1
|
Plasil SL, Farris SP, Blednov Y, Mayfield RD, Mangieri RA, Nwokeji UJ, Aziz HC, Lambeth PS, Harris RA, Homanics GE. Mutation of novel ethanol-responsive lncRNA Gm41261 impacts ethanol-related behavioral responses in mice. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12886. [PMID: 38373108 PMCID: PMC10876150 DOI: 10.1111/gbb.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
Chronic alcohol exposure results in widespread dysregulation of gene expression that contributes to the pathogenesis of Alcohol Use Disorder (AUD). Long noncoding RNAs are key regulators of the transcriptome that we hypothesize coordinate alcohol-induced transcriptome dysregulation and contribute to AUD. Based on RNA-Sequencing data of human prefrontal cortex, basolateral amygdala and nucleus accumbens of AUD versus non-AUD brain, the human LINC01265 and its predicted murine homolog Gm41261 (i.e., TX2) were selected for functional interrogation. We tested the hypothesis that TX2 contributes to ethanol drinking and behavioral responses to ethanol. CRISPR/Cas9 mutagenesis was used to create a TX2 mutant mouse line in which 306 base-pairs were deleted from the locus. RNA analysis revealed that an abnormal TX2 transcript was produced at an unchanged level in mutant animals. Behaviorally, mutant mice had reduced ethanol, gaboxadol and zolpidem-induced loss of the righting response and reduced tolerance to ethanol in both sexes. In addition, a male-specific reduction in two-bottle choice every-other-day ethanol drinking was observed. Male TX2 mutants exhibited evidence of enhanced GABA release and altered GABAA receptor subunit composition in neurons of the nucleus accumbens shell. In C57BL6/J mice, TX2 within the cortex was cytoplasmic and largely present in Rbfox3+ neurons and IBA1+ microglia, but not in Olig2+ oligodendrocytes or in the majority of GFAP+ astrocytes. These data support the hypothesis that TX2 mutagenesis and dysregulation impacts ethanol drinking behavior and ethanol-induced behavioral responses in mice, likely through alterations in the GABAergic system.
Collapse
Affiliation(s)
- S. L. Plasil
- Department of Pharmacology and Chemical BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - S. P. Farris
- Department of Anesthesiology and Perioperative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Biomedical InformaticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
| | - Y. Blednov
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
| | - R. D. Mayfield
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
- Department of NeuroscienceThe University of Texas at AustinAustinTexasUSA
| | - R. A. Mangieri
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
- Division of Pharmacology and Toxicology, College of PharmacyThe University of Texas at AustinAustinTexasUSA
| | - U. J. Nwokeji
- Department of Pharmacology and Chemical BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - H. C. Aziz
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
- Division of Pharmacology and Toxicology, College of PharmacyThe University of Texas at AustinAustinTexasUSA
| | - P. S. Lambeth
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
- Department of NeuroscienceThe University of Texas at AustinAustinTexasUSA
| | - R. A. Harris
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
| | - G. E. Homanics
- Department of Pharmacology and Chemical BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Anesthesiology and Perioperative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of NeurobiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Cathenaut L, Schlichter R, Hugel S. Short-term plasticity in the spinal nociceptive system. Pain 2023; 164:2411-2424. [PMID: 37578501 DOI: 10.1097/j.pain.0000000000002999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 06/08/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Somatosensory information is delivered to neuronal networks of the dorsal horn (DH) of the spinal cord by the axons of primary afferent neurons that encode the intensity of peripheral sensory stimuli under the form of a code based on the frequency of action potential firing. The efficient processing of these messages within the DH involves frequency-tuned synapses, a phenomenon linked to their ability to display activity-dependent forms of short-term plasticity (STP). By affecting differently excitatory and inhibitory synaptic transmissions, these STP properties allow a powerful gain control in DH neuronal networks that may be critical for the integration of nociceptive messages before they are forwarded to the brain, where they may be ultimately interpreted as pain. Moreover, these STPs can be finely modulated by endogenous signaling molecules, such as neurosteroids, adenosine, or GABA. The STP properties of DH inhibitory synapses might also, at least in part, participate in the pain-relieving effect of nonpharmacological analgesic procedures, such as transcutaneous electrical nerve stimulation, electroacupuncture, or spinal cord stimulation. The properties of target-specific STP at inhibitory DH synapses and their possible contribution to electrical stimulation-induced reduction of hyperalgesic and allodynic states in chronic pain will be reviewed and discussed.
Collapse
Affiliation(s)
- Lou Cathenaut
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | | | | |
Collapse
|
3
|
Nuwer JL, Povysheva N, Jacob TC. Long-term α5 GABA A receptor negative allosteric modulator treatment reduces NMDAR-mediated neuronal excitation and maintains basal neuronal inhibition. Neuropharmacology 2023; 237:109587. [PMID: 37270156 PMCID: PMC10527172 DOI: 10.1016/j.neuropharm.2023.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/05/2023]
Abstract
α5 subunit-containing GABA type-A receptors (α5 GABAARs) are enriched in the hippocampus and play critical roles in neurodevelopment, synaptic plasticity, and cognition. α5 GABAAR preferring negative allosteric modulators (α5 NAMs) show promise mitigating cognitive impairment in preclinical studies of conditions characterized by excess GABAergic inhibition, including Down syndrome and memory deficits post-anesthesia. However, previous studies have primarily focused on acute application or single-dose α5 NAM treatment. Here, we measured the effects of chronic (7-day) in vitro treatment with L-655,708 (L6), a highly selective α5 NAM, on glutamatergic and GABAergic synapses in rat hippocampal neurons. We previously showed that 2-day in vitro treatment with L6 enhanced synaptic levels of the glutamate NMDA receptor (NMDAR) GluN2A subunit without modifying surface α5 GABAAR expression, inhibitory synapse function, or L6 sensitivity. We hypothesized that chronic L6 treatment would further increase synaptic GluN2A subunit levels while maintaining GABAergic inhibition and L6 efficacy, thus increasing neuronal excitation and glutamate-evoked intracellular calcium responses. Immunofluorescence experiments revealed that 7-day L6 treatment slightly increased the synaptic levels of gephyrin and surface α5 GABAARs. Functional studies showed that chronic α5 NAM treatment did not alter inhibition or α5 NAM sensitivity. Surprisingly, chronic L6 exposure decreased surface levels of GluN2A and GluN2B subunits, concurrent with reduced NMDAR-mediated neuronal excitation as seen by faster synaptic decay rates and reduced glutamate-evoked calcium responses. Together, these results show that chronic in vitro treatment with an α5 NAM leads to subtle homeostatic changes in inhibitory and excitatory synapses that suggest an overall dampening of excitability.
Collapse
Affiliation(s)
- Jessica L Nuwer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadya Povysheva
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Xue B, Meng X, Kao JPY, Kanold PO. Age-related changes in excitatory and inhibitory intra-cortical circuits in auditory cortex of C57Bl/6 mice. Hear Res 2023; 429:108685. [PMID: 36701895 PMCID: PMC9928889 DOI: 10.1016/j.heares.2022.108685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
A common impairment in aging is age-related hearing loss (presbycusis), which manifests as impaired spectrotemporal processing. Aging is accompanied by alteration in normal inhibitory (GABA) neurotransmission, and changes in excitatory (NMDA and AMPA) synapses in the auditory cortex (ACtx). However, the circuits affected by these synaptic changes remain unknown. Mice of the C57Bl/6J strain show premature age-related hearing loss and changes in functional responses in ACtx. We thus investigated how auditory cortical microcircuits change with age by comparing young (∼ 6 weeks) and aged (>1 year old) C57Bl/6J mice. We performed laser scanning photostimulation (LSPS) combined with whole-cell patch clamp recordings from Layer (L) 2/3 cells in primary auditory cortex (A1) of young adult and aged C57Bl/6J mice. We found that L2/3 cells in aged C57Bl/6J mice display functional hypoconnectivity of both excitatory and inhibitory circuits. Compared to cells from young C57Bl/6 mice, cells from aged C57Bl/6J mice have fewer excitatory connections with weaker connection strength. Whereas young adult and aged C57Bl/6J mice have similar amounts of inhibitory connections, the strength of local inhibition is weaker in the aged group. We confirmed these results by recording miniature excitatory (mEPSCs) and inhibitory synaptic currents (mIPSCs). Our results suggest a specific reduction in excitatory and inhibitory intralaminar cortical circuits in aged C57Bl/6J mice compared with young adult animals. We speculate that these unbalanced changes in cortical circuits contribute to the functional manifestations of age-related hearing loss.
Collapse
Affiliation(s)
- Binghan Xue
- Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Xiangying Meng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Biology, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
5
|
Deng R, Chang M, Kao JPY, Kanold PO. Cortical inhibitory but not excitatory synaptic transmission and circuit refinement are altered after the deletion of NMDA receptors during early development. Sci Rep 2023; 13:656. [PMID: 36635357 PMCID: PMC9837136 DOI: 10.1038/s41598-023-27536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Neurons in the cerebral cortex form excitatory and inhibitory circuits with specific laminar locations. The mechanisms underlying the development of these spatially specific circuits is not fully understood. To test if postsynaptic N-methyl-D-aspartate (NMDA) receptors on excitatory neurons are required for the development of specific circuits to these neurons, we genetically ablated NMDA receptors from a subset of excitatory neurons in the temporal association cortex (TeA) through in utero electroporation and assessed the intracortical circuits connecting to L5 neurons through in vitro whole-cell patch clamp recordings coupled with laser-scanning photostimulation (LSPS). In NMDAR knockout neurons, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated connections were largely intact. In contrast both LSPS and mini-IPSC recordings revealed that γ-aminobutyric acid type A (GABAA) receptor-mediated connections were impaired in NMDAR knockout neurons. These results suggest that postsynaptic NMDA receptors are important for the development of GABAergic circuits.
Collapse
Affiliation(s)
- Rongkang Deng
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, 20742, USA
| | - Minzi Chang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 733 N. Broadway Avenue / Miller 379, Baltimore, MD, 21205, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 733 N. Broadway Avenue / Miller 379, Baltimore, MD, 21205, USA.
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
6
|
Otsu Y, Aubrey KR. Kappa opioids inhibit the GABA/glycine terminals of rostral ventromedial medulla projections in the superficial dorsal horn of the spinal cord. J Physiol 2022; 600:4187-4205. [PMID: 35979937 PMCID: PMC9540474 DOI: 10.1113/jp283021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Descending projections from neurons in the rostral ventromedial medulla (RVM) make synapses within the superficial dorsal horn (SDH) of the spinal cord that are involved in the modulation of nociception, the development of chronic pain and itch, and an important analgesic target for opioids. This projection is primarily inhibitory, but the relative contribution of GABAergic and glycinergic transmission is unknown and there is limited knowledge about the SDH neurons targeted. Additionally, the details of how spinal opioids mediate analgesia remain unclear, and no study has investigated the opioid modulation of this synapse. We address this using ex vivo optogenetic stimulation of RVM fibres in conjunction with whole-cell patch-clamp recordings from the SDH in spinal cord slices. We demonstrate that both GABAergic and glycinergic neurotransmission is employed and show that SDH target neurons have diverse morphological and electrical properties, consistent with both inhibitory and excitatory interneurons. Then, we describe a subtype of SDH neurons that have a glycine-dominant input, indicating that the quality of descending inhibition across cells is not uniform. Finally, we discovered that the kappa-opioid receptor agonist U69593 presynaptically suppressed most RVM-SDH synapses. By contrast, the mu-opioid receptor agonist DAMGO acted both pre- and post-synaptically at a subset of synapses, and the delta-opioid receptor agonist deltorphin II had little effect. These data provide important mechanistic information about a descending control pathway that regulates spinal circuits. This information is necessary to understand how sensory inputs are shaped and develop more reliable and effective alternatives to current opioid analgesics. Abstract figure legend We combined ex vivo optogenetic stimulation of RVM fibres with whole cell electrophysiology of SDH neurons to investigate the final synapse in a key descending pain modulatory pathway. We demonstrate that both glycine and GABA mediate signalling at the RVM-SDH synapse, that the SDH targets of RVM projections have diverse electrical and morphological characteristics, and that presynaptic inhibition is directly and consistently achieved by kappa opioid agonists. Opioid receptors shown are sized relative to the proportion of neurons that responded to its specific agonists (81 and 84percent of DF and non-DF neurons responded to kappa opioid receptor agonists, respectively. Responses that occurred in <255 percentage of neurons are not indicated here). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yo Otsu
- Pain Management Research, Kolling Institute at the Royal North Shore Hospital NSLHD, St Leonard, NSW, 2065, Australia.,Faculty of Medicine and Health, Sydney Pain Consortium, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Karin R Aubrey
- Pain Management Research, Kolling Institute at the Royal North Shore Hospital NSLHD, St Leonard, NSW, 2065, Australia.,Faculty of Medicine and Health, Sydney Pain Consortium, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
7
|
Werynska K, Gingras J, Benke D, Scheurer L, Neumann E, Zeilhofer HU. A Glra3 phosphodeficient mouse mutant establishes the critical role of protein kinase A-dependent phosphorylation and inhibition of glycine receptors in spinal inflammatory hyperalgesia. Pain 2021; 162:2436-2445. [PMID: 34264571 PMCID: PMC8374710 DOI: 10.1097/j.pain.0000000000002236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/04/2022]
Abstract
ABSTRACT Glycinergic neurons and glycine receptors (GlyRs) exert a critical control over spinal nociception. Prostaglandin E2 (PGE2), a key inflammatory mediator produced in the spinal cord in response to peripheral inflammation, inhibits a certain subtype of GlyRs (α3GlyR) that is defined by the inclusion of α3 subunits and distinctly expressed in the lamina II of the spinal dorsal horn, ie, at the site where most nociceptive nerve fibers terminate. Previous work has shown that the hyperalgesic effect of spinal PGE2 is lost in mice lacking α3GlyRs and suggested that this phenotype results from the prevention of PGE2-evoked protein kinase A (PKA)-dependent phosphorylation and inhibition of α3GlyRs. However, direct proof for a contribution of this phosphorylation event to inflammatory hyperalgesia was still lacking. To address this knowledge gap, a phospho-deficient mouse line was generated that carries a serine to alanine point mutation at a strong consensus site for PKA-dependent phosphorylation in the long intracellular loop of the GlyR α3 subunit. These mice showed unaltered spinal expression of GlyR α3 subunits. In behavioral experiments, they showed no alterations in baseline nociception, but were protected from the hyperalgesic effects of intrathecally injected PGE2 and exhibited markedly reduced inflammatory hyperalgesia. These behavioral phenotypes closely recapitulate those found previously in GlyR α3-deficient mice. Our results thus firmly establish the crucial role of PKA-dependent phosphorylation of α3GlyRs in inflammatory hyperalgesia.
Collapse
Affiliation(s)
- Karolina Werynska
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Drug Discovery Network Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland
| | - Jacinthe Gingras
- Department of Neuroscience, Amgen Inc, Cambridge, MA, United States
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Drug Discovery Network Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland
| | - Louis Scheurer
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
| | - Elena Neumann
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Drug Discovery Network Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zürich, Switzerland. Dr. Gingras is now with Homology Medicines, Inc, Bedford, MA, United States
| |
Collapse
|
8
|
Inhibitory interneurons with differential plasticities at their connections tune excitatory/inhibitory balance in the spinal nociceptive system. Pain 2021; 163:e675-e688. [PMID: 34490851 DOI: 10.1097/j.pain.0000000000002460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Networks of the dorsal-horn of the spinal-cord process nociceptive information from the periphery. In these networks, the excitation/inhibition balance is critical to shape this nociceptive information and to gate it to the brain where it is interpreted as pain. Our aim was to define whether short-term plasticity of inhibitory connections could tune this inhibition/excitation balance by differentially controlling excitatory and inhibitory microcircuits. To this end, we used spinal-cord slices from adult mice expressing enhanced green fluorescent protein (eGFP) under the GAD65 promoter and recorded from both eGFP+ (putative inhibitory) and eGFP- (putative excitatory) neurons of lamina II while stimulating single presynaptic GABAergic interneurons at various frequencies. Our results indicate that GABAergic neurons of lamina II simultaneously contact eGFP- and eGFP+ neurons, but these connections display very different frequency-dependent short-term plasticities. Connections onto eGFP- interneurons displayed limited frequency-dependent changes, and strong time-dependent summation of inhibitory synaptic currents that was however subjected to a tonic activity-dependent inhibition involving A1 adenosine receptors. In contrast, GABAergic connections onto eGFP+ interneurons expressed pronounced frequency-dependent depression, thus favoring disinhibition at these synapses by a mechanism involving the activation of GABAB autoreceptors at low frequency. Interestingly, the balance favors inhibition at frequencies associated with intense pain whether it favors excitation at frequencies associated with low pain. Therefore, these target- and frequency-specific plasticities allow to tune the balance between inhibition and disinhibition while processing frequency-coded information from primary afferents. These short-term plasticities and their modulation by A1 and GABAB receptors might represent an interesting target in pain-alleviating strategies.
Collapse
|
9
|
Bu X, Li T, Wang H, Xia Z, Guo D, Wang J, Sun Y, Yang C, Liu G, Ma J, Yang Z, Wang G. Combination of Isoflurane and Propofol as General Anesthesia During Orthopedic Surgery of Perioperative Cerebral Hypoperfusion Rats to Avoid Cognitive Impairment. Front Med (Lausanne) 2020; 7:549081. [PMID: 33195298 PMCID: PMC7646644 DOI: 10.3389/fmed.2020.549081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/08/2020] [Indexed: 01/24/2023] Open
Abstract
Background: Perioperative cerebral hypoperfusion (CH) is common, although the underlying mechanism of cognitive impairment that results due to perioperative cerebral hypoperfusion remains to be determined. Isoflurane anesthesia induces neuronal injury via endoplasmic reticulum (ER) stress, whereas a sub-anesthetic dose of propofol improves postoperative cognitive function. However, the effects of the combination of isoflurane plus propofol, which is a common aesthetic combination administered to patients, on ER stress and cognition remain unknown. Methods: We sought to determine the effects of isoflurane plus propofol on ER stress and cognitive function in rats insulted by cerebral hypoperfusion. Ligation of the bilateral common carotid arteries (CCA) was adopted to develop the cerebral hypoperfusion rat model. A second surgery, open reduction and internal fixation (ORIF), requiring general anesthesia, was performed 30 days later so that the effects of anesthetics on the cognitive function of CH rats could be assessed. Rats received isoflurane alone (1.9%), propofol alone (40 mg·kg-1·h-1) or a combination of isoflurane and propofol (1% and 20 mg·kg-1·h-1 or 1.4% and 10 mg·kg-1·h-1). Behavioral studies (contextual fear conditioning [FC] test), histological analyses (Nissl staining) and biochemical analyses (western blotting of the harvested rat brain tissues) were employed. Results: Hippocampus-dependent memory of rats in group IP1 (1% isoflurane plus 20 mg·kg-1·h-1 propofol) was not impaired, and expression level of γ-aminobutyric acid A type receptor α1 subunit, a key cognition-related protein, remained normal. ER stress alleviator, binding immunoglobulin protein, increased extremely while ER stress transcription factor, C/EBP homologous protein, showed no statistical difference compared with the control group. Numbers of surviving neurons confirmed the substantial neuronal damage caused by propofol or isoflurane alone. Conclusions: These data suggest that ER stress contributes to the underlying mechanism of cognitive impairment and that the combination of isoflurane and propofol did not aggravate cognitive impairment and ER stress in aging rats with CH that were further subjected to ORIF surgery.
Collapse
Affiliation(s)
- Xinyue Bu
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Tang Li
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Haiyun Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Third Central Hospital, Nankai University, Tianjin, China
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Di Guo
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Jinxin Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yi Sun
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,The Third Central Hospital of Tianjin, Tianjin, China
| | - Chenyi Yang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,The Third Central Hospital of Tianjin, Tianjin, China
| | - Guoqiang Liu
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,The Third Central Hospital of Tianjin, Tianjin, China
| | - Ji Ma
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,The Third Central Hospital of Tianjin, Tianjin, China
| | - Zhuo Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Medicine, Nankai University, Tianjin, China
| | - Guolin Wang
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| |
Collapse
|
10
|
McEachern EP, Coley AA, Yang SS, Gao WJ. PSD-95 deficiency alters GABAergic inhibition in the prefrontal cortex. Neuropharmacology 2020; 179:108277. [PMID: 32818520 DOI: 10.1016/j.neuropharm.2020.108277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 12/01/2022]
Abstract
Postsynaptic Density Protein-95 (PSD-95) is a major scaffolding protein in the excitatory synapses in the brain and a critical regulator of synaptic maturation for NMDA and AMPA receptors. PSD-95 deficiency has been linked to cognitive and learning deficits implicated in neurodevelopmental disorders such as autism and schizophrenia. Previous studies have shown that PSD-95 deficiency causes a significant reduction in the excitatory response in the hippocampus. However, little is known about whether PSD-95 deficiency will affect gamma-aminobutyric acid (GABA)ergic inhibitory synapses. Using a PSD-95 transgenic mouse model (PSD-95+/-), we studied how PSD-95 deficiency affects GABAA receptor expression and function in the medial prefrontal cortex (mPFC) during adolescence. Our results showed a significant increase in the GABAA receptor subunit α1. Correspondingly, there are increases in the frequency and amplitude in spontaneous inhibitory postsynaptic currents (sIPSCs) in pyramidal neurons in the mPFC of PSD-95+/- mice, along with a significant increase in evoked IPSCs, leading to a dramatic shift in the excitatory-to-inhibitory balance in PSD-95 deficient mice. Furthermore, PSD-95 deficiency promotes inhibitory synapse function via upregulation and trafficking of NLGN2 and reduced GSK3β activity through tyr-216 phosphorylation. Our study provides novel insights on the effects of GABAergic transmission in the mPFC due to PSD-95 deficiency and its potential link with cognitive and learning deficits associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Erin P McEachern
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Austin A Coley
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sha-Sha Yang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
11
|
Mayhew JA, Callister RJ, Walker FR, Smith DW, Graham BA. Aging alters signaling properties in the mouse spinal dorsal horn. Mol Pain 2020; 15:1744806919839860. [PMID: 30845881 PMCID: PMC6537084 DOI: 10.1177/1744806919839860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A well-recognized relationship exists between aging and increased susceptibility
to chronic pain conditions, underpinning the view that pain signaling pathways
differ in aged individuals. Yet despite the higher prevalence of altered pain
states among the elderly, the majority of preclinical work studying mechanisms
of aberrant sensory processing are conducted in juvenile or young adult animals.
This mismatch is especially true for electrophysiological studies where patch
clamp recordings from aged tissue are generally viewed as particularly
challenging. In this study, we have undertaken an electrophysiological
characterization of spinal dorsal horn neurons in young adult (3–4 months) and
aged (28–32 months) mice. We show that patch clamp data can be routinely
acquired in spinal cord slices prepared from aged animals and that the
excitability properties of aged dorsal horn neurons differ from recordings in
tissue prepared from young animals. Specifically, aged dorsal horn neurons more
readily exhibit repetitive action potential discharge, indicative of a more
excitable phenotype. This observation was accompanied by a decrease in the
amplitude and charge of spontaneous excitatory synaptic input to dorsal horn
neurons and an increase in the contribution of GABAergic signaling to
spontaneous inhibitory synaptic input in aged recordings. While the functional
significance of these altered circuit properties remains to be determined,
future work should seek to assess whether such features may render the aged
dorsal horn more susceptible to aberrant injury or disease-induced signaling and
contribute to increased pain in the elderly.
Collapse
Affiliation(s)
- J A Mayhew
- 1 Faculty of Health, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia.,2 Hunter Medical Research Institute, New Lambton Heights, Australia
| | - R J Callister
- 1 Faculty of Health, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia.,2 Hunter Medical Research Institute, New Lambton Heights, Australia
| | - F R Walker
- 1 Faculty of Health, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia.,2 Hunter Medical Research Institute, New Lambton Heights, Australia
| | - D W Smith
- 1 Faculty of Health, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia.,2 Hunter Medical Research Institute, New Lambton Heights, Australia
| | - B A Graham
- 1 Faculty of Health, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia.,2 Hunter Medical Research Institute, New Lambton Heights, Australia
| |
Collapse
|
12
|
Tudeau L, Acuña MA, Albisetti GW, Neumann E, Ralvenius WT, Scheurer L, Poe M, Cook JM, Johannssen HC, Zeilhofer HU. Mice lacking spinal α2GABA A receptors: Altered GABAergic neurotransmission, diminished GABAergic antihyperalgesia, and potential compensatory mechanisms preventing a hyperalgesic phenotype. Brain Res 2020; 1741:146889. [PMID: 32439345 DOI: 10.1016/j.brainres.2020.146889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Diminished synaptic inhibition in the superficial spinal dorsal horn contributes to exaggerated pain responses that accompany peripheral inflammation and neuropathy. α2GABAA receptors (α2GABAAR) constitute the most abundant GABAAR subtype at this site and are the targets of recently identified antihyperalgesic compounds. Surprisingly, hoxb8-α2-/- mice that lack α2GABAAR from the spinal cord and peripheral sensory neurons exhibit unaltered sensitivity to acute painful stimuli and develop normal inflammatory and neuropathic hyperalgesia. Here, we provide a comprehensive analysis of GABAergic neurotransmission, of behavioral phenotypes and of possible compensatory mechanisms in hoxb8-α2-/- mice. Our results confirm that hoxb8-α2-/- mice show significantly diminished GABAergic inhibitory postsynaptic currents (IPSCs) in the superficial dorsal horn but no hyperalgesic phenotype. We also confirm that the potentiation of dorsal horn GABAergic IPSCs by the α2-preferring GABAAR modulator HZ-166 is reduced in hoxb8-α2-/- mice and that hoxb8-α2-/- mice are resistant to the analgesic effects of HZ-166. Tonic GABAergic currents, glycinergic IPSCs, and sensory afferent-evoked EPSCs did not show significant changes in hoxb8-α2-/- mice rendering a compensatory up-regulation of other GABAAR subtypes or of glycine receptors unlikely. Although expression of serotonin and of the serotonin producing enzyme tryptophan hydroxylase (TPH2) was significantly increased in the dorsal horn of hoxb8-α2-/- mice, ablation of serotonergic terminals from the lumbar spinal cord failed to unmask a nociceptive phenotype. Our results are consistent with an important contribution of α2GABAAR to spinal nociceptive control but their ablation early in development appears to activate yet-to-be identified compensatory mechanisms that protect hoxb8-α2-/- mice from hyperalgesia.
Collapse
Affiliation(s)
- Laetitia Tudeau
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Gioele W Albisetti
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Elena Neumann
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - William T Ralvenius
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Louis Scheurer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Michael Poe
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Helge C Johannssen
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland; Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
13
|
Wang J, Yang C, Wang H, Li D, Li T, Sun Y, Zhao M, Ma J, Hua W, Yang Z. A New Rat Model of Chronic Cerebral Hypoperfusion Resulting in Early-Stage Vascular Cognitive Impairment. Front Aging Neurosci 2020; 12:86. [PMID: 32351379 PMCID: PMC7174718 DOI: 10.3389/fnagi.2020.00086] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Currently, most models of vascular cognitive impairment are established by occluding the carotid arteries uni- or bilaterally to reduce the cerebral blood flow mimicking chronic cerebral hypoxia. Due to the sudden blood flow interruption, a gradual narrowing of the carotid artery cannot be completely imitated. This paper aims to establish a bilateral carotid stenosis model with mild cognitive dysfunction and mild white matter changes to simulate patients with vascular predementia. Methods Aged Wistar rats (18 months old) underwent either bilateral common carotid artery stenosis (BCAS) or occlusion (BCAO) surgery or a sham operation (control group). The cerebral blood flow in the frontal cortex was measured using Doppler flowmetry. Thirty days after surgery, cognitive function impairments were determined with the Morris water maze; cerebral magnetic resonance imaging was performed to detect changes in fractional anisotropy to assess white matter injuries, and histological studies were performed. Results The aged rats in the BCAS group showed a more gradual cerebral blood flow reduction and a lower mortality rate (11%) compared to rats in the BCAO group. The water maze test revealed a more marginal impairment affecting spatial learning and memory in rats with BCAS than in rats with BCAO. Diffusion tensor imaging detected white matter injuries in the hippocampus and cerebral cortex of BCAS rats. Particularly, a small portion of nerve fibers of the lateral somatosensory cortex was significantly different between rats of the BCAO and BCAS groups. In the BCAS group, the microscopic structure of the hippocampal CA1 region changed slightly after 30 days and sustained a slight mitochondrial crista crack. Fluorescence staining indicated that the number of GFAP-positive cells was increased in rat brains of the BCAS group, and this phenomenon was even more pronounced in the BCAO group. The hnRNPA2/B1 and GABAAR-α1 expression levels were significantly decreased in the hippocampus of rats with BCAS compared to those of controls. Conclusion Severe bilateral carotid stenosis induced mild cognitive dysfunction and slight structural changes in the brains of aged rats. Thus, a chronic cerebral hypoperfusion model was successfully established.
Collapse
Affiliation(s)
- Jinxin Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Nankai University Affinity the Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Chenyi Yang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Nankai University Affinity the Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Haiyun Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Nankai University Affinity the Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Medical College of Nankai University, Nankai University, Tianjin, China.,Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Dongxue Li
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Nankai University Affinity the Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Tang Li
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Nankai University Affinity the Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Yi Sun
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Nankai University Affinity the Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Mingshu Zhao
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Nankai University Affinity the Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Ji Ma
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Nankai University Affinity the Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Wei Hua
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Nankai University Affinity the Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Zhuo Yang
- Medical College of Nankai University, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Lorenzo LE, Godin AG, Ferrini F, Bachand K, Plasencia-Fernandez I, Labrecque S, Girard AA, Boudreau D, Kianicka I, Gagnon M, Doyon N, Ribeiro-da-Silva A, De Koninck Y. Enhancing neuronal chloride extrusion rescues α2/α3 GABA A-mediated analgesia in neuropathic pain. Nat Commun 2020; 11:869. [PMID: 32054836 PMCID: PMC7018745 DOI: 10.1038/s41467-019-14154-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Spinal disinhibition has been hypothesized to underlie pain hypersensitivity in neuropathic pain. Apparently contradictory mechanisms have been reported, raising questions on the best target to produce analgesia. Here, we show that nerve injury is associated with a reduction in the number of inhibitory synapses in the spinal dorsal horn. Paradoxically, this is accompanied by a BDNF-TrkB-mediated upregulation of synaptic GABAARs and by an α1-to-α2GABAAR subunit switch, providing a mechanistic rationale for the analgesic action of the α2,3GABAAR benzodiazepine-site ligand L838,417 after nerve injury. Yet, we demonstrate that impaired Cl- extrusion underlies the failure of L838,417 to induce analgesia at high doses due to a resulting collapse in Cl- gradient, dramatically limiting the benzodiazepine therapeutic window. In turn, enhancing KCC2 activity not only potentiated L838,417-induced analgesia, it rescued its analgesic potential at high doses, revealing a novel strategy for analgesia in pathological pain, by combined targeting of the appropriate GABAAR-subtypes and restoring Cl- homeostasis.
Collapse
Affiliation(s)
- Louis-Etienne Lorenzo
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Antoine G Godin
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Department of Psychiatry & Neuroscience, Université Laval, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Francesco Ferrini
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Department of Psychiatry & Neuroscience, Université Laval, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Karine Bachand
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
| | - Isabel Plasencia-Fernandez
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Simon Labrecque
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
| | - Alexandre A Girard
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Dominic Boudreau
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Irenej Kianicka
- Chlorion Pharma, Laval, Québec, QC, Canada
- Laurent Pharmaceuticals Inc., Montreal, QC, Canada
| | - Martin Gagnon
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Centre for Innovation, University of Otago, Dunedin, New Zealand
| | - Nicolas Doyon
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Finite Element Interdisciplinary Research Group (GIREF), Université Laval, Québec, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Yves De Koninck
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada.
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada.
- Department of Psychiatry & Neuroscience, Université Laval, Québec, QC, Canada.
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada.
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Yamada A, Koga K, Kume K, Ohsawa M, Furue H. Ethanol-induced enhancement of inhibitory synaptic transmission in the rat spinal substantia gelatinosa. Mol Pain 2018; 14:1744806918817969. [PMID: 30453825 PMCID: PMC6293375 DOI: 10.1177/1744806918817969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent studies have shown that ethanol produces a widespread modulation
of neuronal activity in the central nervous system. It is not fully
understood, however, how ethanol changes nociceptive transmission. We
investigated acute effects of ethanol on synaptic transmission in the
substantia gelatinosa (lamina II of the spinal dorsal horn) and
mechanical responses in the spinal dorsal horn. In substantia
gelatinosa neurons, bath application of ethanol at low concentration
(10 mM) did not change the frequency and amplitude of spontaneous
inhibitory postsynaptic currents. At medium to high concentrations
(20–100 mM), however, ethanol elicited a barrage of large amplitude
spontaneous inhibitory postsynaptic currents. In the presence of
tetrodotoxin, such enhancement of spontaneous inhibitory postsynaptic
currents was not detected. In addition, ethanol (20–100 mM) increased
the frequency of spontaneous discharge of vesicular GABA
transporter-Venus-labeled neurons and suppressed the mechanical
nociceptive response in wide-dynamic range neurons in the spinal
dorsal horn. The present results suggest that ethanol may reduce
nociceptive information transfer in the spinal dorsal horn by
enhancement of inhibitory GABAergic and glycinergic synaptic
transmission.
Collapse
Affiliation(s)
- Akihiro Yamada
- Department of Neurophysiology, Hyogo College of
Medicine, Nishinomiya, Japan
- Department of Neuropharmacology, Graduate School of
Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Department of Information Physiology, National
Institute for Physiological Sciences, Okazaki, Japan
| | - Kohei Koga
- Department of Neurophysiology, Hyogo College of
Medicine, Nishinomiya, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of
Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of
Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo College of
Medicine, Nishinomiya, Japan
- Department of Information Physiology, National
Institute for Physiological Sciences, Okazaki, Japan
- School of Life Science, Graduate University for
Advanced Studies, Okazaki, Japan
- Hidemasa Furue, Department of
Neurophysiology 663–8131, Hyogo College of Medicine, Nishinomiya,
Japan.
| |
Collapse
|
16
|
Aubrey KR, Supplisson S. Heterogeneous Signaling at GABA and Glycine Co-releasing Terminals. Front Synaptic Neurosci 2018; 10:40. [PMID: 30524262 PMCID: PMC6232519 DOI: 10.3389/fnsyn.2018.00040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/12/2018] [Indexed: 11/14/2022] Open
Abstract
The corelease of several neurotransmitters from a single synaptic vesicle has been observed at many central synapses. Nevertheless, the signaling synergy offered by cotransmission and the mechanisms that maintain the optimal release and detection of neurotransmitters at mixed synapses remain poorly understood, thus limiting our ability to interpret changes in synaptic signaling and identify molecules important for plasticity. In the brainstem and spinal cord, GABA and glycine cotransmission is facilitated by a shared vesicular transporter VIAAT (also named VGAT), and occurs at many immature inhibitory synapses. As sensory and motor networks mature, GABA/glycine cotransmission is generally replaced by either pure glycinergic or GABAergic transmission, and the functional role for the continued corelease of GABA and glycine is unclear. Whether or not, and how, the GABA/glycine content is balanced in VIAAT-expressing vesicles from the same terminal, and how loading variability effects the strength of inhibitory transmission is not known. Here, we use a combination of loose-patch (LP) and whole-cell (WC) electrophysiology in cultured spinal neurons of GlyT2:eGFP mice to sample miniature inhibitory post synaptic currents (mIPSCs) that originate from individual GABA/glycine co-releasing synapses and develop a modeling approach to illustrate the gradual change in mIPSC phenotypes as glycine replaces GABA in vesicles. As a consistent GABA/glycine balance is predicted if VIAAT has access to both amino-acids, we test whether vesicle exocytosis from a single terminal evokes a homogeneous population of mixed mIPSCs. We recorded mIPSCs from 18 individual synapses and detected glycine-only mIPSCs in 4/18 synapses sampled. The rest (14/18) were co-releasing synapses that had a significant proportion of mixed GABA/glycine mIPSCs with a characteristic biphasic decay. The majority (9/14) of co-releasing synapses did not have a homogenous phenotype, but instead signaled with a combination of mixed and pure mIPSCs, suggesting that there is variability in the loading and/or storage of GABA and glycine at the level of individual vesicles. Our modeling predicts that when glycine replaces GABA in synaptic vesicles, the redistribution between the peak amplitude and charge transfer of mIPSCs acts to maintain the strength of inhibition while increasing the temporal precision of signaling.
Collapse
Affiliation(s)
- Karin R Aubrey
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris Paris, France.,Neurobiology of Pain Laboratory, Kolling Institute, Royal North Shore Hospital St. Leonards, NSW, Australia.,Pain Management Research Institute, Faculty of Medicine and Health, University of Sydney-Northern Clinical School St. Leonards, NSW, Australia
| | - Stéphane Supplisson
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris Paris, France
| |
Collapse
|
17
|
Rotaru DC, van Woerden GM, Wallaard I, Elgersma Y. Adult Ube3a Gene Reinstatement Restores the Electrophysiological Deficits of Prefrontal Cortex Layer 5 Neurons in a Mouse Model of Angelman Syndrome. J Neurosci 2018; 38:8011-8030. [PMID: 30082419 PMCID: PMC6596147 DOI: 10.1523/jneurosci.0083-18.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 11/21/2022] Open
Abstract
E3 ubiquitin ligase (UBE3A) levels in the brain need to be tightly regulated, as loss of functional UBE3A protein is responsible for the severe neurodevelopmental disorder Angelman syndrome (AS), whereas increased activity of UBE3A is associated with nonsyndromic autism. Given the role of mPFC in neurodevelopmental disorders including autism, we aimed to identify the functional changes resulting from loss of UBE3A in infralimbic and prelimbic mPFC areas in a mouse model of AS. Whole-cell recordings from layer 5 mPFC pyramidal neurons obtained in brain slices from adult mice of both sexes revealed that loss of UBE3A results in a strong decrease of spontaneous inhibitory transmission and increase of spontaneous excitatory transmission potentially leading to a marked excitation/inhibition imbalance. Additionally, we found that loss of UBE3A led to decreased excitability and increased threshold for action potential of layer 5 fast spiking interneurons without significantly affecting the excitability of pyramidal neurons. Because we previously showed that AS mouse behavioral phenotypes are reversible upon Ube3a gene reactivation during a restricted period of early postnatal development, we investigated whether Ube3a gene reactivation in a fully mature brain could reverse any of the identified physiological deficits. In contrast to our previously reported behavioral findings, restoring UBE3A levels in adult animals fully rescued all the identified physiological deficits of mPFC neurons. Moreover, the kinetics of reversing these synaptic deficits closely followed the reinstatement of UBE3A protein level. Together, these findings show a striking dissociation between the rescue of behavioral and physiological deficits.SIGNIFICANCE STATEMENT Here we describe significant physiological deficits in the mPFC of an Angelman syndrome mouse model. We found a marked change in excitatory/inhibitory balance, as well as decreased excitability of fast spiking interneurons. A promising treatment strategy for Angelman syndrome is aimed at restoring UBE3A expression by activating the paternal UBE3A gene. Here we find that the physiological changes in the mPFC are fully reversible upon gene reactivation, even when the brain is fully mature. This indicates that there is no critical developmental window for reversing the identified physiological deficits in mPFC.
Collapse
Affiliation(s)
- Diana C Rotaru
- Department of Neuroscience and ENCORE Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Geeske M van Woerden
- Department of Neuroscience and ENCORE Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Ilse Wallaard
- Department of Neuroscience and ENCORE Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience and ENCORE Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
18
|
Cunha AOS, Ceballos CC, de Deus JL, Pena RFDO, de Oliveira JAC, Roque AC, Garcia-Cairasco N, Leão RM. Intrinsic and synaptic properties of hippocampal CA1 pyramidal neurons of the Wistar Audiogenic Rat (WAR) strain, a genetic model of epilepsy. Sci Rep 2018; 8:10412. [PMID: 29991737 PMCID: PMC6039528 DOI: 10.1038/s41598-018-28725-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/27/2018] [Indexed: 11/12/2022] Open
Abstract
Despite the many studies focusing on epilepsy, a lot of the basic mechanisms underlying seizure susceptibility are mainly unclear. Here, we studied cellular electrical excitability, as well as excitatory and inhibitory synaptic neurotransmission of CA1 pyramidal neurons from the dorsal hippocampus of a genetic model of epilepsy, the Wistar Audiogenic Rat (WARs) in which limbic seizures appear after repeated audiogenic stimulation. We examined intrinsic properties of neurons, as well as EPSCs evoked by Schaffer-collateral stimulation in slices from WARs and Wistar parental strain. We also analyzed spontaneous IPSCs and quantal miniature inhibitory events. Our data show that even in the absence of previous seizures, GABAergic neurotransmission is reduced in the dorsal hippocampus of WARs. We observed a decrease in the frequency of IPSCs and mIPSCs. Moreover, mIPSCs of WARs had faster rise times, indicating that they probably arise from more proximal synapses. Finally, intrinsic membrane properties, firing and excitatory neurotransmission mediated by both NMDA and non-NMDA receptors are similar to the parental strain. Since GABAergic inhibition towards CA1 pyramidal neurons is reduced in WARs, the inhibitory network could be ineffective to prevent the seizure-dependent spread of hyperexcitation. These functional changes could make these animals more susceptible to the limbic seizures observed during the audiogenic kindling.
Collapse
Affiliation(s)
| | - Cesar Celis Ceballos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Júnia Lara de Deus
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rodrigo Felipe de Oliveira Pena
- Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Antonio Carlos Roque
- Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Maurício Leão
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
19
|
Developmental Disruption of GABA AR-Meditated Inhibition in Cntnap2 KO Mice. eNeuro 2017; 4:eN-NWR-0162-17. [PMID: 28966979 PMCID: PMC5617210 DOI: 10.1523/eneuro.0162-17.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/24/2022] Open
Abstract
GABA released from presynaptic sites induces short-lived phasic inhibition mediated by synaptic GABAA receptors (GABAARs) and longer-duration tonic inhibition mediated by extrasynaptic GABAA or GABAB receptors (GABABRs). A number of studies have found that contactin-associated protein 2 (Cntnap2) knockout (KO) mice, a well-established mouse model of autism, exhibit reduced interneuron numbers and aberrant phasic inhibition. However, little is known about whether tonic inhibition is disrupted in Cntnap2 KO mice and when the disruption of inhibition begins to occur during postnatal development. We examined tonic and phasic inhibition in layer 2/3 pyramidal cells of primary visual cortex of Cntnap2 KO at two different developmental stages, three to four and six to eight weeks of age. We found that both phasic inhibition and GABAAR but not GABABR-mediated tonic inhibition was reduced in pyramidal cells from six- to eight-week-old Cntnap2 KO mice, while in three- to four-week-old mice, no significant effects of genotype on tonic or phasic inhibition was observed. We further found that activation of tonic currents mediated by δ-subunit-containing GABAARs reduced neural excitability, an effect that was attenuated by loss of Cntnap2. While the relative contribution of tonic versus phasic inhibition to autism-related symptoms remains unclear, our data suggest that reduced tonic inhibition may play an important role, and δ-subunit-containing GABAARs may be a useful target for therapeutic intervention in autism.
Collapse
|
20
|
Fu B, Wang Y, Yang H, Yu T. Effects of Etomidate on GABAergic and Glutamatergic Transmission in Rat Thalamocortical Slices. Neurochem Res 2016; 41:3181-3191. [PMID: 27561291 DOI: 10.1007/s11064-016-2042-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
Although accumulative evidence indicates that the thalamocortical system is an important target for general anesthetics, the underlying mechanisms of anesthetic action on thalamocortical neurotransmission are not fully understood. The aim of the study is to explore the action of etomidate on glutamatergic and GABAergic transmission in rat thalamocortical slices by using whole cell patch-clamp recording. We found that etomidate mainly prolonged the decay time of spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs), without changing the frequency. Furthermore, etomidate not only prolonged the decay time of miniature inhibitory postsynaptic currents (mIPSCs) but also increased the amplitude. On the other hand, etomidate significantly decreased the frequency of spontaneous glutamatergic excitatory postsynaptic currents (sEPSCs), without altering the amplitude or decay time in the absence of bicuculline. When GABAA receptors were blocked using bicuculline, the effects of etomidate on sEPSCs were mostly eliminated. These results suggest that etomidate enhances GABAergic transmission mainly through postsynaptic mechanism in thalamocortical neuronal network. Etomidate attenuates glutamatergic transmission predominantly through presynaptic action and requires presynaptic GABAA receptors involvement.
Collapse
Affiliation(s)
- Bao Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Yuan Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Hao Yang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Dalian road 149, Zunyi, 563000, Guizhou, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Dalian road 149, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
21
|
Telias M, Segal M, Ben-Yosef D. Immature Responses to GABA in Fragile X Neurons Derived from Human Embryonic Stem Cells. Front Cell Neurosci 2016; 10:121. [PMID: 27242433 PMCID: PMC4864171 DOI: 10.3389/fncel.2016.00121] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/26/2016] [Indexed: 01/10/2023] Open
Abstract
Fragile X Syndrome (FXS) is the most common form of inherited cognitive disability. However, functional deficiencies in FX neurons have been described so far almost exclusively in animal models. In a recent study we found several functional deficits in FX neurons differentiated in-vitro from human embryonic stem cells (hESCs), including their inability to fire repetitive action potentials, and their lack of synaptic activity. Here, we investigated the responses of such neurons to pulse application of the neurotransmitter GABA. We found two distinct types of responses to GABA and sensitivity to the GABA-A receptor antagonist bicuculline; type 1 (mature) characterized by non-desensitized responses to GABA as well as a high sensitivity to bicuculline, and type 2 (immature) which are desensitized to GABA and insensitive to bicuculline. Type 1 responses were age-dependent and dominant in mature WT neurons. In contrast, FX neurons expressed primarily type 2 phenotype. Expression analysis of GABA-A receptor subunits demonstrated that this bias in human FX neurons was associated with a significant alteration in the expression pattern of the GABA-A receptor subunits α2 and β2. Our results indicate that FMRP may play a role in the development of the GABAergic synapse during neurogenesis. This is the first demonstration of the lack of a mature response to GABA in human FX neurons and may explain the inappropriate synaptic functions in FXS.
Collapse
Affiliation(s)
- Michael Telias
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Tel-Aviv Sourasky Medical Center, Lis Maternity HospitalTel-Aviv, Israel; Department of Cell and Developmental Biology, Sackler Medical School, Tel-Aviv UniversityTel-Aviv, Israel
| | - Menahem Segal
- Department of Neurobiology, The Weizmann Institute of Science Rehovot, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Tel-Aviv Sourasky Medical Center, Lis Maternity HospitalTel-Aviv, Israel; Department of Cell and Developmental Biology, Sackler Medical School, Tel-Aviv UniversityTel-Aviv, Israel
| |
Collapse
|
22
|
Clark R, Blizzard C, Dickson T. Inhibitory dysfunction in amyotrophic lateral sclerosis: future therapeutic opportunities. Neurodegener Dis Manag 2015; 5:511-25. [DOI: 10.2217/nmt.15.49] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In amyotrophic lateral sclerosis, motor neuron hyperexcitability and inhibitory dysfunction is emerging as a potential causative link in the dysfunction and degeneration of the motoneuronal circuitry that characterizes the disease. Interneurons, as key regulators of excitability, may mediate much of this imbalance, yet we know little about the way in which inhibitory deficits perturb excitability. In this review, we explore inhibitory control of excitability and the potential contribution of altered inhibition to amyotrophic lateral sclerosis disease processes and vulnerabilities, identifying important windows of therapeutic opportunity and potential interventions, specifically targeting inhibitory control at key disease stages.
Collapse
Affiliation(s)
- Rosemary Clark
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Catherine Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Tracey Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| |
Collapse
|
23
|
Mathews MA, Murray A, Wijesinghe R, Cullen K, Tung VWK, Camp AJ. Efferent Vestibular Neurons Show Homogenous Discharge Output But Heterogeneous Synaptic Input Profile In Vitro. PLoS One 2015; 10:e0139548. [PMID: 26422206 PMCID: PMC4589407 DOI: 10.1371/journal.pone.0139548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022] Open
Abstract
Despite the importance of our sense of balance we still know remarkably little about the central control of the peripheral balance system. While previous work has shown that activation of the efferent vestibular system results in modulation of afferent vestibular neuron discharge, the intrinsic and synaptic properties of efferent neurons themselves are largely unknown. Here we substantiate the location of the efferent vestibular nucleus (EVN) in the mouse, before characterizing the input and output properties of EVN neurons in vitro. We made transverse serial sections through the brainstem of 4-week-old mice, and performed immunohistochemistry for calcitonin gene-related peptide (CGRP) and choline acetyltransferase (ChAT), both expressed in the EVN of other species. We also injected fluorogold into the posterior canal and retrogradely labelled neurons in the EVN of ChAT:: tdTomato mice expressing tdTomato in all cholinergic neurons. As expected the EVN lies dorsolateral to the genu of the facial nerve (CNVII). We then made whole-cell current-, and voltage-clamp recordings from visually identified EVN neurons. In current-clamp, EVN neurons display a homogeneous discharge pattern. This is characterized by a high frequency burst of action potentials at the onset of a depolarizing stimulus and the offset of a hyperpolarizing stimulus that is mediated by T-type calcium channels. In voltage-clamp, EVN neurons receive either exclusively excitatory or inhibitory inputs, or a combination of both. Despite this heterogeneous mixture of inputs, we show that synaptic inputs onto EVN neurons are predominantly excitatory. Together these findings suggest that the inputs onto EVN neurons, and more specifically the origin of these inputs may underlie EVN neuron function.
Collapse
Affiliation(s)
- Miranda A. Mathews
- Discipline of Biomedical Science, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew Murray
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, United States of America
| | - Rajiv Wijesinghe
- Discipline of Biomedical Science, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Karen Cullen
- Discipline of Anatomy and Histology, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Victoria W. K. Tung
- Discipline of Biomedical Science, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Aaron J. Camp
- Discipline of Biomedical Science, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|