1
|
Villa J, Cury J, Kessler L, Tan X, Richter CP. Enhancing biocompatibility of the brain-machine interface: A review. Bioact Mater 2024; 42:531-549. [PMID: 39308547 PMCID: PMC11416625 DOI: 10.1016/j.bioactmat.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording. Although some neuroprostheses have achieved clinical success, electrode material properties, inflammatory response, and glial scar formation at the electrode-tissue interfaces affect performance and sustainability. Those challenges can be addressed by improving some of the materials' mechanical, physical, chemical, and electrical properties. This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance.
Collapse
Affiliation(s)
- Jordan Villa
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Joaquin Cury
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Lexie Kessler
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Xiaodong Tan
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
| | - Claus-Peter Richter
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Biomedical Engineering, Northwestern University, USA
| |
Collapse
|
2
|
Nieratschker M, Mistrik P, Petrasek Z, Yildiz E, Gadenstaetter AJ, Gerlitz M, Kramer AM, Kwiatkowska M, Braun S, Schlingensiepen R, Honeder C, Arnoldner C. Silicone-based AC102-loaded cochlear implant coatings protect residual hearing in an animal model of cochlear implantation. Hear Res 2024; 454:109150. [PMID: 39549622 DOI: 10.1016/j.heares.2024.109150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Cochlear implant users with residual hearing benefit synergistically from combined electrical stimulation via the cochlear implant and preserved residual hearing after surgery. However, direct mechanical trauma and subsequent inflammation may deteriorate hearing function. AC102, a novel otoprotective pyridoindole with anti-apoptotic and anti-oxidative properties significantly improved hearing recovery following cochlear implantation when administered intratympanically prior to surgery. Additionally, AC102 exerts neurotrophic effects, possibly aiding in the preservation of auditory nerve fibers and spiral ganglion neurons. Rapid clearance of the drug, however, might be a limiting factor to further attenuate the inflammatory response and maintain neuronal health. The aim of the current study was to design an AC102-loaded electrode array for sustained drug delivery and investigate its effects in hearing preservation cochlear implantation. First, the release-kinetics of AC102 were investigated in vitro and modelled by the Higuchi equation of drug release. An electrode array coated with 10 % AC102 was manufactured, its release kinetics evaluated, and subsequently tested in vivo. 20 normal hearing Mongolian gerbils were unilaterally implanted with an AC102-loaded or an unloaded control electrode. Compound action potentials were measured prior to cochlear implantation and serially over 28 days. Hair cells, inner hair cell synapses, and auditory nerve fibers were quantified in cochlear whole-mounts by immunofluorescence staining. AC102 release from silicone coating could be predictably modelled by the Higuchi equation of drug release. The electrode array with an AC102-silicone depot enabled non-linear sustained drug release with initially higher release concentrations. In vivo, the AC102-loaded electrode array significantly recovered auditory threshold shifts near the maximum insertion depth over 28 days. In the apical region, a significant recovery was noticed only until day 14, after which threshold shifts aligned between groups. Histologically, AC102-loaded electrodes significantly preserved outer hair cells apical of the maximum insertion depth and inner hair cells and neuronal structures at the tip of the inserted electrode. In conclusion, the drug-loaded electrode arrays could predictably release AC102 over a period of 28 days. AC102 enabled the restoration of auditory thresholds near the area of maximum insertion, which is the desired region to be preserved in cochlear implant recipients with residual hearing.
Collapse
Affiliation(s)
- Michael Nieratschker
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | | | - Zdenek Petrasek
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, Graz, Austria
| | - Erdem Yildiz
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Anselm J Gadenstaetter
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Matthias Gerlitz
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Anne-Margarethe Kramer
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Clemens Honeder
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Goncalves S, Thielhelm T, Pawley D, Bas E, Dikici E, Deo SK, Dinh CT, Daunert S, Telischi F. Improved intracochlear biopolymeric drug delivery system: an in vivo study. Acta Otolaryngol 2024:1-7. [PMID: 39522055 DOI: 10.1080/00016489.2024.2412719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The delivery of drugs into the inner ear is a challenging field of study due to the complex cochlear anatomy and physiology. The creation of an intracochlear device that allows for short- and long-term intracochlear delivery of the drugs with a minimal invasive technology is needed to prevent or treat conditions that can potentially prevent the development of permanent hearing loss. AIM This study intends to test the efficacy of DXM-infused PLGA microneedles created in our laboratory in an in vivo animal model of acute ototoxic injury. MATERIAL AND METHODS Twenty-four male Norway Brown rats were randomized into four groups, three of which groups received an intratympanic injection of ethacrynic acid and kanamycin. Two of these groups underwent the placement of an intracochlear microneedle blended or not with dexamethasone, and two groups underwent implantation of a plain microneedle, one of without prior exposure to the ototoxic agent to confirm in vivo biocompatibility. Animals were then followed with a weekly auditory brainstem response testing until day 28 after surgical intervention. RESULT AND CONCLUSION Our intracochlear device demonstrated biocompatibility and produced no hearing changes after its implantation in the control group. Inserted DXM-blended microneedles prevented hearing deterioration in those animals exposed to an ototoxic environment.
Collapse
Affiliation(s)
- Stefania Goncalves
- Department of Otolaryngology - Head and Neck Surgery, University of Miami Ear Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Torin Thielhelm
- Department of Otolaryngology - Head and Neck Surgery, University of Miami Ear Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Devon Pawley
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
- Dr. JT Macdonal Foundation Biomedial Nanotechnology Institute, University of Miami, Miami, FL, USA
| | - Esperanza Bas
- Department of Research Pharmacy, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
- Dr. JT Macdonal Foundation Biomedial Nanotechnology Institute, University of Miami, Miami, FL, USA
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
- Dr. JT Macdonal Foundation Biomedial Nanotechnology Institute, University of Miami, Miami, FL, USA
| | - Christine T Dinh
- Department of Otolaryngology - Head and Neck Surgery, University of Miami Ear Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
- Dr. JT Macdonal Foundation Biomedial Nanotechnology Institute, University of Miami, Miami, FL, USA
- University of Miami Clinical and Translational Science Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Fred Telischi
- Department of Otolaryngology - Head and Neck Surgery, University of Miami Ear Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Chang SY, Lee MY. Photobiomodulation as a Potential Adjuvant Therapy to Improve Cochlear Implant Efficiency. Photobiomodul Photomed Laser Surg 2024; 42:663-667. [PMID: 39347595 DOI: 10.1089/photob.2024.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Objective: Photobiomodulation (PBM) is a noninvasive therapeutic modality with widespread applications for modulating various biological processes. Although the exact mechanisms of action remain uncertain, PBM promotes homeostasis through diverse pathways, including reducing inflammation and enhancing tissue recovery. Hearing loss is irreversible in mammals due to the limited regenerative capacity of cochlear hair cells. Cochlear implants offer a solution by electrically stimulating the auditory nerve, bypassing damaged hair cells in individuals with severe hearing loss. However, postoperative inflammatory responses and cochlear nerve fiber damage can compromise implant efficacy. Materials and Methods: We investigated current strategies to minimize secondary cochlear damage after cochlear implantation and evaluated the potential of PBM as an adjuvant therapeutic approach. Results: The auditory cell protective effects of PBM could significantly enhance the performance of EAS devices in individuals with residual hearing. Further, postoperative CI is accompanied by an inflammatory response characterized by the upregulation of specific cytokines. Conclusion: Considering the neuroregenerative potential of PBM, its application as a neuroprotective strategy warrants further validation.
Collapse
Affiliation(s)
- So-Young Chang
- Beckman Laser Institute Korea, Dankook University, Cheonan, Republic of Korea
| | - Min Young Lee
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
5
|
Rahman MT, Mostaert B, Eckard P, Fatima SM, Scheperle R, Razu I, Hunger B, Olszewski RT, Gu S, Garcia C, Khan NA, Bennion DM, Oleson J, Kirk JR, Enke YL, Gay RD, Morell RJ, Hirose K, Hoa M, Claussen AD, Hansen MR. Cochlear implants with dexamethasone-eluting electrode arrays reduce foreign body response in a murine model of cochlear implantation and human subjects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.11.24315311. [PMID: 39417118 PMCID: PMC11483020 DOI: 10.1101/2024.10.11.24315311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The inflammatory foreign body response (FBR) following cochlear implantation (CI) can negatively impact CI outcomes, including increased electrode impedances. This study aims to investigate the long-term efficacy of dexamethasone eluting cochlear implant and locally delivered dexamethasone, a potent anti-inflammatory glucocorticoid on the intracochlear FBR and electrical impedance post-implantation in a murine model and human subjects. The left ears of CX3CR1 +/GFP Thy1 +/YFP (macrophage-neuron dual reporter) mice were implanted with dexamethasone-eluting cochlear implants (Dex-CI) or standard implant (Standard-CI) while the right ear served as unoperated control. Another group of dual reporter mice was implanted with a standard CI electrode array followed by injection of dexamethasone in the middle ear to mimic current clinical practice (Dex-local). Mouse implants were electrically stimulated with serial measurement of electrical impedance. Human subjects were implanted with either standard or Dex-CI followed by serial impedance measurements. Dex-CI reduced electrical impedance in the murine model and human subjects and inflammatory FBR in the murine model for an extended period. Dex-local in the murine model is ineffective for long-term reduction of FBR and electrode impedance. Our data suggest that dexamethasone eluting arrays are more effective than the current clinical practice of locally applied dexamethasone in reducing FBR and electrical impedance.
Collapse
|
6
|
Karayay B, Olze H, Szczepek AJ. Mammalian Inner Ear-Resident Immune Cells-A Scoping Review. Cells 2024; 13:1528. [PMID: 39329712 PMCID: PMC11430779 DOI: 10.3390/cells13181528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Several studies have demonstrated the presence of resident immune cells in the healthy inner ear. AIM This scoping review aimed to systematize this knowledge by collecting the data on resident immune cells in the inner ear of different species under steady-state conditions. METHODS The databases PubMed, MEDLINE (Ovid), CINAHL (EBSCO), and LIVIVO were used to identify articles. Systematic reviews, experimental studies, and clinical data in English and German were included without time limitations. RESULTS The search yielded 49 eligible articles published between 1979 and 2022. Resident immune cells, including macrophages, lymphocytes, leukocytes, and mast cells, have been observed in various mammalian inner ear structures under steady-state conditions. However, the physiological function of these cells in the healthy cochlea remains unclear, providing an opportunity for basic research in inner ear biology. CONCLUSIONS This review highlights the need for further investigation into the role of these cells, which is crucial for advancing the development of therapeutic methods for treating inner ear disorders, potentially transforming the field of otolaryngology and immunology.
Collapse
Affiliation(s)
- Betül Karayay
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
- Faculty of Medicine and Health Sciences, University of Zielona Góra, 65-046 Zielona Góra, Poland
| |
Collapse
|
7
|
Pan J, Wang K, Qu J, Chen D, Chen A, You Y, Tang J, Zhang H. Activated tissue-resident macrophages contribute to hair cell insults in noise-induced hearing loss in mice. Commun Biol 2024; 7:1078. [PMID: 39223249 PMCID: PMC11368919 DOI: 10.1038/s42003-024-06768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophages serve as the primary immune cell population and assume a pivotal role in the immune response within the damaged cochleae. Yet, the origin and role of macrophages in response to noise exposure remain controversial. Here, we take advantage of Ccr2RFP/+ Cx3cr1GFP/+ dual-reporter mice to identify the infiltrated and tissue-resident macrophages. After noise exposure, we reveal that activated resident macrophages change in morphology, increase in abundance, and migrate to the region of hair cells, leading to the loss of outer hair cells and the damage of ribbon synapses. Meanwhile, peripheral monocytes are not implicated in the noise-induced hair cell insults. These noise-induced activities of macrophages are abolished by inhibiting TLR4 signaling, resulting in alleviated insults of hair cells and partial recovery of hearing. Our findings indicate cochlear resident macrophages are pro-inflammatory and detrimental players in acoustic trauma and introduce a potential therapeutic target in noise-induced hearing loss.
Collapse
Affiliation(s)
- Jing Pan
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Kaiye Wang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jiaxi Qu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Dongxiu Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Anning Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yunyou You
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jie Tang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
- Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China.
| | - Hongzheng Zhang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
8
|
Torres R, Daoudi H, Gu W, Breil E, Ferrary E, Sterkers O, Nguyen Y, Mosnier I. Exploring Trauma Patterns and Contributing Factors With Slim Straight Electrode Array After Cochlear Implantation. Otolaryngol Head Neck Surg 2024; 171:521-529. [PMID: 38532540 DOI: 10.1002/ohn.737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE To assess trauma patterns associated with the insertion of lateral wall electrode arrays. The study focused on 3 categories-scala tympani (ST), intermediate, and scala vestibuli (SV)-to identify traumatic patterns and contributing factors. STUDY DESIGN Retrospective study. SETTING Data from 106 cochlear implant recipients at a tertiary otologic center. METHODS Demographic and surgical data were collected from recipients who underwent cochlear implantation manually and with RobOtol®. Measurements included cochlear dimensions, angular depth of insertion, and position of the first electrode. Three-dimensional reconstructions were used to analyze the electrode array location relative to the basilar membrane, categorized into ST, intermediate, and SV electrodes. Nontraumatic insertion was defined as all electrodes in the ST, while traumatic insertions had 1 or more electrodes in intermediate or SV locations. RESULTS Out of 106 cases, 44% had nontraumatic and 56% had traumatic insertions. Demographic and surgical characteristics showed no association with traumatic insertions. A deeper position of the first electrode, relative to the round window, was associated with traumatic insertions (P = .03). Three trauma patterns were observed: distal (facing the apical electrodes), proximal (facing the middle electrodes around 180°), and distal/proximal. CONCLUSION This study considers the intermediate position which could be associated with basilar membrane lesions. Risk zones for intracochlear trauma with lateral wall arrays were identified distally and proximally. Traumatic insertions were independently linked to deeper array placement. Future studies should explore whether gentler insertion, without insisting on further electrode array insertion depth, could reduce the trauma during cochlear implantation.
Collapse
Affiliation(s)
- Renato Torres
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| | - Hannah Daoudi
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| | - Wenxi Gu
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Eugénie Breil
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
| | - Evelyne Ferrary
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| | - Olivier Sterkers
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| | - Yann Nguyen
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| | - Isabelle Mosnier
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| |
Collapse
|
9
|
Nieratschker M, Yildiz E, Gerlitz M, Bera S, Gadenstaetter AJ, Kramer AM, Kwiatkowska M, Mistrik P, Landegger LD, Braun S, Schlingensiepen R, Honeder C, Arnoldner C, Rommelspacher H. A preoperative dose of the pyridoindole AC102 improves the recovery of residual hearing in a gerbil animal model of cochlear implantation. Cell Death Dis 2024; 15:531. [PMID: 39060244 PMCID: PMC11282255 DOI: 10.1038/s41419-024-06854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024]
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide. Due to the heterogeneity of causes for SNHL, effective treatment options remain scarce, creating an unmet need for novel drugs in the field of otology. Cochlear implantation (CI) currently is the only established method to restore hearing function in profound SNHL and deaf patients. The cochlear implant bypasses the non-functioning sensory hair cells (HCs) and electrically stimulates the neurons of the cochlear nerve. CI also benefits patients with residual hearing by combined electrical and auditory stimulation. However, the insertion of an electrode array into the cochlea induces an inflammatory response, characterized by the expression of pro-inflammatory cytokines, upregulation of reactive oxygen species, and apoptosis and necrosis of HCs, putting residual hearing at risk. Here, we characterize the small molecule AC102, a pyridoindole, for its protective effects on residual hearing in CI. In a gerbil animal model of CI, AC102 significantly improves the recovery of hearing thresholds across multiple frequencies and confines the cochlear trauma to the directly mechanically injured area. In addition, AC102 significantly preserves auditory nerve fibers and inner HC synapses throughout the whole cochlea. In vitro experiments in an ethanol challenged HT22 cell-line revealed significant and dose-responsive anti-apoptotic effects following the treatment of with AC102. Further, AC102 treatment resulted in significant downregulation of the expression of pro-inflammatory cytokines in an organotypic ex vivo model of electrode insertion trauma (EIT). These results suggest that AC102's effects are likely elicited during the inflammatory phase of EIT and mediated by anti-apoptotic and anti-inflammatory properties, highlighting AC102 as a promising compound for hearing preservation during CI. Moreover, since the inflammatory response in CI shares similarities to that in other etiologies of SNHL, AC102 may be inferred as a potential general treatment option for various inner ear conditions.
Collapse
Affiliation(s)
- Michael Nieratschker
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Erdem Yildiz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Matthias Gerlitz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Anselm J Gadenstaetter
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Anne-Margarethe Kramer
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | - Lukas D Landegger
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | - Clemens Honeder
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
10
|
Toulemonde P, Beck C, Risoud M, Lemesre PE, Tardivel M, Siepmann J, Vincent C. Development of a Semi-Automated Approach for the Quantification of Neuronal Cells in the Spiral Ganglion of the Whole Implanted Gerbil Cochlea, Acquired by Light-Sheet Microscopy. Audiol Neurootol 2024; 29:500-507. [PMID: 38810615 DOI: 10.1159/000539569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
INTRODUCTION Assessing cochlear implantation's impact on cell loss and preventing post-implant cochlear damage are key areas of focus for hearing preservation research. The preservation of auditory neuronal and sensory neural hearing cells has a positive impact on auditory perception after implantation. This study aimed to provide details on a semi-automated spiral ganglion neuronal cell counting method, developed using whole implanted gerbil cochlea acquisitions with light-sheet microscopy. METHODS Mongolian gerbils underwent right cochlear implantation with an electrode array whose silicone was loaded with dexamethasone or not and were euthanized 10 weeks after implantation. The cochleae were prepared according to a 29-day protocol, with the electrode array in place. Light-sheet microscopy was used for acquisition, and Imaris software was employed for three-dimensional analysis of the cochleas and semi-automatic quantification of spiral ganglion cells. The imaJ software was used for the manual quantification of these cells. RESULTS Six cochleae were acquired by light-sheet microscopy, allowing good identification of cells. There was no significant difference between the mean number of spiral ganglion cells obtained by manual and semi-automatic counting (p = 0.25). CONCLUSION Light-sheet microscopy provided complete visualization of the spiral ganglion and cell identification. The semi-automated counting method developed using Imaris software tools proved reliable and efficient and could be applied to a larger sample to assess post-cochlear implant cell damage and the efficacy of protective drugs delivered to the inner ear.
Collapse
Affiliation(s)
- Philippine Toulemonde
- Department of Otology and Neurotology, Lille University Hospital, University of Lille, Lille, France
- INSERM U1008 - Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Cyril Beck
- Department of Otology and Neurotology, Lille University Hospital, University of Lille, Lille, France
- INSERM U1008 - Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Michaël Risoud
- Department of Otology and Neurotology, Lille University Hospital, University of Lille, Lille, France
- INSERM U1008 - Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Pierre Emmanuel Lemesre
- Department of Otology and Neurotology, Lille University Hospital, University of Lille, Lille, France
- INSERM U1008 - Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Meryem Tardivel
- BioImaging Center Lille-Nord de France (BICeL), University Lille, Lille, France
| | - Juergen Siepmann
- Department of Otology and Neurotology, Lille University Hospital, University of Lille, Lille, France
- INSERM U1008 - Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Christophe Vincent
- Department of Otology and Neurotology, Lille University Hospital, University of Lille, Lille, France
- INSERM U1008 - Controlled Drug Delivery Systems and Biomaterials, Lille, France
| |
Collapse
|
11
|
Fenov DM, Salcher R, Kludt E, Lesinski-Schiedat A, Harre J, Lenarz T, Giesemann A, Warnecke A. Long-term experience with biohybrid cochlear implants in human neurosensory restoration. Cochlear Implants Int 2024; 25:171-181. [PMID: 39159131 DOI: 10.1080/14670100.2024.2379124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
OBJECTIVE The implantation of biohybrid electrodes was introduced a few years ago in our clinic. These electrodes coated with autologous mononuclear cells releasing anti-inflammatory and neuroprotective factors are thought to reduce insertion trauma and maintain the vitality of surviving spiral ganglion neurons. The clinical feasibility of this approach has already been demonstrated. In the present retrospective study, the four-year results of the two sides (classical electrode and biohybrid electrode) in the bilaterally implanted patients were compared in order to investigate possible adverse long-term effects. METHODS All patients received a complete audiological diagnosis which also included a speech audiogram and impedance measurement. The measurements were carried out 1 month, 3 months, 6 months, 1 year, 2 years, 3 years and 4 years after implantation. The hearing results were assessed by pure tone audiometry. RESULTS All patients showed satisfactory speech understanding and similar impedances on both sides although they had a long-term deafness before implantation of the side provided with a biohybrid electrode array. The results of speech understanding and impedance measurements were stable for years. Cone beam computed tomography was performed in 4 patients three years after implantation and could rule out cochlear ossification. Other complications were also not registered in any of the patients. CONCLUSION Due to satisfactory outcomes and lack of complications, the biohybrid electrode is considered to be a safe option in cochlear implantation. The simplicity of application of autologous cells as a source of anti-inflammatory and neuroprotective factors via a biohybrid electrode array is a key step for cell-based, regenerative therapies for deafness.
Collapse
Affiliation(s)
- Dragana Mitovska Fenov
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Rolf Salcher
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Eugen Kludt
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Anke Lesinski-Schiedat
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Jennifer Harre
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence 'Hearing for All', German Research Foundation, Bonn, Germany
| | - Thomas Lenarz
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence 'Hearing for All', German Research Foundation, Bonn, Germany
| | - Anja Giesemann
- Department for Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence 'Hearing for All', German Research Foundation, Bonn, Germany
| |
Collapse
|
12
|
Pressé MT, Malgrange B, Delacroix L. The cochlear matrisome: Importance in hearing and deafness. Matrix Biol 2024; 125:40-58. [PMID: 38070832 DOI: 10.1016/j.matbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.
Collapse
Affiliation(s)
- Mary T Pressé
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium.
| |
Collapse
|
13
|
Konrad S, Büchner A, Lenarz T, Paasche G. Impedance development after implantation of hybrid-L24 cochlear implant electrodes. Int J Audiol 2023; 62:1137-1144. [PMID: 36193989 DOI: 10.1080/14992027.2022.2125914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Shorter and thinner electrodes were developed for preserving residual hearing after cochlear implantation by minimising trauma. As trauma is regarded as one of the causes of fibrous tissue formation after implantation, and increase in impedance is considered to be connected to fibrous tissue formation, the aim of the current study was to evaluate impedance development after implantation of Hybrid-L electrodes. DESIGN Impedance values were retrospectively collected from our clinical database and evaluated for all active contacts and basal, middle and apical contacts separately for up to 10 years. STUDY SAMPLES All 137 adult patients received a Hybrid-L electrode and had to be implanted for at least 1 year. RESULTS On average impedances increased to 13 kOhm before first fitting and dropped to 5-7 kOhm under electrical stimulation with lower values measured on apical contacts. Mean values remained stable over years, but variability increased. Values before first fitting were independent of age at implantation whereas lower values were found later in patients of higher age at implantation. CONCLUSION Despite smaller contacts, impedance values after start of electrical stimulation were comparable to published values of Contour electrodes. This might suggest less tissue growth with the Hybrid-L electrode array.
Collapse
Affiliation(s)
- Simon Konrad
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Andreas Büchner
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Gerrit Paasche
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Sung CYW, Hayase N, Yuen PS, Lee J, Fernandez K, Hu X, Cheng H, Star RA, Warchol ME, Cunningham LL. Macrophage Depletion Protects Against Cisplatin-Induced Ototoxicity and Nephrotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567274. [PMID: 38014097 PMCID: PMC10680818 DOI: 10.1101/2023.11.16.567274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cisplatin is a widely used and highly effective anti-cancer drug with significant side effects including ototoxicity and nephrotoxicity. Macrophages, the major resident immune cells in the cochlea and kidney, are important drivers of both inflammatory and tissue repair responses. To investigate the roles of macrophages in cisplatin-induced ototoxicity and nephrotoxicity, we used PLX3397, an FDA-approved inhibitor of the colony-stimulating factor 1 receptor (CSF1R), to eliminate tissue-resident macrophages during the course of cisplatin administration. Mice treated with cisplatin alone (cisplatin/vehicle) had significant hearing loss (ototoxicity) as well as kidney injury (nephrotoxicity). Macrophage ablation using PLX3397 resulted in significantly reduced hearing loss measured by auditory brainstem responses (ABR) and distortion-product otoacoustic emissions (DPOAE). Sensory hair cells in the cochlea were protected against cisplatin-induced death in mice treated with PLX3397. Macrophage ablation also protected against cisplatin-induced nephrotoxicity, as evidenced by markedly reduced tubular injury and fibrosis as well as reduced plasma blood urea nitrogen (BUN) and neutrophil gelatinase-associated lipocalin (NGAL) levels. Mechanistically, our data suggest that the protective effect of macrophage ablation against cisplatin-induced ototoxicity and nephrotoxicity is mediated by reduced platinum accumulation in both the inner ear and the kidney. Together our data indicate that ablation of tissue-resident macrophages represents a novel strategy for mitigating cisplatin-induced ototoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Naoki Hayase
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Peter S.T. Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - John Lee
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Katharine Fernandez
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Robert A. Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Mark E. Warchol
- Washington University, Department of Otolaryngology, School of Medicine, Saint Louis, MO
| | - Lisa L. Cunningham
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Rahman MT, Mostaert BJ, Hunger B, Saha U, Claussen AD, Razu I, Nasrin F, Khan NA, Eckard P, Coleman S, Oleson J, Kirk JR, Hirose K, Hansen MR. Contribution of macrophages to neural survival and intracochlear tissue remodeling responses following cochlear implantation. J Neuroinflammation 2023; 20:266. [PMID: 37974203 PMCID: PMC10652501 DOI: 10.1186/s12974-023-02955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Cochlear implants (CIs) restore hearing to deafened patients. The foreign body response (FBR) following cochlear implantation (post-CI) comprises an infiltration of macrophages, other immune and non-immune cells, and fibrosis into the scala tympani, a space that is normally devoid of cells. This FBR is associated with negative effects on CI outcomes including increased electrode impedances and loss of residual acoustic hearing. This study investigates the extent to which macrophage depletion by an orally administered CSF-1R specific kinase (c-FMS) inhibitor, PLX-5622, modulates the tissue response to CI and neural health. MAIN TEXT 10- to 12-week-old CX3CR1 + /GFP Thy1 + /YFP mice on C57BL/6J/B6 background was fed chow containing 1200 mg/kg PLX5622 or control chow for the duration of the study. 7 days after starting the diet, 3-channel cochlear implants were implanted in the ear via the round window. Serial impedance and neural response telemetry (NRT) measurements were acquired throughout the study. Electric stimulation began 7 days post-CI until 28 days post-CI for 5 h/day, 5 days/week, with programming guided by NRT and behavioral responses. Cochleae harvested at 10, 28 or 56 days post-CI were cryosectioned and labeled with an antibody against α-smooth muscle actin (α-SMA) to identify myofibroblasts and quantify the fibrotic response. Using IMARIS image analysis software, the outlines of scala tympani, Rosenthal canal, modiolus, and lateral wall for each turn were traced manually to measure region volume. The density of nuclei, CX3CR1 + macrophages, Thy1 + spiral ganglion neuron (SGN) numbers, and the ratio of the α-SMA + volume/scala tympani volume were calculated. Cochlear implantation in control diet subjects caused infiltration of cells, including macrophages, into the cochlea. Fibrosis was evident in the scala tympani adjacent to the electrode array. Mice fed PLX5622 chow showed reduced macrophage infiltration throughout the implanted cochleae across all time points. However, scala tympani fibrosis was not reduced relative to control diet subjects. Further, mice treated with PLX5622 showed increased electrode impedances compared to controls. Finally, treatment with PLX5622 decreased SGN survival in implanted and contralateral cochleae. CONCLUSION The data suggest that macrophages play an important role in modulating the intracochlear tissue response following CI and neural survival.
Collapse
Affiliation(s)
- Muhammad Taifur Rahman
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Brian J Mostaert
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Bryce Hunger
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Utsow Saha
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Alexander D Claussen
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Ibrahim Razu
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Farjana Nasrin
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Nashwaan Ali Khan
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Peter Eckard
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Sarah Coleman
- Department of Biostatistics, The University of Iowa, Iowa City, IA, USA
| | - Jacob Oleson
- Department of Biostatistics, The University of Iowa, Iowa City, IA, USA
| | | | - Keiko Hirose
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
16
|
Braack KJ, Miles T, Amat F, Brown DJ, Atlas MD, Kuthubutheen J, Mulders WH, Prêle CM. Using x-ray micro computed tomography to quantify intracochlear fibrosis after cochlear implantation in a Guinea pig model. Heliyon 2023; 9:e19343. [PMID: 37662829 PMCID: PMC10474428 DOI: 10.1016/j.heliyon.2023.e19343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Cochlear implants (CIs) allow individuals with profound hearing loss to understand speech and perceive sounds. However, not all patients obtain the full benefits that CIs can provide and the cause of this disparity is not fully understood. One possible factor for the variability in outcomes after cochlear implantation, is the development of fibrotic scar tissue around the implanted electrode. It has been hypothesised that limiting the extent of fibrosis after implantation may improve overall CI function, and longevity of the device. Currently, histology is often used to quantify the extent of intracochlear tissue growth after implantation however this method is labour intensive, time-consuming, often involves significant user bias, and causes physical distortion of the fibrosis. Therefore, this study aimed to evaluate x-ray micro computed tomography (μCT) as a method to measure the amount and distribution of fibrosis in a guinea pig model of cochlear implantation. Adult guinea pigs were implanted with an inactive electrode, and cochleae harvested eight weeks later (n = 7) and analysed using μCT, to quantify the extent of tissue reaction, followed by histological analysis to confirm that the tissue was indeed fibrotic. Cochleae harvested from an additional six animals following implantation were analysed by μCT, before and after contrast staining with osmium tetroxide (OsO4), to enhance the visualisation of soft tissues within the cochlea, including the tissue reaction. Independent analysis by two observers showed that the quantification method was robust and provided additional information on the distribution of the response within the cochlea. Histological analysis revealed that μCT visualised dense collagenous material and new bone formation but did not capture loose, areolar fibrotic tissue. Treatment with OsO4 significantly enhanced the visible tissue reaction detected using μCT. Overall, μCT is an alternative and reliable method that can be used to quantify the extent of the CI-induced intracochlear tissue response and will be a useful tool for the in vivo assessment of novel anti-fibrotic treatments.
Collapse
Affiliation(s)
- Kady J. Braack
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Tylah Miles
- Institute for Respiratory Health, University of Western Australia, Nedlands, WA 6009, Australia
| | - Farah Amat
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Daniel J. Brown
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| | - Marcus D. Atlas
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
- Ear Science Institute Australia, Subiaco, WA 6008, Australia
| | - Jafri Kuthubutheen
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
- Department of Otolaryngology Head and Neck Surgery, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA 6009, Australia
| | | | - Cecilia M. Prêle
- Institute for Respiratory Health, University of Western Australia, Nedlands, WA 6009, Australia
- Ear Science Institute Australia, Subiaco, WA 6008, Australia
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
17
|
Rahman MT, Mostaert BJ, Hunger B, Saha U, Claussen AD, Razu I, Farjana N, Khan NA, Coleman S, Oleson J, Kirk J, Keiko H, Hansen MR. Contribution of macrophages to intracochlear tissue remodeling responses following cochlear implantation and neural survival. RESEARCH SQUARE 2023:rs.3.rs-3065630. [PMID: 37461619 PMCID: PMC10350110 DOI: 10.21203/rs.3.rs-3065630/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Introduction Cochlear implants (CIs) restore hearing to deafened patients. The foreign body response (FBR) following cochlear implantation (post-CI) comprises an infiltration of macrophages, other immune and non-immune cells, and fibrosis into the scala tympani; a space that is normally devoid of cells. This FBR is associated with negative effects on CI outcomes including increased electrode impedances and loss of residual acoustic hearing. This study investigates the extent to which macrophage depletion by an orally administered CSF-1R specific kinase (c-FMS) inhibitor, PLX-5622, modulates the tissue response to CI and neural health. Materials and methods 10-12-week-old CX3CR1+/GFP Thy1+/YFP mice on C57Bl6 background with normal hearing were fed chow containing 1200 mg/kg PLX5622 or control chow for the duration of the study. 7-days after starting the diet, 3-channel cochlear implants were implanted ear via the round window. Serial impedance and neural response telemetry (NRT) measurements were acquired throughout the study. Electric stimulation began 7 days post-CI until 28- days post-CI for 5 hrs/day, 5 days/week, with programming guided by NRT and behavioral responses. Cochleae harvested at 10-, 28- or 56-days post-CI were cryosectioned and labeled with antibody against α-smooth muscle actin (α-SMA) to identify myofibroblasts and quantify the fibrotic response. Using IMARIS image analysis software, the outlines of scala tympani, Rosenthal canal, modiolus and lateral wall for each turn were traced manually to measure region volume. Density of nuclei, CX3CR1+ macrophages, Thy1+ spiral ganglion neuron (SGN) numbers and ratio of volume of α-SMA+ space/volume of scala tympani were calculated. Results Cochlear implantation in control diet subjects caused infiltration of cells, including macrophages, into the cochlea: this response was initially diffuse throughout the cochlea and later localized to the scala tympani of the basal turn by 56-days post-CI. Fibrosis was evident in the scala tympani adjacent to the electrode array. Mice fed PLX5622 chow showed reduced macrophage infiltration throughout the implanted cochleae across all timepoints. However, scala tympani fibrosis was not reduced relative to control diet subjects. Further, mice treated with PLX5622 showed increased electrode impedances compared to controls. Finally, treatment with PLX5622 decreased SGN survival in implanted and contralateral cochleae. Discussion The data suggest that macrophages play an important role in modulating the intracochlear tissue response following CI and neural survival.
Collapse
Affiliation(s)
| | - Brain J Mostaert
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | - Bryce Hunger
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | - Utsow Saha
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | | | - Ibrahim Razu
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | - Nasrin Farjana
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | - Nashwaan Ali Khan
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | - Sarah Coleman
- Department of Statistics, The University of Iowa, IA
| | - Jackob Oleson
- Department of Statistics, The University of Iowa, IA
| | | | - Hirose Keiko
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St Louis, MO
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| |
Collapse
|
18
|
Bader W, Steinacher C, Fischer HT, Glueckert R, Schmutzhard J, Schrott-Fischer A. Effects of Therapeutic Hypothermia on Macrophages in Mouse Cochlea Explants. Int J Mol Sci 2023; 24:8850. [PMID: 37240196 PMCID: PMC10218374 DOI: 10.3390/ijms24108850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Globally, over the next few decades, more than 2.5 billion people will suffer from hearing impairment, including profound hearing loss, and millions could potentially benefit from a cochlea implant. To date, several studies have focused on tissue trauma caused by cochlea implantation. The direct immune reaction in the inner ear after an implantation has not been well studied. Recently, therapeutic hypothermia has been found to positively influence the inflammatory reaction caused by electrode insertion trauma. The present study aimed to evaluate the hypothermic effect on the structure, numbers, function and reactivity of macrophages and microglial cells. Therefore, the distribution and activated forms of macrophages in the cochlea were evaluated in an electrode insertion trauma cochlea culture model in normothermic and mild hypothermic conditions. In 10-day-old mouse cochleae, artificial electrode insertion trauma was inflicted, and then they were cultured for 24 h at 37 °C and 32 °C. The influence of mild hypothermia on macrophages was evaluated using immunostaining of cryosections using antibodies against IBA1, F4/80, CD45 and CD163. A clear influence of mild hypothermia on the distribution of activated and non-activated forms of macrophages and monocytes in the inner ear was observed. Furthermore, these cells were located in the mesenchymal tissue in and around the cochlea, and the activated forms were found in and around the spiral ganglion tissue at 37 °C. Our findings suggest that mild hypothermic treatment has a beneficial effect on immune system activation after electrode insertion trauma.
Collapse
Affiliation(s)
| | | | | | | | - Joachim Schmutzhard
- Department of Otorhinolaryngology, Medical University Innsbruck, 6020 Innsbruck, Austria; (W.B.); (C.S.); (H.T.F.); (R.G.); (A.S.-F.)
| | | |
Collapse
|
19
|
Kirk JR, Smyth D, Dueck WF. A new paradigm of hearing loss and preservation with cochlear implants: Learnings from fundamental studies and clinical research. Hear Res 2023; 433:108769. [PMID: 37120894 DOI: 10.1016/j.heares.2023.108769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 02/18/2023] [Accepted: 04/15/2023] [Indexed: 05/02/2023]
Abstract
In 2010 Cochlear initiated a coordinated preclinical research program to identify the factors and underlying mechanisms of acoustic hearing loss following cochlear implantation and device use. At its inception the program was structured around several major hypotheses implicated in the loss of acoustic hearing. The understanding of causes evolved over the course of the program, leading to an increased appreciation of the role of the biological response in post-implant hearing loss. A systematic approach was developed which mapped the cochlear implant journey along a timeline that considers all events in an individual's hearing history. By evaluating the available data in this context, rather than by discrete hypothesis testing, causative and associated factors may be more readily detected. This approach presents opportunities for more effective research management and may aid in identifying new prospects for intervention. Many of the outcomes of the research program apply beyond preservation of acoustic hearing to factors important to overall cochlear health and considerations for future therapies.
Collapse
Affiliation(s)
- Jonathon R Kirk
- Cochlear Limited, 1 University Avenue, Macquarie University, NSW 2109, Australia.
| | - Daniel Smyth
- Cochlear Limited, 1 University Avenue, Macquarie University, NSW 2109, Australia
| | - Wolfram F Dueck
- Cochlear Limited, 1 University Avenue, Macquarie University, NSW 2109, Australia
| |
Collapse
|
20
|
Wellens J, Deschaume O, Putzeys T, Eyley S, Thielemans W, Verhaert N, Bartic C. Sulfobetaine-based ultrathin coatings as effective antifouling layers for implantable neuroprosthetic devices. Biosens Bioelectron 2023; 226:115121. [PMID: 36774733 DOI: 10.1016/j.bios.2023.115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Foreign body response (FBR), inflammation, and fibrotic encapsulation of neural implants remain major problems affecting the impedance of the electrode-tissue interface and altering the device performance. Adhesion of proteins and cells (e.g., pro-inflammatory macrophages, and fibroblasts) triggers the FBR cascade and can be diminished by applying antifouling coatings onto the implanted devices. In this paper, we report the deposition and characterization of a thin (±6 nm) sulfobetaine-based coating onto microfabricated platinum electrodes and cochlear implant (CI) electrode arrays. We found that this coating has stable cell and protein-repellent properties, for at least 31 days in vitro, not affected by electrical stimulation protocols. Additionally, its effect on the electrochemical properties relevant to stimulation (i.e., impedance, charge injection capacity) was negligible. When applied to clinical CI electrode arrays, the film was successful at inhibiting fibroblast adhesion on both the silicone packaging and the platinum/iridium electrodes. In vitro, in fibroblast cultures, coated CI electrode arrays maintained impedance values up to five times lower compared to non-coated devices. Our studies demonstrate that such thin sulfobetaine containing layers are stable and prevent protein and cell adhesion in vitro and are compatible for use on CI electrode arrays. Future in vivo studies should be conducted to investigate its ability to mitigate biofouling, fibrosis, and the resulting impedance changes upon long-term implantation in vivo.
Collapse
Affiliation(s)
- Jolan Wellens
- Laboratory for Soft Matter and Biophysics, Dept. Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Olivier Deschaume
- Laboratory for Soft Matter and Biophysics, Dept. Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Tristan Putzeys
- Laboratory for Soft Matter and Biophysics, Dept. Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium; Experimental Oto-rhino-laryngology Research Group, Dept. Neuroscience, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Samuel Eyley
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500, Kortrijk, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500, Kortrijk, Belgium
| | - Nicolas Verhaert
- Experimental Oto-rhino-laryngology Research Group, Dept. Neuroscience, KU Leuven, Herestraat 49, 3000, Leuven, Belgium; Department of Otorhinolaryngology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Carmen Bartic
- Laboratory for Soft Matter and Biophysics, Dept. Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium.
| |
Collapse
|
21
|
Schvartz-Leyzac KC, Colesa DJ, Swiderski DL, Raphael Y, Pfingst BE. Cochlear Health and Cochlear-implant Function. J Assoc Res Otolaryngol 2023; 24:5-29. [PMID: 36600147 PMCID: PMC9971430 DOI: 10.1007/s10162-022-00882-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2022] [Indexed: 01/06/2023] Open
Abstract
The cochlear implant (CI) is widely considered to be one of the most innovative and successful neuroprosthetic treatments developed to date. Although outcomes vary, CIs are able to effectively improve hearing in nearly all recipients and can substantially improve speech understanding and quality of life for patients with significant hearing loss. A wealth of research has focused on underlying factors that contribute to success with a CI, and recent evidence suggests that the overall health of the cochlea could potentially play a larger role than previously recognized. This article defines and reviews attributes of cochlear health and describes procedures to evaluate cochlear health in humans and animal models in order to examine the effects of cochlear health on performance with a CI. Lastly, we describe how future biologic approaches can be used to preserve and/or enhance cochlear health in order to maximize performance for individual CI recipients.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave, Charleston, SC, 29425, USA
| | - Deborah J Colesa
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Donald L Swiderski
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Bryan E Pfingst
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA.
| |
Collapse
|
22
|
Sangaletti R, Tamames I, Yahn SL, Choi JS, Lee JK, King C, Rajguru SM. Mild therapeutic hypothermia protects against inflammatory and proapoptotic processes in the rat model of cochlear implant trauma. Hear Res 2023; 428:108680. [PMID: 36586170 PMCID: PMC9840707 DOI: 10.1016/j.heares.2022.108680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Mild therapeutic hypothermia (MTH) has been demonstrated to prevent residual hearing loss from surgical trauma associated with cochlear implant (CI) insertion. Here, we aimed to characterize the mechanisms of MTH-induced hearing preservation in CI in a well-established preclinical rodent model. APPROACH Rats were divided into four experimental conditions: MTH-treated and implanted cochleae, cochleae implanted under normothermic conditions, MTH only cochleae and un-operated cochleae (controls). Auditory brainstem responses (ABRs) were recorded at different time points (up to 84 days) to confirm long-term protection and safety of MTH locally applied to the cochlea for 20 min before and after implantation. Transcriptome sequencing profiling was performed on cochleae harvested 24 h post CI and MTH treatment to investigate the potential beneficial effects and underlying active gene expression pathways targeted by the temperature management. RESULTS MTH treatment preserved residual hearing up to 3 months following CI when compared to the normothermic CI group. In addition, MTH applied locally to the cochleae using our surgical approach was safe and did not affect hearing in the long-term. Results of RNA sequencing analysis highlight positive modulation of signaling pathways and gene expression associated with an activation of cellular inflammatory and immune responses against the mechanical damage caused by electrode insertion. SIGNIFICANCE These data suggest that multiple and possibly independent molecular pathways play a role in the protection of residual hearing provided by MTH against the trauma of cochlear implantation.
Collapse
Affiliation(s)
- Rachele Sangaletti
- Department of Otolaryngology, University of Miami, Miami, FL, 33136, USA
| | - Ilmar Tamames
- Department of Biomedical Engineering, University of Miami, Miami, FL, 33136, USA
| | - Stephanie Lynn Yahn
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - James Seungyeon Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | | | - Suhrud M Rajguru
- Department of Otolaryngology, University of Miami, Miami, FL, 33136, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
23
|
Chen A, Chen D, Lv K, Li G, Pan J, Ma D, Tang J, Zhang H. Zwitterionic Polymer/Polydopamine Coating of Electrode Arrays Reduces Fibrosis and Residual Hearing Loss after Cochlear Implantation. Adv Healthc Mater 2023; 12:e2200807. [PMID: 36177664 DOI: 10.1002/adhm.202200807] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/15/2022] [Indexed: 02/03/2023]
Abstract
Since the first surgery 50 years ago, cochlear implantation (CI) is the major treatment for patients with severe sensorineural hearing loss. However, unexpected foreign body reactions (FBRs) after surgery are reported in 90% of CI recipients, resulting in the formation of fibrosis in the cochlea and progressive residual hearing loss. Zwitterion modification is universally used to reduce bio-fouling and suppress FBRs but never for CI. In the present study, a zwitterionic coating is developed, which is composed of poly sulfobetaine methacrylate (PSB) and polydopamine (PDA) for cochlear implants. The PSB-PDA coating shows a series of characters for an ideal anti-FBRs material, including super-hydrophilicity, low protein and cell adsorption, long-term stability, and high biocompatibility. Compared to the uncoated controls, PSB-PDA coating inhibits the activation of macrophages and reduces the release of inflammatory factors (TNF-α, IL-1β, NO) and fibrosis-related factors (TGF-β1, α-SMA, collagen I). PSB-PDA coated electrode arrays suppress fibrosis completely and preserve residual hearing significantly in rat CI models. These results suggest that PSB-PDA coating is a novel strategy for anti-fibrosis to improve the outcomes of CI.
Collapse
Affiliation(s)
- Anning Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.,Hearing Research Center, Southern Medical University, Guangzhou, 510282, China
| | - Dongxiu Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.,Hearing Research Center, Southern Medical University, Guangzhou, 510282, China
| | - Kai Lv
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Guowei Li
- Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jing Pan
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.,Hearing Research Center, Southern Medical University, Guangzhou, 510282, China
| | - Dong Ma
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Jie Tang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.,Hearing Research Center, Southern Medical University, Guangzhou, 510282, China.,Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China
| | - Hongzheng Zhang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.,Hearing Research Center, Southern Medical University, Guangzhou, 510282, China
| |
Collapse
|
24
|
Warnecke A, Staecker H, Rohde E, Gimona M, Giesemann A, Szczepek AJ, Di Stadio A, Hochmair I, Lenarz T. Extracellular Vesicles in Inner Ear Therapies-Pathophysiological, Manufacturing, and Clinical Considerations. J Clin Med 2022; 11:jcm11247455. [PMID: 36556073 PMCID: PMC9788356 DOI: 10.3390/jcm11247455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: Sensorineural hearing loss is a common and debilitating condition. To date, comprehensive pharmacologic interventions are not available. The complex and diverse molecular pathology that underlies hearing loss may limit our ability to intervene with small molecules. The current review foccusses on the potential for the use of extracellular vesicles in neurotology. (2) Methods: Narrative literature review. (3) Results: Extracellular vesicles provide an opportunity to modulate a wide range of pathologic and physiologic pathways and can be manufactured under GMP conditions allowing for their application in the human inner ear. The role of inflammation in hearing loss with a focus on cochlear implantation is shown. How extracellular vesicles may provide a therapeutic option for complex inflammatory disorders of the inner ear is discussed. Additionally, manufacturing and regulatory issues that need to be addressed to develop EVs as advanced therapy medicinal product for use in the inner ear are outlined. (4) Conclusion: Given the complexities of inner ear injury, novel therapeutics such as extracellular vesicles could provide a means to modulate inflammation, stress pathways and apoptosis in the inner ear.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all”, 30625 Hannover, Germany
- Correspondence:
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Rainbow Blvd., Kansas City, KS 66160, USA
| | - Eva Rohde
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), 5020 Salzburg, Austria
- Department of Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK) Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), 5020 Salzburg, Austria
- Research Program “Nanovesicular Therapies”, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anja Giesemann
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Arianna Di Stadio
- Department GF Ingrassia, University of Catania, 95124 Catania, Italy
| | | | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all”, 30625 Hannover, Germany
| |
Collapse
|
25
|
Bedeir MM, Ninoyu Y, Nakamura T, Tsujikawa T, Hirano S. Multiplex immunohistochemistry reveals cochlear macrophage heterogeneity and local auditory nerve inflammation in cisplatin-induced hearing loss. Front Neurol 2022; 13:1015014. [PMID: 36341090 PMCID: PMC9633043 DOI: 10.3389/fneur.2022.1015014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 08/11/2023] Open
Abstract
Inner ear macrophages play a vital role in cochlear homeostasis. Recent studies have demonstrated the existence of macrophages at different sites of the cochlea, with increased cochlear infiltration as an inflammatory response mechanism to injury. However, current methods, such as conventional immunohistochemistry and flow cytometry, provide limited information about the diversity of cochlear macrophages. Recently, multiplex immunohistochemistry (mIHC) successfully identified the heterogeneity of immune cells in cancer tissue and thereby improved our understanding of the disease prognosis. In this study, we modified the mIHC technique for cochlear tissue and utilized it to investigate cochlear macrophage behavior and heterogeneity before and after exposure to ototoxic drugs such as cisplatin. Four-week-old C57BL/6N female mice were intraperitoneally injected with cisplatin at 5 mg/kg/day consecutively for 6 days. Their hearing levels were assessed before and after the injection. Their cochleae were harvested before (day 0) and on days 8 and 15 after the cisplatin injection. Paraffin-embedded sections were sequentially immunostained using macrophage surface markers to identify the different categories of macrophages. Each immunostaining cycle included incubation with primary antibody, incubation with secondary antibody, chromogenic staining, and image scanning. Thereafter, all antibodies were stripped out, and antigen retrieval was performed to prepare the tissue for the next cycle. The results revealed that activated cochlear macrophages were not entirely differentiated into M1 or M2 categories but into multi-marker M1/M2 mixed macrophages. Furthermore, the ratio of these mixed (M1/M2) macrophages to Iba1+ macrophages increased in the auditory nerve after cisplatin exposure, suggesting local auditory nerve inflammation. The increase in the population of activated macrophages in the auditory nerve region was concomitant with the temporary shift of hearing threshold on day 8 post-cisplatin injection. The findings of this study indicate the effectiveness of mIHC in identifying cochlear macrophage heterogeneity both in the resting state and after cisplatin exposure. Therefore, mIHC could be a powerful tool in cochlear immunology research. Our findings may provide new insights into the co-relation between the cochlear macrophage and cisplatin exposure.
Collapse
|
26
|
Chen A, Chen Y, Liu S, Ma D, Tang J, Zhang H. Mesoporous silica nanoparticle-modified electrode arrays of cochlear implants for delivery of siRNA-TGFβ1 into the inner ear. Colloids Surf B Biointerfaces 2022; 218:112753. [PMID: 35963142 DOI: 10.1016/j.colsurfb.2022.112753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
Abstract
Cochlear implants (CI) are widely used in patients to restore hearing function. Uncontrolled fibrosis in the cochleae induced by excess secretion of TGFβ1 seriously affects the effectiveness of CIs. siRNA is a potential therapeutic strategy to downregulate TGFβ1 specifically. However, treatment with siRNA in cochleae is difficult due to the poor penetration capability and instability of siRNA and the inaccessibility and vulnerability of cochleae. To address these challenges, we developed amino-functionalized mesoporous silica nanoparticle (MSN-NH2)-modified electrode arrays to deliver siRNA-TGFβ1 into the inner ear. The shape, diameter, pore diameter, and zeta potential of MSN-NH2 were investigated. siRNA loading capability and protective effect of MSN-NH2 were determined by agarose gel electrophoresis assay. The cytotoxicity, cellular uptake assay, and TGFβ1 knockdown efficiency of MSN-NH2 were studied by CCK-8 assay, flow cytometry, and real-time PCR, respectively. MSN-NH2-siTGFβ1 nanoparticles were absorbed into the electrode arrays and worked in the cochleae. MSN-NH2-siTGFβ1-modified CI electrode arrays may be an attractive therapeutic clinical intervention strategy to inhibit cochlear implantation fibrosis.
Collapse
Affiliation(s)
- Anning Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Hearing Research Center, Southern Medical University, Guangzhou 510282, China
| | - Yaoheng Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Hearing Research Center, Southern Medical University, Guangzhou 510282, China
| | - Shixin Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Dong Ma
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Jie Tang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Hearing Research Center, Southern Medical University, Guangzhou 510282, China; Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China.
| | - Hongzheng Zhang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Hearing Research Center, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
27
|
The Augmented Cochlear Implant: a Convergence of Drugs and Cochlear Implantation for the Treatment of Hearing Loss. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-022-00426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Steinacher C, Chacko LJ, Liu W, Rask-Andersen H, Bader W, Dudas J, Sergi CM, Dhanaseelan T, Moreno N, Glueckert R, Hoermann R, Schrott-Fischer A. Visualization of macrophage subsets in the development of the fetal human inner ear. Front Immunol 2022; 13:965196. [PMID: 36159857 PMCID: PMC9501668 DOI: 10.3389/fimmu.2022.965196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Human inner ear contains macrophages whose functional role in early development is yet unclear. Recent studies describe inner ear macrophages act as effector cells of the innate immune system and are often activated following acoustic trauma or exposure to ototoxic drugs. Few or limited literature describing the role of macrophages during inner ear development and organogenesis. Material and Methods We performed a study combining immunohistochemistry and immunofluorescence using antibodies against IBA1, CX3CL1, CD168, CD68, CD45 and CollagenIV. Immune staining and quantification was performed on human embryonic inner ear sections from gestational week 09 to 17. Results The study showed IBA1 and CD45 positive cells in the mesenchymal tissue at GW 09 to GW17. No IBA1 positive macrophages were detected in the sensory epithelium of the cochlea and vestibulum. Fractalkine (CX3CL1) signalling was initiated GW10 and parallel chemotactic attraction and migration of macrophages into the inner ear. Macrophages also migrated into the spiral ganglion, cochlear nerve, and peripheral nerve fibers and tissue-expressing CX3CL1. The mesenchymal tissue at all gestational weeks expressed CD163 and CD68. Conclusion Expressions of markers for resident and non-resident macrophages (IBA1, CD45, CD68, and CD163) were identified in the human fetal inner ear. We speculate that these cells play a role for the development of human inner ear tissue including shaping of the gracile structures.
Collapse
Affiliation(s)
- Claudia Steinacher
- Inner Ear Laboratory, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lejo Johnson Chacko
- Inner Ear Laboratory, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wei Liu
- Department of Surgical Sciences, Section of Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Section of Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Werner Bader
- Inner Ear Laboratory, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jozsef Dudas
- Inner Ear Laboratory, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Consolato M. Sergi
- Anatomic Pathology Division, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, Canada
| | - Tamilvendhan Dhanaseelan
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nadjeda Moreno
- Developmental Biology and Cancer, University College London (UCL) Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Rudolf Glueckert
- Inner Ear Laboratory, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Romed Hoermann
- Department of Anatomy, Histology & Embryology, Division of Clinical & Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Anneliese Schrott-Fischer
- Inner Ear Laboratory, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Rahman MT, Chari DA, Ishiyama G, Lopez I, Quesnel AM, Ishiyama A, Nadol JB, Hansen MR. Cochlear implants: Causes, effects and mitigation strategies for the foreign body response and inflammation. Hear Res 2022; 422:108536. [PMID: 35709579 PMCID: PMC9684357 DOI: 10.1016/j.heares.2022.108536] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
Cochlear implants provide effective auditory rehabilitation for patients with severe to profound sensorineural hearing loss. Recent advances in cochlear implant technology and surgical approaches have enabled a greater number of patients to benefit from this technology, including those with significant residual low frequency acoustic hearing. Nearly all cochleae implanted with a cochlear implant electrode array develop an inflammatory and fibrotic response. This tissue reaction can have deleterious consequences for implant function, residual acoustic hearing, and the development of the next generation of cochlear prosthetics. This article reviews the current understanding of the inflammatory/foreign body response (FBR) after cochlear implant surgery, its impact on clinical outcome, and therapeutic strategies to mitigate this response. Findings from both in human subjects and animal models across a variety of species are highlighted. Electrode array design, surgical techniques, implant materials, and the degree and type of electrical stimulation are some critical factors that affect the FBR and inflammation. Modification of these factors and various anti-inflammatory pharmacological interventions have been shown to mitigate the inflammatory/FBR response. Ongoing and future approaches that seek to limit surgical trauma and curb the FBR to the implanted biomaterials of the electrode array are discussed. A better understanding of the anatomical, cellular and molecular basis of the inflammatory/FBR response after cochlear implantation has the potential to improve the outcome of current cochlear implants and also facilitate the development of the next generation of neural prostheses.
Collapse
Affiliation(s)
- Muhammad T Rahman
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, IA, USA
| | - Divya A Chari
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Gail Ishiyama
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Ivan Lopez
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Alicia M Quesnel
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Akira Ishiyama
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Joseph B Nadol
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
30
|
Song XY, Wu WF, Dai YB, Xu HW, Roman A, Wang L, Warner M, Gustafsson JÅ. Ablation of Liver X receptor β in mice leads to overactive macrophages and death of spiral ganglion neurons. Hear Res 2022; 422:108534. [PMID: 35623301 DOI: 10.1016/j.heares.2022.108534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/30/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022]
Abstract
Age-related hearing loss is the most common type of hearing impairment, and is typically characterized by the loss of spiral ganglion neurons (SGNs). The two Liver X receptors (LXRs) are oxysterol-activated nuclear receptors which in adults, regulate genes involved in cholesterol homeostasis and modulation of macrophage activity. LXRβ plays a key role in maintenance of health of dopaminergic neurons in the substantia nigra, large motor neurons in the spinal cord, and retinal ganglion cells in adult mice. We now report that LXRβ is expressed in the SGNs of the cochlea and that loss of LXRβ leads to age-related cochlea degeneration. We found that in the cochlea of LXRβ-/- mice, there is loss of SGNs, activation of macrophages, demyelination in the spiral ganglion, decrease in glutamine synthetase (GS) expression and increase in glutamate accumulation in the cochlea. Part of the cause of damage to the SGNs might be glutamate toxicity which is known to be very toxic to these cells. Our study provides a so far unreported role of LXRβ in maintenance of SGNs whose loss is a very common cause of hearing impairment.
Collapse
Affiliation(s)
- Xiao-Yu Song
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Wan-Fu Wu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Yu-Bing Dai
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Hai-Wei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Andrew Roman
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Li Wang
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Margaret Warner
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States; Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Stockholm 14186, Sweden.
| |
Collapse
|
31
|
Cao MC, Scotter EL. Novel and known transcriptional targets of ALS/FTD protein TDP-43: Meta-analysis and interactive graphical database. Dis Model Mech 2022; 15:276263. [PMID: 35946434 PMCID: PMC9509890 DOI: 10.1242/dmm.049418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
TDP-43 proteinopathy is the major pathology in amyotrophic lateral sclerosis (ALS) and tau-negative frontotemporal dementia (FTD). Mounting evidence implicates loss of normal TDP-43 RNA processing function as a key pathomechanism. However, the RNA targets of TDP-43 differ by report, and have never been formally collated or compared between models and disease, hampering understanding of TDP-43 function. Here, we conducted re-analysis and meta-analysis of publicly available RNA-sequencing datasets from six TDP-43-knockdown models, and TDP-43-immunonegative neuronal nuclei from ALS/ FTD brain, to identify differentially expressed genes (DEGs) and exon usage (DEU) events. There was little overlap in DEGs between knockdown models, but PFKP, STMN2, CFP, KIAA1324 and TRHDE were common targets and were also differentially expressed in TDP-43-immunonegative neurons. DEG enrichment analysis revealed diverse biological pathways including immune and synaptic functions. Common DEU events in human datasets included well-known targets POLDIP3 and STMN2, and novel targets EXD3, MMAB, DLG5 and GOSR2. Our interactive database https://phpstack-449938-2576646.cloudwaysapps.com/ allows further exploration of TDP-43 DEG and DEU targets. Together, these data identify TDP-43 targets that can be exploited therapeutically or to validate loss-of-function processes.
Collapse
Affiliation(s)
- Maize C Cao
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand. 3A Symonds Street, Auckland 1010, New Zealand
| | - Emma L Scotter
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand. 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
32
|
Toulemonde P, Risoud M, Lemesre P, Tardivel M, Siepmann J, Vincent C. 3D analysis of gerbil cochlea with cochlear implant. Eur Ann Otorhinolaryngol Head Neck Dis 2022; 139:333-336. [DOI: 10.1016/j.anorl.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
An X, Wang R, Chen E, Yang Y, Fan B, Li Y, Han B, Li Q, Liu Z, Han Y, Chen J, Zha D. A forskolin-loaded nanodelivery system prevents noise-induced hearing loss. J Control Release 2022; 348:148-157. [PMID: 35659555 DOI: 10.1016/j.jconrel.2022.05.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
Hearing loss is the most common sensory disorder worldwide and may result from age, drugs, or exposure to excessive noise. Crossing the blood-labyrinth barrier to achieve targeted drug delivery to the inner ear is key to the treatment of hearing loss. We designed a nanoparticle (NP)-based system for targeted drug delivery of forskolin (FSK) to the inner ear, driven by the prestin-targeting peptide LS19 ("ligand-receptor type interaction"). In vivo experiments in developing zebrafish embryos (4-96 h past fertilization) and mice confirmed that LS19-FSK specifically targeted and accumulated in zebrafish lateral line neuromasts and mouse outer hair cells (OHCs). LS19 peptide modification enabled LS19-FSK-NPs to rapidly target OHCs with high specificity. Furthermore, the multifunctional LS19-FSK-NPs were successfully delivered to the OHCs via the round window membrane route and exhibited slow-release properties. The sustained release and intracellular accumulation of FSK inhibited apoptosis of OHCs. Compared with LS19-NPs and FSK-NPs, LS19-FSK-NPs provided significantly stronger protection against noise-induced hearing damage, based on auditory brainstem responses at 4, 8, 16, and 32 kHz. Thus, our specially designed targeted nano-delivery system may serve as a basis for future clinical applications and treatment platforms and has the potential to significantly improve the treatment results of many inner ear diseases.
Collapse
Affiliation(s)
- Xiaogang An
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Renfeng Wang
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Erfang Chen
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yang Yang
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Bei Fan
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yao Li
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Bang Han
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Qiong Li
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zhenzhen Liu
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jun Chen
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China.
| | - Dingjun Zha
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China.
| |
Collapse
|
34
|
van Dieken A, Staecker H, Schmitt H, Harre J, Pich A, Roßberg W, Lenarz T, Durisin M, Warnecke A. Bioinformatic Analysis of the Perilymph Proteome to Generate a Human Protein Atlas. Front Cell Dev Biol 2022; 10:847157. [PMID: 35573665 PMCID: PMC9096870 DOI: 10.3389/fcell.2022.847157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
The high complexity of the cellular architecture of the human inner ear and the inaccessibility for tissue biopsy hampers cellular and molecular analysis of inner ear disease. Sampling and analysis of perilymph may present an opportunity for improved diagnostics and understanding of human inner ear pathology. Analysis of the perilymph proteome from patients undergoing cochlear implantation was carried out revealing a multitude of proteins and patterns of protein composition that may enable characterisation of patients into subgroups. Based on existing data and databases, single proteins that are not present in the blood circulation were related to cells within the cochlea to allow prediction of which cells contribute to the individual perilymph proteome of the patients. Based on the results, we propose a human atlas of the cochlea. Finally, druggable targets within the perilymph proteome were identified. Understanding and modulating the human perilymph proteome will enable novel avenues to improve diagnosis and treatment of inner ear diseases.
Collapse
Affiliation(s)
- Alina van Dieken
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck, Surgery, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Heike Schmitt
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Jennifer Harre
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Core Facility Proteomics, Hannover Medical School, Hannover, Germany
| | - Willi Roßberg
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Martin Durisin
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
35
|
Zhang Y, Li Y, Fu X, Wang P, Wang Q, Meng W, Wang T, Yang J, Chai R. The Detrimental and Beneficial Functions of Macrophages After Cochlear Injury. Front Cell Dev Biol 2021; 9:631904. [PMID: 34458249 PMCID: PMC8385413 DOI: 10.3389/fcell.2021.631904] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Macrophages are the main intrinsic immune cells in the cochlea; they can be activated and play a complicated role after cochlear injury. Many studies have shown that the number of macrophages and their morphological characteristics within the major cochlear partitions undergo significant changes under various pathological conditions including acoustic trauma, ototoxic drug treatment, age-related cochlear degeneration, selective hair cell (HC) and spiral ganglion neuron (SGN) elimination, and surgery. However, the exact role of these macrophages after cochlear injury is still unclear. Regulating the migration and activity of macrophages may be a therapeutic approach to reduce the risk or magnitude of trauma-induced hearing loss, and this review highlights the role of macrophages on the peripheral auditory structures of the cochlea and elucidate the mechanisms of macrophage injury and the strategies to reduce the injury by regulating macrophage.
Collapse
Affiliation(s)
- Yuan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yiyuan Li
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Xiaolong Fu
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Pengjun Wang
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Meng
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianming Yang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Toulemonde P, Risoud M, Lemesre PE, Beck C, Wattelet J, Tardivel M, Siepmann J, Vincent C. Evaluation of the Efficacy of Dexamethasone-Eluting Electrode Array on the Post-Implant Cochlear Fibrotic Reaction by Three-Dimensional Immunofluorescence Analysis in Mongolian Gerbil Cochlea. J Clin Med 2021; 10:jcm10153315. [PMID: 34362099 PMCID: PMC8347204 DOI: 10.3390/jcm10153315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Cochlear implant is the method of choice for the rehabilitation of severe to profound sensorineural hearing loss. The study of the tissue response to cochlear implantation and the prevention of post-cochlear-implant damages are areas of interest in hearing protection research. The objective was to assess the efficacy of dexamethasone-eluting electrode array on endo canal fibrosis formation by three-dimensional immunofluorescence analysis in implanted Mongolian gerbil cochlea. Two trials were conducted after surgery using Mongolian gerbil implanted with dexamethasone-eluting or non-eluting intracochlear electrode arrays. The animals were then euthanised 10 weeks after implantation. The cochleae were prepared (electrode array in place) according to a 29-day protocol with immunofluorescent labelling and tissue clearing. The acquisition was carried out using light-sheet microscopy. Imaris software was then used for three-dimensional analysis of the cochleae and quantification of the fibrotic volume. The analysis of 12 cochleae showed a significantly different mean volume of fibrosis (2.16 × 108 μm3 ± 0.15 in the dexamethasone eluting group versus 3.17 × 108 μm3 ± 0.54 in the non-eluting group) (p = 0.004). The cochlear implant used as a corticosteroid delivery system appears to be an encouraging device for the protection of the inner ear against fibrosis induced by implantation. Three-dimensional analysis of the cochlea by light-sheet microscopy was suitable for studying post-implantation tissue damage.
Collapse
Affiliation(s)
- Philippine Toulemonde
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
- Correspondence: ; Tel.: +33-6851-91052
| | - Michaël Risoud
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Pierre Emmanuel Lemesre
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Cyril Beck
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Jean Wattelet
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Meryem Tardivel
- BioImaging Center Lille-Nord de France (BICeL), University of Lille 2 Henri Warembourg, F-59000 Lille, France;
| | - Juergen Siepmann
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Christophe Vincent
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| |
Collapse
|
37
|
Warnecke A, Prenzler N, Harre J, Köhl U, Gärtner L, Lenarz T, Laner-Plamberger S, Wietzorrek G, Staecker H, Lassacher T, Hollerweger J, Gimona M, Rohde E. First-in-human intracochlear application of human stromal cell-derived extracellular vesicles. J Extracell Vesicles 2021; 10:e12094. [PMID: 34136108 PMCID: PMC8178433 DOI: 10.1002/jev2.12094] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) derived from the secretome of human mesenchymal stromal cells (MSC) contain numerous factors that are known to exert anti‐inflammatory effects. MSC‐EVs may serve as promising cell‐based therapeutics for the inner ear to attenuate inflammation‐based side effects from cochlear implantation which represents an unmet clinical need. In an individual treatment performed on a ‘named patient basis’, we intraoperatively applied allogeneic umbilical cord‐derived MSC‐EVs (UC‐MSC‐EVs) produced according to good manufacturing practice. A 55‐year‐old patient suffering from Menière's disease was treated with intracochlear delivery of EVs prior to the insertion of a cochlear implant. This first‐in‐human use of UC‐MSC‐EVs demonstrates the feasibility of this novel adjuvant therapeutic approach. The safety and efficacy of intracochlear EV‐application to attenuate side effects of cochlea implants have to be determined in controlled clinical trials.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery Hannover Medical School Hannover Germany
| | - Nils Prenzler
- Department of Otorhinolaryngology, Head and Neck Surgery Hannover Medical School Hannover Germany
| | - Jennifer Harre
- Department of Otorhinolaryngology, Head and Neck Surgery Hannover Medical School Hannover Germany
| | - Ulrike Köhl
- Institute for Cellular Therapeutics Hannover and Institute of Clinical Immunology Hannover Medical School University of Leipzig as well as Fraunhofer Institute for Cell Therapy and Immunology (IZI) Leipzig Germany
| | - Lutz Gärtner
- Department of Otorhinolaryngology, Head and Neck Surgery Hannover Medical School Hannover Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery Hannover Medical School Hannover Germany
| | - Sandra Laner-Plamberger
- Department of Transfusion Medicine University Hospital Salzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University (PMU) Salzburg Austria
| | - Georg Wietzorrek
- Institute of Molecular and Cellular Pharmacology Medical University of Innsbruck Innsbruck Austria
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery University of Kansas School of Medicine Kansas City Kansas USA
| | - Teresa Lassacher
- GMP Unit Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS) Paracelsus Medical University (PMU) Salzburg Austria.,Research Program Nanovesicular Therapeutics Paracelsus Medical University (PMU) Salzburg Austria
| | - Julia Hollerweger
- GMP Unit Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS) Paracelsus Medical University (PMU) Salzburg Austria.,Research Program Nanovesicular Therapeutics Paracelsus Medical University (PMU) Salzburg Austria
| | - Mario Gimona
- Department of Transfusion Medicine University Hospital Salzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University (PMU) Salzburg Austria.,GMP Unit Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS) Paracelsus Medical University (PMU) Salzburg Austria.,Research Program Nanovesicular Therapeutics Paracelsus Medical University (PMU) Salzburg Austria.,Research and Transfer Centre for Extracellular Vesicle Theralytic Technologies Salzburg Austria
| | - Eva Rohde
- Department of Transfusion Medicine University Hospital Salzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University (PMU) Salzburg Austria.,GMP Unit Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS) Paracelsus Medical University (PMU) Salzburg Austria.,Research and Transfer Centre for Extracellular Vesicle Theralytic Technologies Salzburg Austria
| |
Collapse
|
38
|
Hough K, Sanderson A, Grasmeder M, Mitchell T, Verschuur CA, Newman TA. Inflammation at the Tissue-Electrode Interface in a Case of Rapid Deterioration in Hearing Performance Leading to Explant After Cochlear Implantation. Otol Neurotol 2021; 42:e445-e450. [PMID: 33710995 DOI: 10.1097/mao.0000000000003014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The reasons for soft failure after cochlear implantation require investigation. This study proposes a method to study and characterize the tissue response to the array in a case of soft failure in a person undergoing reimplantation. CASE The woman in her 50s, with an underlying autoimmune condition, received a cochlear implant using hearing preservation technique after developing profound hearing loss more than 2 kHz with a moderate loss of less than 500 Hz over a 10-year period. The case was identified as a soft failure due to deteriorating performance, discomfort, and migration over the 10 months after implantation. Impedance telemetry, speech perception measures, and audiometric thresholds are described. At explantation there was evidence of fibrosis. INTERVENTIONS To use histology and immunohistochemistry to determine the cellular response of the tissue associated with the electrode array at time of explantation. MAIN OUTCOME MEASURES Identification of the cell types, regional variations, and inflammatory marker expression in the fibrotic tissue associated with the array. RESULTS Neutrophils and eosinophils were identified, along with a variable pattern of collagen deposition. CD68 and CD163-positive macrophages and T cells were variably distributed through the tissue and interleukin-1 beta and vascular endothelial growth factor receptor-2 expression was identified. CONCLUSIONS The expression profile is evidence of active inflammation in the tissue despite the time since implantation. This study is the first to characterize the tissue response to the array in a person undergoing reimplantation, and who can be followed to determine the individual response to arrays. It establishes that the investigation of explanted devices after soft-failure is feasible.
Collapse
Affiliation(s)
- Kate Hough
- Faculty of Engineering and Physical Sciences
| | | | - Mary Grasmeder
- Faculty of Engineering and Physical Sciences, Auditory Implant Centre
| | - Tim Mitchell
- Faculty of Engineering and Physical Sciences, Auditory Implant Centre
| | - Carl A Verschuur
- Faculty of Engineering and Physical Sciences, Auditory Implant Centre
| | - Tracey A Newman
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
39
|
The Distribution and Prevalence of Macrophages in the Cochlea Following Cochlear Implantation in the Human: An Immunohistochemical Study Using Anti-Iba1 Antibody. Otol Neurotol 2021; 41:e304-e316. [PMID: 31821256 DOI: 10.1097/mao.0000000000002495] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS Cochlear implantation may cause an increase in the number of macrophages in the human cochlea similar to previous findings in the vestibular endorgans. BACKGROUND Macrophages play a key role in both an inflammatory response and homeostatic maintenance. Recently, an increase in the prevalence of macrophages was demonstrated in the human vestibular endorgans after implantation. However, the prevalence of macrophages in the cochlea after implantation is unclear. The aim of this study was to compare the distribution and prevalence of macrophages in implanted human cochleae and the contralateral unimplanted ears. METHODS The prevalence of macrophages in the cochlea in 10 human subjects who had undergone unilateral cochlear implantation was studied by light microscopy using anti-Iba1 immunostaining. The densities of macrophages in the osseous spiral lamina (OSL) and Rosenthal's canal (RC) in implanted cochleae were compared with the contralateral unimplanted ears. The distribution of macrophage morphology (amoeboid, transitional, and ramified) was also compared. RESULTS There were activated and phagocytosing macrophages within the fibrotic sheath surrounding the electrode track and within fibrous tissue with lymphocytic infiltration in implanted ears. The densities of macrophages in OSL and RC in implanted ears were significantly greater than in unimplanted ears in some areas. There was also a difference in the prevalence of macrophage phenotype between the OSL and RC. CONCLUSION An increase in the density of macrophages in the cochlea after cochlear implantation was demonstrated. Both phagocytosis and anti-inflammatory activity of macrophages were suggested by the distribution and prevalence of macrophages in the implanted cochlea.
Collapse
|
40
|
Perin P, Marino F, Varela-Nieto I, Szczepek AJ. Editorial: Neuroimmunology of the Inner Ear. Front Neurol 2021; 12:635359. [PMID: 33633679 PMCID: PMC7899967 DOI: 10.3389/fneur.2021.635359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/07/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- Paola Perin
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology University of Insubria, Varese, Italy
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Rare Diseases Networking Biomedical Research Centre, Centro de Investigación Biomédica en Red, Carlos III Institute of Health, Madrid, Spain.,La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Faculty of Medicine and Health Sciences, University of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
41
|
Dalrymple AN. Implanted devices: the importance of both electrochemical performance and biological acceptance. Neural Regen Res 2021; 16:1188-1189. [PMID: 33269769 PMCID: PMC8224142 DOI: 10.4103/1673-5374.300342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ashley N Dalrymple
- Department of Physical Medicine and Rehabilitation Rehabilitation Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
42
|
Shepherd RK, Carter PM, Enke YL, Thompson A, Flynn B, Trang EP, Dalrymple AN, Fallon JB. Chronic intracochlear electrical stimulation at high charge densities: reducing platinum dissolution. J Neural Eng 2020; 17:056009. [DOI: 10.1088/1741-2552/abb7a6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Abstract
OBJECTIVES Preservation of residual hearing is one of the main goals in present cochlear implantation surgery. Especially for this purpose, smaller and softer electrode carriers were developed that are to be inserted through the round window membrane to minimize trauma. By using these electrodes and insertion technique, residual hearing can be preserved in a large number of patients. Unfortunately, some of these patients with initially preserved residual hearing after cochlear implantation lose it later on. The reason for this is unknown but it is speculated about a correlation with an increase in impedance, since increased impedance values are linked to intracochlear inflammation and tissue reaction. Our hypothesis for this study design was that an increase in impedance predicts changes in residual hearing under clinical conditions. DESIGN Data of all adult patients (N = 122) receiving a Hybrid-L24 cochlear implant at our center between 2005 and early 2015 were retrospectively evaluated. Impedance values in Common Ground mode as measured during clinical routine and referring audiological test data (audiometric thresholds under headphones) were collected. Changes between consecutive measurements were calculated for impedance values and hearing thresholds for each patient. Correlations between changes in impedances and acoustic hearing thresholds were calculated. Average values were compared as well as patients with largest impedance changes within the observation period were evaluated separately. RESULTS Group mean values of impedances were between 5 and 7 kΩ and stable over time with higher values on basal electrode contacts compared with apical contacts. Average hearing thresholds at the time of initial fitting were between 40 to 50 dB (250 Hz) and 90 dB (1 kHz) with a loss of about 10 dB compared with preoperative values. Correlation between impedance changes and threshold changes was found, but too inconsistently to imply a true relationship. When evaluating the 20 patients with the largest impedance changes during the observation period (all >1 kΩ from one appointment to the next one), some patients were found where hearing loss is timely connected and highly correlated with an unusual impedance change. But large impedance changes were also observed without affecting hearing thresholds and hearing loss was found without impedance change. CONCLUSIONS Changes in impedance as measured during clinical routine cannot be taken as an indicator for a late acoustic hearing loss.
Collapse
|
44
|
Swiderski DL, Colesa DJ, Hughes AP, Raphael Y, Pfingst BE. Relationships between Intrascalar Tissue, Neuron Survival, and Cochlear Implant Function. J Assoc Res Otolaryngol 2020; 21:337-352. [PMID: 32691251 PMCID: PMC7445211 DOI: 10.1007/s10162-020-00761-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/12/2020] [Indexed: 12/15/2022] Open
Abstract
Fibrous tissue and/or new bone are often found surrounding a cochlear implant in the cochlear scalae. This new intrascalar tissue could potentially limit cochlear implant function by increasing impedance and altering signaling pathways between the implant and the auditory nerve. In this study, we investigated the relationship between intrascalar tissue and 5 measures of implant function in guinea pigs. Variation in both spiral ganglion neuron (SGN) survival and intrascalar tissue was produced by implanting hearing ears, ears deafened with neomycin, and neomycin-deafened ears treated with a neurotrophin. We found significant effects of SGN density on 4 functional measures but adding intrascalar tissue level to the analysis did not explain more variation in any measure than was explained by SGN density alone. These results suggest that effects of intrascalar tissue on electrical hearing are relatively unimportant in comparison to degeneration of the auditory nerve, although additional studies in human implant recipients are still needed to assess the effects of this tissue on complex hearing tasks like speech perception. The results also suggest that efforts to minimize the trauma that aggravates both tissue development and SGN loss could be beneficial.
Collapse
Affiliation(s)
- Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Deborah J Colesa
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Aaron P Hughes
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bryan E Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
45
|
Impedance Values Do Not Correlate With Speech Understanding in Cochlear Implant Recipients. Otol Neurotol 2020; 41:e1029-e1034. [PMID: 32675728 DOI: 10.1097/mao.0000000000002743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate a possible correlation between impedance values and speech perception after cochlear implantation. STUDY DESIGN Retrospective chart review. SETTING Tertiary referral center. PATIENTS AND INTERVENTION All patients implanted with a MedEl Flex28 device in our department with complete audiometric data (Freiburger monosyllabic testing at 65 dB, Hochmaier-Schulz-Moser testing in quiet and in 10 dB noise) and impedance measurements at the 1-year refitting appointment were enrolled in this study. Further inclusion criteria were age > 17 years, native speakers, and no use of electric-acoustic-stimulation. MAIN OUTCOME MEASURES Mean values for impedances were calculated over all electrode contacts and separately for basal, medial, and apical regions. These data were correlated statistically (Pearson's correlation) with speech testing results. Furthermore, groups of patients with extreme values were built and compared against each other and against the rest of the collective. RESULTS Impedance values did not correlate significantly with speech performance in any of the audiometric tests neither for all electrode contacts nor for specific clusters of contacts. Patients with the lowest impedances did not perform statistically different than patients with the highest impedances in any condition. CONCLUSION To our knowledge, this is the first data on a possible correlation between impedances and speech perception. The extent of the impedances as a benchmark for a good performance in speech discrimination tests could not be verified. Further prospective studies, possibly with more precise diagnostic tools, should be carried out to define the value of impedance measurements for cochlear implantation provision.
Collapse
|
46
|
Velandia S, Martinez D, Goncalves S, Pena S, Bas E, Ein L, Prentiss S, Telischi F, Angeli S, Dinh CT. Effect of age, electrode array, and time on cochlear implant impedances. Cochlear Implants Int 2020; 21:344-352. [PMID: 32640889 DOI: 10.1080/14670100.2020.1788859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Objectives: To determine the impact of age, electrode array, and time on impedance patterns in cochlear implant (CI) patients. Methods: A retrospective case review was performed on 98 patients implanted with the CI24RE perimodiolar (PM) and CI422 lateral wall (LW) arrays between 2010 and 2014 to assess impedances at the 1 week and 3-6 month visit after initial stimulation (IS). Results: With respect to age, impedances were higher in young patients compared to older patients in the middle and apical turns. With time, there were significant reductions in impedances across most electrodes. Electrode array type also had a significant impact on impedance measurements with PM and LW arrays having higher impedances in the basal turn and apical turns, respectively. Furthermore, PM arrays demonstrated significantly lower impedances in the middle and apical turn with time, when compared to LW arrays. Conclusions: Age, electrode array, and time can independently affect CI impedances. Moreover, we show that PM arrays may be advantageous to LW arrays, due to demonstrated lower impedances in the middle and apical turns long term. Understanding the impact of impedance on speech discrimination and determining the intracochlear processes that contribute to differences in impedance are future research directions.
Collapse
Affiliation(s)
- Sandra Velandia
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Diane Martinez
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stefania Goncalves
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stefanie Pena
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Esperanza Bas
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Liliana Ein
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sandra Prentiss
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fred Telischi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Simon Angeli
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christine T Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
47
|
Grandi FC, De Tomasi L, Mustapha M. Single-Cell RNA Analysis of Type I Spiral Ganglion Neurons Reveals a Lmx1a Population in the Cochlea. Front Mol Neurosci 2020; 13:83. [PMID: 32523514 PMCID: PMC7261882 DOI: 10.3389/fnmol.2020.00083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
In the mature cochlea, each inner hair cell (IHC) is innervated by multiple spiral ganglion neurons of type I (SGNI). SGNIs are morphologically and electro-physiologically diverse. Also, they differ in their susceptibility to noise insult. However, the molecular underpinnings of their identity and physiological differences remain poorly understood. In this study, we developed a novel triple transgenic mouse, which enabled the isolation of pure populations of SGNIs and the analysis of a 96-gene panel via single-cell qPCR. We found three distinct populations of Type I SGNs, which were marked by their exclusive expression of Lmx1a, Slc4a4, or Mfap4/Fzd2, respectively, at postnatal days P3, P8, and P12. Our data suggest that afferent SGN subtypes are established genetically before the onset of hearing and that the expression of key physiological markers, such as ion channels, is heterogeneous and may be underlying the heterogeneous firing proprieties of SGNIs.
Collapse
Affiliation(s)
| | - Lara De Tomasi
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Mirna Mustapha
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
48
|
In Vivo Real-time Remote Cochlear Implant Capacitive Impedance Measurements: A Glimpse Into the Implanted Inner Ear. Otol Neurotol 2020; 40:S18-S22. [PMID: 31225818 DOI: 10.1097/mao.0000000000002214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To propose a remote, real-time, safe, and easy systematic method to determine electrode electric impedance components: access resistance, polarization capacitance, and polarization resistance. PATIENTS Patients who received a cochlear implant and had normal cochlear anatomy and complete array insertion were recruited. A total of four adult patients were included and separated in two groups according to implantation time. INTERVENTION Cochlear implant electrical impedance and its components were measured in all patients by using a novel diagnostic tool: a custom made software running in the patient's computer. Data is transmitted in real time to the investigator. Various stimulation and measuring strategies were used to obtain specific information in each cochlear region. MAIN OUTCOME MEASURES Access resistance, polarization capacitance, and resistance of each patient were measured. Measurement success rate and required time for the patient were recorded. RESULTS Access resistance, polarization capacitance, and resistance were obtained in different modes, thus in every specific region of the cochlea. All measurements were successful. Each measurement took approximately 7 minutes and was transmitted in real time to the investigators. CONCLUSION Routine use of this tool may allow constant assessment of cochlear health and could be eventually used to monitor the effect of drugs in the inner ear. This methodology provides an in vivo "electrical view" of the inside of the implanted cochlea.
Collapse
|
49
|
Prenzler NK, Salcher R, Lenarz T, Gaertner L, Warnecke A. Dose-Dependent Transient Decrease of Impedances by Deep Intracochlear Injection of Triamcinolone With a Cochlear Catheter Prior to Cochlear Implantation-1 Year Data. Front Neurol 2020; 11:258. [PMID: 32390924 PMCID: PMC7194199 DOI: 10.3389/fneur.2020.00258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/20/2020] [Indexed: 02/02/2023] Open
Abstract
Administration of low-dose steroids via a catheter inserted into the cochlea to apply pharmaceuticals to more apical regions was previously shown not to be sufficient for long-term reduction of electrode impedances. The aim of the present study was to investigate the effect of intra-cochlear high-dose triamcinolone application on impedances in cochlear implant recipients. Patients received low-dose (4 mg/ml; n = 5) or high-dose (20 mg/ml; n = 5) triamcinolone via a cochlear catheter just prior to the insertion of a Med-El Flex28 electrode. Impedances were measured at defined time points from intra-operatively up to 12 months after first fitting and retrospectively compared with a control group (no steroid application). Patients who received a high-dose application of crystalloid triamcinolone showed significantly reduced impedances in the first fitting measurements compared to the control group. This effect was no longer detectable in patients of the low-dose group at that time. Looking at the different regions of the electrode, the impedance values were lowered significantly only at the basal and medial contacts. At later time points, there were no significant differences between any of the groups. This is the first study to demonstrate a dose-dependent reduction of impedances by deep intra-cochlear injection of triamcinolone in cochlear implant patients. With a high-dose, single application of triamcinolone using a cochlear catheter prior to insertion of a Flex28 electrode, the impedances can be significantly reduced up to and including the first fitting. Although the effect was longer lasting than when compared to low-dose triamcinolone, it was also not permanent.
Collapse
Affiliation(s)
- Nils K Prenzler
- Department of Otorhinolaryngology, Head and Neck Surgery, Hanover Medical School, Hanover, Germany.,Cluster of Excellence "Hearing4all2.0" of the German Research Foundation, Hanover, Germany
| | - Rolf Salcher
- Department of Otorhinolaryngology, Head and Neck Surgery, Hanover Medical School, Hanover, Germany.,Cluster of Excellence "Hearing4all2.0" of the German Research Foundation, Hanover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hanover Medical School, Hanover, Germany.,Cluster of Excellence "Hearing4all2.0" of the German Research Foundation, Hanover, Germany
| | - Lutz Gaertner
- Department of Otorhinolaryngology, Head and Neck Surgery, Hanover Medical School, Hanover, Germany.,Cluster of Excellence "Hearing4all2.0" of the German Research Foundation, Hanover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hanover Medical School, Hanover, Germany.,Cluster of Excellence "Hearing4all2.0" of the German Research Foundation, Hanover, Germany
| |
Collapse
|
50
|
Nyberg S, Abbott NJ, Shi X, Steyger PS, Dabdoub A. Delivery of therapeutics to the inner ear: The challenge of the blood-labyrinth barrier. Sci Transl Med 2020; 11:11/482/eaao0935. [PMID: 30842313 DOI: 10.1126/scitranslmed.aao0935] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/01/2017] [Accepted: 03/22/2018] [Indexed: 12/20/2022]
Abstract
Permanent hearing loss affects more than 5% of the world's population, yet there are no nondevice therapies that can protect or restore hearing. Delivery of therapeutics to the cochlea and vestibular system of the inner ear is complicated by their inaccessible location. Drug delivery to the inner ear via the vasculature is an attractive noninvasive strategy, yet the blood-labyrinth barrier at the luminal surface of inner ear capillaries restricts entry of most blood-borne compounds into inner ear tissues. Here, we compare the blood-labyrinth barrier to the blood-brain barrier, discuss invasive intratympanic and intracochlear drug delivery methods, and evaluate noninvasive strategies for drug delivery to the inner ear.
Collapse
Affiliation(s)
- Sophie Nyberg
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, UK
| | - Xiaorui Shi
- Oregon Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter S Steyger
- Oregon Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada. .,Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 2C4, Canada
| |
Collapse
|