1
|
Maftoon H, Davar Siadat S, Tarashi S, Soroush E, Basir Asefi M, Rahimi Foroushani A, Mehdi Soltan Dallal M. Ameliorative effects of Akkermansia muciniphila on anxiety-like behavior and cognitive deficits in a rat model of Alzheimer's disease. Brain Res 2024; 1845:149280. [PMID: 39419309 DOI: 10.1016/j.brainres.2024.149280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/15/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Alzheimer's Disease (AD) is the primary neurodegenerative disorder in the elderly, lacking a definitive treatment. The gut microbiota influences the gut-brain axis by aiding in hypothalamic-pituitary-adrenal (HPA) axis development and neuromodulator production. Research links AD and gut microbiota, suggesting gut microbiota regulation could be a therapeutic approach for AD. This study explores Akkermansia muciniphila's impact on preventing AD. This research investigates the effect of A. muciniphila consumption (1 × 109 CFU) on tau protein-induced AD rats compared to a control group. Rats were divided into four groups: sham, sham + Akk, AD (tau-induced rats), and AD + Akk (tau-induced rats treated with A. muciniphila). A. muciniphila gavage lasted five weeks. Rats underwent qRT-PCR analysis to assess mRNA expression of pro-inflammatory factors (TNF-α, IL-6, IL-1β, IFN-γ) in the hippocampus. Behavioral tests included Morris Water Maze (MWM), Passive Avoidance Memory Test (Shuttle box), Elevated Plus Maze (EPM), and marble burying. After five weeks of A. muciniphila treatment, anxiety-like behavior significantly decreased. The AD group receiving A. muciniphila showed improved spatial and recognition memory compared to the AD group. Pro-inflammatory cytokine levels (TNF-α, IL-1β, IL-6, IFN-γ) decreased. A. muciniphila effectively reduces cognitive impairments and anxiety-related behavior, showing promise as an AD therapeutic by influencing the gut-brain axis.
Collapse
Affiliation(s)
- Hamideh Maftoon
- Department of pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Tarashi
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Erfan Soroush
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Basir Asefi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Soltan Dallal
- Department of pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Yuan X, Chai J, Xu W, Zhao Y. Exploring the Potential of Probiotics and Prebiotics in Major Depression: From Molecular Function to Clinical Therapy. Probiotics Antimicrob Proteins 2024; 16:2181-2217. [PMID: 39078446 DOI: 10.1007/s12602-024-10326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.
Collapse
Affiliation(s)
- Xin Yuan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jianbo Chai
- Heilongjiang Mental Hospital, Harbin, 150036, China
| | - Wenqiang Xu
- Harbin Jiarun Hospital, Harbin, 150040, China
| | - Yonghou Zhao
- Heilongjiang Mental Hospital, Harbin, 150036, China.
| |
Collapse
|
3
|
White SW, Callahan H, Smith SJ, Padilla FM. Fluoxetine attenuates the anxiolytic effects of the probiotic VSL#3 in a stress-vulnerable genetic line of aves in the chick social-separation stress test, a dual screening assay. Pharmacol Biochem Behav 2024; 245:173880. [PMID: 39277109 DOI: 10.1016/j.pbb.2024.173880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Anxiety disorders represent one of the most common and debilitating illnesses worldwide. However, the development of novel therapeutics for anxiety disorders has lagged compared to other mental illnesses. A growing body of research suggests the gut microbiota plays a role in the etiopathology of anxiety disorders and may, therefore, serve as a novel target for their treatment through the use of probiotics. The use of dietary supplements like probiotics is increasing and their interaction with pharmacotherapies is not well understood. Utilizing the chick social-separation stress test, the primary aim of this study was to evaluate the commercially-available multi-strain probiotic found in VSL#3 for potential anxiolytic-like and/or antidepressant-like effects in the stress-vulnerable Black Australorp genetic line. A secondary aim was to evaluate the interaction between probiotics and the SSRI fluoxetine. Animals were treated with either saline, probiotics, fluoxetine, or probiotics + fluoxetine for 8 days prior to exposure to a 90-min isolation stressor that produces both a panic-like (i.e., anxiety-like) state followed by a state of behavioral despair (i.e., depression-like). The 8-day probiotic regimen produced anxiolytic-like effects but did not attenuate behavioral despair. Fluoxetine failed to significantly alter behavior in either of the two phases. Moreover, the combination of fluoxetine with probiotics attenuated the anxiolytic-like effects of probiotics. The fluoxetine + probiotics combination had no effect on behavioral despair. The results of the current study align with other preclinical studies and some clinical trials suggesting probiotics may offer beneficial effects on anxiety. Investigations examining the anxiolytic-like mechanism of probiotics are needed before any conclusions can be made. Additionally, as the use of probiotics becomes more popular, research on the interactions between probiotic-microbiota and psychotropic medications is necessary.
Collapse
Affiliation(s)
- Stephen W White
- Department of Psychology & Philosophy, Sam Houston State University, Huntsville, TX 77341, USA.
| | - Haylie Callahan
- Department of Psychology & Philosophy, Sam Houston State University, Huntsville, TX 77341, USA
| | - Sequioa J Smith
- University of Florida, Department of Neuroscience, Gainesville, FL, USA
| | - Felicia M Padilla
- Department of Psychology & Philosophy, Sam Houston State University, Huntsville, TX 77341, USA
| |
Collapse
|
4
|
Nicol M, Lahaye E, El Mehdi M, do Rego JL, do Rego JC, Fetissov SO. Lactobacillus salivarius and Lactobacillus gasseri supplementation reduces stress-induced sugar craving in mice. EUROPEAN EATING DISORDERS REVIEW 2024; 32:1041-1054. [PMID: 37365682 DOI: 10.1002/erv.3004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE Increased intake of sweets or sugar craving may occur in response to chronic stress representing a risk factor for development of eating disorders and obesity. However, no safe treatment of stress-induced sugar craving is available. In this study we analysed effects of two Lactobacillus strains on food and sucrose intake in mice before and during their exposure to a chronic mild stress (CMS). RESEARCH METHODS & PROCEDURES C57Bl6 mice were gavaged daily for 27 days with a mix of L. salivarius (LS) LS7892 and L. gasseri (LG) LG6410 strains or with 0.9% NaCl as a control. Following 10 days of gavage, mice were individually placed into the Modular Phenotypic cages, and after 7 days of acclimation were exposed to a CMS model for 10 days. Food, water and 2% sucrose intakes as well as meal pattern were monitored. Anxiety and depressive-like behaviour were analysed by standard tests. RESULTS Exposure of mice to CMS was accompanied by increased size of sucrose intake in the control group likely reflecting the stress-induced sugar craving. A consistent, about 20% lower total sucrose intake, was observed in the Lactobacilli-treated group during stress which was mainly due to a reduced number of intakes. Lactobacilli treatment also modified the meal pattern before and during the CMS, showing a decrease of meal number and an increase of meal size with a tendency of reduced total daily food intake. Mild anti-depressive behavioural effects of the Lactobacilli mix were also present. CONCLUSION Supplementation of mice with LS LS7892 and LG LG6410 decreases sugar consumption suggesting a potential utility of these strains against stress-induced sugar craving.
Collapse
Affiliation(s)
- Marion Nicol
- Regulatory Peptides - Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR 1239, University of Rouen Normandie, Rouen, France
| | - Emilie Lahaye
- Regulatory Peptides - Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR 1239, University of Rouen Normandie, Rouen, France
| | - Mouna El Mehdi
- Regulatory Peptides - Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR 1239, University of Rouen Normandie, Rouen, France
| | - Jean-Luc do Rego
- University of Rouen Normandie, Inserm US51, CNRS UAR2026, Animal Behavioral Platform SCAC-HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jean-Claude do Rego
- University of Rouen Normandie, Inserm US51, CNRS UAR2026, Animal Behavioral Platform SCAC-HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Serguei O Fetissov
- Regulatory Peptides - Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR 1239, University of Rouen Normandie, Rouen, France
| |
Collapse
|
5
|
Spencer KD, Bline H, Chen HJ, Verosky BG, Hilt ME, Jaggers RM, Gur TL, Mathé EA, Bailey MT. Modulation of anxiety-like behavior in galactooligosaccharide-fed mice: A potential role for bacterial tryptophan metabolites and reduced microglial reactivity. Brain Behav Immun 2024; 121:229-243. [PMID: 39067620 DOI: 10.1016/j.bbi.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/02/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024] Open
Abstract
Prebiotic galactooligosaccharides (GOS) reduce anxiety-like behaviors in mice and humans. However, the biological pathways behind these behavioral changes are not well understood. To begin to study these pathways, we utilized C57BL/6 mice that were fed a standard diet with or without GOS supplementation for 3 weeks prior to testing on the open field. After behavioral testing, colonic contents and serum were collected for bacteriome (16S rRNA gene sequencing, colonic contents only) and metabolome (UPLC-MS, colonic contents and serum data) analyses. As expected, GOS significantly reduced anxiety-like behavior (i.e., increased time in the center) and decreased cytokine gene expression (Tnfa and Ccl2) in the prefrontal cortex. Notably, time in the center of the open field was significantly correlated with serum methyl-indole-3-acetic acid (methyl-IAA). This metabolite is a methylated form of indole-3-acetic acid (IAA) that is derived from bacterial metabolism of tryptophan. Sequencing analyses showed that GOS significantly increased Lachnospiraceae UCG006 and Akkermansia; these taxa are known to metabolize both GOS and tryptophan. To determine the extent to which methyl-IAA can affect anxiety-like behavior, mice were intraperitoneally injected with methyl-IAA. Mice given methyl-IAA had a reduction in anxiety-like behavior in the open field, along with lower Tnfa in the prefrontal cortex. Methyl-IAA was also found to reduce TNF-α (as well as CCL2) production by LPS-stimulated BV2 microglia. Together, these data support a novel pathway through which GOS reduces anxiety-like behaviors in mice and suggests that the bacterial metabolite methyl-IAA reduces microglial cytokine and chemokine production, which in turn reduces anxiety-like behavior.
Collapse
Affiliation(s)
- Kyle D Spencer
- Graduate Partnership Program, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA; Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA; Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Heather Bline
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Helen J Chen
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Branden G Verosky
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Miranda E Hilt
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Robert M Jaggers
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tamar L Gur
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ewy A Mathé
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Michael T Bailey
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Oral and GI Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
6
|
Misera A, Marlicz W, Podkówka A, Łoniewski I, Skonieczna-Żydecka K. Possible application of Akkermansia muciniphila in stress management. MICROBIOME RESEARCH REPORTS 2024; 3:48. [PMID: 39741949 PMCID: PMC11684984 DOI: 10.20517/mrr.2023.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025]
Abstract
Akkermansia muciniphila (A. muciniphila) is a promising candidate bacterium for stress management due to its beneficial effects on the microbiota-gut-brain axis (MGBA). As a well-known mucin-degrading bacterium in the digestive tract, A. muciniphila has demonstrated significant benefits for host physiology. Recent research highlights its potential in treating several neuropsychiatric disorders. Proposed mechanisms of action include the bacterium's outer membrane protein Amuc_1100 and potentially its extracellular vesicles (EVs), which interact with host immune receptors and influence serotonin pathways, which are crucial for emotional regulation. Despite its potential, the administration of probiotics containing A. muciniphila faces technological challenges, prompting the development of pasteurized forms recognized as safe by the European Food Safety Authority (EFSA). This review systematically examines the existing literature on the role of A. muciniphila in stress management, emphasizing the need for further research to validate its efficacy. The review follows a structured methodology, including comprehensive database searches and thematic data analysis, to provide a detailed understanding of the relationship between stress, microbiota, and A. muciniphila therapeutic potential.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin 71-252, Poland
| | - Albert Podkówka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | | |
Collapse
|
7
|
Cho H, Park Y. Synergistic Antidepressant-like Effects of Biotics and n-3 Polyunsaturated Fatty Acids on Dopaminergic Pathway through the Brain-Gut Axis in Rats Exposed to Chronic Mild Stress. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10332-1. [PMID: 39243350 DOI: 10.1007/s12602-024-10332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 09/09/2024]
Abstract
Probiotics, postbiotics, and n-3 polyunsaturated fatty acids (PUFA) have antidepressant-like effects. However, the underlying mechanisms of the dopaminergic pathway are unclear. The present study investigated the hypothesis that probiotics and postbiotics combined with n-3 PUFA synergistically improve depression by modulating the dopaminergic pathway through the brain-gut axis. Rats were randomly divided into seven groups: non-chronic mild stress (CMS) with n-6 PUFA, and CMS with n-6 PUFA, n-3 PUFA, probiotics, postbiotics, probiotics combined with n-3 PUFA, and postbiotics combined with n-3 PUFA. Probiotics, postbiotics, and n-3 PUFA improved depressive behaviors, decreased blood concentrations of interferon-γ, and interleukin-1β, and increased the brain and gut concentrations of short chain fatty acids and dopamine. Moreover, probiotics, postbiotics, and n-3 PUFA increased the brain and gut expression of glucocorticoid receptor and tyrosine hydroxylase; brain expression of l-type amino acid transporter 1 and dopamine receptor (DR) D1; and gut expression of DRD2. The expression of phosphorylated protein kinase A/protein kinase A and phosphorylated cAMP response element-binding protein/cAMP response element-binding protein increased in the brain, however, decreased in the gut by the supplementation of probiotics, postbiotics, and n-3 PUFA. There was synergistic effect of probiotics and postbiotics combined with n-3 PUFA on the depressive behaviors and dopaminergic pathway in blood, brain, and gut. Moreover, no significant difference in the dopaminergic pathways between the probiotics and postbiotics was observed. In conclusion, probiotics and postbiotics, combined with n-3 PUFA have synergistic antidepressant-like effects on the dopaminergic pathway through the brain-gut axis in rats exposed to CMS.
Collapse
Affiliation(s)
- Hyunji Cho
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea.
| |
Collapse
|
8
|
Thabet E, Dief AE, Arafa SAF, Yakout D, Ali MA. Antibiotic-induced gut microbe dysbiosis alters neurobehavior in mice through modulation of BDNF and gut integrity. Physiol Behav 2024; 283:114621. [PMID: 38925433 DOI: 10.1016/j.physbeh.2024.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/11/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Gut microbiota is essential for intestinal integrity and brain functions. Herein we aimed to investigate the effects of alteration of gut microbiome using broad-spectrum antibiotics on CD 1 male mice (germ-modified group (GM). Moreover, we co-administrated probiotics with or without antibiotics for four weeks and evaluated if probiotics could reverse these behavioral and intestinal effects. GM, co-administered antibiotics and probiotics, and probiotics-only groups were compared to control mice of the same sex, age, and weight that did not receive either drug (n=12 in all groups). Cultivation of aerobic and anaerobic bacteria was evaluated by fecal culture of all groups. We tested exploratory behavior, anxiety, memory, depression-like behavior, and hippocampal and frontal lobe BDNF protein level alterations in response to antibiotics and its downstream effect on the PI3K/Akt1/Bcl2 pathway. Intestinal integrity was evaluated using gene expression analysis of ZO-1, claudin, and occludin genes. Additionally, the inflammatory TLR4 and p-p38 MAPK pathways in the intestines were investigated. Twice-daily administration of oral antibiotics for four weeks significantly reduced total bacterial count and upregulated TLR4 and p-p38.GM mice showed a significant reduction in BDNF(P =0.04), impaired spatial memory, and long-term memory as evidenced by decreased T maze correct alternation trails and shortened retention time in the passive avoidance test in GM(P =0.01). Passive avoidance showed significantly increased latency after probiotics intake. Depressive-like behavior was more pronounced in GM mice as assessed by the tail suspension test (P =0.01). GM showed significant upregulation(p<0.001) of the TLR4 and p-p38 MAPK pathway. Co-administration of probiotics with antibiotics showed an increase in BDNF levels, and upregulation of the cell survival PI3K/Akt1/Bcl2 pathway, significantly higher relative abundance in the firmucutes members, a significant decrease in the Firmicutes/Bacteroidetes ratio and downregulation of TLR4 and p-p38 MAPK. The tight junction proteins ZO-1, claudin and occludin were downregulated by antibiotic administration for four weeks and restored by probiotics. Collectively, the data suggest that long-term use of antibiotics appears to disrupt the intestinal epithelial barrier and alter neurobehavioral qualities specifically, long-term memory and exploratory drive, possibly through the reduction of BDNF, and probiotics partially reverse these effects. Our study emphasizes the effect of prolonged intake of antibiotics on production of dysbiosis as well as the impact of the antibiotic induced intestinal inflammation on neurobehavioral aspects in mice as the memory and anxiety-like behavior. We also reveal that co-administration of probiotics can reverse these changes.
Collapse
Affiliation(s)
- Eman Thabet
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Abeer E Dief
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Shams A-F Arafa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Dalia Yakout
- Department of Clinical Pharmacology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
9
|
Yin Y, Ju T, Zeng D, Duan F, Zhu Y, Liu J, Li Y, Lu W. "Inflamed" depression: A review of the interactions between depression and inflammation and current anti-inflammatory strategies for depression. Pharmacol Res 2024; 207:107322. [PMID: 39038630 DOI: 10.1016/j.phrs.2024.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Depression is a common mental disorder, the effective treatment of which remains a challenging issue worldwide. The clinical pathogenesis of depression has been deeply explored, leading to the formulation of various pathogenic hypotheses. Among these, the monoamine neurotransmitter hypothesis holds a prominent position, yet it has significant limitations as more than one-third of patients do not respond to conventional treatments targeting monoamine transmission disturbances. Over the past few decades, a growing body of research has highlighted the link between inflammation and depression as a potential key factor in the pathophysiology of depression. In this review, we first summarize the relationship between inflammation and depression, with a focus on the pathophysiological changes mediated by inflammation in depression. The mechanisms linking inflammation to depression as well as multiple anti-inflammatory strategies are also discussed, and their efficacy and safety are assessed. This review broadens the perspective on specific aspects of using anti-inflammatory strategies for treating depression, laying the groundwork for advancing precision medicine for individuals suffering from "inflamed" depression.
Collapse
Affiliation(s)
- Yishu Yin
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Ting Ju
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Deyong Zeng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Fangyuan Duan
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Yuanbing Zhu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Junlian Liu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing 100094, China.
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| |
Collapse
|
10
|
Chen Y, Wang R, Li X, Wang Z, Cao B, Du J, Deng T, Han J, Yang M. Progress of research on the treatment of depression by traditional Chinese medicine prescriptions. Heliyon 2024; 10:e34970. [PMID: 39157399 PMCID: PMC11328063 DOI: 10.1016/j.heliyon.2024.e34970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Depression is a common psychiatric disorder that belongs to the category of "Depression Syndrome" in traditional Chinese medicine (TCM), and its etiology and pathogenesis are complex and unclear. It is characterized by high prevalence, high disability rate, and high recurrence rate, which seriously affect human health, and its treatment has become a research hotspot worldwide. At present, the antidepressants commonly used in the clinic are mainly Western medicine (WM), but there are problems such as frequent side effects and poor efficacy. Studies have found that the use of TCM prescriptions in the treatment of depression can achieve the same effect as WM; and when TCM prescriptions are combined with WM, the efficacy can be enhanced while the adverse effects of WM can be reduced. Pharmacological studies related to the treatment of depression with traditional Chinese medicine prescriptions (TCMPs) have focused on the neurobiochemical system, gut microbes, and energy metabolism in mitochondria. No one has yet reviewed the pharmacological mechanism of TCMPs for depression. So, this paper reviews the pharmacological mechanism of TCMPs for depression from the perspective of TCMPs, introduces the progress of research on classical TCMPs for depression and their antidepressant mechanism. This article aims to promote the application of TCMPs in the clinic and provide a new therapeutic idea for the clinical treatment of depression.
Collapse
Affiliation(s)
- Yiwei Chen
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Ruyu Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Zhiying Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Baorui Cao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxin Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Deng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxiang Han
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Meina Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
11
|
Steffen J, Focken N, Çalışkan G. Recognizing depression as an inflammatory disease: the search for endotypes. Am J Physiol Cell Physiol 2024; 327:C205-C212. [PMID: 38826138 DOI: 10.1152/ajpcell.00246.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Major depressive disorder (MDD) affects millions of individuals worldwide, leading to considerable social and economic costs. Despite advancements in pharmacological treatments, achieving remission remains a key challenge, with a substantial number of patients showing resistance to existing therapies. This resistance is often associated with elevated levels of proinflammatory cytokines, suggesting a connection between inflammation, MDD pathophysiology, and treatment efficacy. The observation of increased immune activation in about a quarter of patients with MDD resulted in the distinction between inflammatory and noninflammatory endotypes. Although anti-inflammatory treatments show promise in alleviating depression-like symptoms, responses are heterogeneous, thus highlighting the importance of identifying distinct inflammatory endotypes to tailor effective therapeutic strategies. The intestinal microbiome emerges as a crucial modulator of mental health, mediating its effects partially through different immune pathways. Microbiota-derived short-chain fatty acids (SCFAs) significantly impact innate and adaptive immune cells, regulating their differentiation, function, and cellular response. Furthermore, gut-educated immune cells reach the border regions of the central nervous system (CNS), regulating glial cell functions. Although the CNS modulates immune responses via efferent parts of the vagus nerve, afferent tracts concurrently transport information on peripheral inflammation back to the brain. This bidirectional communication is particularly relevant in depression, allowing for therapeutic stimulation of the vagus nerve in the context of inflammatory depression endotypes. In this review, we explore the intricate relationship between inflammation and depression, discuss how inflammatory signals are translated into depressive-like symptoms, and highlight immune-modulating therapeutic avenues.
Collapse
Affiliation(s)
- Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Nis Focken
- Research Group "Synapto-Oscillopathies," Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Gürsel Çalışkan
- Research Group "Synapto-Oscillopathies," Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
12
|
Guo C, Liu S, Di L, Tang S. The impact of bacillus pumilus TS2 isolated from yaks on growth performance, gut microbial community, antioxidant activity, and cytokines related to immunity and inflammation in broilers. Front Vet Sci 2024; 11:1383262. [PMID: 38737458 PMCID: PMC11082403 DOI: 10.3389/fvets.2024.1383262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
Intensive poultry farming faces challenges like gut inflammation in the absence of antibiotics, resulting in reduced productivity, heightened susceptibility to enteric diseases, and other complications. Alternative strategies are needed to manage inflammation and maintain sustainable poultry production. Yaks living in high-altitude hypoxic environments have specialized gut microbes. However, yak probiotics remain largely uncharacterized. We previously isolated a strain of Bacillus pumilus (named TS2) from yaks and demonstrated its potential as a probiotic in vitro. Therefore, in this study, we evaluated the in vivo growth-promoting, antioxidant, immune, and anti-inflammatory effects of Bacillus pumilus isolated from yaks in broilers. We demonstrated the safety of TS2 isolated from yaks in broilers. Furthermore, we found that TS2 increased the average daily weight gain (ADWG) and reduced the feed conversion ratio (FCR). Supplementation with TS2 also improved the mucosal morphology, the ratio of villi to crypt cells, and enzyme activity. High-throughput sequencing showed that the abundance of Lactobacillus was higher in the TS2 treated broilers. Importantly, the serum level of malondialdehyde (MDA) was reduced and the levels of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity were increased in the low-dose TS2 group, while the inflammatory factors interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were downregulated compared with the control group. We demonstrated that TS2 supplementation can increase the overall growth performance and ameliorate the blood parameters related to inflammation and immunity in broilers.
Collapse
Affiliation(s)
- Chuangen Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Animal Disease Prevention and Control Center of Rongchang, Chongqing, China
| | - Sirui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liangjiao Di
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Belei O, Basaca DG, Olariu L, Pantea M, Bozgan D, Nanu A, Sîrbu I, Mărginean O, Enătescu I. The Interaction between Stress and Inflammatory Bowel Disease in Pediatric and Adult Patients. J Clin Med 2024; 13:1361. [PMID: 38592680 PMCID: PMC10932475 DOI: 10.3390/jcm13051361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Inflammatory bowel diseases (IBDs) have seen an exponential increase in incidence, particularly among pediatric patients. Psychological stress is a significant risk factor influencing the disease course. This review assesses the interaction between stress and disease progression, focusing on articles that quantified inflammatory markers in IBD patients exposed to varying degrees of psychological stress. Methods: A systematic narrative literature review was conducted, focusing on the interaction between IBD and stress among adult and pediatric patients, as well as animal subjects. The research involved searching PubMed, Scopus, Medline, and Cochrane Library databases from 2000 to December 2023. Results: The interplay between the intestinal immunity response, the nervous system, and psychological disorders, known as the gut-brain axis, plays a major role in IBD pathophysiology. Various types of stressors alter gut mucosal integrity through different pathways, increasing gut mucosa permeability and promoting bacterial translocation. A denser microbial load in the gut wall emphasizes cytokine production, worsening the disease course. The risk of developing depression and anxiety is higher in IBD patients compared with the general population, and stress is a significant trigger for inducing acute flares of the disease. Conclusions: Further large studies should be conducted to assess the relationship between stressors, psychological disorders, and their impact on the course of IBD. Clinicians involved in the medical care of IBD patients should aim to implement stress reduction practices in addition to pharmacological therapies.
Collapse
Affiliation(s)
- Oana Belei
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (O.M.)
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Diana-Georgiana Basaca
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (O.M.)
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Laura Olariu
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Manuela Pantea
- Twelfth Department, Neonatology Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.P.); (I.E.)
| | - Daiana Bozgan
- Clinic of Neonatology, “Pius Brânzeu” County Emergency Clinical Hospital, 300723 Timișoara, Romania;
| | - Anda Nanu
- Third Pediatric Clinic, “Louis Țurcanu” Emergency Children Hospital, 300011 Timișoara, Romania; (A.N.); (I.S.)
| | - Iuliana Sîrbu
- Third Pediatric Clinic, “Louis Țurcanu” Emergency Children Hospital, 300011 Timișoara, Romania; (A.N.); (I.S.)
| | - Otilia Mărginean
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (O.M.)
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Ileana Enătescu
- Twelfth Department, Neonatology Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.P.); (I.E.)
| |
Collapse
|
14
|
Luqman A, He M, Hassan A, Ullah M, Zhang L, Rashid Khan M, Din AU, Ullah K, Wang W, Wang G. Mood and microbes: a comprehensive review of intestinal microbiota's impact on depression. Front Psychiatry 2024; 15:1295766. [PMID: 38404464 PMCID: PMC10884216 DOI: 10.3389/fpsyt.2024.1295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Depression is considered a multifaceted and intricate mental disorder of growing concern due to its significant impact on global health issues. The human gut microbiota, also known as the "second brain," has an important role in the CNS by regulating it through chemical, immunological, hormonal, and neurological processes. Various studies have found a significant bidirectional link between the brain and the gut, emphasizing the onset of depression therapies. The biological and molecular processes underlying depression and microbiota are required, as the bidirectional association may represent a novel study. However, profound insights into the stratification and diversity of the gut microbiota are still uncommon. This article investigates the emerging evidence of a bacterial relationship between the gut and the brain's neurological system and its potential pathogenicity and relevance. The interplay of microbiota, immune system, nervous system neurotransmitter synthesis, and neuroplasticity transitions is also widely studied. The consequences of stress, dietary fibers, probiotics, prebiotics, and antibiotics on the GB axis are being studied. Multiple studies revealed the processes underlying this axis and led to the development of effective microbiota-based drugs for both prevention and treatment. Therefore, the results support the hypothesis that gut microbiota influences depression and provide a promising area of research for an improved knowledge of the etiology of the disease and future therapies.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | | | - Muhammad Rashid Khan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Pakistan
| | - Wei Wang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
15
|
Wang M, Song Z, Lai S, Tang F, Dou L, Yang F. Depression-associated gut microbes, metabolites and clinical trials. Front Microbiol 2024; 15:1292004. [PMID: 38357350 PMCID: PMC10864537 DOI: 10.3389/fmicb.2024.1292004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Depression is one of the most prevalent mental disorders today. Over the past decade, there has been considerable attention given to the field of gut microbiota associated with depression. A substantial body of research indicates a bidirectional communication pathway between gut microbiota and the brain. In this review, we extensively detail the correlation between gut microbiota, including Lactobacillus acidophilus and Bifidobacterium longum, and metabolites such as short-chain fatty acids (SCFAs) and 5-hydroxytryptamine (5-HT) concerning depression. Furthermore, we delve into the potential health benefits of microbiome-targeted therapies, encompassing probiotics, prebiotics, and synbiotics, in alleviating depression. Lastly, we underscore the importance of employing a constraint-based modeling framework in the era of systems medicine to contextualize metabolomic measurements and integrate multi-omics data. This approach can offer valuable insights into the complex metabolic host-microbiota interactions, enabling personalized recommendations for potential biomarkers, novel drugs, and treatments for depression.
Collapse
Affiliation(s)
- Meiling Wang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Zhaoqi Song
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Shirong Lai
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Furong Tang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Lijun Dou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, OH, United States
| | - Fenglong Yang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Browning BD, Kirkland AE, Green R, Engevik M, Alekseyenko AV, Leggio L, Tomko RL, Squeglia LM. The adolescent and young adult microbiome and its association with substance use: a scoping review. Alcohol Alcohol 2024; 59:agad055. [PMID: 37665023 PMCID: PMC10979412 DOI: 10.1093/alcalc/agad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
AIMS The microbiome is a critical factor in health throughout human development. The aims of this scoping review are to (i) elucidate the differences between the youth (post-natal day 21-65 for rodents, 2-7 years for non-human primates, and 10-25 years for humans) microbiome with other life stages and (ii) identify youth-specific microbial changes associated with substance use. METHODS Peer-reviewed studies published up to May 2023 were identified in PubMed and SCOPUS and included gut and oral microbiome studies from rodents, non-human primates, and humans (N = 1733). Twenty-six articles were determined eligible based on inclusion criteria (aim 1: n = 19, aim 2: n = 7). RESULTS The adolescent and young adult oral and gut microbiomes are distinct compared to other life stages, within both non-human and human models. While there is limited research in this area, the microbiome appears to be vulnerable to substance use exposure earlier in life, including substances commonly initiated and escalated during adolescence and young adulthood (i.e. alcohol, cannabis, and tobacco). CONCLUSIONS Studies across the lifespan indicate that adolescence and young adulthood are distinct periods of development, where the microbiome is sensitive to exposures, including substance use. There is a need for more studies focused on the adolescent and young adult microbiome and substance use, as well as focused on the oral microbiome during this developmental period. Understanding the gut and oral microbiome during adolescence and young adulthood may provide insight into the pathophysiology of substance use disorders.
Collapse
Affiliation(s)
- Brittney D Browning
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, United States
| | - Anna E Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Rejoyce Green
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Melinda Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston SC, 29425, United States
| | - Alexander V Alekseyenko
- Department of Public Health Sciences, Biomedical Informatics Center, Medical University of South Carolina, 135 Cannon St., Charleston, SC 29425, United States
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel L Tomko
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| |
Collapse
|
17
|
Song JG, Mun D, Lee B, Song M, Oh S, Kim JM, Yang J, Kim Y, Kim HW. Protective Effects of Lacticaseibacillus rhamnosus IDCC3201 on Motor Functions and Anxiety Levels in a Chronic Stress Mouse Model. Food Sci Anim Resour 2023; 43:1044-1054. [PMID: 37969325 PMCID: PMC10636227 DOI: 10.5851/kosfa.2023.e54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 11/17/2023] Open
Abstract
Growing evidence indicates a crucial role of the gut microbiota in physiological functions. Gut-brain axis imbalance has also been associated with neuropsychiatric and neurodegenerative disorders. Studies have suggested that probiotics regulate the stress response and alleviate mood-related symptoms. In this study, we investigated the effects of the probiotic Lacticaseibacillus rhamnosus IDCC3201 (L3201) on the behavioral response and fecal metabolite content in an unpredictable chronic mild stress (UCMS) mouse model. Our study shows that chronic stress in mice for three weeks resulted in significant changes in behavior, including lower locomotor activity, higher levels of anxiety, and depressive-like symptoms, compared to the control group. Metabolomic analysis demonstrated that disrupted fecal metabolites associated with aminoacyl-tRNA biosynthesis and valine, leucine, and isoleucine biosynthesis by UCMS were restored with the administration of L3201. Oral administration of the L3201 ameliorated the observed changes and improved the behavioral alterations along with fecal metabolites, suggesting that probiotics play a neuroprotective role.
Collapse
Affiliation(s)
- Jae Gwang Song
- College of Life Sciences, Sejong
University, Seoul 05006, Korea
| | - Daye Mun
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Bomi Lee
- College of Life Sciences, Sejong
University, Seoul 05006, Korea
| | - Minho Song
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Sangnam Oh
- Department of Functional Food and
Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Jun-Mo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | | | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong
University, Seoul 05006, Korea
| |
Collapse
|
18
|
Venkidesh BS, Shankar SR, Narasimhamurthy RK, Rao SBS, Mumbrekar KD. Radioprotective potential of probiotics against gastrointestinal and neuronal toxicity: a preclinical study. Clin Transl Oncol 2023; 25:3165-3173. [PMID: 37071338 PMCID: PMC10514165 DOI: 10.1007/s12094-023-03184-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/01/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE Radiotherapy is a critical component of cancer treatment, along with surgery and chemotherapy. Approximately, 90% of cancer patients undergoing pelvic radiotherapy show gastrointestinal (GI) toxicity, including bloody diarrhea, and gastritis, most of which are associated with gut dysbiosis. In addition to the direct effect of radiation on the brain, pelvic irradiation can alter the gut microbiome, leading to inflammation and breakdown of the gut-blood barrier. This allows toxins and bacteria to enter the bloodstream and reach the brain. Probiotics have been proven to prevent GI toxicity by producing short-chain fatty acids and exopolysaccharides beneficial for protecting mucosal integrity and oxidative stress reduction in the intestine and also shown to be beneficial in brain health. Microbiota plays a significant role in maintaining gut and brain health, so it is important to study whether bacterial supplementation will help in maintaining the gut and brain structure after radiation exposure. METHODS In the present study, male C57BL/6 mice were divided into control, radiation, probiotics, and probiotics + radiation groups. On the 7th day, animals in the radiation and probiotics + radiation groups received a single dose of 4 Gy to whole-body. Posttreatment, mice were sacrificed, and the intestine and brain tissues were excised for histological analysis to assess GI and neuronal damage. RESULTS Radiation-induced damage to the villi height and mucosal thickness was mitigated by the probiotic treatment significantly (p < 0.01). Further, radiation-induced pyknotic cell numbers in the DG, CA2, and CA3 areas were substantially reduced with bacterial supplementation (p < 0.001). Similarly, probiotics reduced neuronal inflammation induced by radiation in the cortex, CA2, and DG region (p < 0.01). Altogether, the probiotics treatment helps mitigate radiation-induced intestinal and neuronal damage. CONCLUSION In conclusion, the probiotic formulation could attenuate the number of pyknotic cells in the hippocampal brain region and decrease neuroinflammation by reducing the number of microglial cells.
Collapse
Affiliation(s)
- Babu Santhi Venkidesh
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Saligrama R Shankar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Rekha Koravadi Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Satish Bola Sadashiva Rao
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
- Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
19
|
Hao R, Liu Q, Wang L, Jian W, Cheng Y, Zhang Q, Hayer K, Kamarudin Raja Idris R, Zhang Y, Lu H, Tu Z. Anti-inflammatory effect of Lactiplantibacillus plantarum T1 cell-free supernatants through suppression of oxidative stress and NF-κB- and MAPK-signaling pathways. Appl Environ Microbiol 2023; 89:e0060823. [PMID: 37702501 PMCID: PMC10617582 DOI: 10.1128/aem.00608-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/08/2023] [Indexed: 09/14/2023] Open
Abstract
Lactiplantibacillus plantarum T1 is an isolated probiotic lactic acid bacterium (LAB) from pickled vegetables in Chongqing, China. In this study, we evaluated the anti-inflammatory activity and the underlying mechanisms of L. plantarum T1 cell-free supernatant (CFS) on lipopolysaccharide (LPS)-stimulated murine RAW264.7 macrophages in vitro. Reverse transcription quantitative PCR (RT-qPCR), immunofluorescence, Griess methods, and western blotting were utilized to assess the anti-inflammatory cytokines and antioxidative effect of L. plantarum T1 CFS. Our results showed that L. plantarum T1 CFS pretreatment significantly reduced pro-inflammatory cytokine levels, including nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor, interleukin (IL)-1β, and IL-6, as well as reactive oxygen species. Interestingly, L. plantarum T1 CFS unregulated the antioxidant indicators, including superoxide dismutase, catalase, and glutathione in RAW264.7 cells. Furthermore, L. plantarum T1 CFS activated the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathway. This study showed the excellent antioxidant and anti-inflammatory properties of L. plantarum T1 through multiple pathways, highlighting its potential for further research and application as a probiotic strain.IMPORTANCEL. plantarum T1 stood out in a series of acid and bile salt tolerance and bacterial inhibition tests as a probiotic isolated from paocai, which provides many health benefits to the host by inhibiting the growth of harmful pathogenic microorganisms and suppressing excessive levels of oxidative stress and inflammation. Not all LAB have good probiotic functions and are used in various applications. The anti-inflammatory antioxidant potential and mechanisms of L. plantarum T1 CFS have not been described and reported. By using RT-qPCR, Griess method, and western blotting, we showed that L. plantarum T1 CFS had anti-inflammatory and antioxidant effects. Griess assay, TBA assay, WST-8 assay, immunofluorescence assay, RT-qPCR, and western blotting data revealed that its anti-inflammatory and antioxidant mechanisms were associated with oxidative stress and NF-κB and MAPK signaling pathways. The anti-inflammatory and antioxidant effects of L. plantarum T1 CFS in paocai generates opportunities for probiotic product development.
Collapse
Affiliation(s)
- Rui Hao
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Qianqian Liu
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Wenwen Jian
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yu Cheng
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Qiuyue Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Kim Hayer
- Leicester Medical School, University of Leicester, Leicester, United Kingdom
| | | | - Yi Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - He Lu
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zeng Tu
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Schell M, Wardelmann K, Hauffe R, Rath M, Chopra S, Kleinridders A. Lactobacillus rhamnosus Sex-Specifically Attenuates Depressive-like Behavior and Mitigates Metabolic Consequences in Obesity. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:651-662. [PMID: 37881580 PMCID: PMC10593880 DOI: 10.1016/j.bpsgos.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
Background Patients with diabetes exhibit an increased prevalence for emotional disorders compared with healthy humans, partially due to a shared pathogenesis including hormone resistance and inflammation, which is also linked to intestinal dysbiosis. The preventive intake of probiotic lactobacilli has been shown to improve dysbiosis along with mood and metabolism. Yet, a potential role of Lactobacillus rhamnosus (Lacticaseibacillus rhamnosus 0030) (LR) in improving emotional behavior in established obesity and the underlying mechanisms are unknown. Methods Female and male C57BL/6N mice were fed a low-fat diet (10% kcal from fat) or high-fat diet (HFD) (45% kcal from fat) for 6 weeks, followed by daily oral gavage of vehicle or 1 × 108 colony-forming units of LR, and assessment of anxiety- and depressive-like behavior. Cecal microbiota composition was analyzed using 16S ribosomal RNA sequencing, plasma and cerebrospinal fluid were collected for metabolomic analysis, and gene expression of different brain areas was assessed using reverse transcriptase quantitative polymerase chain reaction. Results We observed that 12 weeks of HFD feeding induced hyperinsulinemia, which was attenuated by LR application only in female mice. On the contrary, HFD-fed male mice exhibited increased anxiety- and depressive-like behavior, where the latter was specifically attenuated by LR application, which was independent of metabolic changes. Furthermore, LR application restored the HFD-induced decrease of tyrosine hydroxylase, along with normalizing cholecystokinin gene expression in dopaminergic brain regions; both tyrosine hydroxylase and cholecystokinin are involved in signaling pathways impacting emotional disorders. Conclusions Our data show that LR attenuates depressive-like behavior after established obesity, with changes in the dopaminergic system in male mice, and mitigates hyperinsulinemia in obese female mice.
Collapse
Affiliation(s)
- Mareike Schell
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Kristina Wardelmann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Robert Hauffe
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Michaela Rath
- Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Simran Chopra
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - André Kleinridders
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| |
Collapse
|
21
|
Akram M, Ali SA, Kaul G. Probiotic and prebiotic supplementation ameliorates chronic restraint stress-induced male reproductive dysfunction. Food Funct 2023; 14:8558-8574. [PMID: 37661714 DOI: 10.1039/d3fo03153e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Restraint stress (RS) can induce male reproductive deficits by activating the hypothalamic-pituitary-adrenal (HPA) axis and causing oxidative stress. Previous studies have shown that probiotics can alleviate neurological and metabolic disorders induced by stress. However, the effects of probiotics on RS-induced reproductive deficits have not been fully elucidated. This study aimed to investigate whether Lactobacillus rhamnosus NCDC-610 (Probiotic-1) and Lactobacillus fermentum NCDC-400 (Probiotic-2) with prebiotic (fructooligosaccharides (FOS)) could prevent RS-induced reproductive deficits. C57BL6/J mice were subjected to RS for four hours daily before oral administration of probiotics (4 × 109 CFU per mice) either separately or concurrently with FOS. The results showed that oral administration of Probiotic-1 and Probiotic-2 protected against RS-induced sperm deficits, including sperm count, motility, morphology, and histopathology of testes, and improved intestinal health. Furthermore, Probiotic-1 and Probiotic-2 prevented RS-induced changes in testosterone levels by up-regulating the expressions of steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage enzyme (P450scc), and 17β-hydroxysteroid dehydrogenase (17βHSD) in the testes. Additionally, Probiotic-1 and Probiotic-2 increased the activities of catalase and superoxide dismutase and reduced the fold change of interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNF-α), indicating a protective effect against RS-induced oxidative stress. Oral administration of Probiotic-1 and Probiotic-2, either separately or concurrently with FOS (probiotic dose of 4 × 109 CFU per mice and prebiotic 5% w/v), prevented RS-induced activation of the HPA axis and improved male fertility. These findings suggest that L. rhamnosus NCDC-610 and L. fermentum NCDC-400 are safe and effective probiotics for mitigating stress-induced male reproductive deficits.
Collapse
Affiliation(s)
- Mohd Akram
- Semen Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Haryana, India.
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, National Dairy Research Institute, Haryana, India
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gautam Kaul
- Semen Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Haryana, India.
| |
Collapse
|
22
|
Tsai PH, Wu PC, Li HR, Senthil Kumar KJ, Wang SY. Hirami lemon ( Citrus reticulata var. depressa) modulates the gut-brain axis in a chronic mild stress-induced depression mouse model. Food Funct 2023; 14:7535-7549. [PMID: 37526032 DOI: 10.1039/d3fo01301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Citrus reticulata var. depressa, commonly known as Hirami lemon, is a native citrus species found in Taiwan and Okinawa islands of Japan. While several Citrus species are known to possess antidepressant activity by modulating the gut microbiota, the antidepressant effect of Hirami lemon and its underlying mechanisms have not been thoroughly investigated. In this study, we explored the potential antidepressant efficacy of the fruit extract (CD) and the essential oil (CDE) from Hirami lemon peel using a chronic mild stress (CMS)-induced mouse model and analyzed the association of gut microbiome changes. Our findings revealed that mice subjected to CMS exhibited anxiety- and depression-like behaviors as assessed by elevated plus-maze and forced swimming tests, respectively. Significantly, oral administration of CDE and CD notably reversed CMS-induced depression- and anxiety-like behaviors in CMS-induced mice. Moreover, compared to the non-stressed group, CMS significantly altered the gut microbiome, characterized by highly diverse bacterial communities, reduced Bacteroidetes, and increased Firmicutes. However, oral administration of CDE and CD restored gut microbiota dysbiosis. We also performed a qualitative analysis of CD and CDE using UPLC-MS and GC-MS, respectively. The CD contained 25 compounds, of which 3 were polymethoxy flavones and flavanones. Three major compounds, nobiletin, tangeretin and hesperidin, accounted for 56.88% of the total relative peak area. In contrast, the CDE contained 11 terpenoids, of which 8 were identified as major compounds, with D-limonene (45.71%) being the most abundant, followed by γ-terpinene (34.65%), linalool (6.46%), p-cymene (2.57%), α-terpineol (2.04%), α-pinene (1.89%), α-terpinolene (1.46%), and β-pinene (1.16%), accounting for 95.94% of the total oil. In conclusion, our study demonstrated the potential of Hirami lemon as a source of natural antidepressant agents for the prevention and treatment of major depressive disorders.
Collapse
Affiliation(s)
- Po-Heng Tsai
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan and Academia Sinica, Taipei, Taiwan.
| | - Pei-Chen Wu
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Ru Li
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - K J Senthil Kumar
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan and Academia Sinica, Taipei, Taiwan.
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- Special Crop and Metabolome Discipline Cluster, Academy of Circle Economy, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
23
|
Gong Y, Chen A, Zhang G, Shen Q, Zou L, Li J, Miao YB, Liu W. Cracking Brain Diseases from Gut Microbes-Mediated Metabolites for Precise Treatment. Int J Biol Sci 2023; 19:2974-2998. [PMID: 37416776 PMCID: PMC10321288 DOI: 10.7150/ijbs.85259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 07/08/2023] Open
Abstract
The gut-brain axis has been a subject of significant interest in recent years. Understanding the link between the gut and brain axis is crucial for the treatment of disorders. Here, the intricate components and unique relationship between gut microbiota-derived metabolites and the brain are explained in detail. Additionally, the association between gut microbiota-derived metabolites and the integrity of the blood-brain barrier and brain health is emphasized. Meanwhile, gut microbiota-derived metabolites with their recent applications, challenges and opportunities their pathways on different disease treatment are focus discussed. The prospective strategy of gut microbiota-derived metabolites potential applies to the brain disease treatments, such as Parkinson's disease and Alzheimer's disease, is proposed. This review provides a broad perspective on gut microbiota-derived metabolites characteristics facilitate understand the connection between gut and brain and pave the way for the development of a new medication delivery system for gut microbiota-derived metabolites.
Collapse
Affiliation(s)
- Ying Gong
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Anmei Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
| | - Guohui Zhang
- Key Laboratory of reproductive medicine, Sichuan Provincial maternity and Child Health Care Hospital, Chengdu 610000, China
| | - Qing Shen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
| | - Weixin Liu
- Key Laboratory of reproductive medicine, Sichuan Provincial maternity and Child Health Care Hospital, Chengdu 610000, China
| |
Collapse
|
24
|
Zhu R, Fang Y, Li H, Liu Y, Wei J, Zhang S, Wang L, Fan R, Wang L, Li S, Chen T. Psychobiotic Lactobacillus plantarum JYLP-326 relieves anxiety, depression, and insomnia symptoms in test anxious college via modulating the gut microbiota and its metabolism. Front Immunol 2023; 14:1158137. [PMID: 37033942 PMCID: PMC10077425 DOI: 10.3389/fimmu.2023.1158137] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Test anxiety is a common issue among college students, which can affect their physical and psychological health. However, effective interventions or therapeutic strategies are still lacking. This study aims to evaluate the potential effects of Lactobacillus plantarum JYLP-326 on test anxious college students. Methods Sixty anxious students were enrolled and randomly allocated to the placebo group and the probiotic group. Both groups were instructed to take placebo and JYLP-326 products twice per day for three weeks, respectively. Thirty unanxious students with no treatments were assigned to a regular control group. The anxiety, depression, and insomnia questionnaires were used to measure students' mental states at the baseline and the end of this study. 16S rRNA sequencing and untargeted metabolomics were performed to analyze the changes in the gut microbiota and fecal metabolism. Results The questionnaire results suggested that JYLP-326 administration could relieve the symptoms of anxiety, depression, and insomnia in test anxious students. The gut microbiomes of the placebo group showed a significantly greater diversity index than the control group (p < 0.05). An increased abundance of Bacteroides and Roseburia at the genus level was observed in the placebo group, and the relative abundance of Prevotella and Bifidobacterium decreased. Whereas, JYLP-326 administration could partly restore the disturbed gut microbiota. Additionally, test anxiety was correlated with disordered fecal metabolomics such as a higher Ethyl sulfate and a lower Cyclohexylamine, which could be reversed after taking JYLP-326. Furthermore, the changed microbiota and fecal metabolites were significantly associated with anxiety-related symptoms. Conclusion The results indicate that the intervention of L. plantarum JYLP-326 could be an effective strategy to alleviate anxiety, depression, and insomnia in test anxious college students. The potential mechanism underlying this effect could be related to the regulation of gut microbiota and fecal metabolites.
Collapse
Affiliation(s)
- Ruizhe Zhu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yilin Fang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hongyu Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ying Liu
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Shuwei Zhang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Liwei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Rui Fan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Lingfang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Shengjie Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
25
|
Zhao L, Li D, Chitrakar B, Li C, Zhang N, Zhang S, Wang X, Wang M, Tian H, Luo Y. Study on Lactiplantibacillus plantarum R6-3 from Sayram Ketteki to prevent chronic unpredictable mild stress-induced depression in mice through the microbiota-gut-brain axis. Food Funct 2023; 14:3304-3318. [PMID: 36938927 DOI: 10.1039/d2fo03708d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The prevention, mitigation and treatment of depression has become a global issue that needs to be solved urgently. Sayram Ketteki, a traditional natural fermented yoghurt from the region with the world's fourth highest life expectancy, has been known as the "longevity secret", whose longevity and anti-depression factors are speculated to come from its rich microorganisms. Therefore, for the first time, we systematically studied in depth the microbes of Sayram Ketteki, screened a new edible probiotic strain, Lactiplantibacillus plantarum R6-3, and explored its anti-depression effect in chronic unpredictable mild stress (CUMS)-induced depression in mice. It is encouraging that L. plantarum R6-3 was significantly superior to the classic anti-depressant drug, fluoxetine, in the performance of promoting sucrose preference test (SPT) behavior by 18% (p < 0.001), lowering the serum CORT content by 5.6% (p < 0.05), accelerating the brain-derived neurotrophic factor (BDNF) level by 5.9% (p < 0.01), increasing the serum IL-10 concentration by 2.3% (p < 0.05), up-regulating the expression of BDNF and phosphorylated-ERK by 74% (p < 0.01) and 45% (p < 0.001), respectively, and facilitating the secretion of fecal short-chain fatty acids (SCFAs), including n-butyric, n-valeric, and isovaleric acid by 47% (p < 0.01), 42% (p < 0.05) and 38% (p < 0.05), respectively. Through the microbiota-gut-brain axis, L. plantarum R6-3 promoted the secretion of intestinal SCFAs through regulation of the composition and function of the gut microbiota, and activated the production of the monoamine neurotransmitter, renewed the level of brain neurotrophic factor, and suppressed the hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis by adjusting the hippocampal BDNF/TrkB/ERK/CREB signaling pathway, thereby improving the immune and oxidative stress status, protecting hippocampal tissue from damage, maintaining a healthy weight and preventing CUMS-induced depressive behavior in mice. It has great prospects for the development of natural functional foods, the prevention and treatment of depression and in innovative microecological preparations.
Collapse
Affiliation(s)
- Lina Zhao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Dongyao Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China. .,Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Chen Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China. .,Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Na Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China. .,Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.,School of Biochemical and Environmental Engineering, Baoding University, Baoding, Hebei 071000, China
| | - Shaogang Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Xinyu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Miaoshu Wang
- Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.,New Hope Tensun (Hebei) Dairy Co., Ltd, Baoding, Hebei 071000, China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China. .,Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.,National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, Hebei 071000, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
26
|
Kumar N, Sahoo NK, Mehan S, Verma B. The importance of gut-brain axis and use of probiotics as a treatment strategy for multiple sclerosis. Mult Scler Relat Disord 2023; 71:104547. [PMID: 36805171 DOI: 10.1016/j.msard.2023.104547] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
It has been shown that the dysbiosis of the gut's microbes substantially impacts CNS illnesses, including Alzheimer's, Parkinson's, autism, and autoimmune diseases like multiple sclerosis (MS). MS is a CNS-affected autoimmune demyelination condition. Through a two-way communication pathway known as the gut-brain axis, gut microbes communicate with the CNS. When there is a disruption in the gut microbiome, cytokines and other immune cells are secreted, which affects the BBB and gastrointestinal permeability. Recent research using animal models has revealed that the gut microbiota may greatly influence the pathophysiology of EAE/MS. Any change in the gut might increase inflammatory cytokinesand affect the quantity of SCFAs, and other metabolites that cause neuroinflammation and demyelination. In- vivo and in-vitro studies have concluded that probiotics affect the immune system and can be utilized to treat gastrointestinal dysbiosis. Any alteration in the gut microbial composition caused by probiotic intake may serve as a preventive and treatment strategy for MS. The major goal of this review is to emphasize an overview of recent research on the function of gut microbiota in the onset of MS and how probiotics have a substantial impact on gastrointestinal disruption in MS and other neuro disorders. It will be easier to develop new therapeutic approaches, particularly probiotic-based supplements, for treating multiple sclerosis (MS) if we know the link between the gut and CNS.
Collapse
Affiliation(s)
- Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India.
| | - Nalini Kanta Sahoo
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, (An Autonomous College), Moga, Punjab 142001, India
| | - Bharti Verma
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| |
Collapse
|
27
|
Lee Y, Oh H, Jo M, Cho H, Park Y. Synergistic effect of n-3 PUFA and probiotic supplementation on bone loss induced by chronic mild stress through the brain–gut–bone axis. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
28
|
Yang J, Deng Y, Cai Y, Liu Y, Peng L, Luo Z, Li D. Mapping trends and hotspot regarding gastrointestinal microbiome and neuroscience: A bibliometric analysis of global research (2002-2022). Front Neurosci 2022; 16:1048565. [PMID: 36466165 PMCID: PMC9714683 DOI: 10.3389/fnins.2022.1048565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Scholars have long understood that gastrointestinal microorganisms are intimately related to human disorders. The literature on research involving the gut microbiome and neuroscience is emerging. This study exposed the connections between gut microbiota and neuroscience methodically and intuitively using bibliometrics and visualization. This study's objectives were to summarize the knowledge structure and identify emerging trends and potential hotspots in this field. MATERIALS AND METHODS On October 18, 2022, a literature search was conducted utilizing the Web of Science Core Collection (WoSCC) database for studies on gut microbiota and neuroscience studies from 2002 to 2022 (August 20, 2022). VOSviewer and CiteSpace V software was used to conduct the bibliometrics and visualization analysis. RESULTS From 2002 to 2022 (August 20, 2022), 2,275 publications in the WoSCC database satisfied the criteria. The annual volume of publications has rapidly emerged in recent years (2016-2022). The most productive nation (n = 732, 32.18%) and the hub of inter-country cooperation (links: 38) were the United States. University College Cork had the most research papers published in this area, followed by McMaster University and Harvard Medical School. Cryan JF, Dinan TG, and Clarke G were key researchers with considerable academic influence. The journals with the most publications are "Neurogastroenterology and Motility" and "Brain Behavior and Immunity." The most cited article and co-cited reference was Cryan JF's 2012 article on the impact of gut microbiota on the brain and behavior. The current research hotspot includes gastrointestinal microbiome, inflammation, gut-brain axis, Parkinson's disease (PD), and Alzheimer's disease (AD). The research focus would be on the "gastrointestinal microbiome, inflammation: a link between obesity, insulin resistance, and cognition" and "the role of two important theories of the gut-brain axis and microbial-gut-brain axis in diseases." Burst detection analysis showed that schizophrenia, pathology, and psychiatric disorder may continue to be the research frontiers. CONCLUSION Research on "gastrointestinal microbiome, inflammation: a link between obesity, insulin resistance, and cognition" and "the role of two important theories of the gut-brain axis and microbial-gut-brain axis in diseases" will continue to be the hotspot. Schizophrenia and psychiatric disorder will be the key research diseases in the field of gut microbiota and neuroscience, and pathology is the key research content, which is worthy of scholars' attention.
Collapse
Affiliation(s)
- Jingjing Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yihui Deng
- Hunan University of Chinese Medicine, Changsha, China
| | - Yuzhe Cai
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yixuan Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Lanyu Peng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zheng Luo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Dingxiang Li
- Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
29
|
Choneva M, Shishmanova-Doseva M, Dimov I, Boyanov K, Dimitrov I, Vlaykova T, Georgieva K, Hrischev P, Bivolarska A. Xylooligosaccharides and aerobic training regulate metabolism and behavior in rats with streptozotocin-induced type 1 diabetes. Open Med (Wars) 2022; 17:1632-1644. [PMID: 36329786 PMCID: PMC9579861 DOI: 10.1515/med-2022-0579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022] Open
Abstract
Type 1 diabetes mellitus is characterized with decreased microbial diversity. Gut microbiota is essential for the normal physiological functioning of many organs, especially the brain. Prebiotics are selectively fermentable oligosaccharides [xylooligosaccharides (XOS), galactooligosaccharides, etc.] that promote the growth and activity of gut microbes and influence the gut-brain axis. Aerobic exercise is a non-pharmacological approach for the control of diabetes and could improve cognitive functions. The potential beneficial effect of XOS and/or aerobic training on cognition, the lipid profile and oxidative stress markers of experimental rats were evaluated in this study. Male Wistar rats were randomly divided into three streptozotocin-induced diabetic groups and a control group. Some of the rats, either on a XOS treatment or a standard diet, underwent aerobic training. The results showed that the aerobic training independently lowered the total cholesterol levels compared to the sedentary diabetic rats (p = 0.032), while XOS lowers the malondialdehyde levels in the trained diabetic rats (p = 0.034). What is more the exercise, independently or in combination with XOS beneficially affected all parameters of the behavioral tests. We conclude that aerobic exercises alone or in a combination with the prebiotic XOS could ameliorate the dyslipidemia, oxidative stress, and cognitive abilities in experimental type 1 diabetic animals.
Collapse
Affiliation(s)
- Mariya Choneva
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Michaela Shishmanova-Doseva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Ivica Dimov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Krasimir Boyanov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Iliyan Dimitrov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Tatyana Vlaykova
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Katerina Georgieva
- Department of Physiology, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Petar Hrischev
- Department of Physiology, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| |
Collapse
|
30
|
Wang B, Wu Q, Yu S, Lu Q, Lv X, Zhang M, Kan Y, Wang X, Zhu Y, Wang G, Wang Q. Host-derived bacillus spp. as probiotic additives for improved growth performance in broilers. Poult Sci 2022; 102:102240. [PMID: 36334472 PMCID: PMC9636475 DOI: 10.1016/j.psj.2022.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022] Open
Abstract
In recent years, the utilization of antibiotics in animal feed has been restricted, probiotics have been increasingly used to replace antibiotics in maintaining animal health. The aim of this study was to screen and evaluate probiotics with excellent probiotic potential from the gut of healthy goslings for clinical application. Thirteen strains of Bacillus (named AH-G201 to AH-G2013), including 2 strains of Bacillus subtilis (B. subtilis), 6 strains of Bacillus licheniformis (B. licheniformis) and 5 strains of Bacillus amyloliquefaciens (B. amyloliquefaciens), were isolated and identified. Then, acid and bile salts tolerance tests were performed to screen probiotics strains that could survive under different environments. The effects of screened probiotics on the growth of pathogenic Escherichia coli (E. coli) and Salmonella were assessed. Furthermore, we performed the drug resistance tests and safety tests in animals. The results showed that B. Subtilis AH-G201, B. licheniformis AH-G202 and AH-G204 exhibited higher gastrointestinal resistance under in vitro conditions, and showed a moderate level of resistance to the tested antibiotics. Importantly, AH-G201 and AH-G202 showed 24 to 60% inhibition rate against pathogenic E. coli and Salmonella. Moreover, the safety analysis of AH-G201 and AH-G202 suggested that the 2 probiotics strains have no adverse effects on body weight gain and feed intake in the broilers, and in addition, they have significantly improved growth performance. Finally, we analyzed effects of B. Subtilis AH-G201and B. licheniformis AH-G202 on growth performance, immune organ index and the feces microbes of broilers. The results showed that broilers fed with high doses (5 × 109 CFU/mL, for single strain) of a mixture of AH-G201 and AH-G202 exhibited good growth performance, and exhibited the greatest gain in spleen weight and the highest lactic acid bacteria counts. These findings indicate that the combined addition of B. Subtilis AH-G201 and B. licheniformis AH-G202 has the potential to replace antibiotics and to improve the growth performance of broilers.
Collapse
Affiliation(s)
- Bei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qiong Wu
- Animal Husbandry and Veterinary Service Centre of Jiujiang, Wuhu 241012, China
| | - Shengzu Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Lu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xuan Lv
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Miao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ying Kan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiqiang Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yingqi Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, China
| | - Qing Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, China,Corresponding author:
| |
Collapse
|
31
|
Rode J, Edebol Carlman HMT, König J, Hutchinson AN, Thunberg P, Persson J, Brummer RJ. Multi-Strain Probiotic Mixture Affects Brain Morphology and Resting State Brain Function in Healthy Subjects: An RCT. Cells 2022; 11:cells11182922. [PMID: 36139496 PMCID: PMC9496704 DOI: 10.3390/cells11182922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Probiotics can alter brain function via the gut–brain axis. We investigated the effect of a probiotic mixture containing Bifidobacterium longum, Lactobacillus helveticus and Lactiplantibacillus plantarum. In a randomized, placebo-controlled, double-blinded crossover design, 22 healthy subjects (6 m/16 f; 24.2 ± 3.4 years) underwent four-week intervention periods with probiotics and placebo, separated by a four-week washout period. Voxel-based morphometry indicated that the probiotic intervention affected the gray matter volume of a cluster covering the left supramarginal gyrus and superior parietal lobule (p < 0.0001), two regions that were also among those with an altered resting state functional connectivity. Probiotic intervention resulted in significant (FDR < 0.05) functional connectivity changes between regions within the default mode, salience, frontoparietal as well as the language network and several regions located outside these networks. Psychological symptoms trended towards improvement after probiotic intervention, i.e., the total score of the Hospital Anxiety and Depression Scale (p = 0.056) and its depression sub-score (p = 0.093), as well as sleep patterns (p = 0.058). The probiotic intervention evoked distinct changes in brain morphology and resting state brain function alongside slight improvements of psycho(bio)logical markers of the gut–brain axis. The combination of those parameters may provide new insights into the modes of action by which gut microbiota can affect gut–brain communication and hence brain function.
Collapse
Affiliation(s)
- Julia Rode
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
- Correspondence:
| | - Hanna M. T. Edebol Carlman
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Julia König
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Ashley N. Hutchinson
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Per Thunberg
- Department of Radiology and Medical Physics, Faculty of Medicine and Health, Örebro University, 70182 Örebro, Sweden
| | - Jonas Persson
- Center for Lifespan Developmental Research (LEADER), Faculty of Humanities and Social Sciences, School of Law, Psychology and Social Work, Örebro University, 70182 Örebro, Sweden
| | - Robert J. Brummer
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| |
Collapse
|
32
|
Wu Y, Wang Y, Hu A, Shu X, Huang W, Liu J, Wang B, Zhang R, Yue M, Yang C. Lactobacillus plantarum-derived postbiotics prevent Salmonella-induced neurological dysfunctions by modulating gut-brain axis in mice. Front Nutr 2022; 9:946096. [PMID: 35967771 PMCID: PMC9365972 DOI: 10.3389/fnut.2022.946096] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 01/04/2023] Open
Abstract
Postbiotics are the inactive bacteria and/or metabolites of beneficial microbes which have been recently found to be as effective as their live probiotic. This study aimed to evaluate the benefits of Lactobacillus plantarum (LP)-derived postbiotics on ameliorating Salmonella-induced neurological dysfunctions. Mice were pretreated with LP postbiotics (heat-killed bacteria or the metabolites) or active bacteria, and then challenged with Salmonella enterica Typhimurium (ST). Results showed that LP postbiotics, particularly the metabolites, effectively prevented ST infection in mice, as evidenced by the inhibited weight loss, bacterial translocation, and tissue damages. The LP postbiotics markedly suppressed brain injuries and neuroinflammation (the decreased interleukin (IL)-1β and IL-6, and the increased IL-4 and IL-10). Behavior tests indicated that LP postbiotics, especially the metabolites, protected mice from ST-induced anxiety and depressive-like behaviors and cognitive impairment. A significant modulation of neuroactive molecules (5-hydroxytryptamine, gamma-aminobutyric acid, brain-derived neurotrophic factor, dopamine, acetylcholine, and neuropeptide Y) was also found by LP postbiotic pretreatment. Microbiome analysis revealed that LP postbiotics optimized the cecal microbial composition by increasing Helicobacter, Lactobacillus and Dubosiella, and decreasing Mucispirillum, norank_f_Oscillospiraceae, and Eubacterium_siraeum_group. Moreover, LP postbiotics inhibited the reduction of short-chain fatty acids caused by ST infection. Pearson's correlation assays further confirmed the strong relationship of LP postbiotics-mediated benefits and gut microbiota. This study highlights the effectiveness of postbiotics and provide a promising strategy for preventing infection-induced brain disorders by targeting gut–brain axis.
Collapse
Affiliation(s)
- Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yan Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Aixin Hu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Xin Shu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Wenxia Huang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou, China
| | - Baikui Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Min Yue
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| |
Collapse
|
33
|
Ullah H, Khan A, Rengasamy KRR, Di Minno A, Sacchi R, Daglia M. The Efficacy of S-Adenosyl Methionine and Probiotic Supplementation on Depression: A Synergistic Approach. Nutrients 2022; 14:2751. [PMID: 35807931 PMCID: PMC9268496 DOI: 10.3390/nu14132751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Depression is a common and serious health issue affecting around 280 million people around the world. Suicidal ideation more frequently occurs in people with moderate to severe depression. Psychotherapy and pharmacological drugs are the mainstay of available treatment options for depressive disorders. However, pharmacological options do not offer complete cure, especially in moderate to severe depression, and are often seen with a range of adverse events. S-adenosyl methionine (SAMe) supplementation has been widely studied, and an impressive collection of literature published over the last few decades suggests its antidepressant efficacy. Probiotics have gained significant attention due to their wide array of clinical uses, and multiple studies have explored the link between probiotic species and mood disorders. Gut dysbiosis is one of the risk factors in depression by inducing systemic inflammation accompanied by an imbalance in neurotransmitter production. Thus, concomitant administration of probiotics may be an effective treatment strategy in patients with depressed mood, particularly in resistant cases, as these can aid in dysbiosis, possibly resulting in the attenuation of systemic inflammatory processes and the improvement of the therapeutic efficacy of SAMe. The current review highlights the therapeutic roles of SAMe and probiotics in depression, their mechanistic targets, and their possible synergistic effects and may help in the development of food supplements consisting of a combination of SAMe and probiotics with new dosage forms that may improve their bioavailability.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (A.D.M.)
| | - Ayesha Khan
- Department of Medicine, Combined Military Hospital Nowshera, Nowshera 24110, Pakistan;
| | - Kannan R. R. Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India;
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (A.D.M.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Roberto Sacchi
- Applied Statistic Unit, Department of Earth and Environmental Sciences, University of Pavia, Viale Taramelli 24, 27100 Pavia, Italy;
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (A.D.M.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
34
|
Eltokhi A, Sommer IE. A Reciprocal Link Between Gut Microbiota, Inflammation and Depression: A Place for Probiotics? Front Neurosci 2022; 16:852506. [PMID: 35546876 PMCID: PMC9081810 DOI: 10.3389/fnins.2022.852506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Depression is a severe mental disorder that places a significant economic burden on public health. The reciprocal link between the trillions of bacteria in the gut, the microbiota, and depression is a controversial topic in neuroscience research and has drawn the attention of public interest and press coverage in recent years. Mounting pieces of evidence shed light on the role of the gut microbiota in depression, which is suggested to involve immune, endocrine, and neural pathways that are the main components of the microbiota-gut-brain axis. The gut microbiota play major roles in brain development and physiology and ultimately behavior. The bidirectional communication between the gut microbiota and brain function has been extensively explored in animal models of depression and clinical research in humans. Certain gut microbiota strains have been associated with the pathophysiology of depression. Therefore, oral intake of probiotics, the beneficial living bacteria and yeast, may represent a therapeutic approach for depression treatment. In this review, we summarize the findings describing the possible links between the gut microbiota and depression, focusing mainly on the inflammatory markers and sex hormones. By discussing preclinical and clinical studies on probiotics as a supplementary therapy for depression, we suggest that probiotics may be beneficial in alleviating depressive symptoms, possibly through immune modulation. Still, further comprehensive studies are required to draw a more solid conclusion regarding the efficacy of probiotics and their mechanisms of action.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells & Systems, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
35
|
Liu J, Fang Y, Cui L, Wang Z, Luo Y, Gao C, Ge W, Huang T, Wen J, Zhou T. Butyrate emerges as a crucial effector of Zhi-Zi-Chi decoctions to ameliorate depression via multiple pathways of brain-gut axis. Biomed Pharmacother 2022; 149:112861. [PMID: 35339110 DOI: 10.1016/j.biopha.2022.112861] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/09/2022] Open
Abstract
Gut microbiota has emerged as a crucial target of gut-brain axis to influence depression. Zhi-Zi-Chi decoctions (ZZCD), as a classic oral formula in clinic, is widely applied in depression treatment nowadays. However, the underlying mechanism in the antidepressant activity of ZZCD remains unknown. A classic depression model of chronic mild unpredictable stress (CUMS) was established in rats based on the results of behavioral tests and hippocampal histomorphology. 16S rRNA sequencing analysis indicated that ZZCD could increase short-chain fatty acid-producing and anti-inflammatory bacteria and reduce inflammatory and tryptophan-metabolizing bacteria. Furthermore, ZZCD reversed the alterations of BDNF, TNF-α, pro-inflammatory cytokines and neurotransmitters in the gut, blood and brain along the brain-gut axis and restored the decrease of butyrate in cecal content caused by CUMS. Then, butyrate was utilized to validate its ameliorative effect on pathological characteristics of depressive rats. Taken together, these results show that ZZCD exhibits antidepressant effect through modulating gut microbiota to facilitate the production of butyrate, which further regulate anti-inflammation, neurotransmitters, endocrine and BDNF along the gut-brain axis. Hence, this study fills the gap of the antidepressive mechanism of ZZCD in the light of the brain-gut axis and established a multi-targets and multi-levels platform eventually for further research into the mechanism of other TCM efficacy.
Collapse
Affiliation(s)
- Jialin Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yichao Fang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lixun Cui
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhongzhao Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Changzheng hospital, second affiliated hospital of Second Military Medical University, Shanghai 200003, China
| | - Yusha Luo
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Congcong Gao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wen Ge
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | | | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
36
|
Rode J, Edebol Carlman HMT, König J, Repsilber D, Hutchinson AN, Thunberg P, Andersson P, Persson J, Kiselev A, Lathrop Stern L, Salomon B, Mohammed AA, Labus JS, Brummer RJ. Probiotic Mixture Containing Lactobacillus helveticus, Bifidobacterium longum and Lactiplantibacillus plantarum Affects Brain Responses Toward an Emotional Task in Healthy Subjects: A Randomized Clinical Trial. Front Nutr 2022; 9:827182. [PMID: 35571902 PMCID: PMC9104811 DOI: 10.3389/fnut.2022.827182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
Background Evidence from preclinical studies suggests that probiotics affect brain function via the microbiome-gut-brain axis, but evidence in humans remains limited. Objective The present proof-of-concept study investigated if a probiotic product containing a mixture of Bifidobacterium longum R0175, Lactobacillus helveticus R0052 and Lactiplantibacillus plantarum R1012 (in total 3 × 109 CFU/day) affected functional brain responses in healthy subjects during an emotional attention task. Design In this double-blinded, randomized, placebo-controlled crossover study (Clinicaltrials.gov, NCT03615651), 22 healthy subjects (24.2 ± 3.4 years, 6 males/16 females) were exposed to a probiotic intervention and a placebo for 4 weeks each, separated by a 4-week washout period. Subjects underwent functional magnetic resonance imaging while performing an emotional attention task after each intervention period. Differential brain activity and functional connectivity were assessed. Results Altered brain responses were observed in brain regions implicated in emotional, cognitive and face processing. Increased activation in the orbitofrontal cortex, a region that receives extensive sensory input and in turn projects to regions implicated in emotional processing, was found after probiotic intervention compared to placebo using a cluster-based analysis of functionally defined areas. Significantly reduced task-related functional connectivity was observed after the probiotic intervention compared to placebo. Fecal microbiota composition was not majorly affected by probiotic intervention. Conclusion The probiotic intervention resulted in subtly altered brain activity and functional connectivity in healthy subjects performing an emotional task without major effects on the fecal microbiota composition. This indicates that the probiotic effects occurred via microbe-host interactions on other levels. Further analysis of signaling molecules could give possible insights into the modes of action of the probiotic intervention on the gut-brain axis in general and brain function specifically. The presented findings further support the growing consensus that probiotic supplementation influences brain function and emotional regulation, even in healthy subjects. Future studies including patients with altered emotional processing, such as anxiety or depression symptoms are of great interest. Clinical Trial Registration [http://clinicaltrials.gov/], identifier [NCT03615651].
Collapse
Affiliation(s)
- Julia Rode
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
- *Correspondence: Julia Rode,
| | - Hanna M. T. Edebol Carlman
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Julia König
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Dirk Repsilber
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ashley N. Hutchinson
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Per Thunberg
- Department of Radiology and Medical Physics, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Pernilla Andersson
- Center for Lifespan Developmental Research (LEADER), Faculty of Humanities and Social Sciences, School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden
| | - Jonas Persson
- Center for Lifespan Developmental Research (LEADER), Faculty of Humanities and Social Sciences, School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden
| | - Andrey Kiselev
- Center for Applied Autonomous Sensor Systems, Faculty for Business, Science and Engineering, School of Natural Science and Technology, Örebro University, Örebro, Sweden
| | - Lori Lathrop Stern
- Global Medical Innovation, Pfizer Consumer Healthcare, Madison, NJ, United States
| | - Benita Salomon
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ahmed Abdulilah Mohammed
- Department of Radiology and Medical Physics, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Jennifer S. Labus
- Integrative Bioinformatics and Biostatistics Core, Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Robert J. Brummer
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
37
|
Alli SR, Gorbovskaya I, Liu JCW, Kolla NJ, Brown L, Müller DJ. The Gut Microbiome in Depression and Potential Benefit of Prebiotics, Probiotics and Synbiotics: A Systematic Review of Clinical Trials and Observational Studies. Int J Mol Sci 2022; 23:4494. [PMID: 35562885 PMCID: PMC9101152 DOI: 10.3390/ijms23094494] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
An emerging body of literature demonstrates differences in the gut microbiome (GMB) of patients with major depressive disorder (MDD) compared to healthy controls (HC), as well as the potential benefits of prebiotic, probiotic, and synbiotic treatment. We conducted a systematic review of 24 observational studies (n = 2817), and 19 interventional trials (n = 1119). We assessed alpha diversity, beta diversity, and taxa abundance changes in patients with MDD relative to HC, as well as the effect of prebiotics, probiotics, and synbiotics on depressive symptoms in individuals with clinical or subclinical depression. We observed no significant differences in alpha diversity but a significant difference in beta diversity between patients with MDD and HC. There were fluctuations in the abundance of specific taxa in patients with MDD relative to HC. Probiotic and synbiotic, but not prebiotic, treatment showed a modest benefit in reducing depressive symptoms in patients with MDD over four to nine weeks. The GMB profiles of patients with MDD differ significantly from HC, but further studies are needed to elucidate the benefits of prebiotic, probiotic and synbiotic treatments relative to antidepressants and over longer follow-up before these therapies are implemented into clinical practice.
Collapse
Affiliation(s)
- Sauliha R. Alli
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (S.R.A.); (I.G.); (J.C.W.L.); (N.J.K.)
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ilona Gorbovskaya
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (S.R.A.); (I.G.); (J.C.W.L.); (N.J.K.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan C. W. Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (S.R.A.); (I.G.); (J.C.W.L.); (N.J.K.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nathan J. Kolla
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (S.R.A.); (I.G.); (J.C.W.L.); (N.J.K.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Lisa Brown
- Great Scott Consulting, New York, NY, USA;
| | - Daniel J. Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (S.R.A.); (I.G.); (J.C.W.L.); (N.J.K.)
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
38
|
Stressful events induce long-term gut microbiota dysbiosis and associated post-traumatic stress symptoms in healthcare workers fighting against COVID-19. J Affect Disord 2022; 303:187-195. [PMID: 35157946 PMCID: PMC8837476 DOI: 10.1016/j.jad.2022.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The microbiota-gut-brain axis is a key pathway perturbed by prolonged stressors to produce brain and behavioral disorders. Frontline healthcare workers (FHWs) fighting against COVID-19 typically experience stressful event sequences and manifest some mental symptoms; however, the role of gut microbiota in such stress-induced mental problems remains unclear. We investigated the association between the psychological stress of FHW and gut microbiota. METHODS We used full-length 16S rRNA gene sequencing to characterize the longitudinal changes in gut microbiota and investigated the impact of microbial changes on FHWs' mental status. RESULTS Stressful events induced significant depression, anxiety, and stress in FHWs and disrupted the gut microbiome; gut dysbiosis persisted for at least half a year. Different microbes followed discrete trajectories during the half-year of follow-up. Microbes associated with mental health were mainly Faecalibacterium spp. and [Eubacterium] eligens group spp. with anti-inflammatory effects. Of note, the prediction model indicated that low abundance of [Eubacterium] hallii group uncultured bacterium and high abundance of Bacteroides eggerthii at Day 0 (immediately after the two-month frontline work) were significant determinants of the reappearance of post-traumatic stress symptoms in FHWs. LIMITATIONS The lack of metabolomic evidence and animal experiments result in the unclear mechanism of gut dysbiosis-related stress symptoms. CONCLUSION The stressful event sequences of fighting against COVID-19 induce characteristic longitudinal changes in gut microbiota, which underlies dynamic mental state changes.
Collapse
|
39
|
Lalonde R, Strazielle C. Probiotic effects on anxiety-like behavior in animal models. Rev Neurosci 2022; 33:691-701. [PMID: 35381125 DOI: 10.1515/revneuro-2021-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022]
Abstract
Gut microbiota have been shown to be useful in treating gastrointestinal diseases, cancer, obesity, infections, and, more recently, neuropsychiatric conditions such as degenerative diseases and depression. There has also been recent expansion in testing probiotics and prebiotics on anxiety-like behaviors in animals. Current results indicate that probiotic substances of the Lactobacillus and Bifidobacterium type are effective in reducing anxiety-like behaviors in mice or rats evaluated in the elevated plus-maze, the open-field, the light-dark box, and conditioned defensive burying. Probiotics are also effective in reducing serum or plasma corticosterone levels after acute stress. It is hypothesized that probiotics cause anxiolytic-like effects via vagal influences on caudal solitary nucleus, periaqueductal gray, central nucleus of the amygdala, and bed nucleus of the stria terminalis. Further experimentation is needed to trace the neurochemical anatomy underlying anxiolytic-like behaviors of gut microbiata exerting effects via vagal or nonvagal pathways.
Collapse
Affiliation(s)
- Robert Lalonde
- University of Lorraine, Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, 54500 Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- University of Lorraine, Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, 54500 Vandœuvre-les-Nancy, France.,CHRU Nancy, 54500 Vandœuvre-les-Nancy, France
| |
Collapse
|
40
|
Zhang Q, Pan Y, Wang M, Sun L, Xi Y, Li M, Zeng Q. In vitro evaluation of probiotic properties of lactic acid bacteria isolated from the vagina of yak ( Bos grunniens). PeerJ 2022; 10:e13177. [PMID: 35368335 PMCID: PMC8973462 DOI: 10.7717/peerj.13177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Bovine endometritis is an inflammatory disease of the uterus that occurs after parturition and can result in the destruction of uterine microecology, disruption of hormone secretion, and even infertility. Problems such as antibiotic residues, pathogen resistance, and microbiota dysbiosis caused by conventional antibiotic therapy cannot be ignored. According to the microecological balance theory, probiotics have the potential to prevent or cure endometritis in cattle. Probiotics can positively influence host physiology by regulating microecological imbalance, modulating immunity, and antagonizing pathogens. Since some probiotics contribute to host health only in their specific natural niches, lactic acid bacteria (LAB) from the vagina may have better potential to fight against vaginal and uterine infection. The yak (Bos grunniens) is an ancient and primitive livestock animal that is adapted to high altitude and harsh environments (cold, nutritional deficiencies, and hypoxia). However, to our knowledge, there have been no studies on yak vaginal LAB. Therefore, the purpose of this study was to isolate vaginal LAB from yak, evaluate and compare the probiotic potential and safety of the isolates, and help establish the probiotics library that can be used in the prevention and/or treatment of endometritis. Twenty-five vaginal swabs were collected from healthy yak and cultured in deMan, Rogosa, and Sharpe (MRS) broth. Tentative LAB strains were preliminarily determined through calcium dissolving zone and morphological identification, and the strains were then identified using 16S rRNA gene sequencing. The probiotics of the isolates were detected using cell aggregation, hydrophobicity, resistance to acid and bile salt, adhesion, and antibacterial activities. Additionally, antimicrobial susceptibility, hemolytic activity, and detection of potential virulence factors were determined in order to confirm the safety of these strains. Five isolates were identified: Leuconostoc mesenteroides, Lactobacillus plantarum, Enterococcus hirae, Lacticaseibacillus camelliae, and Lactobacillus mucosae. All isolates had certain growth resistance, aggregation ability, effective antimicrobial potency against Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium, were sensitive to most antibiotics, and could effectively adhere to bovine endometrial epithelial cells (BEECs). None of the isolates showed hemolytic activity or harbored virulence factors. Our results indicated that the five isolates have considerable potential as probiotics that can be used to prevent and/or treat bovine endometritis. We speculate that a mixture of YD6, YD9, and YD25 may yield better results, although this would require extensive experiments to verify.
Collapse
Affiliation(s)
- Qingli Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China,Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Liang Sun
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yao Xi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Mei Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
41
|
Edebol Carlman HMT, Rode J, König J, Repsilber D, Hutchinson AN, Thunberg P, Persson J, Kiselev A, Pruessner JC, Brummer RJ. Probiotic Mixture Containing Lactobacillus helveticus, Bifidobacterium longum and Lactiplantibacillus plantarum Affects Brain Responses to an Arithmetic Stress Task in Healthy Subjects: A Randomised Clinical Trial and Proof-of-Concept Study. Nutrients 2022; 14:nu14071329. [PMID: 35405944 PMCID: PMC9002567 DOI: 10.3390/nu14071329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Probiotics are suggested to impact physiological and psychological stress responses by acting on the gut-brain axis. We investigated if a probiotic product containing Bifidobacterium longum R0175, Lactobacillus helveticus R0052 and Lactiplantibacillus plantarum R1012 affected stress processing in a double-blinded, randomised, placebo-controlled, crossover proof-of-concept study (NCT03615651). Twenty-two healthy subjects (24.2 ± 3.4 years, 6 men/16 women) underwent a probiotic and placebo intervention for 4 weeks each, separated by a 4-week washout period. Subjects were examined by functional magnetic resonance imaging while performing the Montreal Imaging Stress Task (MIST) as well as an autonomic nervous system function assessment during the Stroop task. Reduced activation in regions of the lateral orbital and ventral cingulate gyri was observed after probiotic intervention compared to placebo. Significantly increased functional connectivity was found between the upper limbic region and medioventral area. Interestingly, probiotic intervention seemed to predominantly affect the initial stress response. Salivary cortisol secretion during the task was not altered. Probiotic intervention did not affect cognitive performance and autonomic nervous system function during Stroop. The probiotic intervention was able to subtly alter brain activity and functional connectivity in regions known to regulate emotion and stress responses. These findings support the potential of probiotics as a non-pharmaceutical treatment modality for stress-related disorders.
Collapse
Affiliation(s)
- Hanna M. T. Edebol Carlman
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden; (H.M.T.E.C.); (J.K.); (D.R.); (A.N.H.); (R.J.B.)
| | - Julia Rode
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden; (H.M.T.E.C.); (J.K.); (D.R.); (A.N.H.); (R.J.B.)
- Correspondence: ; Tel.: +46-1930-3817
| | - Julia König
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden; (H.M.T.E.C.); (J.K.); (D.R.); (A.N.H.); (R.J.B.)
| | - Dirk Repsilber
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden; (H.M.T.E.C.); (J.K.); (D.R.); (A.N.H.); (R.J.B.)
| | - Ashley N. Hutchinson
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden; (H.M.T.E.C.); (J.K.); (D.R.); (A.N.H.); (R.J.B.)
| | - Per Thunberg
- Department of Radiology and Medical Physics, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden;
| | - Jonas Persson
- Center for Lifespan Developmental Research (LEADER), Faculty of Humanities and Social Sciences, School of Law, Psychology and Social Work, Örebro University, 70182 Örebro, Sweden;
| | - Andrey Kiselev
- Center for Applied Autonomous Sensor Systems, Faculty for Business, Science and Engineering, School of Natural Science and Technology, Örebro University, 70182 Örebro, Sweden;
| | - Jens C. Pruessner
- Douglas Institute, McGill University, Montréal, QC H4H1R3, Canada;
- Department of Psychology, University of Konstanz, 78457 Konstanz, Germany
| | - Robert J. Brummer
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden; (H.M.T.E.C.); (J.K.); (D.R.); (A.N.H.); (R.J.B.)
| |
Collapse
|
42
|
Abuaish S, Al-Otaibi NM, Aabed K, Abujamel TS, Alzahrani SA, Alotaibi SM, Bhat RS, Arzoo S, Algahtani N, Moubayed NM, El-Ansary A. The Efficacy of Fecal Transplantation and Bifidobacterium Supplementation in Ameliorating Propionic Acid-Induced Behavioral and Biochemical Autistic Features in Juvenile Male Rats. J Mol Neurosci 2022; 72:372-381. [PMID: 35094316 DOI: 10.1007/s12031-021-01959-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Gut microbiota plays a major role in neurological disorders, including autism. Modulation of the gut microbiota through fecal microbiota transplantation (FMT) or probiotic administration, such as Bifidobacteria, is suggested to alleviate autistic symptoms; however, their effects on the brain are not fully examined. We tested both approaches in a propionic acid (PPA) rodent model of autism as treatment strategies. Autism was induced in Sprague-Dawley rats by administering PPA orally (250 mg/kg) for 3 days. Animals were later treated with either saline, FMT, or Bifidobacteria for 22 days. Control animals were treated with saline throughout the study. Social behavior and selected brain biochemical markers related to stress hormones, inflammation, and oxidative stress were assessed. PPA treatment induced social impairments, which was rescued by the treatments. In the brain, Bifidobacteria treatment increased oxytocin relative to control and PPA groups. Moreover, Bifidobacteria treatment rescued the PPA-induced increase in IFN-γ levels. Both treatments increased GST levels, which was diminished by the PPA treatment. These findings indicate the potential of gut microbiota-targeted therapeutics in ameliorating behavioral deficit and underlying neural biochemistry.
Collapse
Affiliation(s)
- Sameera Abuaish
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Norah M Al-Otaibi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Kawther Aabed
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Turki S Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Saleha Ahmad Alzahrani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sohailah Masoud Alotaibi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaista Arzoo
- Department of Food Science and Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Norah Algahtani
- Central Research Laboratory, King Saud University Female Campus, P O Box 22452, Prince Turki Road, Riyadh, 22452, Saudi Arabia
| | - Nadine Ms Moubayed
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Research Laboratory, King Saud University Female Campus, P O Box 22452, Prince Turki Road, Riyadh, 22452, Saudi Arabia.
| |
Collapse
|
43
|
Wang Z, Yuan K, Ji YB, Li SX, Shi L, Wang Z, Zhou XY, Bao YP, Xie W, Han Y, Shi J, Lu L, Yan W, Chen WH. Alterations of the Gut Microbiota in Response to Total Sleep Deprivation and Recovery Sleep in Rats. Nat Sci Sleep 2022; 14:121-133. [PMID: 35115853 PMCID: PMC8800865 DOI: 10.2147/nss.s334985] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Accumulating evidence suggests that both sleep loss and gut dysbiosis can lead to metabolic disorders. However, less is known about the impact of total sleep deprivation (SD) and sleep recovery on the composition, function, and metabolic dynamics of the gut microbiota. METHODS Specific-pathogen free Sprague-Dawley rats were subjected to 48 h of SD with gentle handling and then allowed to recover for 1 week. Taxonomic profiles of fecal microbiota were obtained at baseline, 24 h of SD, 48 h of SD, and 1 week of recovery. We used 16S rRNA gene sequencing to analyze the gut microbial composition and function and further characterize microbiota-derived metabolites in rats. RESULTS The microbiota composition analysis revealed that gut microbial composition and metabolites did not change in the rats after 24 h of SD but were significantly altered after 48 h of SD. These changes were reversible after 1 week of sleep recovery. A functional analysis was performed based on Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, indicating that 19 KEGG pathways were significantly altered in the gut microbiota in SD rats. These functional changes occurred within 24 h of SD, were more apparent after 48 h of SD, and did not fully recover after 1 week of sleep recovery. CONCLUSION These results indicate that acute total SD leads to significant compositional and functional changes in the gut microbiota, and these changes are reversible.
Collapse
Affiliation(s)
- Zhong Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Yan-Bin Ji
- Department of Neurology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, People's Republic of China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Zhe Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Xin-Yu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yan-Ping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China
| | - Wen Xie
- Mental Health Center of Anhui Province, Hefei, 230032, People's Republic of China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, People's Republic of China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Wen-Hao Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| |
Collapse
|
44
|
Molavi N, Rasouli-Azad M, Mirzaei H, Matini AH, Banafshe HR, Valiollahzadeh M, Hassanzadeh M, Saghazade AR, Abbaszadeh-Mashkani S, Mamsharifi P, Ghaderi A. The Effects of Probiotic Supplementation on Opioid-Related Disorder in Patients under Methadone Maintenance Treatment Programs. Int J Clin Pract 2022; 2022:1206914. [PMID: 35685534 PMCID: PMC9159114 DOI: 10.1155/2022/1206914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Patients under methadone maintenance treatment programs (MMTPs) are susceptible to numerous complications (e.g., mental and metabolic disorders). This study evaluated the effects of probiotics on clinical symptoms, biomarkers of oxidative stress, inflammation, insulin resistance, and serum lipid content in patients receiving MMTPs. MATERIALS AND METHODS A randomized, double-blind, placebo-controlled trial was conducted among 70 patients receiving MMTPs to receive either 1.8 × 109 CFU/day probiotics (n = 35) or placebo (n = 35) for 12 weeks. Clinical symptoms and metabolic profiles were measured before and after the intervention in patients receiving MMTPs. RESULTS Compared with the placebo group, probiotic supplementation resulted in a significant improvement in the severity of depression (P < 0.05). In addition, probiotic administration significantly decreased fasting plasma glucose (FPG), total cholesterol, and low-density lipoprotein cholesterol (LDL cholesterol) (P < 0.05). Furthermore, probiotics resulted in a significant reduction in high-sensitivity C-reactive protein (hs-CRP) and a significant elevation in total antioxidant capacity (TAC) and total glutathione (GSH) levels (P < 0.05). CONCLUSION Treatment with probiotics for 12 weeks to patients receiving MMTPs had beneficial effects on symptoms of depression, as well as several metabolic profiles. Clinical Trial Registration: this study was registered in the Iranian website (https://www.irct.ir) for clinical trials registration (https://fa.irct.ir/trial/46363/IRCT20170420033551N9). The registration date is March 22, 2020.
Collapse
Affiliation(s)
- Nader Molavi
- Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran
| | - Morad Rasouli-Azad
- International Center for Comparative Criminology, University of Montreal, Montreal, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hassan Matini
- Department of Clinical Pathology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Majid Hassanzadeh
- Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Reza Saghazade
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Abbaszadeh-Mashkani
- Trauma Nursing Research Center, Faculty of Nursing and Midwifery, Kashan University of Medical Sciences, Kashan, Iran
| | - Peyman Mamsharifi
- Department of Psychology, Allameh Tabataba'i University, Tehran, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran
- Clinical Research Development Unit-Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
45
|
Xie J, Yuan Y, Tan H, Bai Y, Zheng Q, Mao L, Wu Y, Wang L, Da W, Ye Q, Zhang S, Wang J, Yin W, Bian Y, Ma W, Zhang L, Zhang R, Yu H, Guo Y. The combination of living Bifidobacterium, Lactobacillus, and Streptococcus improves social ranking and relieves anxiety-like behaviors in competitive mice in a social dominance tube test. Brain Behav 2022; 12:e2453. [PMID: 34878231 PMCID: PMC8785616 DOI: 10.1002/brb3.2453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/03/2021] [Accepted: 11/06/2021] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Social rank has a profound influence on the behavior and health of humans and animals. METHODS To explore the effect of a combination of living Bifidobacterium, Lactobacillus and Streptococcus (CLB) on anxiety- and depression-like behaviors and social rank, mice were subjected to a social dominance tube test (SDTT). The behaviors, rank, gut microbiota, and expression of inflammatory cytokines and brain-derived neurotrophic factor (BDNF) in the hippocampus were measured. RESULTS The results indicated that CLB improved the SDTT ranking score of the losers and alleviated anxiety-like behaviors of the winners. CLB decreased the level of Desulfovibrio and augmented the level of Mollicutes in the feces, increased BDNF content, and reduced the level of tumor necrosis factor-α in the hippocampus. CONCLUSION These findings indicated that CLB may be used for the treatment of anxiety and improvement of the rank score via regulation of gut microbiota and anti-inflammatory effects.
Collapse
Affiliation(s)
- Jianping Xie
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China.,School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, P. R. China.,Library, Yunnan Minzu University, Kunming, Yunnan, P. R. China
| | - Yun Yuan
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Heng Tan
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Yufan Bai
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Qingyue Zheng
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Lin Mao
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Yushan Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Ling Wang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Wenhui Da
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Qingyan Ye
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Suting Zhang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Jing Wang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Wenyao Yin
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Yujing Bian
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Wenjie Ma
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Lanchun Zhang
- School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Rongping Zhang
- School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, P. R. China.,School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resources, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, P. R. China
| | - Haofei Yu
- School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Ying Guo
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| |
Collapse
|
46
|
Yang HL, Li MM, Zhou MF, Xu HS, Huan F, Liu N, Gao R, Wang J, Zhang N, Jiang L. Links Between Gut Dysbiosis and Neurotransmitter Disturbance in Chronic Restraint Stress-Induced Depressive Behaviours: the Role of Inflammation. Inflammation 2021; 44:2448-2462. [PMID: 34657991 DOI: 10.1007/s10753-021-01514-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Accumulating evidence has shown that inflammation, the gut microbiota, and neurotransmitters are closely associated with the pathophysiology of depression. However, the links between the gut microbiota and neurotransmitter metabolism remain poorly understood. The present study aimed to investigate the neuroinflammatory reactions in chronic restraint stress (CRS)-induced depression and to delineate the potential links between the gut microbiota and neurotransmitter metabolism. C57BL/6 mice were subjected to chronic restraint stress for 5 weeks, followed by behavioural tests (the sucrose preference test, forced swim test, open field test, and elevated plus maze) and analysis. The results showed that CRS significantly increased interleukin-1 beta (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumour necrosis factor α (TNFα) levels and decreased brain-derived neurotrophic factor (BDNF) expression, accompanied by the activation of IkappaB-alpha-phosphorylation-nuclear factor kappa-B (IκBα-p-NF-κB) signalling in the mouse hippocampus. In addition, the neurotransmitter metabolomics results showed that CRS resulted in decreased levels of plasma 5-hydroxytryptamine (5-HT), dopamine (DA), and noradrenaline (NE) and their corresponding metabolites, and gut microbiota faecal metabolites with the 16S rRNA gene sequencing indicated that CRS caused marked microbiota dysbiosis in mice, with a significant increase in Helicobacter, Lactobacillus, and Oscillibacter and a decrease in Parabacteroides, Ruminococcus, and Prevotella. Notably, CRS-induced depressive behaviours and the disturbance of neurotransmitter metabolism and microbiota dysbiosis can be substantially restored by dexamethasone (DXMS) administration. Furthermore, a Pearson heatmap focusing on correlations between the microbiota, behaviours, and neurotransmitters showed that Helicobacter, Lactobacillus, and Oscillibacter were positively correlated with depressive behaviours but were negatively correlated with neurotransmitter metabolism, and Parabacteroides and Ruminococcus were negatively correlated with depressive behaviours but were positively correlated with neurotransmitter metabolism. Taken together, the results suggest that inflammation is involved in microbiota dysbiosis and the disturbance of neurotransmitter metabolism in CRS-induced depressive changes, and the delineation of the potential links between the microbiota and neurotransmitter metabolism will provide novel strategies for depression treatment.
Collapse
Affiliation(s)
- Hai-Long Yang
- Department of Psychiatry, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Meng-Meng Li
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215008, China
| | - Man-Fei Zhou
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Huai-Sha Xu
- Department of Psychiatry, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Fei Huan
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Na Liu
- Department of Medical Psychology, Nanjing Medical University, Nanjing Brain Hospital, 210029, Nanjing, China
| | - Rong Gao
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ning Zhang
- Department of Medical Psychology, Nanjing Medical University, Nanjing Brain Hospital, 210029, Nanjing, China.
| | - Lei Jiang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
47
|
|
48
|
Sajdel-Sulkowska EM. Neuropsychiatric Ramifications of COVID-19: Short-Chain Fatty Acid Deficiency and Disturbance of Microbiota-Gut-Brain Axis Signaling. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7880448. [PMID: 34651049 PMCID: PMC8510788 DOI: 10.1155/2021/7880448] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
COVID-19-associated neuropsychiatric complications are soaring. There is an urgent need to understand the link between COVID-19 and neuropsychiatric disorders. To that end, this article addresses the premise that SARS-CoV-2 infection results in gut dysbiosis and an altered microbiota-gut-brain (MGB) axis that in turn contributes to the neuropsychiatric ramifications of COVID-19. Altered MGB axis activity has been implicated independently as a risk of neuropsychiatric disorders. A review of the changes in gut microbiota composition in individual psychiatric and neurological disorders and gut microbiota in COVID-19 patients revealed a shared "microbial signature" characterized by a lower microbial diversity and richness and a decrease in health-promoting anti-inflammatory commensal bacteria accompanied by an increase in opportunistic proinflammatory pathogens. Notably, there was a decrease in short-chain fatty acid (SCFA) producing bacteria. SCFAs are key bioactive microbial metabolites with anti-inflammatory functions and have been recognized as a critical signaling pathway in the MGB axis. SCFA deficiency is associated with brain inflammation, considered a cardinal feature of neuropsychiatric disorders. The link between SARS-CoV-2 infection, gut dysbiosis, and altered MGB axis is further supported by COVID-19-associated gastrointestinal symptoms, a high number of SARS-CoV-2 receptors, angiotensin-cleaving enzyme-2 (ACE-2) in the gut, and viral presence in the fecal matter. The binding of SARS-CoV-2 to the receptor results in ACE-2 deficiency that leads to decreased transport of vital dietary components, gut dysbiosis, proinflammatory gut status, increased permeability of the gut-blood barrier (GBB), and systemic inflammation. More clinical research is needed to substantiate further the linkages described above and evaluate the potential significance of gut microbiota as a diagnostic tool. Meanwhile, it is prudent to propose changes in dietary recommendations in favor of a high fiber diet or supplementation with SCFAs or probiotics to prevent or alleviate the neuropsychiatric ramifications of COVID-19.
Collapse
|
49
|
Ge T, Yao X, Zhao H, Yang W, Zou X, Peng F, Li B, Cui R. Gut microbiota and neuropsychiatric disorders: Implications for neuroendocrine-immune regulation. Pharmacol Res 2021; 173:105909. [PMID: 34543739 DOI: 10.1016/j.phrs.2021.105909] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
Recently, increasing evidence has shown gut microbiota dysbiosis might be implicated in the physiological mechanisms of neuropsychiatric disorders. Altered microbial community composition, diversity and distribution traits have been reported in neuropsychiatric disorders. However, the exact pathways by which the intestinal microbiota contribute to neuropsychiatric disorders remain largely unknown. Given that the onset and progression of neuropsychiatric disorders are characterized with complicated alterations of neuroendocrine and immunology, both of which can be continually affected by gut microbiota via "microbiome-gut-brain axis". Thus, we assess the complicated crosstalk between neuroendocrine and immunological regulation might underlie the mechanisms of gut microbiota associated with neuropsychiatric disorders. In this review, we summarized clinical and preclinical evidence on the role of the gut microbiota in neuropsychiatry disorders, especially in mood disorders and neurodevelopmental disorders. This review may elaborate the potential mechanisms of gut microbiota implicating in neuroendocrine-immune regulation and provide a comprehensive understanding of physiological mechanisms for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Haisheng Zhao
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Fanzhen Peng
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
50
|
Forouzan S, McGrew K, Kosten TA. Drugs and bugs: Negative affect, psychostimulant use and withdrawal, and the microbiome. Am J Addict 2021; 30:525-538. [PMID: 34414622 DOI: 10.1111/ajad.13210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVES A growing body of literature demonstrates that the human microbiota plays a crucial role in health and disease states, as well as in the body's response to stress. In addition, the microbiome plays a role in psychological well-being and regulating negative affect. Regulation of negative affect is a factor in psychostimulant abuse disorders. We propose a risk chain in which stress leads to negative affect that places an individual at risk to develop or relapse to psychostimulant abuse disorder. Stress, negative affect, and psychostimulant use all alter the gut microbiome. METHODS This review brings together the literature on affective disorders, stress, and psychostimulant abuse disorders to assess possible modulatory actions of the gut-brain axis to regulate these conditions. RESULTS Studies reviewed across the various disciplines suggest that the dysbiosis resulting from drug use, drug withdrawal, or stress may cause an individual to be more susceptible to addiction and relapse. Probiotics and prebiotics reduce stress and negative affect. SCIENTIFIC SIGNIFICANCE Treatment during the withdrawal phase of psychostimulant abuse disorder, when the microbiome is altered, may ameliorate the symptoms of stress and negative affect leading to a reduced risk of relapse to psychostimulant use.
Collapse
Affiliation(s)
- Shadab Forouzan
- Department of Psychology, Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas, USA
| | - Keely McGrew
- Department of Psychology, Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas, USA
| | - Therese A Kosten
- Department of Psychology, Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas, USA
| |
Collapse
|