1
|
Wu CT, Gonzalez Magaña D, Roshgadol J, Tian L, Ryan KK. Dietary protein restriction diminishes sucrose reward and reduces sucrose-evoked mesolimbic dopamine signaling in mice. Appetite 2024; 203:107673. [PMID: 39260700 DOI: 10.1016/j.appet.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
A growing literature suggests manipulating dietary protein status decreases sweet consumption in rodents and in humans. Underlying neurocircuit mechanisms have not yet been determined, but previous work points towards hedonic rather than homeostatic pathways. Here we hypothesized that a history of protein restriction reduces sucrose seeking by altering mesolimbic dopamine signaling in mice. We tested this hypothesis using established behavioral tests of palatability and conditioned reward, including the palatability contrast and conditioned place preference (CPP) tests. We used modern optical sensors for measuring real-time nucleus accumbens (NAc) dopamine dynamics during voluntary sucrose consumption, via fiber photometry, in male C57/Bl6J mice maintained on low-protein high-carbohydrate (LPHC) or control (CON) diet for ∼5 weeks. Our results showed that a history of protein restriction decreased the consumption of a sucrose 'dessert' in sated mice by ∼50% compared to controls [T-test, p < 0.05]. The dopamine release in NAc during sucrose consumption was reduced, also by ∼50%, in LPHC-fed mice compared to CON [T-test, p < 0.01]. Furthermore, LPHC-feeding blocked the sucrose-conditioned place preference we observed in CON-fed mice [paired T-test, p < 0.05], indicating reduced sucrose reward. This was accompanied by a 33% decrease in neuronal activation of the NAc core, as measured by c-Fos immunolabeling from brains collected directly after the CPP test [T-test, p < 0.05]. Together, these findings advance our mechanistic understanding of how dietary protein restriction decreases the consumption of sweets-by inhibiting the incentive salience of a sucrose reward, together with reduced sucrose-evoked dopamine release in NAc.
Collapse
Affiliation(s)
- Chih-Ting Wu
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Diego Gonzalez Magaña
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Jacob Roshgadol
- Biomedical Engineering Graduate Group, College of Engineering, University of California, Davis, CA, 95616, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA; Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL, 33458, USA
| | - Karen K Ryan
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Vekhova KA, Namiot ED, Jonsson J, Schiöth HB. Ketamine and Esketamine in Clinical Trials: FDA-Approved and Emerging Indications, Trial Trends With Putative Mechanistic Explanations. Clin Pharmacol Ther 2024. [PMID: 39428602 DOI: 10.1002/cpt.3478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024]
Abstract
Ketamine has a long and very eventful pharmacological history. Its enantiomer, esketamine ((S)-ketamine), was approved by the US Food and Drug Administration (FDA) and EMA for patients with treatment-resistant depression (TRD) in 2019. The number of approved indications for ketamine and esketamine continues to increase, as well as the number of clinical trials. This analysis provides a quantitative overview of the use of ketamine and its enantiomers in clinical trials during 2014-2024. A total of 363 trials were manually assessed from clinicaltrial.gov with the search term "Ketamine." The highest number of trials were found for the FDA-approved indications: anesthesia (~22%) and pain management (~28%) for ketamine and TRD for esketamine (~29%). Clinical trials on TRD for both ketamine and esketamine also comprised a large proportion of these trials, and interestingly, have reached phase III and phase IV status. Combinatorial treatment of psychiatric disorders and non-psychiatric conditions with pharmacological and non-pharmacological combinations (electroconvulsive therapy, psychotherapeutic techniques, virtual reality, and transcranial magnetic stimulation) is prevalent. Sub-anesthetic doses of ketamine may represent novel therapeutic avenues in neuropsychiatric conditions, that is, major depression, schizophrenia, and bipolar disorder, where glutamate excitotoxicity and oxidative stress are likely to be involved. The study suggests that the number of ketamine studies will continue to grow and possible ketamine variants can be approved for treatment of additional indications.
Collapse
Affiliation(s)
- Ksenia A Vekhova
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Eugenia D Namiot
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Anna O, Michael A, Apostolakis M, Mammadov E, Mitka A, Kalatta MA, Koumas M, Georgiou A, Chatzittofis A, Panayiotou G, Gergiou P, Zarate CA, Zanos P. Ketamine and hydroxynorketamine as novel pharmacotherapies for the treatment of Opioid-Use Disorders. Biol Psychiatry 2024:S0006-3223(24)01591-9. [PMID: 39293647 DOI: 10.1016/j.biopsych.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Opioid use disorder (OUD) has reached epidemic proportions, with many countries facing high opioid use and related fatalities. Although currently-prescribed medications for OUD (MOUD) are considered life-saving, they inadequately address negative affect and cognitive impairment, resulting in high relapse rates to non-medical opioid use, even years after drug cessation (protracted abstinence). Evidence supports the notion that ketamine, an anesthetic and rapid-acting antidepressant drug, holds promise as a candidate for OUD treatment, including the management of acute withdrawal somatic symptoms, negative affect during protracted opioid abstinence and prevention of re-taking non-medical opioids. In this review, we comprehensively discuss preclinical and clinical research evaluating ketamine and its metabolites as potential novel therapeutic strategies for treating OUDs. We further examine evidence supporting the relevance of the molecular targets of ketamine and its metabolites in relation to their potential effects and therapeutic outcomes in OUDs. Overall, existing evidence demonstrates that ketamine and its metabolites can effectively modulate pathophysiological processes affected in OUD, suggesting their promising therapeutic role in the treatment of OUD and the prevention of return to opioid use during abstinence.
Collapse
Affiliation(s)
- Onisiforou Anna
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Andria Michael
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Markos Apostolakis
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Elmar Mammadov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Angeliki Mitka
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Maria A Kalatta
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Morfeas Koumas
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| | - Andrea Georgiou
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Andreas Chatzittofis
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden; Medical School, University of Cyprus, Nicosia, Cyprus
| | - Georgia Panayiotou
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Gergiou
- Department of Psychology, University of Wisconsin-Milwaukee, Wisconsin, 53211, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201 USA.
| |
Collapse
|
4
|
De Almeida SS, Drinkuth CR, Sartor GC. Comparing withdrawal- and anxiety-like behaviors following oral and subcutaneous oxycodone administration in C57BL/6 mice. Behav Pharmacol 2024; 35:269-279. [PMID: 38847447 PMCID: PMC11226370 DOI: 10.1097/fbp.0000000000000780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Excessive prescribing and misuse of prescription opioids, such as oxycodone, significantly contributed to the current opioid crisis. Although oxycodone is typically consumed orally by humans, parenteral routes of administration have primarily been used in preclinical models of oxycodone dependence. To address this issue, more recent studies have used oral self-administration procedures to study oxycodone seeking and withdrawal in rodents. Behavioral differences, however, following oral oxycodone intake versus parenteral oxycodone administration remain unclear. Thus, the goal of the current studies was to compare anxiety- and withdrawal-like behaviors using established opioid dependence models of either home cage oral intake of oxycodone (0.5 mg/ml) or repeated subcutaneous (s.c.) injections of oxycodone (10 mg/kg) in male and female mice. Here, mice received 10 days of oral or s.c. oxycodone administration, and following 72 h of forced abstinence, anxiety- and withdrawal-like behaviors were measured using elevated zero maze, open field, and naloxone-induced precipitated withdrawal procedures. Global withdrawal scores were increased to a similar degree following oral and s.c. oxycodone use, while both routes of oxycodone administration had minimal effects on anxiety-like behaviors. When examining individual withdrawal-like behaviors, mice receiving s.c. oxycodone exhibited more paw tremors and jumps during naloxone-induced precipitated withdrawal compared with oral oxycodone mice. These results indicate that both models of oxycodone administration are sufficient to elevate global withdrawal scores, but, when compared with oral consumption, s.c. oxycodone injections yielded more pronounced effects on some withdrawal-like behaviors.
Collapse
Affiliation(s)
| | | | - Gregory C. Sartor
- Department of Pharmaceutical Sciences, Institute for the Brain and Cognitive Sciences (IBACS), University of Connecticut, Storrs, CT 06269
| |
Collapse
|
5
|
Wu CT, Magaña DG, Roshgadol J, Tian L, Ryan KK. Dietary protein restriction diminishes sucrose reward and reduces sucrose-evoked mesolimbic dopamine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600074. [PMID: 38979357 PMCID: PMC11230173 DOI: 10.1101/2024.06.21.600074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Objective A growing literature suggests manipulating dietary protein status decreases sweet consumption in rodents and in humans. Underlying neurocircuit mechanisms have not yet been determined, but previous work points towards hedonic rather than homeostatic pathways. Here we hypothesized that a history of protein restriction reduces sucrose seeking by altering mesolimbic dopamine signaling. Methods We tested this hypothesis using established behavioral tests of palatability and motivation, including the 'palatability contrast' and conditioned place preference (CPP) tests. We used modern optical sensors for measuring real-time nucleus accumbens (NAc) dopamine dynamics during sucrose consumption, via fiber photometry, in male C57/Bl6J mice maintained on low-protein high-carbohydrate (LPHC) or control (CON) diet for ∼5 weeks. Results A history of protein restriction decreased the consumption of a sucrose 'dessert' in sated mice by ∼50% compared to controls [T-test, p< 0.05]. The dopamine release in NAc during sucrose consumption was reduced, also by ∼50%, in LPHC-fed mice compared to CON [T-test, p< 0.01]. Furthermore, LPHC-feeding blocked the sucrose-conditioned place preference we observed in CON-fed mice [paired T-test, p< 0.05], indicating reduced motivation. This was accompanied by a 33% decrease in neuronal activation of the NAc core, as measured by c-Fos immunolabeling from brains collected directly after the CPP test. Conclusions Despite ongoing efforts to promote healthier dietary habits, adherence to recommendations aimed at reducing the intake of added sugars and processed sweets remains challenging. This study highlights chronic dietary protein restriction as a nutritional intervention that suppresses the motivation for sucrose intake, via blunted sucrose-evoke dopamine release in NAc.
Collapse
|
6
|
McDevitt DS, Wade QW, McKendrick GE, Nelsen J, Starostina M, Tran N, Blendy JA, Graziane NM. The Paraventricular Thalamic Nucleus and Its Projections in Regulating Reward and Context Associations. eNeuro 2024; 11:ENEURO.0524-23.2024. [PMID: 38351131 PMCID: PMC10883411 DOI: 10.1523/eneuro.0524-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
The paraventricular thalamic nucleus (PVT) is a brain region that mediates aversive and reward-related behaviors as shown in animals exposed to fear conditioning, natural rewards, or drugs of abuse. However, it is unknown whether manipulations of the PVT, in the absence of external factors or stimuli (e.g., fear, natural rewards, or drugs of abuse), are sufficient to drive reward-related behaviors. Additionally, it is unknown whether drugs of abuse administered directly into the PVT are sufficient to drive reward-related behaviors. Here, using behavioral as well as pathway and cell-type specific approaches, we manipulate PVT activity as well as the PVT-to-nucleus accumbens shell (NAcSh) neurocircuit to explore reward phenotypes. First, we show that bath perfusion of morphine (10 µM) caused hyperpolarization of the resting membrane potential, increased rheobase, and decreased intrinsic membrane excitability in PVT neurons that project to the NAcSh. Additionally, we found that direct injections of morphine (50 ng) in the PVT of mice were sufficient to generate conditioned place preference (CPP) for the morphine-paired chamber. Mimicking the inhibitory effect of morphine, we employed a chemogenetic approach to inhibit PVT neurons that projected to the NAcSh and found that pairing the inhibition of these PVT neurons with a specific context evoked the acquisition of CPP. Lastly, using brain slice electrophysiology, we found that bath-perfused morphine (10 µM) significantly reduced PVT excitatory synaptic transmission on both dopamine D1 and D2 receptor-expressing medium spiny neurons in the NAcSh, but that inhibiting PVT afferents in the NAcSh was not sufficient to evoke CPP.
Collapse
Affiliation(s)
- Dillon S McDevitt
- Neuroscience Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Quinn W Wade
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Greer E McKendrick
- Neuroscience Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Jacob Nelsen
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Mariya Starostina
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Nam Tran
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
7
|
Agüera ADR, Cándido C, Donaire R, Papini MR, Torres C. Ketamine retards recovery from reward downshift and supports conditioned taste aversion. Pharmacol Biochem Behav 2023; 233:173671. [PMID: 39492495 DOI: 10.1016/j.pbb.2023.173671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Ketamine is a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist with antidepressant, anxiolytic, and memory effects in clinical and preclinical studies. The present studies investigated the behavioral effects of ketamine in animals exposed to a consummatory successive negative contrast (cSNC) task involving unexpected reward downshift, negative emotion (frustration), and aversive memory. Food-restricted male rats had 5-min access to 32 % sucrose in each of 10 preshift sessions followed by 4 % sucrose in 4 postshift sessions. Unshifted controls had access to 4 % sucrose during all 14 sessions. Ketamine (10 mg/kg, ip) was injected 30 min before sessions 11 and 12 (Experiment 1) or immediately after session 11 (Experiment 3). The results showed that both pre- and postdownshift session injection of ketamine increased consummatory suppression, as Group 32/Ket exhibited lower sucrose intake than Groups 32/Sal, 4/Ket, and 4/Sal. These effects extended beyond the day(s) of injection. Experiments 2 and 4 showed that the same dose, route of administration, and time of injection induced significant conditioned taste aversion to 4 % sucrose, in the absence of reward downshift. These data suggest that ketamine induces an aversive state that may summate with frustration induced by reward downshift in the cSNC task and also support a conditioned taste aversion to 4 % sucrose in the absence of reward downshift. Implications for these and other experiments involving pre- and postsession administration of ketamine are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Carmen Torres
- Department of Psychology, University of Jaén, Spain.
| |
Collapse
|
8
|
Jones GC, Small CA, Otteson DZ, Hafen CW, Breinholt JT, Flora PD, Burris MD, Sant DW, Ruchti TR, Yorgason JT, Steffensen SC, Bills KB. Whole-Body Vibration Prevents Neuronal, Neurochemical, and Behavioral Effects of Morphine Withdrawal in a Rat Model. Int J Mol Sci 2023; 24:14147. [PMID: 37762450 PMCID: PMC10532581 DOI: 10.3390/ijms241814147] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Peripheral mechanoreceptor-based treatments such as acupuncture and chiropractic manipulation have shown success in modulating the mesolimbic dopamine (DA) system originating in the ventral tegmental area (VTA) of the midbrain and projecting to the nucleus accumbens (NAc) of the striatum. We have previously shown that mechanoreceptor activation via whole-body vibration (WBV) ameliorates neuronal and behavioral effects of chronic ethanol exposure. In this study, we employ a similar paradigm to assess the efficacy of WBV as a preventative measure of neuronal and behavioral effects of morphine withdrawal in a Wistar rat model. We demonstrate that concurrent administration of WBV at 80 Hz with morphine over a 5-day period significantly reduced adaptations in VTA GABA neuronal activity and NAc DA release and modulated expression of δ-opioid receptors (DORs) on NAc cholinergic interneurons (CINs) during withdrawal. We also observed a reduction in behavior typically associated with opioid withdrawal. WBV represents a promising adjunct to current intervention for opioid use disorder (OUD) and should be examined translationally in humans.
Collapse
Affiliation(s)
- Gavin C. Jones
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | | | | | - Caylor W. Hafen
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | | | - Paul D. Flora
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | | | - David W. Sant
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| | - Tysum R. Ruchti
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | | | - Scott C. Steffensen
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| | - Kyle B. Bills
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
9
|
Jaster AM, González-Maeso J. Mechanisms and molecular targets surrounding the potential therapeutic effects of psychedelics. Mol Psychiatry 2023; 28:3595-3612. [PMID: 37759040 DOI: 10.1038/s41380-023-02274-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Psychedelics, also known as classical hallucinogens, have been investigated for decades due to their potential therapeutic effects in the treatment of neuropsychiatric and substance use disorders. The results from clinical trials have shown promise for the use of psychedelics to alleviate symptoms of depression and anxiety, as well as to promote substantial decreases in the use of nicotine and alcohol. While these studies provide compelling evidence for the powerful subjective experience and prolonged therapeutic adaptations, the underlying molecular reasons for these robust and clinically meaningful improvements are still poorly understood. Preclinical studies assessing the targets and circuitry of the post-acute effects of classical psychedelics are ongoing. Current literature is split between a serotonin 5-HT2A receptor (5-HT2AR)-dependent or -independent signaling pathway, as researchers are attempting to harness the mechanisms behind the sustained post-acute therapeutically relevant effects. A combination of molecular, behavioral, and genetic techniques in neuropharmacology has begun to show promise for elucidating these mechanisms. As the field progresses, increasing evidence points towards the importance of the subjective experience induced by psychedelic-assisted therapy, but without further cross validation between clinical and preclinical research, the why behind the experience and its translational validity may be lost.
Collapse
Affiliation(s)
- Alaina M Jaster
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
10
|
Speers LJ, Sissons DJ, Cleland L, Bilkey DK. Hippocampal phase precession is preserved under ketamine, but the range of precession across a theta cycle is reduced. J Psychopharmacol 2023; 37:809-821. [PMID: 37515458 PMCID: PMC10399102 DOI: 10.1177/02698811231187339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
BACKGROUND Hippocampal phase precession, which depends on the precise spike timing of place cells relative to local theta oscillations, has been proposed to underlie sequential memory. N-methyl-D-asparate (NMDA) receptor antagonists such as ketamine disrupt memory and also reproduce several schizophrenia-like symptoms, including spatial memory impairments and disorganized cognition. It is possible that these impairments result from disruptions to phase precession. AIMS/METHODS We used an ABA design to test whether an acute, subanesthetic dose (7.5 mg/kg) of ketamine disrupted phase precession in CA1 of male rats as they navigated around a rectangular track for a food reward. RESULTS/OUTCOMES Ketamine did not affect the ability of CA1 place cells to precess despite changes to place cell firing rates, local field potential properties and locomotor speed. However, ketamine reduced the range of phase precession that occurred across a theta cycle. CONCLUSION Phase precession is largely robust to acute NMDA receptor antagonism by ketamine, but the reduced range of precession could have important implications for learning and memory.
Collapse
Affiliation(s)
| | - Daena J Sissons
- Psychology Department, Otago University Dunedin, New Zealand
- Psychology Department, University of Canterbury, Christchurch, New Zealand
| | - Lana Cleland
- Psychology Department, Otago University Dunedin, New Zealand
- Department Psychological Medicine, Otago University, Christchurch, New Zealand
- Department Population Health, Otago University, Christchurch, New Zealand
| | - David K Bilkey
- Psychology Department, Otago University Dunedin, New Zealand
| |
Collapse
|
11
|
Arani ZM, Heidariyeh N, Ghavipanjeh G, Lotfinia M, Banafshe HR. Effect of risperidone on morphine-induced conditioned place preference and dopamine receptor D2 gene expression in male rat hippocampus. Brain Behav 2023; 13:e2975. [PMID: 37042060 PMCID: PMC10175997 DOI: 10.1002/brb3.2975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/24/2022] [Accepted: 06/03/2022] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Previous studies suggest the possible effect of risperidone on brain reward system and D1 and D2 dopamine receptors' involvement in morphine-induced conditioned place preference (CPP). AIMS The present study was designed to investigate the effect of risperidone as an atypical antipsychotic drug on morphine-induced CPP and D2-like dopamine receptor gene expression in rat. MATERIALS AND METHODS An unbiased CPP paradigm was used to study the effect of risperidone. Intraperitoneal (i.p.) injection of risperidone (1, 2, and 4 mg/kg) was performed 30 min before the morphine (10 mg/kg, i.p.) injection and just after the rat was placed in the CPP box. The open field test was used to assay the locomotor activity of animal. The gene expression of D2 dopamine receptor in hippocampus was measured by real-time PCR technique. The hippocampi of rats were also used for histology evaluation. RESULTS Morphine-produced (10 mg/kg) CPP and morphine-induced CPP were reversed only by the administration of a low dose of risperidone (1 mg/kg). Low dose of risperidone (1 mg/kg) showed no effect on locomotor activity but a higher dose of risperidone (2 and 4 mg/kg) decreased locomotor activity. Real-time PCR data analysis revealed that the gene expression of D2 dopamine receptor had significant difference between morphine and a 1 mg/kg dose of risperidone. Moreover, in histological evaluation, apoptosis was observed in the morphine group, whereas there was no evidence of apoptosis in the risperidone-treated groups. CONCLUSION Our results suggest that risperidone (1 mg/kg) reverses the morphine-induced CPP and may reduce the rewarding properties of morphine. It is also demonstrated that risperidone decreases the expression of D2 receptor in rat hippocampus. Therefore, risperidone can be considered potential adjunct therapy in morphine dependence.
Collapse
Affiliation(s)
- Zahra Mansouri Arani
- Physiology Animal, Department of Biology, Faculty of Sciences, Qom BranchIslamic Azad UniversityQomIran
| | - Nasrin Heidariyeh
- Department of Biology, Faculty of Sciences, Qom BranchIslamic Azad UniversityQomIran
| | | | - Majid Lotfinia
- Department of Biotechnology, Physiology Research Center, Basic Sciences Research InstituteKashan University of Medical SciencesKashanIran
| | - Hamid Reza Banafshe
- Department of Addiction Studies, School of MedicineKashan University of Medical SciencesKashanIran
| |
Collapse
|
12
|
Wang W, Xie X, Zhuang X, Huang Y, Tan T, Gangal H, Huang Z, Purvines W, Wang X, Stefanov A, Chen R, Rodriggs L, Chaiprasert A, Yu E, Vierkant V, Hook M, Huang Y, Darcq E, Wang J. Striatal μ-opioid receptor activation triggers direct-pathway GABAergic plasticity and induces negative affect. Cell Rep 2023; 42:112089. [PMID: 36796365 PMCID: PMC10404641 DOI: 10.1016/j.celrep.2023.112089] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/27/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Withdrawal from chronic opioid use often causes hypodopaminergic states and negative affect, which may drive relapse. Direct-pathway medium spiny neurons (dMSNs) in the striatal patch compartment contain μ-opioid receptors (MORs). It remains unclear how chronic opioid exposure and withdrawal impact these MOR-expressing dMSNs and their outputs. Here, we report that MOR activation acutely suppressed GABAergic striatopallidal transmission in habenula-projecting globus pallidus neurons. Notably, withdrawal from repeated morphine or fentanyl administration potentiated this GABAergic transmission. Furthermore, intravenous fentanyl self-administration enhanced GABAergic striatonigral transmission and reduced midbrain dopaminergic activity. Fentanyl-activated striatal neurons mediated contextual memory retrieval required for conditioned place preference tests. Importantly, chemogenetic inhibition of striatal MOR+ neurons rescued fentanyl withdrawal-induced physical symptoms and anxiety-like behaviors. These data suggest that chronic opioid use triggers GABAergic striatopallidal and striatonigral plasticity to induce a hypodopaminergic state, which may promote negative emotions and relapse.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xiaowen Zhuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Yufei Huang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Tao Tan
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - William Purvines
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Alexander Stefanov
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lucas Rodriggs
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Anita Chaiprasert
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Emily Yu
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Valerie Vierkant
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Michelle Hook
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Yun Huang
- Institute of Biosciences and Technology, Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Emmanuel Darcq
- Department of Psychiatry, University of Strasbourg, INSERM U1114, 67084 Strasbourg Cedex, France
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA; Institute of Biosciences and Technology, Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Ronström JW, Johnson NL, Jones ST, Werner SJ, Wadsworth HA, Brundage JN, Stolp V, Graziane NM, Silberman Y, Steffensen SC, Yorgason JT. Opioid-Induced Reductions in Amygdala Lateral Paracapsular GABA Neuron Circuit Activity. Int J Mol Sci 2023; 24:1929. [PMID: 36768252 PMCID: PMC9916002 DOI: 10.3390/ijms24031929] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Opioid use and withdrawal evokes behavioral adaptations such as drug seeking and anxiety, though the underlying neurocircuitry changes are unknown. The basolateral amygdala (BLA) regulates these behaviors through principal neuron activation. Excitatory BLA pyramidal neuron activity is controlled by feedforward inhibition provided, in part, by lateral paracapsular (LPC) GABAergic inhibitory neurons, residing along the BLA/external capsule border. LPC neurons express µ-opioid receptors (MORs) and are potential targets of opioids in the etiology of opioid-use disorders and anxiety-like behaviors. Here, we investigated the effects of opioid exposure on LPC neuron activity using immunohistochemical and electrophysiological approaches. We show that LPC neurons, and other nearby BLA GABA and non-GABA neurons, express MORs and δ-opioid receptors. Additionally, DAMGO, a selective MOR agonist, reduced GABA but not glutamate-mediated spontaneous postsynaptic currents in LPC neurons. Furthermore, in LPC neurons, abstinence from repeated morphine-exposure in vivo (10 mg/kg/day, 5 days, 2 days off) decrease the intrinsic membrane excitability, with a ~75% increase in afterhyperpolarization and ~40-50% enhanced adenylyl cyclase-dependent activity in LPC neurons. These data show that MORs in the BLA are a highly sensitive targets for opioid-induced inhibition and that repeated opioid exposure results in impaired LPC neuron excitability.
Collapse
Affiliation(s)
- Joakim W. Ronström
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Natalie L. Johnson
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Stephen T. Jones
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Sara J. Werner
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Hillary A. Wadsworth
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - James N. Brundage
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Valerie Stolp
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Nicholas M. Graziane
- Department of Pharmacology/Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Scott C. Steffensen
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Jordan T. Yorgason
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
- Department of Cellular Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
14
|
Jin D, Chen H, Chen SR, Pan HL. α2δ-1 protein drives opioid-induced conditioned reward and synaptic NMDA receptor hyperactivity in the nucleus accumbens. J Neurochem 2023; 164:143-157. [PMID: 36222452 PMCID: PMC9892208 DOI: 10.1111/jnc.15706] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/19/2022] [Accepted: 10/08/2022] [Indexed: 02/04/2023]
Abstract
Glutamate NMDA receptors (NMDARs) in the nucleus accumbens (NAc) are critically involved in drug dependence and reward. α2δ-1 is a newly discovered NMDAR-interacting protein that promotes synaptic trafficking of NMDARs independently of its conventional role as a calcium channel subunit. However, it remains unclear how repeated opioid exposure affects synaptic NMDAR activity and α2δ-1-NMDAR interaction in the NAc. In this study, whole-cell patch-clamp recordings showed that repeated treatment with morphine in mice markedly increased the NMDAR-mediated frequency of miniature excitatory postsynaptic currents (mEPSCs) and amplitude of puff NMDAR currents in medium spiny neurons in the NAc core region. Morphine treatment significantly increased the physical interaction of α2δ-1 with GluN1 and their synaptic trafficking in the NAc. In Cacna2d1 knockout mice, repeated treatment with morphine failed to increase the frequency of mEPSCs and amplitude of puff NMDAR currents in the NAc core. Furthermore, inhibition of α2δ-1 with gabapentin or disruption of the α2δ-1-NMDAR interaction with the α2δ-1 C terminus-interfering peptide blocked the morphine-elevated frequency of mEPSCs and amplitude of puff NMDAR currents in the NAc core. Correspondingly, systemically administered gabapentin, Cacna2d1 ablation, or microinjection of the α2δ-1 C terminus-interfering peptide into the NAc core attenuated morphine-induced conditioned place preference and locomotor sensitization. Our study reveals that repeated opioid exposure strengthens presynaptic and postsynaptic NMDAR activity in the NAc via α2δ-1. The α2δ-1-bound NMDARs in the NAc have a key function in the rewarding effect of opioids and could be targeted for treating opioid use disorder and addiction.
Collapse
Affiliation(s)
- Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Hippocampal and amygdalar increased BDNF expression in the extinction of opioid-induced place preference. IBRO Neurosci Rep 2022; 13:402-409. [PMID: 36275846 PMCID: PMC9580243 DOI: 10.1016/j.ibneur.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The opioid crisis was exacerbated during the COVID-19 pandemic in the United States with alarming statistics about overdose-related deaths. Current treatment options, such as medication assisted treatments, have been unable to prevent relapse in many patients, whereas cue-based exposure therapy have had mixed results in human trials. To improve patient outcomes, it is imperative to develop animal models of addiction to understand molecular mechanisms and identify potential therapeutic targets. We previously found increased brain derived neurotrophic factor (bdnf) transcript in the ventral striatum/nucleus accumbens (VS/NAc) of rats that extinguished morphine-induced place preference. Here, we expand our study to determine whether BDNF protein expression was modulated in mesolimbic brain regions of the reward system in animals exposed to extinction training. Drug conditioning and extinction sessions were followed by Western blots for BDNF in the hippocampus (HPC), amygdala (AMY) and VS/NAc. Rears, as a measure of withdrawal-induced anxiety were also measured to determine their impact on extinction. Results showed that animals who received extinction training and successfully extinguished morphine CPP significantly increased BDNF in the HPC when compared to animals deprived of extinction training (sham-extinction). This increase was not significant in animals who failed to extinguish (extinction-resistant). In AMY, all extinction-trained animals showed increased BDNF, regardless of behavior phenotype. No BDNF modulation was observed in the VS/NAc. Finally, extinction-trained animals showed no difference in rears regardless of extinction outcome, suggesting that anxiety elicited by drug withdrawal did not significantly impact extinction of morphine CPP. Our results suggest that BDNF expression in brain regions of the mesolimbic reward system could play a key role in extinction of opioid-induced maladaptive behaviors and represents a potential therapeutic target for future combined pharmacological and extinction-based therapies.
Collapse
|
16
|
McKendrick G, McDevitt DS, Shafeek P, Cottrill A, Graziane NM. Anterior cingulate cortex and its projections to the ventral tegmental area regulate opioid withdrawal, the formation of opioid context associations and context-induced drug seeking. Front Neurosci 2022; 16:972658. [PMID: 35992922 PMCID: PMC9388764 DOI: 10.3389/fnins.2022.972658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical evidence suggests that there are correlations between activity within the anterior cingulate cortex (ACC) following re-exposure to drug-associated contexts and drug craving. However, there are limited data contributing to our understanding of ACC function at the cellular level during re-exposure to drug-context associations as well as whether the ACC is directly related to context-induced drug seeking. Here, we addressed this issue by employing our novel behavioral procedure capable of measuring the formation of drug-context associations as well as context-induced drug-seeking behavior in male mice (8-12 weeks of age) that orally self-administered oxycodone. We found that mice escalated oxycodone intake during the long-access training sessions and that conditioning with oxycodone was sufficient to evoke conditioned place preference (CPP) and drug-seeking behaviors. Additionally, we found that thick-tufted, but not thin-tufted pyramidal neurons (PyNs) in the ACC as well as ventral tegmental area (VTA)-projecting ACC neurons had increased intrinsic membrane excitability in mice that self-administered oxycodone compared to controls. Moreover, we found that global inhibition of the ACC or inhibition of VTA-projecting ACC neurons was sufficient to significantly reduce oxycodone-induced CPP, drug seeking, and spontaneous opioid withdrawal. These results demonstrate a direct role of ACC activity in mediating context-induced opioid seeking among other behaviors, including withdrawal, that are associated with the DSM-V criteria of opioid use disorder.
Collapse
Affiliation(s)
- Greer McKendrick
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Dillon S. McDevitt
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Peter Shafeek
- Medicine Program, Penn State College of Medicine, Hershey, PA, United States
| | - Adam Cottrill
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Nicholas M. Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
17
|
Effect of Testosterone on the Extinction Period of Morphine-induced CPP in Male Rats. ARCHIVES OF NEUROSCIENCE 2022. [DOI: 10.5812/ans-127059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Sex-related differences in the incidence, prevalence, symptoms, and side effects of drug use, especially narcotics, have been previously shown in animal models and human studies. Objectives: In the presents study, the effects of different doses of testosterone on morphine extinction period were investigated in a rat model. Methods: Forty mature male Wistar rats were randomly allocated to four categories (10 in each group), including control (received intramuscular injection of vehicle) and testosterone (received intramuscular injection of testosterone at 1, 2.5 and 5 mg/kg) during the extinction period. Conditioned place preference (CPP) test was done to assess the psychological phenomena of drug craving and relapse. The CPP score was calculated in four stages, including the baseline (preconditioning), expression (postconditioning), extinction, and reinstatement. Results: Our results demonstrated that testosterone (1, 2.5 and 5 mg/kg) significantly extended morphine extinction duration compared to the control group. Conclution: It has been shown that dopamine neurotransmission in mesocorticolimbic system is affected by testosterone through androgen receptors in adolescence and alteration in testosterone level could affect drug use vulnerability. It seems that normalization of testosterone levels reduces the symptoms of opioid withdrawal syndrome and have important clinical implication for clinicians to understand the effects of testosterone dysregulation on the extinction and withdrawal periods.
Collapse
|
18
|
Deji C, Yan P, Ji Y, Yan X, Feng Y, Liu J, Liu Y, Wei S, Zhu Y, Lai J. The Basolateral Amygdala to Ventral Hippocampus Circuit Controls Anxiety-Like Behaviors Induced by Morphine Withdrawal. Front Cell Neurosci 2022; 16:894886. [PMID: 35726232 PMCID: PMC9205755 DOI: 10.3389/fncel.2022.894886] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Anxiety is one of the most common comorbid conditions reported in people with opioid dependence. The basolateral amygdala (BLA) and ventral hippocampus (vHip) are critical brain regions for fear and anxiety. The kappa opioid receptor (KOR) is present in the mesolimbic regions involved in emotions and addiction. However, the precise circuits and molecular basis underlying anxiety associated with chronic opioid use are poorly understood. Using a mouse model, we demonstrated that anxiety-like behaviors appeared in the first 2 weeks after morphine withdrawal. Furthermore, the BLA and vHip were activated in mice experiencing anxiety after morphine withdrawal (Mor-A). KORs in the BLA to vHip projections were significantly increased in the Mor-A group. Optogenetic/chemogenetic inhibition of BLA inputs ameliorated anxiety-like behaviors and facilitated conditioned place preference (CPP) extinction in Mor-A mice. Knockdown of the BLA to vHip circuit KOR alleviated the anxiety-like behaviors but did not affect CPP extinction or reinstatement. Furthermore, combined treatment of inhibition of the BLA to vHip circuit and KOR antagonists mitigated anxiety-like behaviors and prevented stress-induced CPP reinstatement after morphine withdrawal. These results revealed a previously unknown circuit associated with the emotional component of opioid withdrawal and indicated that restoration of synaptic deficits with KOR antagonists might be effective in the treatment of anxiety associated with morphine withdrawal.
Collapse
|
19
|
Abstract
This paper is the forty-third consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2020 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
20
|
Babigian CJ, Wiedner HJ, Wahlestedt C, Sartor GC. JQ1 attenuates psychostimulant- but not opioid-induced conditioned place preference. Behav Brain Res 2022; 418:113644. [PMID: 34757001 PMCID: PMC8671323 DOI: 10.1016/j.bbr.2021.113644] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Epigenetic mechanisms play important roles in the neurobiology of substance use disorder. In particular, bromodomain and extra-terminal domain (BET) proteins, a class of histone acetylation readers, have been found to regulate cocaine conditioned behaviors, but their role in the behavioral response to other drugs of abuse remains unclear. To address this knowledge gap, we examined the effects of the BET inhibitor, JQ1, on nicotine, amphetamine, morphine, and oxycodone conditioned place preference (CPP). Similar to previous cocaine studies, systemic administration of JQ1 caused a dose-dependent reduction in the acquisition of amphetamine and nicotine CPP in male mice. However, in opioid studies, JQ1 did not alter morphine or oxycodone CPP. Investigating the effects of JQ1 on other types of learning and memory, we found that JQ1 did not alter the acquisition of contextual fear conditioning. Together, these results indicate that BET proteins play an important role in the acquisition of psychostimulant-induced CPP but not the acquisition of opioid-induced CPP nor contextual fear conditioning.
Collapse
Affiliation(s)
- CJ Babigian
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269
| | - HJ Wiedner
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136,Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - C Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
| | - GC Sartor
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269,Correspondence to: Gregory C. Sartor, Ph.D., Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville road, Storrs, CT 06269, , Telephone: 860-486-3655
| |
Collapse
|
21
|
Anterior cingulate cortex is necessary for spontaneous opioid withdrawal and withdrawal-induced hyperalgesia in male mice. Neuropsychopharmacology 2021; 46:1990-1999. [PMID: 34341495 PMCID: PMC8429582 DOI: 10.1038/s41386-021-01118-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 02/05/2023]
Abstract
The anterior cingulate cortex (ACC) is implicated in many pathologies, including depression, anxiety, substance-use disorders, and pain. There is also evidence from brain imaging that the ACC is hyperactive during periods of opioid withdrawal. However, there are limited data contributing to our understanding of ACC function at the cellular level during opioid withdrawal. Here, we address this issue by performing ex vivo electrophysiological analysis of thick-tufted, putative dopamine D2 receptor expressing, layer V pyramidal neurons in the ACC (ACC L5 PyNs) in a mouse model of spontaneous opioid withdrawal. We found that escalating doses of morphine (20, 40, 60, 80, and 100 mg/kg, i.p. on days 1-5, respectively) injected twice daily into male C57BL/6 mice evoked withdrawal behaviors and an associated withdrawal-induced mechanical hypersensitivity. Brain slices prepared 24 h following the last morphine injection showed increases in ACC L5 thick-tufted PyN-intrinsic membrane excitability, increases in membrane resistance, reductions in the rheobase, and reductions in HCN channel-mediated currents (IH). We did not observe changes in intrinsic or synaptic properties on thin-tufted, dopamine D1-receptor-expressing ACC L5 PyNs recorded from male Drd1a-tdTomato transgenic mice. In addition, we found that chemogenetic inhibition of the ACC blocked opioid-induced withdrawal and withdrawal-induced mechanical hypersensitivity. These results demonstrate that spontaneous opioid withdrawal alters neuronal properties within the ACC and that ACC activity is necessary to control behaviors associated with opioid withdrawal and withdrawal-induced mechanical hypersensitivity. The ability of the ACC to regulate both withdrawal behaviors and withdrawal-induced mechanical hypersensitivity suggests overlapping mechanisms between two seemingly distinguishable behaviors. This commonality potentially suggests that the ACC is a locus for multiple withdrawal symptoms.
Collapse
|
22
|
Ouyang X, Wang Z, Luo M, Wang M, Liu X, Chen J, Feng J, Jia J, Wang X. Ketamine ameliorates depressive-like behaviors in mice through increasing glucose uptake regulated by the ERK/GLUT3 signaling pathway. Sci Rep 2021; 11:18181. [PMID: 34518608 PMCID: PMC8437933 DOI: 10.1038/s41598-021-97758-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/29/2021] [Indexed: 02/06/2023] Open
Abstract
To investigate the effects of ketamine on glucose uptake and glucose transporter (GLUT) expression in depressive-like mice. After HA1800 cells were treated with ketamine, 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino]-2-Deoxyglucose (2-NBDG) was added to the cells to test the effects of ketamine on glucose uptake, production of lactate, and expression levels of GLUT, ERK1/2, AKT, and AMPK. Adult female C57BL/6 mice were subjected to chronic unpredictable mild stress (CUMS), 27 CUMS mice were randomly divided into the depression, ketamine (i.p.10 mg/kg), and FR180204 (ERK1/2 inhibitor, i.p.100 mg/kg) + ketamine group. Three mice randomly selected from each group were injected with 18F-FDG at 6 h after treatment. The brain tissue was collected at 6 h after treatment for p-ERK1/2 and GLUTs. Treatment with ketamine significantly increased glucose uptake, extracellular lactic-acid content, expression levels of GLUT3 and p-ERK in astrocytes and glucose uptake in the prefrontal cortex (P < 0.05), and the immobility time was significantly shortened in depressive-like mice (P < 0.01). An ERK1/2 inhibitor significantly inhibited ketamine-induced increases in the glucose uptake in depressive-like mice (P < 0.05), as well as prolonged the immobility time (P < 0.01). The expression levels of p-ERK1/2 and GLUT3 in depressive-like mice were significantly lower than those in normal control mice (P < 0.01). Ketamine treatment in depressive-like mice significantly increased the expression levels of p-ERK1/2 and GLUT3 in the prefrontal cortex (P < 0.01), whereas an ERK1/2 inhibitor significantly inhibited ketamine-induced increases (P < 0.01).Our present findings demonstrate that ketamine mitigated depressive-like behaviors in female mice by activating the ERK/GLUT3 signal pathway, which further increased glucose uptake in the prefrontal cortex.
Collapse
Affiliation(s)
- Xin Ouyang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Luzhou, 646000, Sichuan Province, People's Republic of China
- Department of Anesthesiology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, People's Republic of China
| | - Zhengjia Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Luzhou, 646000, Sichuan Province, People's Republic of China
| | - Mei Luo
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Luzhou, 646000, Sichuan Province, People's Republic of China
| | - Maozhou Wang
- Heart Center, Beijing Anzhen Hospital, Captial Medical University, Beijing, 100020, People's Republic of China
| | - Xing Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Luzhou, 646000, Sichuan Province, People's Republic of China
| | - Jiaxin Chen
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Luzhou, 646000, Sichuan Province, People's Republic of China
| | - JianGuo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Luzhou, 646000, Sichuan Province, People's Republic of China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Luzhou, 646000, Sichuan Province, People's Republic of China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Luzhou, 646000, Sichuan Province, People's Republic of China.
| |
Collapse
|
23
|
Identification of Morphine and Heroin-Treatment in Mice Using Metabonomics. Metabolites 2021; 11:metabo11090607. [PMID: 34564423 PMCID: PMC8467231 DOI: 10.3390/metabo11090607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Although heroin and morphine are structural analogues and morphine is a metabolite of heroin, it is not known how the effect of each substance on metabolites in vivo differs. Heroin and morphine were administered to C57BL/6J mice in increasing doses from 2 to 25 and 3 to 9 mg kg−1 (twice a day, i.p.), respectively, for 20 days. The animals underwent withdrawal for 5 days and were readministered the drugs after 10 days. Serum and urine analytes were profiled using gas chromatography-mass spectrometry (GC-MS), and metabolic patterns were evaluated based on metabonomics data. Metabonomics data showed that heroin administration changed metabolic pattern, and heroin withdrawal did not quickly restore it to baseline levels. A relapse of heroin exposure changed metabolic pattern again. In contrast, although the administration of morphine changed metabolic pattern, whether from morphine withdrawal or relapse, metabolic pattern was similar to control levels. The analysis of metabolites showed that both heroin and morphine interfered with lipid metabolism, the tricarboxylic acid (TCA) cycle and amino acid metabolism. In addition, both heroin and morphine increased the levels of 3-hydroxybutyric acid and citric acid but decreased the serum levels of 2-ketoglutaric acid and tryptophan. Moreover, heroin and morphine reduced the levels of aconitic acid, cysteine, glycine, and oxalic acid in urine. The results show 3-Hydroxybutyric acid, tryptophan, citric acid and 2-ketoglutaric acid can be used as potential markers of opiate abuse in serum, while oxalic acid, aconitic acid, cysteine, and glycine can be used as potential markers in urine.
Collapse
|
24
|
Kohtala S. Ketamine-50 years in use: from anesthesia to rapid antidepressant effects and neurobiological mechanisms. Pharmacol Rep 2021; 73:323-345. [PMID: 33609274 PMCID: PMC7994242 DOI: 10.1007/s43440-021-00232-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/11/2022]
Abstract
Over the past 50 years, ketamine has solidified its position in both human and veterinary medicine as an important anesthetic with many uses. More recently, ketamine has been studied and used for several new indications, ranging from chronic pain to drug addiction and post-traumatic stress disorder. The discovery of the rapid-acting antidepressant effects of ketamine has resulted in a surge of interest towards understanding the precise mechanisms driving its effects. Indeed, ketamine may have had the largest impact for advancements in the research and treatment of psychiatric disorders in the past few decades. While intense research efforts have been aimed towards uncovering the molecular targets underlying ketamine's effects in treating depression, the underlying neurobiological mechanisms remain elusive. These efforts are made more difficult by ketamine's complex dose-dependent effects on molecular mechanisms, multiple pharmacologically active metabolites, and a mechanism of action associated with the facilitation of synaptic plasticity. This review aims to provide a brief overview of the different uses of ketamine, with an emphasis on examining ketamine's rapid antidepressant effects spanning molecular, cellular, and network levels. Another focus of the review is to offer a perspective on studies related to the different doses of ketamine used in antidepressant research. Finally, the review discusses some of the latest hypotheses concerning ketamine's action.
Collapse
Affiliation(s)
- Samuel Kohtala
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P. O. Box 56, 00014, Helsinki, Finland.
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Feil Family Brain and Mind Research Institute, Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Alshammari TK. The Ketamine Antidepressant Story: New Insights. Molecules 2020; 25:molecules25235777. [PMID: 33297563 PMCID: PMC7730956 DOI: 10.3390/molecules25235777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ketamine is a versatile agent primarily utilized as a dissociative anesthetic, which acts by blocking the excitatory receptor N-methyl-d-aspartate receptor (NMDA). It functions to inhibit the current of both Na+ and K+ voltage-gated channels, thus preventing serotonin and dopamine reuptake. Studies have indicated that administering a single subanesthetic dose of ketamine relieves depression rapidly and that the effect is sustained. For decades antidepressant agents were based on the monoamine theory. Although ketamine may not be the golden antidepressant, it has opened new avenues toward mechanisms involved in the pathology of treatment-resistant depression and achieving rapid antidepressant effects. Thus, preclinical studies focusing on deciphering the molecular mechanisms involved in the antidepressant action of ketamine will assist in the development of a new antidepressant. This review was conducted to elucidate the emerging pathways that can explain the complex dose-dependent mechanisms achieved by administering ketamine to treat major depressive disorders. Special attention was paid to reviewing the literature on hydroxynorketamines, which are ketamine metabolites that have recently attracted attention in the context of depression.
Collapse
Affiliation(s)
- Tahani K Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2475, Riyadh 11451, Saudi Arabia
| |
Collapse
|
26
|
McKendrick G, Graziane NM. Drug-Induced Conditioned Place Preference and Its Practical Use in Substance Use Disorder Research. Front Behav Neurosci 2020; 14:582147. [PMID: 33132862 PMCID: PMC7550834 DOI: 10.3389/fnbeh.2020.582147] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
The conditioned place preference (CPP) paradigm is a well-established model utilized to study the role of context associations in reward-related behaviors, including both natural rewards and drugs of abuse. In this review article, we discuss the basic history, various uses, and considerations that are tied to this technique. There are many potential takeaway implications of this model, including negative affective states, conditioned drug effects, memory, and motivation, which are all considered here. We also discuss the neurobiology of CPP including relevant brain regions, molecular signaling cascades, and neuromodulatory systems. We further examine some of our prior findings and how they integrate CPP with self-administration paradigms. Overall, by describing the fundamentals of CPP, findings from the past few decades, and implications of using CPP as a research paradigm, we have endeavored to support the case that the CPP method is specifically advantageous for studying the role of a form of Pavlovian learning that associates drug use with the surrounding environment.
Collapse
Affiliation(s)
- Greer McKendrick
- Neuroscience Graduate Program, Penn State College of Medicine, Hershey, PA, United States.,Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|