1
|
Boyzo Montes de Oca A, Tendilla-Beltrán H, Bringas ME, Flores G, Aceves J. Chronic pramipexole and rasagiline treatment enhances dendritic spine structural neuroplasticity in striatal and prefrontal cortex neurons of rats with bilateral intrastriatal 6-hydroxydopamine lesions. J Chem Neuroanat 2024; 141:102468. [PMID: 39383978 DOI: 10.1016/j.jchemneu.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Parkinson's disease manifests as neurological alterations within dendritic spines in the striatal and neocortical brain regions, where their functionality closely correlates with morphology. However, the impact of current pharmacotherapy on dendritic spine neuroplasticity, crucial for novel drug development in neurological and psychiatric disorders, remains unclear. This study investigated the effects of 6-OHDA intrastriatal bilateral lesions in male adult rats on behavior and dendritic spine neuroplasticity in striatal and cortical neurons. Furthermore, it evaluated the influence of chronic co-administration of pramipexole (PPX), a D3 receptor agonist, and rasagiline (Ras), a selective MAO-B inhibitor, on these alterations. Lesioned animals exhibited impaired balance behavior, with no improvement following PPX-Ras treatment. The 6-OHDA lesion decreased dendritic spine density in caudate putamen (CPU) spiny projection neurons (SPNs), a change unaffected by treatment, though PPX-Ras increased mushroom spines and reduced stubby spines in these neurons. In nucleus accumbens (NAcc) SPNs and prefrontal cortex layer 3 (PFC-3) pyramidal cells, dendritic spine density remained unaltered, but PPX-Ras decreased mushroom spines and increased bifurcated spines in the NAcc, while increasing mushroom spines and decreasing stubby spines in PFC-3 in lesioned rats. These findings emphasize the importance of dendritic spines as promising targets for innovative pharmacotherapies for Parkinson's disease.
Collapse
Affiliation(s)
- Alfonso Boyzo Montes de Oca
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - María E Bringas
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| | - Jorge Aceves
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico.
| |
Collapse
|
2
|
Kniffin AR, Briand LA. Sex differences in glutamate transmission and plasticity in reward related regions. Front Behav Neurosci 2024; 18:1455478. [PMID: 39359325 PMCID: PMC11445661 DOI: 10.3389/fnbeh.2024.1455478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Disruptions in glutamate homeostasis within the mesolimbic reward circuitry may play a role in the pathophysiology of various reward related disorders such as major depressive disorders, anxiety, and substance use disorders. Clear sex differences have emerged in the rates and symptom severity of these disorders which may result from differing underlying mechanisms of glutamatergic signaling. Indeed, preclinical models have begun to uncover baseline sex differences throughout the brain in glutamate transmission and synaptic plasticity. Glutamatergic synaptic strength can be assessed by looking at morphological features of glutamatergic neurons including spine size, spine density, and dendritic branching. Likewise, electrophysiology studies evaluate properties of glutamatergic neurons to provide information of their functional capacity. In combination with measures of glutamatergic transmission, synaptic plasticity can be evaluated using protocols that induce long-term potentiation or long-term depression. This review will consider preclinical rodent literature directly comparing glutamatergic transmission and plasticity in reward related regions of males and females. Additionally, we will suggest which regions are exhibiting evidence for sexually dimorphic mechanisms, convergent mechanisms, or no sex differences in glutamatergic transmission and plasticity and highlight gaps in the literature for future investigation.
Collapse
Affiliation(s)
- Alyssa R. Kniffin
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, United States
| | - Lisa A. Briand
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, United States
- Neuroscience Program, Temple University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Farkhondeh Tale Navi F, Heysieattalab S, Raoufy MR, Sabaghypour S, Nazari M, Nazari MA. Adaptive closed-loop modulation of cortical theta oscillations: Insights into the neural dynamics of navigational decision-making. Brain Stimul 2024; 17:1101-1118. [PMID: 39277130 DOI: 10.1016/j.brs.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 08/04/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
Navigational decision-making tasks, such as spatial working memory (SWM), rely highly on information integration from several cortical and sub-cortical regions. Performance in SWM tasks is associated with theta rhythm, including low-frequency oscillations related to movement and memory. The interaction of the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), reflected in theta synchrony, is essential in various steps of information processing during SWM. We used a closed-loop neurofeedback (CLNF) system to upregulate theta power in the mPFC and investigate its effects on circuit dynamics and behavior in animal models. Specifically, we hypothesized that enhancing the power of the theta rhythm in the mPFC might improve SWM performance. Animals were divided into three groups: closed-loop (CL), random-loop (RL), and OFF (without stimulation). We recorded local field potential (LFP) in the mPFC while electrical reward stimulation contingent on cortical theta activity was delivered to the lateral hypothalamus (LH), which is considered one of the central reward-associated regions. We also recorded LFP in the vHPC to evaluate the related subcortical neural changes. Results revealed a sustained increase in the theta power in both mPFC and vHPC for the CL group. Our analysis also revealed an increase in mPFC-vHPC synchronization in the theta range over the stimulation sessions in the CL group, as measured by coherence and cross-correlation in the theta frequency band. The reinforcement of this circuit improved spatial decision-making performance in the subsequent behavioral results. Our findings provide direct evidence of the relationship between specific theta upregulation and SWM performance and suggest that theta oscillations are integral to cognitive processes. Overall, this study highlights the potential of adaptive CLNF systems in investigating neural dynamics in various brain circuits.
Collapse
Affiliation(s)
- Farhad Farkhondeh Tale Navi
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Soomaayeh Heysieattalab
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saied Sabaghypour
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Mohammad Ali Nazari
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Khalil MH. Neurosustainability. Front Hum Neurosci 2024; 18:1436179. [PMID: 39268220 PMCID: PMC11390526 DOI: 10.3389/fnhum.2024.1436179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
While the human brain has evolved extraordinary abilities to dominate nature, modern living has paradoxically trapped it in a contemporary "cage" that stifles neuroplasticity. Within this modern environment lurk unseen natural laws with power to sustain the human brain's adaptive capacities - if consciously orchestrated into the environments we design. For too long our contemporary environments have imposed an unyielding static state, while still neglecting the brain's constant adaptive nature as it evolves to dominate the natural world with increasing sophistication. The theory introduced in this article aims to go back in nature without having to go back in time, introducing and expounding Neurosustainability as a novel paradigm seeing beyond the contemporary confines to architect environments and brains in parallel. Its integrated neuro-evidenced framework proposes four enrichment scopes-spatial, natural, aesthetic, and social-each holding multifaceted attributes promising to sustain regions like the hippocampus, cortex and amygdala. Neurosustainability aims to liberate the quintessential essence of nature to sustain and enhance neuroplastic processes through a cycle that begins with design and extends through epigenetic changes. This paradigm shift aims to foster cognitive health and wellness by addressing issues like stress, depression, anxiety and cognitive decline common in the contemporary era thereby offering a path toward a more neurosustainable era aiming to nurture the evolution of the human brain now and beyond.
Collapse
Affiliation(s)
- Mohamed Hesham Khalil
- Department of Architecture, Faculty of Architecture and History of Art, School of Arts and Humanities, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Laine MA, Greiner EM, Shansky RM. Sex differences in the rodent medial prefrontal cortex - What Do and Don't we know? Neuropharmacology 2024; 248:109867. [PMID: 38387553 DOI: 10.1016/j.neuropharm.2024.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The prefrontal cortex, particularly its medial subregions (mPFC), mediates critical functions such as executive control, behavioral inhibition, and memory formation, with relevance for everyday functioning and psychopathology. Despite broad characterization of the mPFC in multiple model organisms, the extent to which mPFC structure and function vary according to an individual's sex is unclear - a knowledge gap that can be attributed to a historical bias for male subjects in neuroscience research. Recent efforts to consider sex as a biological variable in basic science highlight the great need to close this gap. Here we review the knowns and unknowns about how rodents categorized as male or female compare in mPFC neuroanatomy, pharmacology, as well as in aversive, appetitive, and goal- or habit-directed behaviors that recruit the mPFC. We propose that long-standing dogmatic concepts of mPFC structure and function may not remain supported when we move beyond male-only studies, and that empirical challenges to these dogmas are warranted. Additionally, we note some common pitfalls in this work. Most preclinical studies operationalize sex as a binary categorization, and while this approach has furthered the inclusion of non-male rodents it is not as such generalizable to what we know of sex as a multidimensional, dynamic variable. Exploration of sex variability may uncover both sex differences and sex similarities, but care must be taken in their interpretation. Including females in preclinical research needs to go beyond the investigation of sex differences, improving our knowledge of how this brain region and its subregions mediate behavior and health. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- M A Laine
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - E M Greiner
- Department of Psychology, Northeastern University, Boston, MA, USA.
| | - R M Shansky
- Department of Psychology, Northeastern University, Boston, MA, USA
| |
Collapse
|
6
|
Valencia-Hernández I, González-Piña R, García-Díaz G, Ramos-Languren L, Parra-Cid C, Lomelí J, Montes S, Ríos C, Bueno-Nava A. Alpha 2-adrenergic receptor activation reinstates motor deficits in rats recovering from cortical injury. Neural Regen Res 2023; 18:875-880. [DOI: 10.4103/1673-5374.353501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Frankfurt M, Nassrallah Z, Luine V. Steroid Hormone Interaction with Dendritic Spines: Implications for Neuropsychiatric Disease. ADVANCES IN NEUROBIOLOGY 2023; 34:349-366. [PMID: 37962800 DOI: 10.1007/978-3-031-36159-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines, key sites for neural plasticity, are influenced by gonadal steroids. In this chapter, we review the effects of gonadal steroids on dendritic spine density in areas important to cognitive function, the hippocampus, and prefrontal cortex. Most of these animal model studies investigated the effects of estrogen in females, but we also include more recent data on androgen effects in both males and females. The underlying genomic and non-genomic mechanisms related to gonadal steroid-induced spinogenesis are also reviewed. Subsequently, we discuss possible reasons for the observed sex differences in many neuropsychiatric diseases, which appear to be caused, in part, by aberrant synaptic connections that may involve dendritic spine pathology. Overall, knowledge concerning the regulation of dendritic spines by gonadal hormones has grown since the initial discoveries in the 1990s, and current research points to a potential role for aberrant spine functioning in many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maya Frankfurt
- Hofstra Northwell School of Nursing and Physician Assistant Studies, Hempstead, NY, USA.
| | - Zeinab Nassrallah
- Department of Science Education Zucker School of Medicine, 500 Hofstra University, Hempstead, NY, USA
| | - Victoria Luine
- Department of Psychology, Hunter College, New York, NY, USA
| |
Collapse
|
8
|
Kwarteng F, Wang R, Micov V, Hausknecht KA, Turk M, Ishiwari K, Oubraim S, Wang AL, Richards JB, Haj-Dahmane S, Shen RY. Adolescent chronic unpredictable stress leads to increased anxiety and attention deficit/hyperactivity-like symptoms in adulthood. Psychopharmacology (Berl) 2022; 239:3779-3791. [PMID: 36348027 DOI: 10.1007/s00213-022-06242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Early-life adversities during development (e.g., child abuse and neglect) are linked to multiple behavioral and cognitive dysfunctions, such as attention deficit/hyperactivity disorder (ADHD) and anxiety disorders, which have high comorbidity. However, the impact of adversities during adolescence, a crucial period in early life for these disorders, is understudied. Using a chronic unpredictable stress (CUS) model in rats, we investigated whether adversities in adolescence could lead to increased anxiety and ADHD-like symptoms in adulthood. METHODS Mid- to late-adolescent (5-7-week-old) male and female Sprague-Dawley rats underwent a mild CUS procedure for 2 weeks. Various stressors were applied in an unpredictable way. Rats of both sexes were then trained with a 2-choice reaction time (2-CRT) task during adulthood, which are designed to detect ADHD-like symptoms, including increased impulsivity and lapse of attention. In addition, an open field test was conducted to examine if CUS resulted in a persistent increase in anxiety-like behavior during adulthood. RESULTS Both male and female rats with CUS exposure travelled shorter distances in the open field and spent less time in the center zone, indicating increased anxiety. In the 2-CRT task, rats of both sexes with CUS exposure showed increased impulsivity. Augmented lapses of attention were observed in female but not male rats. CONCLUSION Chronic unpredictable stress during adolescence increases anxiety and leads to ADHD-like symptoms in both male and female rats in adulthood. The deficits are more severe in females than in males. These observations support that adversities during adolescence persistently increase anxiety, which is comorbid with attention deficits.
Collapse
Affiliation(s)
- Francis Kwarteng
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Ruixiang Wang
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Veronika Micov
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Kathryn A Hausknecht
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Marisa Turk
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Keita Ishiwari
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Saida Oubraim
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - An-Li Wang
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Jerry B Richards
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
9
|
Ueno H, Takahashi Y, Murakami S, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Fingolimod increases parvalbumin-positive neurons in adult mice. IBRO Neurosci Rep 2022; 13:96-106. [PMID: 36590091 PMCID: PMC9795291 DOI: 10.1016/j.ibneur.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023] Open
Abstract
In recent years, it has been shown that central nervous system agents, such as antidepressants and antiepileptic drugs, reopen a critical period in mature animals. Fingolimod, which is used for the treatment of multiple sclerosis, also restores neuroplasticity. In this study, we investigated the effects of parvalbumin (PV)-positive neurons and perineuronal nets (PNN) on fingolimod administration with respect to neuroplasticity. Fingolimod was chronically administered intraperitoneally to mature mice. PV-positive neurons and PNN in the hippocampus, prefrontal cortex, and somatosensory cortex were analyzed. An increase in PV-positive neurons was observed in the hippocampus, prefrontal cortex, and somatosensory cortex of the fingolimod-treated mice. An increase in Wisteria floribunda agglutinin-positive PNN was confirmed in mice treated with fingolimod in the somatosensory cortex only. Fingolimod increased the density of PV-positive neurons in the brains of mature mice. The results indicate that fingolimod may change the critical period in mature animals.
Collapse
Key Words
- CNS, central nervous system
- ECM, extracellular matrix
- Fingolimod
- GAD67, anti-glutamic acid decarboxylase
- GFAP, glial fibrillary acidic protein
- Hippocampus
- IL, infralimbic cortex
- NIH, National Institutes of Health, PBS, phosphate-buffered saline
- PL, prelimbic cortex
- PNN, perineuronal net
- PV neurons, parvalbumin-expressing interneurons
- Parvalbumin
- Perineuronal nets
- Prefrontal cortex
- Somatosensory cortex
- WFA, Wisteria floribunda agglutinin
- dAC, dorsal anterior cingulate cortex
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Kurashiki 701–0193, Japan,Correspondence to: Department of Medical Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama 701–0193, Japan, 193.
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701–0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701–0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701–0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700–8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama 700–8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701–0192, Japan
| |
Collapse
|
10
|
González-Granillo AE, Gnecco D, Díaz A, Garcés-Ramírez L, de la Cruz F, Juarez I, Morales-Medina JC, Flores G. Curcumin induces cortico-hippocampal neuronal reshaping and memory improvements in aged mice. J Chem Neuroanat 2022; 121:102091. [PMID: 35334275 DOI: 10.1016/j.jchemneu.2022.102091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
Abstract
Aging induces cognitive decline, reduces of synaptic plasticity and increases oxidative reactive species (ROS) in the central nervous system. Traditional medicine has long benefitted from naturally occurring molecules such as curcumin (diferuloymethane). Curcumin is extracted from the plant Curcuma longa and is known for its synaptic and antioxidant-related benefits. In this study, we tested the hypothesis that chronic curcumin treatment reduces cognitive and cellular effects of aging. Curcumin-treated mice showed improved learning and memory using the Morris Water Maze and novel object recognition task. In addition, using the Golgi-Cox stain, curcumin treatment increased spine density in all evaluated regions and increased dendritic arborization in the prefrontal cortex (PFC) layer 3 and CA3 subregion of the hippocampus. Moreover, chronic curcumin exposure increased synaptophysin and actin expression and reduced glial fibrillary acidic protein expression, a marker of astrocytes, in the hippocampus (CA1 and CA3 subregions), while simultaneously reducing the ROS-related molecule, metallothionein 3 expression in the PFC and hippocampus. Collectively, these novel findings suggest that curcumin reduces cognitive, neuronal and astrocytic signs of aging in mice.
Collapse
Affiliation(s)
- Aldo Efrain González-Granillo
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel, 72570 Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Dino Gnecco
- Centro de Química, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Linda Garcés-Ramírez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Fidel de la Cruz
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ismael Juarez
- Laboratorio de Fisiología, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV, Universidad Autónoma de Tlaxcala, AP 62, CP 90000 Tlaxcala, Mexico
| | - Gonzalo Flores
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel, 72570 Puebla, Mexico.
| |
Collapse
|
11
|
Chand S, Gowen A, Savine M, Moore D, Clark A, Huynh W, Wu N, Odegaard K, Weyrich L, Bevins RA, Fox HS, Pendyala G, Yelamanchili SV. A comprehensive study to delineate the role of an extracellular vesicle-associated microRNA-29a in chronic methamphetamine use disorder. J Extracell Vesicles 2021; 10:e12177. [PMID: 34913274 PMCID: PMC8674191 DOI: 10.1002/jev2.12177] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/27/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs), which express a repertoire of cargo molecules (cf. proteins, microRNA, lipids, etc.), have been garnering a prominent role in the modulation of several cellular processes. Here, using both non-human primate and rodent model systems, we provide evidence that brain-derived EV (BDE) miRNA, miR-29a-3p (mir-29a), is significantly increased during chronic methamphetamine (MA) exposure. Further, miR-29a levels show significant increase both with drug-seeking and reinstatement in a rat MA self-administration model. We also show that EV-associated miR-29a is enriched in EV pool comprising of small EVs and exomeres and further plays a critical role in MA-induced inflammation and synaptodendritic damage. Furthermore, treatment with the anti-inflammatory drug ibudilast (AV411), which is known to reduce MA relapse, decreased the expression of miR-29a and subsequently attenuated inflammation and rescued synaptodendritic injury. Finally, using plasma from MUD subjects, we provide translational evidence that EV-miR29a could potentially serve as a biomarker to detect neuronal damage in humans diagnosed with MA use disorder (MUD). In summary, our work suggests that EV-associated miR-29a-3p plays a crucial role in MUD and might be used as a potential blood-based biomarker for detecting chronic inflammation and synaptic damage.
Collapse
Affiliation(s)
- Subhash Chand
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Austin Gowen
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Mason Savine
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Dalia Moore
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Alexander Clark
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Wendy Huynh
- Department of PsychologyUniversity of Nebraska–Lincoln (UNL)LincolnNebraskaUSA
| | - Niming Wu
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Katherine Odegaard
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | | | - Rick A. Bevins
- Department of PsychologyUniversity of Nebraska–Lincoln (UNL)LincolnNebraskaUSA
| | - Howard S. Fox
- Department of Neurological SciencesUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Gurudutt Pendyala
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Sowmya V. Yelamanchili
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| |
Collapse
|
12
|
Lee J, Naik V, Orzabal M, Lunde-Young R, Ramadoss J. Morphological alteration in rat hippocampal neuronal dendrites following chronic binge prenatal alcohol exposure. Brain Res 2021; 1768:147587. [PMID: 34297994 DOI: 10.1016/j.brainres.2021.147587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Prenatal alcohol exposure (PAE) may result in Fetal Alcohol Spectrum Disorders (FASD). The hippocampus has been recognized as a vulnerable target to alcohol-induced developmental damage. However, the effect of prenatal exposure to alcohol on dendritic morphological adaptations throughout the hippocampal fields in the developing brain still remains largely unknown in the context of FASD. We hypothesized that chronic binge alcohol exposure during pregnancy alters dendrite arborization throughout the developing rat hippocampus. Pregnant Sprague-Dawley rats were assigned to either a pair-fed control (PF-Cont) or a binge alcohol (Alcohol) treatment group. Alcohol dams were acclimatized via a once-daily orogastric gavage of 4.5 g/kg alcohol from gestational day (GD) 5-10 and progressed to 6 g/kg alcohol from GD 11-21. Pair-fed dams similarly received isocaloric maltose dextrin. After parturition, all dams received an ad libitum diet and nursed their offspring until postnatal day (PND) 10 when the pup brains were collected for morphological analysis. PAE increased dendritic arborization and complexities of CA1, CA2/3, and DG neurons in the PND 10 rat hippocampus. The number of primary dendrites, total dendritic length, and number of dendritic branches were significantly increased following PAE, and Sholl analysis revealed significantly more intersections of the dendritic processes in PND 10 offspring following PAE compared with those in the PF-Cont group. We conclude that chronic binge PAE significantly alters hippocampal dendritic morphology in the developing hippocampus. We conjecture that this morphological alteration in postnatal rat hippocampal dendrites following chronic binge prenatal alcohol exposure may play a critical role in FASD neurobiological phenotypes.
Collapse
Affiliation(s)
- Jehoon Lee
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Vishal Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Marcus Orzabal
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Raine Lunde-Young
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
13
|
Li X, Yao J, Hu KH, Wu B, Sui JF, Gao J, Wu GY, Liu SL. Differential roles of prelimbic and anterior cingulate cortical region in the modulation of histaminergic and non-histaminergic itch. Behav Brain Res 2021; 411:113388. [PMID: 34052263 DOI: 10.1016/j.bbr.2021.113388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Itch is an unpleasant sensation that evokes a desire to scratch. Itch processing in the peripheral and spinal cord has been studied extensively, but the mechanism of itch in the central nervous system is still unclear. Anterior cingulate cortex (ACC) and prelimbic cortex (Prl), two subregions of the prefrontal cortex closely related to emotion and motivation, have been reported to be activated during itching in a series of functional imaging studies. However, the exact role of Prl and the differences between ACC and Prl in itch modulation remains unknown. To directly test the differential roles of ACC and Prl in itch processing, we chemogeneticlly inhibited the caudal ACC and Prl, respectively. We found that inhibition of caudal ACC reduced histaminergic but not non-histaminergic itch-induced scratching behaviors. In contrast, inhibition of Prl reduced both histaminergic and non-histaminergic itch-induced scratching behaviors. Our study provided direct evidence of Prl involvement in itch modulation and revealed the differential roles of caudal ACC and Prl in regulating histaminergic and non-histaminergic itch.
Collapse
Affiliation(s)
- Xuan Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Ke-Hui Hu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, 629000, China
| | - Bing Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jian-Feng Sui
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jie Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Guang-Yan Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Shu-Lei Liu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
14
|
An Extracellular Perspective on CNS Maturation: Perineuronal Nets and the Control of Plasticity. Int J Mol Sci 2021; 22:ijms22052434. [PMID: 33670945 PMCID: PMC7957817 DOI: 10.3390/ijms22052434] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
During restricted time windows of postnatal life, called critical periods, neural circuits are highly plastic and are shaped by environmental stimuli. In several mammalian brain areas, from the cerebral cortex to the hippocampus and amygdala, the closure of the critical period is dependent on the formation of perineuronal nets. Perineuronal nets are a condensed form of an extracellular matrix, which surrounds the soma and proximal dendrites of subsets of neurons, enwrapping synaptic terminals. Experimentally disrupting perineuronal nets in adult animals induces the reactivation of critical period plasticity, pointing to a role of the perineuronal net as a molecular brake on plasticity as the critical period closes. Interestingly, in the adult brain, the expression of perineuronal nets is remarkably dynamic, changing its plasticity-associated conditions, including memory processes. In this review, we aimed to address how perineuronal nets contribute to the maturation of brain circuits and the regulation of adult brain plasticity and memory processes in physiological and pathological conditions.
Collapse
|
15
|
Viana GSB, Vale EMD, Araujo ARAD, Coelho NC, Andrade SM, Costa ROD, Aquino PEAD, Sousa CNSD, Medeiros ISD, Vasconcelos SMMD, Neves KRT. Rapid and long-lasting antidepressant-like effects of ketamine and their relationship with the expression of brain enzymes, BDNF, and astrocytes. ACTA ACUST UNITED AC 2020; 54:e10107. [PMID: 33331415 PMCID: PMC7747878 DOI: 10.1590/1414-431x202010107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/28/2020] [Indexed: 12/28/2022]
Abstract
Ketamine (KET) is an N-methyl-D-aspartate (NMDA) antagonist with rapid and long-lasting antidepressant effects, but how the drug shows its sustained effects is still a matter of controversy. The objectives were to evaluate the mechanisms for KET rapid (30 min) and long-lasting (15 and 30 days after) antidepressant effects in mice. A single dose of KET (2, 5, or 10 mg/kg, po) was administered to male Swiss mice and the forced swim test (FST) was performed 30 min, 15, or 30 days later. Imipramine (IMI, 30 mg/kg, ip), a tricyclic antidepressant drug, was used as reference. The mice were euthanized, separated into two time-point groups (D1, first day after KET injection; D30, 30 days later), and brain sections were processed for glycogen synthase kinase-3 (GSK-3), histone deacetylase (HDAC), brain-derived neurotrophic factor (BDNF), and glial fibrillary acidic protein (GFAP) immunohistochemical assays. KET (5 and 10 mg/kg) presented rapid and long-lasting antidepressant-like effects. As expected, the immunoreactivities for brain GSK-3 and HDAC decreased compared to control groups in all areas (striatum, DG, CA1, CA3, and mainly pre-frontal cortex, PFC) after KET injection. Increases in BDNF immunostaining were demonstrated in the PFC, DG, CA1, and CA3 areas at D1 and D30 time-points. GFAP immunoreactivity was also increased in the PFC and striatum at both time-points. In conclusion, KET changed brain BDNF and GFAP expressions 30 days after a single administration. Although neuroplasticity could be involved in the observed effects of KET, more studies are needed to explain the mechanisms for the drug’s sustained antidepressant-like effects.
Collapse
Affiliation(s)
- G S B Viana
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - E M do Vale
- Departamento de Biofisiologia, Faculdade de Medicina Estácio de Juazeiro do Norte, Juazeiro do Norte, CE, Brasil
| | - A R A de Araujo
- Departamento de Biofisiologia, Faculdade de Medicina Estácio de Juazeiro do Norte, Juazeiro do Norte, CE, Brasil
| | - N C Coelho
- Departamento de Biofisiologia, Faculdade de Medicina Estácio de Juazeiro do Norte, Juazeiro do Norte, CE, Brasil
| | - S M Andrade
- Departamento de Biofisiologia, Faculdade de Medicina Estácio de Juazeiro do Norte, Juazeiro do Norte, CE, Brasil
| | - R O da Costa
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - P E A de Aquino
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - C N S de Sousa
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - I S de Medeiros
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - S M M de Vasconcelos
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - K R T Neves
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
16
|
Cushman JD, Drew MR, Krasne FB. The environmental sculpting hypothesis of juvenile and adult hippocampal neurogenesis. Prog Neurobiol 2020; 199:101961. [PMID: 33242572 DOI: 10.1016/j.pneurobio.2020.101961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 10/02/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
We propose that a major contribution of juvenile and adult hippocampal neurogenesis is to allow behavioral experience to sculpt dentate gyrus connectivity such that sensory attributes that are relevant to the animal's environment are more strongly represented. This "specialized" dentate is then able to store a larger number of discriminable memory representations. Our hypothesis builds on accumulating evidence that neurogenesis declines to low levels prior to adulthood in many species. Rather than being necessary for ongoing hippocampal function, as several current theories posit, we argue that neurogenesis has primarily a prospective function, in that it allows experience to shape hippocampal circuits and optimize them for future learning in the particular environment in which the animal lives. Using an anatomically-based simulation of the hippocampus (BACON), we demonstrate that environmental sculpting of this kind would reduce overlap among hippocampal memory representations and provide representation cells with more information about an animal's current situation; consequently, it would allow more memories to be stored and accurately recalled without significant interference. We describe several new, testable predictions generated by the sculpting hypothesis and evaluate the hypothesis with respect to existing evidence. We argue that the sculpting hypothesis provides a strong rationale for why juvenile and adult neurogenesis occurs specifically in the dentate gyrus and why it declines significantly prior to adulthood.
Collapse
Affiliation(s)
- Jesse D Cushman
- Neurobehavioral Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, United States.
| | - Michael R Drew
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States.
| | - Franklin B Krasne
- Department of Psychology, University of California Los Angeles, Box 951563, Los Angeles, CA 90095-1563, United States.
| |
Collapse
|
17
|
Smail MA, Smith BL, Nawreen N, Herman JP. Differential impact of stress and environmental enrichment on corticolimbic circuits. Pharmacol Biochem Behav 2020; 197:172993. [PMID: 32659243 PMCID: PMC7484282 DOI: 10.1016/j.pbb.2020.172993] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Stress exposure can produce profound changes in physiology and behavior that can impair health and well-being. Of note, stress exposure is linked to anxiety disorders and depression in humans. The widespread impact of these disorders warrants investigation into treatments to mitigate the harmful effects of stress. Pharmacological treatments fail to help many with these disorders, so recent work has focused on non-pharmacological alternatives. One of the most promising of these alternatives is environmental enrichment (EE). In rodents, EE includes social, physical, and cognitive stimulation for the animal, in the form of larger cages, running wheels, and toys. EE successfully reduces the maladaptive effects of various stressors, both as treatment and prophylaxis. While we know that EE can have beneficial effects under stress conditions, the morphological and molecular mechanisms underlying these behavioral effects are still not well understood. EE is known to alter neurogenesis, dendrite development, and expression of neurotrophic growth factors, effects that vary by type of enrichment, age, and sex. To add to this complexity, EE has differential effects in different brain regions. Understanding how EE exerts its protective effects on morphological and molecular levels could hold the key to developing more targeted pharmacological treatments. In this review, we summarize the literature on the morphological and molecular consequences of EE and stress in key emotional regulatory pathways in the brain, the hippocampus, prefrontal cortex, and amygdala. The similarities and differences among these regions provide some insight into stress-EE interaction that may be exploited in future efforts toward prevention of, and intervention in, stress-related diseases.
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States.
| | - Brittany L Smith
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Nawshaba Nawreen
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Veterans Affairs Medical Center, Cincinnati, OH, United States; Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
18
|
Xu X, Hanganu-Opatz IL, Bieler M. Cross-Talk of Low-Level Sensory and High-Level Cognitive Processing: Development, Mechanisms, and Relevance for Cross-Modal Abilities of the Brain. Front Neurorobot 2020; 14:7. [PMID: 32116637 PMCID: PMC7034303 DOI: 10.3389/fnbot.2020.00007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of cross-modal learning capabilities requires the interaction of neural areas accounting for sensory and cognitive processing. Convergence of multiple sensory inputs is observed in low-level sensory cortices including primary somatosensory (S1), visual (V1), and auditory cortex (A1), as well as in high-level areas such as prefrontal cortex (PFC). Evidence shows that local neural activity and functional connectivity between sensory cortices participate in cross-modal processing. However, little is known about the functional interplay between neural areas underlying sensory and cognitive processing required for cross-modal learning capabilities across life. Here we review our current knowledge on the interdependence of low- and high-level cortices for the emergence of cross-modal processing in rodents. First, we summarize the mechanisms underlying the integration of multiple senses and how cross-modal processing in primary sensory cortices might be modified by top-down modulation of the PFC. Second, we examine the critical factors and developmental mechanisms that account for the interaction between neuronal networks involved in sensory and cognitive processing. Finally, we discuss the applicability and relevance of cross-modal processing for brain-inspired intelligent robotics. An in-depth understanding of the factors and mechanisms controlling cross-modal processing might inspire the refinement of robotic systems by better mimicking neural computations.
Collapse
Affiliation(s)
- Xiaxia Xu
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Bieler
- Laboratory for Neural Computation, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Castelhano-Carlos MJ, Aslani S, Sousa N. The Impact of Physical Enrichment in the Structure of the Medial Prefrontal Cortex and Nucleus Accumbens of the Adult Male Rat Brain. Neuroscience 2020; 454:51-60. [PMID: 32058067 DOI: 10.1016/j.neuroscience.2020.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022]
Abstract
Rodents' behavioural analysis can be influenced by several factors, including housing. The PhenoWorld (PhW) is an enriched housing and testing paradigm, which proved to be relevant for screening depressive-like behaviours in rats, being remarkably sensitive for hedonic behaviour. Herein, we assessed neuronal plasticity as a consequence of living in the PhW, by comparing the structure of the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAc), two brain areas involved in the circuitry regulating motivation and reward. Our findings indicate that male rats living in the PhW display increased mPFC layer II volumes, as well as increased immature spine densities and total numbers in the mPFC pyramidal neurons. The NAc volumes and NAc medium spiny neurons branching tend also to be higher in animals experiencing the physical enrichment provided in the PhW, but significant differences were not found between animals living in PhW compared to animals living in standard cages (STD6). These results demonstrate that living in a more naturalistic complex environment, closer to real life experience, impacts on the structure of brain regions implicated in complex multidimensional disorders.
Collapse
Affiliation(s)
- M J Castelhano-Carlos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - S Aslani
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - N Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
20
|
Hamilton DA, Silasi G, Magcalas CM, Pellis SM, Kolb B. Social and olfactory experiences modify neuronal morphology of orbital frontal cortex. Behav Neurosci 2020; 134:59-68. [PMID: 31904253 PMCID: PMC10466317 DOI: 10.1037/bne0000350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Structural modifications in the dendritic morphology of neurons occur following many forms of experience, including exposure to drugs, complex housing, and training in specific behavioral tasks. The present study examined morphological changes in orbitofrontal (OFC) and medial prefrontal cortex (mPFC) neurons of female rats following experience with a variety of social partners or nonsocial olfactory stimuli. We reasoned that experience with various social partners or olfactory stimuli, and the associated behavioral adaptations, would drive structural modifications in prefrontal cortex neurons engaged by these stimuli. Social experience was manipulated by providing rats with a novel cage-mate or housing the animal with the same cage-mate throughout the study. Similarly, olfactory experience was manipulated by introducing novel, nonsocial odors in the home cage or exposing the animals to the same home-cage odor throughout the study. Both forms of experience resulted in altered dendritic morphology in OFC neurons, whereas morphological changes in mPFC were comparatively small and limited to changes in spine density. These observations indicate that OFC and mPFC neurons respond differently to social and nonsocial olfactory stimulation in adulthood and join the growing body of data illustrating differential effects of experience on structural plasticity in OFC and mPFC. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Gergely Silasi
- Department of Cellular and Molecular Medicine, University of Ottawa
| | | | | | - Bryan Kolb
- Department of Neuroscience, University of Lethbridge
- Canadian Institutes for Advanced Research
| |
Collapse
|
21
|
Sampedro-Piquero P, Ladrón de Guevara-Miranda D, Pavón FJ, Serrano A, Suárez J, Rodríguez de Fonseca F, Santín LJ, Castilla-Ortega E. Neuroplastic and cognitive impairment in substance use disorders: a therapeutic potential of cognitive stimulation. Neurosci Biobehav Rev 2019; 106:23-48. [DOI: 10.1016/j.neubiorev.2018.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/15/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
|
22
|
Carr ZJ, Miller L, Ruiz-Velasco V, Kunselman AR, Karamchandani K. In a Model of Neuroinflammation Designed to Mimic Delirium, Quetiapine Reduces Cortisol Secretion and Preserves Reversal Learning in the Attentional Set Shifting Task. J Neuroimmune Pharmacol 2019; 14:383-390. [PMID: 31119596 DOI: 10.1007/s11481-019-09857-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023]
Abstract
Quetiapine, an atypical antipsychotic medication has lacked pre-clinical validation for its purported benefits in the treatment of delirium. This laboratory investigation examined the effects of quetiapine on the attentional set shifting task (ASST), a measure of cognitive flexibility and executive functioning, in a rodent model of lipopolysaccharide (LPS) mediated neuroinflammation. 19 Sprague Dawley female rats were randomly selected to receive intraperitoneal placebo (N = 5), LPS and placebo (N = 7) or LPS and quetiapine (n = 7) and performed the ASST. We measured trials to criterion, errors, non-locomotion episodes and latency to criterion, serum cortisol and tumor necrosis factor alpha (TNF-α) levels. TNF-α levels were not different between groups at 24 h. Cortisol levels in the LPS + Quetiapine group were reduced compared to LPS + Placebo (P < 0.001) and did not differ from the placebo group (P = 0.15). Analysis between LPS + Quetiapine and LPS + Placebo treated rats demonstrated improvement in the compound discrimination reversal (CD Rev1) (P = 0.016) and the intra-dimensional reversal (ID Rev2) (P = 0.007) discriminations on trials to criterion. LPS + Quetiapine treated rats had fewer errors than LPS + Placebo treated animals in the compound discrimination (CD) (P = 0.007), CD Rev1 (P = 0.005), ID Rev2 (P < 0.001) discriminations. There was no difference in non-locomotion frequency or latency to criterion between the three groups in all discriminations (P > 0.0167). We demonstrated preserved reversal learning, no effect on attentional set shifting and normalized cortisol levels in quetiapine-treated rats in this neuroinflammatory model of delirium. This suggests that quetiapine's beneficial effects in delirium may be related to the preservation of reversal learning and potential downstream effects related to reduction in cortisol production. Graphical Abstract.
Collapse
Affiliation(s)
- Zyad J Carr
- Department of Anesthesiology & Perioperative Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA. .,Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA. .,Department of Anesthesiology & Perioperative Medicine, H187, 500 University Dr., Hershey, PA, 17078, USA.
| | - Lauren Miller
- Department of Anesthesiology & Perioperative Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Victor Ruiz-Velasco
- Department of Anesthesiology & Perioperative Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.,Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Allen R Kunselman
- Department of Public Health Sciences, Penn State College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Kunal Karamchandani
- Department of Anesthesiology & Perioperative Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| |
Collapse
|
23
|
Uy JP, Goldenberg D, Tashjian SM, Do KT, Galván A. Physical home environment is associated with prefrontal cortical thickness in adolescents. Dev Sci 2019; 22:e12834. [DOI: 10.1111/desc.12834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/27/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jessica P. Uy
- Department of Psychology University of California, Los Angeles Los Angeles California
| | - Diane Goldenberg
- Department of Psychology University of California, Los Angeles Los Angeles California
| | - Sarah M. Tashjian
- Department of Psychology University of California, Los Angeles Los Angeles California
| | - Kathy T. Do
- Department of Psychology University of California, Los Angeles Los Angeles California
| | - Adriana Galván
- Department of Psychology University of California, Los Angeles Los Angeles California
| |
Collapse
|
24
|
Pudas S, Josefsson M, Rieckmann A, Nyberg L. Longitudinal Evidence for Increased Functional Response in Frontal Cortex for Older Adults with Hippocampal Atrophy and Memory Decline. Cereb Cortex 2019; 28:936-948. [PMID: 28119343 DOI: 10.1093/cercor/bhw418] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 12/18/2022] Open
Abstract
The functional organization of the frontal cortex is dynamic. Age-related increases in frontal functional responses have been shown during various cognitive tasks, but the cross-sectional nature of most past studies makes it unclear whether these increases reflect reorganization or stable individual differences. Here, we followed 130 older individuals' cognitive trajectories over 20-25 years with repeated neuropsychological assessments every 5th year, and identified individuals with stable or declining episodic memory. Both groups displayed significant gray matter atrophy over 2 successive magnetic resonance imaging sessions 4 years apart, but the decline group also had a smaller volume of the right hippocampus. Only individuals with declining memory demonstrated increased prefrontal functional responses during memory encoding and retrieval over the 4-year interval. Regions with increased functional recruitment were located outside, or on the borders of core task-related networks, indicating an expansion of these over time. These longitudinal findings offer novel insight into the mechanisms behind age-associated memory loss, and are consistent with a theoretical model in which hippocampus atrophy, past a critical threshold, induces episodic-memory decline and altered prefrontal functional organization.
Collapse
Affiliation(s)
- Sara Pudas
- Department of Integrative Medical Biology, Umeå University, SE-901 87 Umeå, Sweden.,Umeå center for Functional Brain Imaging, Umeå University, SE-901 87 Umeå, Sweden
| | - Maria Josefsson
- Centre for Demographic and Ageing Research at Umeå University (CEDAR), Umeå University, SE-901 87 Umeå, Sweden
| | - Anna Rieckmann
- Umeå center for Functional Brain Imaging, Umeå University, SE-901 87 Umeå, Sweden.,Department of Radiation Sciences, Umeå University, SE-901 87 Umeå, Sweden
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, SE-901 87 Umeå, Sweden.,Umeå center for Functional Brain Imaging, Umeå University, SE-901 87 Umeå, Sweden.,Department of Radiation Sciences, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
25
|
Sta Maria NS, Sargolzaei S, Prins ML, Dennis EL, Asarnow RF, Hovda DA, Harris NG, Giza CC. Bridging the gap: Mechanisms of plasticity and repair after pediatric TBI. Exp Neurol 2019; 318:78-91. [PMID: 31055004 DOI: 10.1016/j.expneurol.2019.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/09/2019] [Accepted: 04/25/2019] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury is the leading cause of death and disability in the United States, and may be associated with long lasting impairments into adulthood. The multitude of ongoing neurobiological processes that occur during brain maturation confer both considerable vulnerability to TBI but may also provide adaptability and potential for recovery. This review will examine and synthesize our current understanding of developmental neurobiology in the context of pediatric TBI. Delineating this biology will facilitate more targeted initial care, mechanism-based therapeutic interventions and better long-term prognostication and follow-up.
Collapse
Affiliation(s)
- Naomi S Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, ZNI115, Los Angeles, CA 90033, United States of America.
| | - Saman Sargolzaei
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America.
| | - Mayumi L Prins
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Emily L Dennis
- Brigham and Women's Hospital/Harvard University and Department of Psychology, Stanford University, 1249 Boylston Street, Boston, MA 02215, United States of America.
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Box 951759, 760 Westwood Plaza, 48-240C Semel Institute, Los Angeles, CA 90095-1759, United States of America.
| | - David A Hovda
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Department of Medical and Molecular Pharmacology, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562 & Semel 18-228A, Los Angeles, CA 90095-6901, United States of America.
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Christopher C Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America; Division of Pediatric Neurology, Mattel Children's Hospital - UCLA, Los Angeles, CA, United States of America.
| |
Collapse
|
26
|
Chemogenetic Suppression of Medial Prefrontal-Dorsal Hippocampal Interactions Prevents Estrogenic Enhancement of Memory Consolidation in Female Mice. eNeuro 2019; 6:eN-NWR-0451-18. [PMID: 31016230 PMCID: PMC6477593 DOI: 10.1523/eneuro.0451-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
The importance of the dorsal hippocampus (DH) in mediating the memory-enhancing effects of the sex-steroid hormone 17β-estradiol (E2) is well established. However, estrogen receptors (ERs) are highly expressed in other brain regions that support memory formation, including the medial prefrontal cortex (mPFC). The mPFC and DH interact to mediate the formation of several types of memory, and behavioral tasks that recruit the mPFC are enhanced by systemic E2 administration, making this region a prime candidate for investigating circuit-level questions regarding the estrogenic regulation of memory. Further, infusion of E2 directly into the DH increases dendritic spine density in both the DH and mPFC, and this effect depends upon rapid activation of cell-signaling pathways in the DH, demonstrating a previously unexplored interaction between the DH and mPFC that led us to question the role of the mPFC in object memory consolidation and the necessity of DH-mPFC interactions in the memory-enhancing effects of E2. Here, we found that infusion of E2 directly into the mPFC of ovariectomized mice increased mPFC apical spine density and facilitated object recognition and spatial memory consolidation, demonstrating that E2 in the mPFC increases spinogenesis and enhances on memory consolidation. Next, chemogenetic suppression of the mPFC blocked the beneficial effects of DH-infused E2 on memory consolidation, indicating that systems-level DH-mPFC interactions are necessary for the memory-enhancing effects of E2. Together, these studies provide evidence that E2 in the mPFC mediates memory formation, and reveal that the DH and mPFC act in concert to support the memory-enhancing effects of E2 in female mice.
Collapse
|
27
|
Image-guided phenotyping of ovariectomized mice: altered functional connectivity, cognition, myelination, and dopaminergic functionality. Neurobiol Aging 2019; 74:77-89. [DOI: 10.1016/j.neurobiolaging.2018.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/20/2018] [Accepted: 10/06/2018] [Indexed: 01/22/2023]
|
28
|
Perinatal Exposure to an Environmentally Relevant Mixture of Phthalates Results in a Lower Number of Neurons and Synapses in the Medial Prefrontal Cortex and Decreased Cognitive Flexibility in Adult Male and Female Rats. J Neurosci 2018; 38:6864-6872. [PMID: 30012688 DOI: 10.1523/jneurosci.0607-18.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 11/21/2022] Open
Abstract
The growth and organization of the developing brain are known to be influenced by hormones, but little is known about whether disruption of hormones affects cortical regions, such as mPFC. This region is particularly important given its involvement in executive functions and implication in the pathology of many neuropsychiatric disorders. Here, we examine the long-term effects of perinatal exposure to endocrine-disrupting compounds, the phthalates, on the mPFC and associated behavior. This investigation is pertinent as humans are ubiquitously exposed to phthalates through a variety of consumer products and phthalates can readily cross the placenta and be delivered to offspring via lactation. Pregnant dams orally consumed an environmentally relevant mixture of phthalates at 0, 200, or 1000 μg/kg/d through pregnancy and for 10 d while lactating. As adults, offspring were tested in an attentional set-shifting task, which assesses cognitive flexibility. Brains were also examined in adulthood for stereological quantification of the number of neurons, glia, and synapses within the mPFC. We found that, independent of sex, perinatal phthalate exposure at either dose resulted in a reduction in neuron number, synapse number, and size of the mPFC and a deficit in cognitive flexibility. Interestingly, the number of synapses was correlated with cognitive flexibility, such that rats with fewer synapses were less cognitively flexible than those with more synapses. These results demonstrate that perinatal phthalate exposure can have long-term effects on the cortex and behavior of both male and female rats.SIGNIFICANCE STATEMENT Humans globally are exposed on a daily basis to a variety of phthalates, which are endocrine-disrupting chemicals. The effects of phthalate exposure on the developing brain, especially on cognitively relevant regions, such as the mPFC, are not known. Here, we use a rat model of human prenatal exposure to an environmentally relevant mixture of phthalates and find that there is an appreciable reduction in neuron number, synapse number, and size of the mPFC and a deficit in cognitive flexibility. These results may have serious implications for humans given that the mPFC is involved in executive functions and is implicated in the pathology of many neuropsychiatric disorders.
Collapse
|
29
|
Intergenerational Sex-Specific Transmission of Maternal Social Experience. Sci Rep 2018; 8:10529. [PMID: 30002484 PMCID: PMC6043535 DOI: 10.1038/s41598-018-28729-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
The social environment is a major determinant of individual stress response and lifetime health. The present study shows that (1) social enrichment has a significant impact on neuroplasticity and behaviour particularly in females; and (2) social enrichment in females can be transmitted to their unexposed female descendants. Two generations (F0 and F1) of male and female rats raised in standard and social housing conditions were examined for neurohormonal and molecular alterations along with changes in four behavioural modalities. In addition to higher cortical neuronal density and cortical thickness, social experience in mothers reduced hypothalamic-pituitary-adrenal (HPA) axis activity in F0 rats and their F1 non-social housing offspring. Only F0 social mothers and their F1 non-social daughters displayed improved novelty-seeking exploratory behaviour and reduced anxiety-related behaviour whereas their motor and cognitive performance remained unchanged. Also, cortical and mRNA measurements in the F1 generation were affected by social experience intergenerationally via the female lineage (mother-to-daughter). These findings indicate that social experience promotes cortical neuroplasticity, neurohormonal and behavioural outcomes, and these changes can be transmitted to the F1 non-social offspring in a sexually dimorphic manner. Thus, a socially stimulating environment may form new biobehavioural phenotypes not only in exposed individuals, but also in their intergenerationally programmed descendants.
Collapse
|
30
|
Zhao LR, Willing A. Enhancing endogenous capacity to repair a stroke-damaged brain: An evolving field for stroke research. Prog Neurobiol 2018; 163-164:5-26. [PMID: 29476785 PMCID: PMC6075953 DOI: 10.1016/j.pneurobio.2018.01.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/11/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
Stroke represents a severe medical condition that causes stroke survivors to suffer from long-term and even lifelong disability. Over the past several decades, a vast majority of stroke research targets neuroprotection in the acute phase, while little work has been done to enhance stroke recovery at the later stage. Through reviewing current understanding of brain plasticity, stroke pathology, and emerging preclinical and clinical restorative approaches, this review aims to provide new insights to advance the research field for stroke recovery. Lifelong brain plasticity offers the long-lasting possibility to repair a stroke-damaged brain. Stroke impairs the structural and functional integrity of entire brain networks; the restorative approaches containing multi-components have great potential to maximize stroke recovery by rebuilding and normalizing the stroke-disrupted entire brain networks and brain functioning. The restorative window for stroke recovery is much longer than previously thought. The optimal time for brain repair appears to be at later stage of stroke rather than the earlier stage. It is expected that these new insights will advance our understanding of stroke recovery and assist in developing the next generation of restorative approaches for enhancing brain repair after stroke.
Collapse
Affiliation(s)
- Li-Ru Zhao
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Alison Willing
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
31
|
Goeke CM, Roberts ML, Hashimoto JG, Finn DA, Guizzetti M. Neonatal Ethanol and Choline Treatments Alter the Morphology of Developing Rat Hippocampal Pyramidal Neurons in Opposite Directions. Neuroscience 2018; 374:13-24. [PMID: 29391132 DOI: 10.1016/j.neuroscience.2018.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
Some of the neurobehavioral deficits identified in children with Fetal Alcohol Spectrum Disorders (FASDs) have been recapitulated in a binge model of gestational third trimester-equivalent ethanol (EtOH) exposure, in which Sprague-Dawley rats are intragastrically intubated between post-natal day (PD) 4 and PD9 with high doses of EtOH. In this model, the ameliorating effects of choline (Chol) administration on hippocampus-dependent behaviors altered by EtOH have also been extensively documented. In the present study, we investigated the effects of EtOH (5 g/kg/day) and/or Chol (100 mg/kg/day) on morphometric parameters of CA1 pyramidal neurons by Golgi-Cox staining followed by Neurolucida tracing and analysis. We found that EtOH increased apical dendrite complexity in male and female pups neonatally exposed to EtOH. EtOH did not significantly affect basal dendrite parameters in female and male rats. Interestingly, Chol treatments decreased basal dendrites' length, number, and maximal terminal distance in male pups. When pups were co-treated with EtOH and Chol, Chol did not rescue the effect of EtOH. In conclusion, EtOH increases while Chol decreases dendritic length and arborization of hippocampal CA1 neurons in PD9 rats. We hypothesize that developmental EtOH exposure induces a premature maturation of neurons, leading to early restriction of neuronal plasticity while Chol treatments delay the normal program of neuronal maturation and therefore prolong the window of maximal plasticity. Chol does not prevent the effects of developmental alcohol exposure on hippocampal pyramidal neurons' morphology characterized in the present study, although whether prolonged Chol administration after developmental EtOH exposure rectifies EtOH damage remains to be assessed.
Collapse
Affiliation(s)
- C M Goeke
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - M L Roberts
- VA Portland Health Care System, Portland, OR 97239, USA
| | - J G Hashimoto
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - D A Finn
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - M Guizzetti
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
32
|
Abstract
Pain modulates rhythmic neuronal activity recorded by Electroencephalography (EEG) in humans. Our laboratory previously showed that rat models of acute and neuropathic pain manifest increased power in primary somatosensory cortex (S1) recorded by electrocorticography (ECoG). In this study, we hypothesized that pain increases EEG power and corticocortical coherence in different rat models of pain, whereas treatments with clinically effective analgesics reverse these changes. Our results show increased cortical power over S1 and prefrontal cortex (PFC) in awake, freely behaving rat models of acute, inflammatory and neuropathic pain. Coherence between PFC and S1 is increased at a late, but not early, time point during the development of neuropathic pain. Electroencephalography power is not affected by ibuprofen in the acute pain model. However, pregabalin and mexiletine reverse the changes in power and S1-PFC coherence in the inflammatory and neuropathic pain models. These data suggest that quantitative EEG might be a valuable predictor of pain and analgesia in rodents.
Collapse
|
33
|
Laguesse S, Morisot N, Phamluong K, Ron D. Region specific activation of the AKT and mTORC1 pathway in response to excessive alcohol intake in rodents. Addict Biol 2017; 22:1856-1869. [PMID: 27766766 PMCID: PMC5398951 DOI: 10.1111/adb.12464] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/04/2016] [Accepted: 09/21/2016] [Indexed: 01/03/2023]
Abstract
We previously reported that the kinase AKT is activated in the nucleus accumbens (NAc) of rodents in response to excessive consumption of alcohol. One of the important downstream targets of AKT is the mammalian Target Of Rapamycin in Complex 1 (mTORC1), which was also activated by alcohol intake. mTORC1 controls dendritic protein translation, and we showed that the mTORC1-dependent translational machinery is activated in the NAc in response to alcohol intake. Importantly, systemic or intra-NAc inhibition of the AKT/mTORC1 pathway attenuated alcohol-drinking behaviors. Here, we mapped the activation patterns of AKT and mTORC1 in corticostriatal regions of rodents consuming large amounts of alcohol. We found that the activation of AKT and mTORC1 in response to cycles of binge drinking of 20 percent alcohol was centered in the NAc shell. Both kinases were not activated in the dorsolateral striatum (DLS); however, AKT, but not mTORC1, was activated in the dorsomedial striatum (DMS) of mice but not rats. Interestingly, excessive intake of alcohol produced a selective activation of the AKT/mTORC1 pathway in the orbitofrontal cortex (OFC), which was not observed in medial prefrontal cortex (mPFC). Furthermore, this signaling pathway was not activated in the NAc shell or OFC of rats consuming moderate amounts of alcohol nor was it activated in rats consuming sucrose. Together, our results suggest that excessive alcohol intake produces a brain region selective activation of the AKT/mTORC1 pathway, which is likely to contribute to NAc shell and OFC-dependent mechanisms that underlie the development and maintenance of alcohol drinking behavior.
Collapse
Affiliation(s)
- Sophie Laguesse
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nadege Morisot
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Khanhky Phamluong
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
34
|
Dall'Acqua P, Johannes S, Mica L, Simmen HP, Glaab R, Fandino J, Schwendinger M, Meier C, Ulbrich EJ, Müller A, Jäncke L, Hänggi J. Prefrontal Cortical Thickening after Mild Traumatic Brain Injury: A One-Year Magnetic Resonance Imaging Study. J Neurotrauma 2017; 34:3270-3279. [PMID: 28847215 DOI: 10.1089/neu.2017.5124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to evaluate group-by-time interactions between gray matter morphology of healthy controls and that of patients with mild traumatic brain injury (mTBI) as they transitioned from acute to chronic stages, and to relate these findings to long-term cognitive alterations to identify distinct recovery trajectories between good outcome (GO) and poor outcome (PO). High-resolution T1-weighted magnetic resonance images were acquired in 49 mTBI patients within 7 days and 1 year post-injury and at equivalent times in 49 healthy controls. Using linear mixed-effects models, we performed mass-univariate analyses and associated the results of the interaction with changes in cognitive performance. Morphological alterations indexed by increased or decreased cortical thickness have been expected mainly in frontal, parietal, and temporal brain regions. A significant interaction was found in cortical thickness, spatially restricted to bilateral structures of the prefrontal cortex, showing thickening in mTBI and normal developmental thinning in controls. A discrete thickness increase that can interpreted as the absence of cortical thinning typically seen in the healthy population was associated with cognitive recovery in the GO subgroup, while the exaggerated cortical thickening in the PO patients was linked to worsening cognitive performance. Thickness of the prefrontal cortex is subject to structural alterations during the first year after mTBI. Beside beneficial neuroplasticity, a prolonged state of neuroinflammation for symptomatic patients (maladaptive neuroplasticity) cannot be excluded. If the underlying cellular processes responsible for cortical thickening following mTBI have been determined, brain stimulation or even pharmacological intervention targeting the prefrontal cortex might promote endogenous neural restoration.
Collapse
Affiliation(s)
- Patrizia Dall'Acqua
- 1 Bellikon Rehabilitation Clinic , Bellikon, Switzerland .,2 Department of Psychology, University of Zurich , Zurich, Switzerland
| | - Sönke Johannes
- 1 Bellikon Rehabilitation Clinic , Bellikon, Switzerland
| | - Ladislav Mica
- 3 Division of Trauma Surgery, University Hospital Zurich , Zurich, Switzerland
| | - Hans-Peter Simmen
- 3 Division of Trauma Surgery, University Hospital Zurich , Zurich, Switzerland
| | | | - Javier Fandino
- 5 Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Markus Schwendinger
- 6 Interdisciplinary Emergency Center , Baden Cantonal Hospital, Baden, Switzerland
| | - Christoph Meier
- 7 Department of Surgery, Waid Hospital Zurich , Zurich, Switzerland
| | - Erika Jasmin Ulbrich
- 8 Institute of Diagnostic and Interventional Radiology, University Hospital Zurich , Zurich, Switzerland
| | - Andreas Müller
- 9 Brain and Trauma Foundation Grisons , Chur, Switzerland
| | - Lutz Jäncke
- 2 Department of Psychology, University of Zurich , Zurich, Switzerland .,10 International Normal Aging and Plasticity Imaging Center, University of Zurich , Zurich, Switzerland .,11 University Research Priority Program, Dynamic of Healthy Aging, University of Zurich , Zurich, Switzerland
| | - Jürgen Hänggi
- 2 Department of Psychology, University of Zurich , Zurich, Switzerland
| |
Collapse
|
35
|
Decreased environmental complexity during development impairs habituation of reinforcer effectiveness of sensory stimuli. Behav Brain Res 2017; 337:53-60. [PMID: 28943426 DOI: 10.1016/j.bbr.2017.09.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 02/03/2023]
Abstract
Previous research has shown that rats reared in simple/impoverished environments demonstrate greater repetitive responding for sensory reinforcers (e.g., light onset). Moreover, the brains of these rats are abnormally developed, compared to brains of rats reared in more complex/enriched environments. Repetitive behaviors are commonly observed in individuals with developmental disorders. Some of these repetitive behaviors could be maintained by the reinforcing effects of the sensory stimulation that they produce. Therefore, rearing rats in impoverished conditions may provide an animal model for certain repetitive behaviors associated with developmental disorders. We hypothesize that in rats reared in simple/impoverished environments, the normal habituation process to sensory reinforcers is impaired, resulting in high levels of repetitive behaviors. We tested the hypothesis using an operant sensory reinforcement paradigm in rats reared in simple/impoverished (IC), standard laboratory (SC), and complex/enrichened conditions (EC, treatments including postnatal handling and environmental enrichment). Results show that the within-session habituation of the reinforcer effectiveness of light onset was slower in the IC and SC rats than in the EC rats. A dishabituation challenge indicated that within-session decline of responses was due to habituation and not motor fatigue or sensory adaptation. In conclusion, rearing rats in simple/impoverished environments, and comparing them to rats reared in more complex/enriched environments, may constitute a useful approach for studying certain repetitive behaviors associated with developmental disorders.
Collapse
|
36
|
Nishijima H, Ueno T, Funamizu Y, Ueno S, Tomiyama M. Levodopa treatment and dendritic spine pathology. Mov Disord 2017; 33:877-888. [PMID: 28880414 PMCID: PMC6667906 DOI: 10.1002/mds.27172] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with the progressive loss of nigrostriatal dopaminergic neurons. Levodopa is the most effective treatment for the motor symptoms of PD. However, chronic oral levodopa treatment can lead to various motor and nonmotor complications because of nonphysiological pulsatile dopaminergic stimulation in the brain. Examinations of autopsy cases with PD have revealed a decreased number of dendritic spines of striatal neurons. Animal models of PD have revealed altered density and morphology of dendritic spines of neurons in various brain regions after dopaminergic denervation or dopaminergic denervation plus levodopa treatment, indicating altered synaptic transmission. Recent studies using rodent models have reported dendritic spine head enlargement in the caudate‐putamen, nucleus accumbens, primary motor cortex, and prefrontal cortex in cases where chronic levodopa treatment following dopaminergic denervation induced dyskinesia‐like abnormal involuntary movement. Hypertrophy of spines results from insertion of alpha‐amino‐2,3‐dihydro‐5‐methyl‐3‐oxo‐4‐isoxazolepropanoic acid receptors into the postsynaptic membrane. Such spine enlargement indicates hypersensitivity of the synapse to excitatory inputs and is compatible with a lack of depotentiation, which is an electrophysiological hallmark of levodopa‐induced dyskinesia found in the corticostriatal synapses of dyskinetic animals and the motor cortex of dyskinetic PD patients. This synaptic plasticity may be one of the mechanisms underlying the priming of levodopa‐induced complications such as levodopa‐induced dyskinesia and dopamine dysregulation syndrome. Drugs that could potentially prevent spine enlargement, such as calcium channel blockers, N‐methyl‐D‐aspartate receptor antagonists, alpha‐amino‐2,3‐dihydro‐5‐methyl‐3‐oxo‐4‐isoxazolepropanoic acid receptor antagonists, and metabotropic glutamate receptor antagonists, are candidates for treatment of levodopa‐induced complications in PD. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Haruo Nishijima
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan.,Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tatsuya Ueno
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan.,Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yukihisa Funamizu
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan.,Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
37
|
Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Okamoto M, Aoki S, Ishihara T. Postnatal development of GABAergic interneurons and perineuronal nets in mouse temporal cortex subregions. Int J Dev Neurosci 2017; 63:27-37. [PMID: 28859888 DOI: 10.1016/j.ijdevneu.2017.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/20/2017] [Accepted: 08/25/2017] [Indexed: 10/19/2022] Open
Abstract
In human neuropsychiatric disorders, there are functional and anatomical abnormalities of GABAergic interneurons in each temporal cortex subregion. Furthermore, accumulation of amyloid-β is observed in the temporal cortex in the early stages of Alzheimer's disease. Each subregion of the temporal cortex has an important role in coordinating the input and output of the hippocampus. When subregions of the temporal cortex are impaired, memory and learning ability decrease. GABAergic interneurons control excitatory neurons, forming the cortico-cortical and cortico-hippocampal networks. However, in temporal cortex subregions, details of the distribution and developmental processes of GABAergic interneurons and perineuronal nets (PNNs) have not been elucidated. Here we examined the development of GABAergic interneurons and PNNs in mouse temporal cortex subregions. Results indicate that temporal cortex GABAergic interneurons have developmental stages different to those of the primary sensory cortex. In addition, the density of PNNs in the temporal cortex is lower than that in the sensory cortex. Furthermore, we found that the Wisteria floribunda agglutinin-reactive extracellular matrix molecule is present in the upper level of layer 1 of the temporal cortex. These results support the idea that mouse temporal cortex subregions develop differently from other cortical regions and have region-specific characteristics after maturation. The present study results suggested that the structure of the temporal cortex is significantly different from the sensory cortex and that temporal cortex may be highly vulnerable to neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288, Matsushima, Kurashiki, Okayama, 701-0193, Japan; Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, kitaku, Okayama, 700-8558, Japan.
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, kitaku, Okayama, 700-8558, Japan.
| | - Shozo Aoki
- Department of Psychiatry, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| |
Collapse
|
38
|
Berthier ML, De-Torres I, Paredes-Pacheco J, Roé-Vellvé N, Thurnhofer-Hemsi K, Torres-Prioris MJ, Alfaro F, Moreno-Torres I, López-Barroso D, Dávila G. Cholinergic Potentiation and Audiovisual Repetition-Imitation Therapy Improve Speech Production and Communication Deficits in a Person with Crossed Aphasia by Inducing Structural Plasticity in White Matter Tracts. Front Hum Neurosci 2017; 11:304. [PMID: 28659776 PMCID: PMC5470532 DOI: 10.3389/fnhum.2017.00304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
Donepezil (DP), a cognitive-enhancing drug targeting the cholinergic system, combined with massed sentence repetition training augmented and speeded up recovery of speech production deficits in patients with chronic conduction aphasia and extensive left hemisphere infarctions (Berthier et al., 2014). Nevertheless, a still unsettled question is whether such improvements correlate with restorative structural changes in gray matter and white matter pathways mediating speech production. In the present study, we used pharmacological magnetic resonance imaging to study treatment-induced brain changes in gray matter and white matter tracts in a right-handed male with chronic conduction aphasia and a right subcortical lesion (crossed aphasia). A single-patient, open-label multiple-baseline design incorporating two different treatments and two post-treatment evaluations was used. The patient received an initial dose of DP (5 mg/day) which was maintained during 4 weeks and then titrated up to 10 mg/day and administered alone (without aphasia therapy) during 8 weeks (Endpoint 1). Thereafter, the drug was combined with an audiovisual repetition-imitation therapy (Look-Listen-Repeat, LLR) during 3 months (Endpoint 2). Language evaluations, diffusion weighted imaging (DWI), and voxel-based morphometry (VBM) were performed at baseline and at both endpoints in JAM and once in 21 healthy control males. Treatment with DP alone and combined with LLR therapy induced marked improvement in aphasia and communication deficits as well as in selected measures of connected speech production, and phrase repetition. The obtained gains in speech production remained well-above baseline scores even 4 months after ending combined therapy. Longitudinal DWI showed structural plasticity in the right frontal aslant tract and direct segment of the arcuate fasciculus with both interventions. VBM revealed no structural changes in other white matter tracts nor in cortical areas linked by these tracts. In conclusion, cholinergic potentiation alone and combined with a model-based aphasia therapy improved language deficits by promoting structural plastic changes in right white matter tracts.
Collapse
Affiliation(s)
- Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain
| | - Irene De-Torres
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Unit of Physical Medicine and Rehabilitation, Regional University Hospital, MalagaMalaga, Spain
| | - José Paredes-Pacheco
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain
| | - Núria Roé-Vellvé
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain
| | - Karl Thurnhofer-Hemsi
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain.,Department of Computer Languages and Computer Science, Superior Technical School of Engineering in Informatics, University of MalagaMalaga, Spain
| | - María J Torres-Prioris
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of MalagaMalaga, Spain
| | - Francisco Alfaro
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain
| | - Ignacio Moreno-Torres
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Department of Spanish Language I, University of MalagaMalaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of MalagaMalaga, Spain
| | - Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of MalagaMalaga, Spain
| |
Collapse
|
39
|
Modulation of azimuth tuning plasticity in rat primary auditory cortex by medial prefrontal cortex. Neuroscience 2017; 347:36-47. [PMID: 28188851 DOI: 10.1016/j.neuroscience.2017.01.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/11/2017] [Accepted: 01/27/2017] [Indexed: 11/21/2022]
Abstract
Neurons in the primary auditory cortex (A1) of adult animals exhibit short-term plasticity of frequency selectivity and tonotopic organization in behavioral contexts ranging from classical conditioning to attention tasks. However, it is still largely unknown whether short-term plasticity of spatial tuning takes place in A1 of adult animals and whether this spatial turning plasticity in A1 of adults is mediated by medial prefrontal cortex (mPFC) as there are reciprocal connection between mPFC and auditory cortex (AC). In the present study, we used extracellular recordings to test whether azimuth tuning in A1 of anesthetized rats can be reshaped by repeated sound stimuli at neurons' non-preferred azimuth. We also identified whether and how such A1 azimuth tuning plasticity was modulated by the neural activities of mPFC. Our results showed that A1 neurons in adult rats have azimuth tuning plasticity when repeated acoustic stimuli were delivered at the azimuth with a deviation by less than 15° from the best azimuth (BA). The BA shifted toward the exposure azimuth when repeated acoustic stimuli were played for 20-60min and plasticity decayed within one hour. The less the angle deviated from the BA, the shorter exposure time and longer decay time were required to induce azimuth tuning plasticity. Neural activity in mPFC modulated azimuth tuning plasticity of A1 neurons as reflected by the shorter induction time when mPFC was activated by focal electrical stimulation and the longer induction time when mPFC was inactivated by drug application. Our results suggest that spatial location selectivity in A1 neurons remains plastic in mature animals and that short-term plasticity of spatial tuning can be modulated by the neural activities of mPFC.
Collapse
|
40
|
Stiles J. Principles of brain development. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2017; 8:10.1002/wcs.1402. [PMID: 27906509 PMCID: PMC5182160 DOI: 10.1002/wcs.1402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/29/2016] [Indexed: 11/05/2022]
Abstract
Throughout much of the 20th century, the major models of brain development were strongly deterministic. It was thought that brain development proceeds via a prescribed blueprint that is somehow innately specified in the organism. Contemporary models present a distinctly different view of both inheritance and brain development. First, we do not inherit blueprints or plans, we inherit genes and the cellular machinery for expressing them. Genes carry essential information for creating proteins, but do not determine biological processes or developmental outcomes; the first cells contain the elements necessary for creating proteins based on the information coded in the nucleotide sequences of genes. Second, brain development is dynamic: the biological state of the brain at any moment is the product of developmental processes that involve an intricate interplay among genes and an ever-expanding range of environmental factors-from local cellular events to influences from the outside world. In science, models matter. They reflect underlying assumptions about how things can happen, and thus influence the kinds of questions we ask, the kinds of experiments we propose, the therapies we develop, and the educational curricula we construct. The dynamic model of brain development accounts for powerful neurobehavioral effects that can simply not be accommodated by deterministic models. WIREs Cogn Sci 2017, 8:e1402. doi: 10.1002/wcs.1402 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Joan Stiles
- Department of Cognitive Science, University of California, San Diego, CA, USA
| |
Collapse
|
41
|
Environmental Intervention as a Therapy for Adverse Programming by Ancestral Stress. Sci Rep 2016; 6:37814. [PMID: 27883060 PMCID: PMC5121646 DOI: 10.1038/srep37814] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
Ancestral stress can program stress sensitivity and health trajectories across multiple generations. While ancestral stress is uncontrollable to the filial generations, it is critical to identify therapies that overcome transgenerational programming. Here we report that prenatal stress in rats generates a transgenerationally heritable endocrine and epigenetic footprint and elevated stress sensitivity which can be alleviated by beneficial experiences in later life. Ancestral stress led to downregulated glucocorticoid receptor and prefrontal cortex neuronal densities along with precocious development of anxiety-like behaviours. Environmental enrichment (EE) during adolescence mitigated endocrine and neuronal markers of stress and improved miR-182 expression linked to brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) regulation in stressed lineages. Thus, EE may serve as a powerful intervention for adverse transgenerational programming through microRNA-mediated regulation of BDNF and NT-3 pathways. The identification of microRNAs that mediate the actions of EE highlights new therapeutic strategies for mental health conditions and psychiatric disease.
Collapse
|
42
|
Sex-dependent changes in neuronal morphology and psychosocial behaviors after pediatric brain injury. Behav Brain Res 2016; 319:48-62. [PMID: 27829127 DOI: 10.1016/j.bbr.2016.10.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022]
Abstract
Chronic social behavior problems after pediatric traumatic brain injury (TBI) significantly contribute to poor quality of life for survivors. Using a well-characterized mouse model of early childhood TBI, we have previously demonstrated that young brain-injured mice develop social deficits by adulthood. As biological sex may influence both normal and aberrant social development, we here evaluated potential sex differences in post-TBI psychosocial deficits by comparing the behavior of male and female mice at adulthood (8 weeks post-injury). Secondly, we hypothesized that pediatric TBI would influence neuronal morphology identified by Golgi-Cox staining in the hippocampus and prefrontal cortex, regions involved in social cognition and behavior, before the onset of social problems (3 weeks post-injury). Morphological analysis of pyramidal neurons in the ipsilateral prefrontal cortex and granule cells of the hippocampal dentate gyrus revealed a reduction in dendritic complexity after pediatric TBI. This was most apparent in TBI males, whereas neurons from females were less affected. At adulthood, consistent with previous studies, TBI males showed deficits in sociability and social recognition. TBI females also showed a reduction in sociability, but intact social recognition and increased sociosexual avoidance. Together, these findings indicate that sex is a determinant of regional neuroplasticity and social outcomes after pediatric TBI. Reduced neuronal complexity in the prefrontal cortex and hippocampus, several weeks after injury in male mice, appears to precede the subsequent emergence of social deficits. Sex-specific alterations in the social brain network are thus implicated as an underlying mechanism of social dysfunction after pediatric TBI.
Collapse
|
43
|
Nishijima H, Ueno T, Ueno S, Mori F, Miki Y, Tomiyama M. Levodopa-induced morphologic changes of prefrontal pyramidal tract-type neurons in a rat model of Parkinson's disease. Neurosci Res 2016; 115:54-58. [PMID: 27773835 DOI: 10.1016/j.neures.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/26/2016] [Accepted: 10/11/2016] [Indexed: 01/29/2023]
Abstract
Long-term administration of levodopa for Parkinson's disease is associated with various motor and non-motor complications. We examined the dendritic spine morphology of pyramidal tract-type neurons in the prefrontal cortex in a rat model of Parkinson's disease chronically treated with levodopa. Dendritic spines showed decreased density and increased average volume after dopamine denervation and levodopa treatment. These morphologic alterations suggest that the prefrontal neurons may maladaptively respond to excitatory input, which might be one of the mechanisms underlying various levodopa-induced complications in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Haruo Nishijima
- Department of Neurology, Aomori Prefectural Central Hospital, 2-1-1 Higashi-tsukurimichi, Aomori 030-8553, Japan; Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 306-8562, Japan.
| | - Tatsuya Ueno
- Department of Neurology, Aomori Prefectural Central Hospital, 2-1-1 Higashi-tsukurimichi, Aomori 030-8553, Japan; Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 306-8562, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 306-8562, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 306-8562, Japan
| | - Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 306-8562, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Aomori Prefectural Central Hospital, 2-1-1 Higashi-tsukurimichi, Aomori 030-8553, Japan; Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 306-8562, Japan
| |
Collapse
|
44
|
Abstract
The presence of general intelligence poses a major evolutionary puzzle, which has led to increased interest in its presence in nonhuman animals. The aim of this review is to critically evaluate this question and to explore the implications for current theories about the evolution of cognition. We first review domain-general and domain-specific accounts of human cognition in order to situate attempts to identify general intelligence in nonhuman animals. Recent studies are consistent with the presence of general intelligence in mammals (rodents and primates). However, the interpretation of a psychometric g factor as general intelligence needs to be validated, in particular in primates, and we propose a range of such tests. We then evaluate the implications of general intelligence in nonhuman animals for current theories about its evolution and find support for the cultural intelligence approach, which stresses the critical importance of social inputs during the ontogenetic construction of survival-relevant skills. The presence of general intelligence in nonhumans implies that modular abilities can arise in two ways, primarily through automatic development with fixed content and secondarily through learning and automatization with more variable content. The currently best-supported model, for humans and nonhuman vertebrates alike, thus construes the mind as a mix of skills based on primary and secondary modules. The relative importance of these two components is expected to vary widely among species, and we formulate tests to quantify their strength.
Collapse
|
45
|
HIV-1 Transgenic Rat Prefrontal Cortex Hyper-Excitability is Enhanced by Cocaine Self-Administration. Neuropsychopharmacology 2016; 41:1965-73. [PMID: 26677947 PMCID: PMC4908633 DOI: 10.1038/npp.2015.366] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 11/14/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022]
Abstract
The medial prefrontal cortex (mPFC) is dysregulated in HIV-1-infected humans and the dysregulation is enhanced by cocaine abuse. Understanding mPFC pathophysiology in this comorbid state has been hampered by the dearth of relevant animal models. To help fill this knowledge gap, electrophysiological assessments were made of mPFC pyramidal neurons (PN) from adult male HIV-1 transgenic (Tg) F344 rats (which express seven of the nine HIV-1 toxic proteins) and non-Tg F344 rats that self-administered cocaine for 14 days (COC-SA), as well as saline-yoked controls (SAL-Yoked) and experimentally naive Tg and non-Tg rats. Forebrain slices were harvested and prepared for whole-cell patch-clamp recording, and in treated rats, this occurred after 14-18 days of forced abstinence. Aged-matched rats were used for immunohistochemical detection of the L-channel protein, Cav1.2-α1c. We determined that: (i) the two genotypes acquired the operant task and maintained similar levels of COC-SA, (ii) forced abstinence from COC-SA enhanced mPFC PN excitability in both genotypes, and neurons from Tg rats exhibited the greatest pathophysiology, (iii) neurons from SAL-Yoked Tg rats were more excitable than those from SAL-Yoked non-Tg rats, and in Tg rats (iv) blockade of L-type Ca(2+) channels reduced the enhanced excitability, and (v) Cav1.2-immunoreactivity was increased. These findings provide the first assessment of the mPFC pathophysiology in a rodent model of HIV-1-mediated neuropathology with and without cocaine self-administration. Outcomes reveal an enhanced cortical excitability during chronic exposure to HIV-1 proteins that is excessively exacerbated with cocaine abuse. Such neuropathophysiology may underlie the cognitive dysregulation reported for comorbid humans.
Collapse
|
46
|
Flores G, Morales-Medina JC, Diaz A. Neuronal and brain morphological changes in animal models of schizophrenia. Behav Brain Res 2016; 301:190-203. [DOI: 10.1016/j.bbr.2015.12.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 12/14/2022]
|
47
|
Frauenknecht K, Diederich K, Leukel P, Bauer H, Schäbitz WR, Sommer CJ, Minnerup J. Functional Improvement after Photothrombotic Stroke in Rats Is Associated with Different Patterns of Dendritic Plasticity after G-CSF Treatment and G-CSF Treatment Combined with Concomitant or Sequential Constraint-Induced Movement Therapy. PLoS One 2016; 11:e0146679. [PMID: 26752421 PMCID: PMC4713830 DOI: 10.1371/journal.pone.0146679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/14/2015] [Indexed: 12/22/2022] Open
Abstract
We have previously shown that granulocyte-colony stimulating factor (G-CSF) treatment alone, or in combination with constraint movement therapy (CIMT) either sequentially or concomitantly, results in significantly improved sensorimotor recovery after photothrombotic stroke in rats in comparison to untreated control animals. CIMT alone did not result in any significant differences compared to the control group (Diederich et al., Stroke, 2012;43:185-192). Using a subset of rat brains from this former experiment the present study was designed to evaluate whether dendritic plasticity would parallel improved functional outcomes. Five treatment groups were analyzed (n = 6 each) (i) ischemic control (saline); (ii) CIMT (CIMT between post-stroke days 2 and 11); (iii) G-CSF (10 μg/kg G-CSF daily between post-stroke days 2 and 11); (iv) combined concurrent group (CIMT plus G-CSF) and (v) combined sequential group (CIMT between post-stroke days 2 and 11; 10 μg/kg G-CSF daily between post-stroke days 12 and 21, respectively). After impregnation of rat brains with a modified Golgi-Cox protocol layer V pyramidal neurons in the peri-infarct cortex as well as the corresponding contralateral cortex were analyzed. Surprisingly, animals with a similar degree of behavioral recovery exhibited quite different patterns of dendritic plasticity in both peri-lesional and contralesional areas. The cause for these patterns is not easily to explain but puts the simple assumption that increased dendritic complexity after stroke necessarily results in increased functional outcome into perspective.
Collapse
Affiliation(s)
- Katrin Frauenknecht
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kai Diederich
- Department of Neurology, University of Münster, Münster, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Henrike Bauer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Wolf-Rüdiger Schäbitz
- Department of Neurology, University of Münster, Münster, Germany
- Neurology, Bethel, EVKB, Bielefeld, Germany
| | - Clemens J. Sommer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jens Minnerup
- Department of Neurology, University of Münster, Münster, Germany
| |
Collapse
|
48
|
Kula J, Blasiak A, Czerw A, Tylko G, Sowa J, Hess G. Short-term repeated corticosterone administration enhances glutamatergic but not GABAergic transmission in the rat motor cortex. Pflugers Arch 2015; 468:679-91. [PMID: 26696244 PMCID: PMC4792354 DOI: 10.1007/s00424-015-1773-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/22/2015] [Accepted: 12/13/2015] [Indexed: 01/26/2023]
Abstract
It has been demonstrated that stress impairs performance of skilled reaching and walking tasks in rats due to the action of glucocorticoids involved in the stress response. Skilled reaching and walking are controlled by the primary motor cortex (M1); however, it is not known whether stress-related impairments in skilled motor tasks are related to functional and/or structural alterations within the M1. We studied the effects of single and repeated injections of corticosterone (twice daily for 7 days) on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) recorded from layer II/III pyramidal neurons in ex vivo slices of the M1, prepared 2 days after the last administration of the hormone. We also measured the density of dendritic spines on pyramidal cells and the protein levels of selected subunits of AMPA, NMDA, and GABAA receptors after repeated corticosterone administration. Repeatedly administered corticosterone induced an increase in the frequency but not in the amplitude of sEPSCs, while a single administration had no effect on the recorded excitatory currents. The frequency and amplitude of sIPSCs as well as the excitability of pyramidal cells were changed neither after single nor after repeated corticosterone administration. Treatment with corticosterone for 7 days did not modify the density of dendritic spines on pyramidal neurons. Corticosterone influenced neither the protein levels of GluA1, GluA2, GluN1, GluN2A, and GluN2B subunits of glutamate receptors nor those of α1, β2, and γ2 subunits of the GABAA receptor. The increase in sEPSCs frequency induced by repeated corticosterone administration faded out within 7 days. These data indicate that prolonged administration of exogenous corticosterone selectively and reversibly enhances glutamatergic, but not GABAergic transmission in the rat motor cortex. Our results suggest that corticosterone treatment results in an enhancement of spontaneous glutamate release from presynaptic terminals in the M1 and thereby uncovers a potential mechanism underlying stress-induced motor functions impairment.
Collapse
Affiliation(s)
- Joanna Kula
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Blasiak
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Czerw
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Grzegorz Tylko
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Joanna Sowa
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland
| | - Grzegorz Hess
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland. .,Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland.
| |
Collapse
|
49
|
Duclot F, Kabbaj M. The estrous cycle surpasses sex differences in regulating the transcriptome in the rat medial prefrontal cortex and reveals an underlying role of early growth response 1. Genome Biol 2015; 16:256. [PMID: 26628058 PMCID: PMC4667491 DOI: 10.1186/s13059-015-0815-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/27/2015] [Indexed: 01/22/2023] Open
Abstract
Background Males and females differ in cognitive functions and emotional processing, which in part have been associated with baseline sex differences in gene expression in the medial prefrontal cortex. Nevertheless, a growing body of evidence suggests that sex differences in medial prefrontal cortex-dependent cognitive functions are attenuated by hormonal fluctuations within the menstrual cycle. Despite known genomic effects of ovarian hormones, the interaction of the estrous cycle with sex differences in gene expression in the medial prefrontal cortex remains unclear and warrants further investigations. Results We undertake a large-scale characterization of sex differences and their interaction with the estrous cycle in the adult medial prefrontal cortex transcriptome and report that females with high and low ovarian hormone levels exhibited a partly opposed sexually biased transcriptome. The extent of regulation within females vastly exceeds sex differences, and supports a multi-level reorganization of synaptic function across the estrous cycle. Genome-wide analysis of the transcription factor early growth response 1 binding highlights its role in controlling the synapse-related genes varying within females. Conclusions We uncover a critical influence of the estrous cycle on the adult rat medial prefrontal cortex transcriptome resulting in partly opposite sex differences in proestrus when compared to diestrus females, and we discovered a direct role for Early Growth Response 1 in this opposite regulation. In addition to illustrating the importance of accounting for the estrous cycle in females, our data set the ground for a better understanding of the female specificities in cognition and emotional processing. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0815-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA. .,Program in Neuroscience, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA. .,Program in Neuroscience, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
| |
Collapse
|
50
|
Morphometric changes in the reward system of Parkinson's disease patients with impulse control disorders. J Neurol 2015; 262:2653-61. [PMID: 26410743 DOI: 10.1007/s00415-015-7892-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/29/2015] [Accepted: 08/28/2015] [Indexed: 12/28/2022]
Abstract
Impulse control disorders (ICDs) occur in a subset of patients with Parkinson's disease (PD) who are receiving dopamine replacement therapy. In this study, we aimed to investigate structural abnormalities within the mesocortical and limbic cortices and subcortical structures in PD patients with ICDs. We studied 18 PD patients with ICDs, 18 PD patients without ICDs and a group of 24 age and sex-matched healthy controls. Cortical thickness (CTh) and subcortical nuclei volume analyses were carried out using the automated surface-based analysis package FreeSurfer (version 5.3.0). We found significant differences in MRI measures between the three groups. There was volume loss in the nucleus accumbens of both PD patients with ICDs and without ICDs compared to the control group. In addition, PD patients with ICDs showed significant atrophy in caudate, hippocampus and amygdala compared to the group of healthy controls. PD patients with ICDs had significant increased cortical thickness in rostral anterior cingulate cortex and frontal pole compared to PD patients without ICDs. Cortical thickness in rostral anterior cingulate and frontal pole was increased in PD patients with ICDs compared to the control group, but the differences failed to reach corrected levels of statistical significance. PD patients with ICDs showed increased cortical thickness in medial prefrontal regions. We speculate that these findings reflect either a pre-existing neural trait vulnerability to impulsivity or the expression of a maladaptive synaptic plasticity under non-physiological dopaminergic stimulation.
Collapse
|