To assess bilateral corticospinal excitability, we stimulated the bilateral primary motor cortex with transcranial magnetic stimulation between each trial and measured motor-evoked potential (MEP) from the bilateral first dorsal interosseous (FDI) muscle. Motor performance improved rapidly to the sixth trial (P < 0.05), and motor performance did not change from the seventh to the tenth trial. The MEP amplitude of the right FDI increased significantly from the fifth to the ninth trial relative to that before the task (P < 0.05). Conversely, the MEP amplitude of the left FDI did not change during the motor-learning process. This study revealed that primary motor cortex excitability on the contralateral side to the exercising muscle increased in the late motor learning stage and that primary motor cortex excitability on the ipsilateral side to the exercising muscle did not change in the motor-learning process.
Collapse
|
47
|
Miyaguchi S, Otsuru N, Kojima S, Yokota H, Saito K, Inukai Y, Onishi H. The effect of gamma tACS over the M1 region and cerebellar hemisphere does not depend on current intensity. J Clin Neurosci 2019; 65:54-58. [PMID: 30954355 DOI: 10.1016/j.jocn.2019.03.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/25/2019] [Indexed: 01/29/2023]
Abstract
Transcranial alternating current stimulation (tACS) has been shown to modulate neural connectivity in the cortical area under experimental electrodes. Although gamma tACS over the M1 region and the cerebellar hemisphere has been shown to improve motor performance, the optimal stimulation method has not been clarified. In this study, we aimed to clarify whether the effect of gamma tACS over M1 and the cerebellar hemisphere depends on current intensity. Twenty healthy adults performed a visuomotor control task using their right index finger for 30 s during tACS (70 Hz) over the left M1 and the right cerebellar hemisphere. Each subject participated in 10 trials, separated by intervals of 3 min. Three stimulation conditions were applied: (1) pseudo-stimulation (sham condition), (2) tACS with a current intensity of 1.0 mA and (3) tACS with a current intensity of 2.0 mA. Our results indicated that regardless of the current intensity, participants with the lower motor performance had better motor performance under both tACS conditions. Such a correlation was not observed under the sham condition. Collectively, our findings demonstrated that the effect of gamma tACS over M1 and the cerebellar hemisphere does not depend on current intensity, and that motor performance slightly improved in both tACS conditions for participants with lower motor performance.
Collapse
Affiliation(s)
- Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan.
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| |
Collapse
|
48
|
Alexander ML, Alagapan S, Lugo CE, Mellin JM, Lustenberger C, Rubinow DR, Fröhlich F. Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Transl Psychiatry 2019; 9:106. [PMID: 30837453 PMCID: PMC6401041 DOI: 10.1038/s41398-019-0439-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most common psychiatric disorders, but pharmacological treatments are ineffective in a substantial fraction of patients and are accompanied by unwanted side effects. Here we evaluated the feasibility and efficacy of transcranial alternating current stimulation (tACS) at 10 Hz, which we hypothesized would improve clinical symptoms by renormalizing alpha oscillations in the left dorsolateral prefrontal cortex (dlPFC). To this end, 32 participants with MDD were randomized to 1 of 3 arms and received daily 40 min sessions of either 10 Hz-tACS, 40 Hz-tACS, or active sham stimulation for 5 consecutive days. Symptom improvement was assessed using the Montgomery-Åsberg Depression Rating Scale (MADRS) as the primary outcome. High-density electroencephalograms (hdEEGs) were recorded to measure changes in alpha oscillations as the secondary outcome. For the primary outcome, we did not observe a significant interaction between treatment condition (10 Hz-tACS, 40 Hz-tACS, sham) and session (baseline to 4 weeks after completion of treatment); however, exploratory analyses show that 2 weeks after completion of the intervention, the 10 Hz-tACS group had more responders (MADRS and HDRS) compared with 40 Hz-tACS and sham groups (n = 30, p = 0.026). Concurrently, we found a significant reduction in alpha power over the left frontal regions in EEG after completion of the intervention for the group that received per-protocol 10 Hz-tACS (n = 26, p < 0.05). Our data suggest that targeting oscillations with tACS has potential as a therapeutic intervention for treatment of MDD.
Collapse
Affiliation(s)
- Morgan L. Alexander
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,0000000122483208grid.10698.36Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Sankaraleengam Alagapan
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,0000000122483208grid.10698.36Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Courtney E. Lugo
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Juliann M. Mellin
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,0000000122483208grid.10698.36Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Caroline Lustenberger
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,0000 0001 2156 2780grid.5801.cNeural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092 Switzerland
| | - David R. Rubinow
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
49
|
Gamma tACS over M1 and cerebellar hemisphere improves motor performance in a phase-specific manner. Neurosci Lett 2019; 694:64-68. [DOI: 10.1016/j.neulet.2018.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/18/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022]
|