1
|
Mayr S, Elfers K, Mazzuoli-Weber G. The recruitment of mechanosensitive enteric neurons in the guinea pig gastric fundus is dependent on ganglionic stretch level. Neurogastroenterol Motil 2024; 36:e14858. [PMID: 38946168 DOI: 10.1111/nmo.14858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/19/2023] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Serving as a reservoir, the gastric fundus can expand significantly, with an initial receptive and a following adaptive relaxation, controlled by extrinsic and intrinsic reflex circuits, respectively. We hypothesize that mechanosensitive enteric neurons (MEN) are involved in the adaptive relaxation, which is initiated when a particular gastric volume and a certain stretch of the stomach wall is reached. To investigate whether the responsiveness of MEN in the gastric fundus is dependent on tissue stretch, we performed mechanical stimulations in stretched versus ganglia "at rest". METHODS Responses of myenteric neurons in the guinea pig gastric fundus were recorded with membrane potential imaging using Di-8-ANEPPS. MEN were identified by small-volume intraganglionic injection in ganglia stretched to different degrees using a self-constructed stretching tool. Immunohistochemical staining identified the neurochemical phenotype of MEN. Hexamethonium and capsaicin were added to test their effect on recruited MEN. KEY RESULTS In stretched compared to "at rest" ganglia, significantly more MEN were activated. The change in the ganglionic area correlated significantly with the number of additional recruited MEN. The additional recruitment of MEN was independent from nicotinic transmission and the ratio of active MEN in stretched ganglia shifted towards a nitrergic phenotype. CONCLUSION AND INFERENCES The higher number of active MEN with increasing stretch of the ganglia and their greater share of nitrergic phenotype might indicate their contribution to the adaptive relaxation. Further experiments are necessary to address the receptors involved in mechanotransduction.
Collapse
Affiliation(s)
- Sophia Mayr
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Kristin Elfers
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
2
|
Mayr S, Schliep R, Elfers K, Mazzuoli-Weber G. Mechanosensitive enteric neurons in the guinea pig gastric fundus and antrum. Neurogastroenterol Motil 2023; 35:e14674. [PMID: 37702071 DOI: 10.1111/nmo.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/22/2023] [Revised: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Coping with the ingested food, the gastric regions of fundus, corpus, and antrum display different motility patterns. Intrinsic components of such patterns involving mechanosensitive enteric neurons (MEN) have been described in the guinea pig gastric corpus but are poorly understood in the fundus and antrum. METHODS To elucidate mechanosensitive properties of myenteric neurons in the gastric fundus and antrum, membrane potential imaging using Di-8-ANEPPS was applied. A small-volume injection led to neuronal compression. We analyzed the number of MEN and their firing frequency in addition to the involvement of selected mechanoreceptors. To characterize the neurochemical phenotype of MEN, we performed immunohistochemistry. KEY RESULTS In the gastric fundus, 16% of the neurons reproducibly responded to mechanical stimulation and thus were MEN. Of those, 83% were cholinergic and 19% nitrergic. In the antrum, 6% of the neurons responded to the compression stimulus, equally distributed among cholinergic and nitrergic MEN. Defunctionalizing the sensory extrinsic afferents led to a significant drop in the number of MEN in both regions. CONCLUSION We provided evidence for MEN in the gastric fundus and antrum and further investigated mechanoreceptors. However, the proportions of the chemical phenotypes of the MEN differed significantly between both regions. Further investigations of synaptic connections of MEN are crucial to understand the hardwired neuronal circuits in the stomach.
Collapse
Affiliation(s)
- Sophia Mayr
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Ronja Schliep
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kristin Elfers
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
3
|
Madar J, Tiwari N, Smith C, Sharma D, Shen S, Elmahdi A, Qiao LY. Piezo2 regulates colonic mechanical sensitivity in a sex specific manner in mice. Nat Commun 2023; 14:2158. [PMID: 37061508 PMCID: PMC10105732 DOI: 10.1038/s41467-023-37683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2022] [Accepted: 03/27/2023] [Indexed: 04/17/2023] Open
Abstract
The mechanosensitive ion channel Piezo2 in mucosa and primary afferents transduces colonic mechanical sensation. Here we show that chemogenetic activation or nociceptor-targeted deletion of Piezo2 is sufficient to regulate colonic mechanical sensitivity in a sex dependent manner. Clozapine N-oxide-induced activation of Piezo2;hM3Dq-expressing sensory neurons evokes colonic hypersensitivity in male mice, and causes dyspnea in female mice likely due to effects on lung sensory neurons. Activation of Piezo2-expressing colonic afferent neurons also induces colonic hypersensitivity in male but not female mice. Piezo2 levels in nociceptive neurons are higher in female than in male mice. We also show that Piezo2 conditional deletion from nociceptive neurons increases body weight growth, slows colonic transits, and reduces colonic mechanosensing in female but not male mice. Piezo2 deletion blocks colonic hypersensitivity in male but not female mice. These results suggest that Piezo2 in nociceptive neurons mediates innocuous colonic mechanosensing in female mice and painful sensation in male mice, suggesting a sexual dimorphism of Piezo2 function in the colonic sensory system.
Collapse
Affiliation(s)
- Jonathan Madar
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Namrata Tiwari
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Cristina Smith
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Divya Sharma
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Shanwei Shen
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Alsiddig Elmahdi
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Liya Y Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
4
|
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
5
|
Cavin JB, Wongkrasant P, Glover JB, Balemba OB, MacNaughton WK, Sharkey KA. Intestinal distension orchestrates neuronal activity in the enteric nervous system of adult mice. J Physiol 2023; 601:1183-1206. [PMID: 36752210 PMCID: PMC10319177 DOI: 10.1113/jp284171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
The enteric nervous system (ENS) regulates the motor, secretory and defensive functions of the gastrointestinal tract. Enteric neurons integrate mechanical and chemical inputs from the gut lumen to generate complex motor outputs. How intact enteric neural circuits respond to changes in the gut lumen is not well understood. We recorded intracellular calcium in live-cell confocal recordings in neurons from intact segments of mouse intestine in order to investigate neuronal response to luminal mechanical and chemical stimuli. Wnt1-, ChAT- and Calb1-GCaMP6 mice were used to record neurons from the jejunum and colon. We measured neuronal calcium response to KCl (75 mM), veratridine (10 μM), 1,1-dimethyl-4-phenylpiperazinium (DMPP; 100 μM) or luminal nutrients (Ensure®), in the presence or absence of intraluminal distension. In the jejunum and colon, distension generated by the presence of luminal content (chyme and faecal pellets, respectively) renders the underlying enteric circuit unresponsive to depolarizing stimuli. In the distal colon, high levels of distension inhibit neuronal response to KCl, while intermediate levels of distension reorganize Ca2+ response in circumferentially propagating slow waves. Mechanosensitive channel inhibition suppresses distension-induced Ca2+ elevations, and calcium-activated potassium channel inhibition restores neuronal response to KCl, but not DMPP in the distended colon. In the jejunum, distension prevents a previously unknown tetrodotoxin-resistant neuronal response to luminal nutrient stimulation. Our results demonstrate that intestinal distension regulates the excitability of ENS circuits via mechanosensitive channels. Physiological levels of distension locally silence or synchronize neurons, dynamically regulating the excitability of enteric neural circuits based on the content of the intestinal lumen. KEY POINTS: How the enteric nervous system of the gastrointestinal tract responds to luminal distension remains to be fully elucidated. Here it is shown that intestinal distension modifies intracellular calcium levels in the underlying enteric neuronal network, locally and reversibly silencing neurons in the distended regions. In the distal colon, luminal distension is integrated by specific mechanosensitive channels and coordinates the dynamics of neuronal activation within the enteric network. In the jejunum, distension suppresses the neuronal calcium responses induced by luminal nutrients. Physiological levels of distension dynamically regulate the excitability of enteric neuronal circuits.
Collapse
Affiliation(s)
- Jean-Baptiste Cavin
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Preedajit Wongkrasant
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Joel B Glover
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Live Cell Imaging Laboratory, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Onesmo B Balemba
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Wallace K MacNaughton
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Abstract
The primary function of the gut is to procure nutrients. Synchronized mechanical activities underlie nearly all its endeavours. Coordination of mechanical activities depends on sensing of the mechanical forces, in a process called mechanosensation. The gut has a range of mechanosensory cells. They function either as specialized mechanoreceptors, which convert mechanical stimuli into coordinated physiological responses at the organ level, or as non-specialized mechanosensory cells that adjust their function based on the mechanical state of their environment. All major cell types in the gastrointestinal tract contain subpopulations that act as specialized mechanoreceptors: epithelia, smooth muscle, neurons, immune cells, and others. These cells are tuned to the physical properties of the surrounding tissue, so they can discriminate mechanical stimuli from the baseline mechanical state. The importance of gastrointestinal mechanosensation has long been recognized, but the latest discoveries of molecular identities of mechanosensors and technical advances that resolve the relevant circuitry have poised the field to make important intellectual leaps. This Review describes the mechanical factors relevant for normal function, as well as the molecules, cells and circuits involved in gastrointestinal mechanosensing. It concludes by outlining important unanswered questions in gastrointestinal mechanosensing.
Collapse
Affiliation(s)
- Arnaldo Mercado-Perez
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
- Medical Scientist Training Program (MSTP), Mayo Clinic, Rochester, MN, USA
| | - Arthur Beyder
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Feng J, Hibberd TJ, Luo J, Yang P, Xie Z, Travis L, Spencer NJ, Hu H. Modification of Neurogenic Colonic Motor Behaviours by Chemogenetic Ablation of Calretinin Neurons. Front Cell Neurosci 2022; 16:799717. [PMID: 35317196 PMCID: PMC8934436 DOI: 10.3389/fncel.2022.799717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
How the enteric nervous system determines the pacing and propagation direction of neurogenic contractions along the colon remains largely unknown. We used a chemogenetic strategy to ablate enteric neurons expressing calretinin (CAL). Mice expressing human diphtheria toxin receptor (DTR) in CAL neurons were generated by crossing CAL-ires-Cre mice with Cre-dependent ROSA26-DTR mice. Immunohistochemical analysis revealed treatment with diphtheria toxin incurred a 42% reduction in counts of Hu-expressing colonic myenteric neurons (P = 0.036), and 57% loss of CAL neurons (comprising ∼25% of all Hu neurons; P = 0.004) compared to control. As proportions of Hu-expressing neurons, CAL neurons that contained nitric oxide synthase (NOS) were relatively spared (control: 15 ± 2%, CAL-DTR: 13 ± 1%; P = 0.145), while calretinin neurons lacking NOS were significantly reduced (control: 26 ± 2%, CAL-DTR: 18 ± 5%; P = 0.010). Colonic length and pellet sizes were significantly reduced without overt inflammation or changes in ganglionic density. Interestingly, colonic motor complexes (CMCs) persisted with increased frequency (mid-colon interval 111 ± 19 vs. 189 ± 24 s, CAL-DTR vs. control, respectively, P < 0.001), decreased contraction size (mid-colon AUC 26 ± 24 vs. 59 ± 13 gram/seconds, CAL-DTR vs. control, respectively, P < 0.001), and lacked preferential anterograde migration (P < 0.001). The functional effects of modest calretinin neuron ablation, particularly increased neurogenic motor activity frequencies, differ from models that incur general enteric neuron loss, and suggest calretinin neurons may contribute to pacing, force, and polarity of CMCs in the large bowel.
Collapse
Affiliation(s)
- Jing Feng
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tim J. Hibberd
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Jialie Luo
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Pu Yang
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Zili Xie
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lee Travis
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Nick J. Spencer
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
- *Correspondence: Nick J. Spencer,
| | - Hongzhen Hu
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Hongzhen Hu,
| |
Collapse
|
8
|
Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022; 23:135-156. [PMID: 34983992 DOI: 10.1038/s41583-021-00544-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.
Collapse
|
9
|
Mazzuoli-Weber G. Mechanosensitive Enteric Neurons (MEN) at Work. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:45-53. [PMID: 36587145 DOI: 10.1007/978-3-031-05843-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
In the last decade, we characterized an enteric neuronal subpopulation of multifunctional mechanosensitive enteric neurons (MEN) while studying the gastrointestinal peristalsis. MEN have been described in a variety of gastrointestinal regions and species. This chapter summarizes existing data on MEN, describing their proportions, firing behaviors, adaptation musters, and chemical phenotypes. We also discuss MEN sensitivity to different mechanical stimulus qualities such as compression and tension along with pharmacology of their responses.
Collapse
Affiliation(s)
- Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
10
|
Spencer NJ, Costa M. Rhythmicity in the Enteric Nervous System of Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:295-306. [PMID: 36587167 DOI: 10.1007/978-3-031-05843-1_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
The enteric nervous system (ENS) is required for many cyclical patterns of motor activity along different regions of the gastrointestinal (GI) tract. What has remained mysterious is precisely how many thousands of neurons within the ENS are temporally activated to generate cyclical neurogenic contractions of GI-smooth muscle layers. This has been an especially puzzling conundrum, since the ENS consists of an extensive network of small ganglia, with each ganglion consisting of a heterogeneous population of neurons, with diverse cell soma morphologies, neurochemical and biophysical characteristics, and neural connectivity. Neuronal imaging studies of the mouse large intestine have provided major new insights into how the different classes of myenteric neurons are activated during cyclical neurogenic motor patterns, such as the colonic motor complex (CMC). It has been revealed that during CMCs (in the isolated mouse whole colon), large populations of myenteric neurons, across large spatial fields, coordinate their firing, via bursts of fast synaptic inputs at ~2 Hz. This coordinated firing of many thousands of myenteric neurons synchronously over many rows of interconnected ganglia occurs irrespective of the functional class of neuron. Aborally directed propulsion of content along the mouse colon is due, in large part, to polarity of the enteric circuits including the projections of the intrinsic excitatory and inhibitory motor neurons but still involves the fundamental ~2 Hz rhythmic activity of specific classes of enteric neurons. What remains to be determined are the mechanisms that initiate and terminate the patterned firing of large ensembles of enteric neurons during cyclic activity. This remains an exciting challenge for future studies.
Collapse
Affiliation(s)
- Nick J Spencer
- Visceral Neurophysiology Laboratory, Department of Physiology, College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia.
| | - Marcello Costa
- Visceral Neurophysiology Laboratory, Department of Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
11
|
Enteric Control of the Sympathetic Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:89-103. [PMID: 36587149 DOI: 10.1007/978-3-031-05843-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
The autonomic nervous system that regulates the gut is divided into sympathetic (SNS), parasympathetic (PNS), and enteric nervous systems (ENS). They inhibit, permit, and coordinate gastrointestinal motility, respectively. A fourth pathway, "extrinsic sensory neurons," connect gut to the central nervous system, mediating sensation. The ENS resides within the gut wall and its activities are critical for life; ENS failure to populate the gut in development is lethal without intervention."Viscerofugal neurons" are a distinctive class of enteric neurons, being the only type that escapes the gut wall. They form a unique circuit: their axons project out of the gut wall and activate sympathetic neurons, which then project back to the gut, and inhibit gut movements.For 80 years viscerofugal/sympathetic circuits were thought to have a restricted role, mediating simple sensory-motor reflexes. New data shows viscerofugal and sympathetic neurons behaving unexpectedly, compelling a re-evaluation of these circuits: both viscerofugal and sympathetic neurons transmit higher order, synchronized firing patterns that originate within the ENS. This identifies them as driving long-range motility control between different gut regions.There is need for gut motor control over distances beyond the range of ENS circuits, yet no mechanism has been identified to date. The entero-sympathetic circuits are ideally suited to meet this need. Here we provide an overview of the structure and functions of these peripheral sympathetic circuits, including new data showing the firing patterns generated by enteric networks can transmit through sympathetic neurons.
Collapse
|
12
|
Spencer NJ, Travis L, Wiklendt L, Costa M, Hibberd TJ, Brookes SJ, Dinning P, Hu H, Wattchow DA, Sorensen J. Long range synchronization within the enteric nervous system underlies propulsion along the large intestine in mice. Commun Biol 2021; 4:955. [PMID: 34376798 PMCID: PMC8355373 DOI: 10.1038/s42003-021-02485-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
How the Enteric Nervous System (ENS) coordinates propulsion of content along the gastrointestinal (GI)-tract has been a major unresolved issue. We reveal a mechanism that explains how ENS activity underlies propulsion of content along the colon. We used a recently developed high-resolution video imaging approach with concurrent electrophysiological recordings from smooth muscle, during fluid propulsion. Recordings showed pulsatile firing of excitatory and inhibitory neuromuscular inputs not only in proximal colon, but also distal colon, long before the propagating contraction invades the distal region. During propulsion, wavelet analysis revealed increased coherence at ~2 Hz over large distances between the proximal and distal regions. Therefore, during propulsion, synchronous firing of descending inhibitory nerve pathways over long ranges aborally acts to suppress smooth muscle from contracting, counteracting the excitatory nerve pathways over this same region of colon. This delays muscle contraction downstream, ahead of the advancing contraction. The mechanism identified is more complex than expected and vastly different from fluid propulsion along other hollow smooth muscle organs; like lymphatic vessels, portal vein, or ureters, that evolved without intrinsic neurons.
Collapse
Affiliation(s)
- Nick J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia.
| | - Lee Travis
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Lukasz Wiklendt
- Discipline of Gastroenterology, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Marcello Costa
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Simon J Brookes
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Phil Dinning
- Discipline of Gastroenterology, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University, St Louis, MO, USA
| | - David A Wattchow
- Discipline of Surgery, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Julian Sorensen
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
13
|
Sun YL, Gou JJ, Zhang KM, Li WQ, Ma XX, Zhou L, Zhu RT, Li J. Complete resection of the gastric antrum decreased incidence and severity of delayed gastric emptying after pancreaticoduodenectomy. Hepatobiliary Pancreat Dis Int 2021; 20:182-189. [PMID: 33342660 DOI: 10.1016/j.hbpd.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/09/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Delayed gastric emptying (DGE) is the main complication after pancreaticoduodenectomy (PD), but the mechanism is still unclear. The aim of this study was to elucidate the role of complete resection of the gastric antrum in decreasing incidence and severity of DGE after PD. METHODS Sprague-Dawley rats were divided into three groups: expanded resection (ER group), complete resection (CR group), and incomplete resection (IR group) of the gastric antrum. The tension (g) of remnant stomach contraction was observed. We analyzed the histological morphology of the gastric wall by different excisional methods after distal gastrectomy. Moreover, patients underwent PD at our department between January 2012 and May 2016 were included in the study. These cases were divided into IR group and CR group of the gastric antrum, and the clinical data were retrospectively analyzed. RESULTS The ex vivo remnant stomachs of CR group exhibited much greater contraction tension than others (P < 0.05). The contraction tension of the remnant stomach increased with increasing acetylcholine concentration, while remained stable at the concentration of 10 × 10-5 mol/L. Furthermore, 174 consecutive patients were included and retrospectively analyzed in the study. The incidence of DGE was significantly lower (3.5% vs. 21.3%, P < 0.01) in CR group than in IR group. In addition, hematoxylin-eosin staining analyses of the gastric wall confirmed that the number of transected circular smooth muscle bundles were higher in IR group than in CR group (8.24 ± 0.65 vs. 3.76 ± 0.70, P < 0.05). CONCLUSIONS The complete resection of the gastric antrum is associated with decreased incidence and severity of DGE after PD. Gastric electrophysiological and physiopathological disorders caused by damage to gastric smooth muscles might be the mechanism underlying DGE.
Collapse
Affiliation(s)
- Yu-Ling Sun
- Institute of Hepatobiliary and Pancreatic Diseases, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jian-Jun Gou
- Institute of Hepatobiliary and Pancreatic Diseases, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kai-Ming Zhang
- Institute of Hepatobiliary and Pancreatic Diseases, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wen-Qi Li
- Institute of Hepatobiliary and Pancreatic Diseases, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiu-Xian Ma
- Institute of Hepatobiliary and Pancreatic Diseases, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lin Zhou
- Department of Digestive, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rong-Tao Zhu
- Institute of Hepatobiliary and Pancreatic Diseases, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jian Li
- Institute of Hepatobiliary and Pancreatic Diseases, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
14
|
Neurogenic substance P-influences on action potential production in afferent neurons of the kidney? Pflugers Arch 2021; 473:633-646. [PMID: 33786667 PMCID: PMC8049925 DOI: 10.1007/s00424-021-02552-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/23/2022]
Abstract
We recently showed that a substance P (SP)–dependent sympatho-inhibitory mechanism via afferent renal nerves is impaired in mesangioproliferative nephritis. Therefore, we tested the hypothesis that SP released from renal afferents inhibits the action potential (AP) production in their dorsal root ganglion (DRG) neurons. Cultured DRG neurons (Th11-L2) were investigated in current clamp mode to assess AP generation during both TRPV1 stimulation by protons (pH 6) and current injections with and without exposure to SP (0.5 µmol) or CGRP (0.5 µmol). Neurons were classified as tonic (sustained AP generation) or phasic (≤ 4 APs) upon current injection; voltage clamp experiments were performed for the investigation of TRPV1-mediated inward currents due to proton stimulation. Superfusion of renal neurons with protons and SP increased the number of action potentials in tonic neurons (9.6 ± 5 APs/10 s vs. 16.9 ± 6.1 APs/10 s, P < 0.05, mean ± SD, n = 7), while current injections with SP decreased it (15.2 ± 6 APs/600 ms vs. 10.2 ± 8 APs/600 ms, P < 0.05, mean ± SD, n = 29). Addition of SP significantly reduced acid-induced TRPV1-mediated currents in renal tonic neurons (− 518 ± 743 pA due to pH 6 superfusion vs. − 82 ± 50 pA due to pH 6 with SP superfusion). In conclusion, SP increased action potential production via a TRPV1-dependent mechanism in acid-sensitive renal neurons. On the other hand, current injection in the presence of SP led to decreased action potential production. Thus, the peptide SP modulates signaling pathways in renal neurons in an unexpected manner leading to both stimulation and inhibition of renal neuronal activity in different (e.g., acidic) environmental contexts.
Collapse
|
15
|
Vogt M, Schulz B, Wagdi A, Lebert J, van Belle GJ, Christoph J, Bruegmann T, Patejdl R. Direct optogenetic stimulation of smooth muscle cells to control gastric contractility. Am J Cancer Res 2021; 11:5569-5584. [PMID: 33859764 PMCID: PMC8039938 DOI: 10.7150/thno.53883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2020] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
Rationale: Antral peristalsis is responsible for gastric emptying. Its failure is called gastroparesis and often caused by dysfunction of enteric neurons and interstitial cells of Cajal (ICC). Current treatment options, including gastric electrical stimulation, are non-satisfying and may improve symptoms but commonly fail to restore gastric emptying. Herein, we explore direct optogenetic stimulation of smooth muscle cells (SMC) via the light-gated non-selective cation channel Channelrhodopsin2 (ChR2) to control gastric motor function. Methods: We used a transgenic mouse model expressing ChR2 in fusion with eYFP under the control of the chicken-β-actin promoter. We performed patch clamp experiments to quantify light-induced currents in isolated SMC, Ca2+ imaging and isometric force measurements of antral smooth muscle strips as well as pressure recordings of intact stomachs to evaluate contractile responses. Light-induced propulsion of gastric contents from the isolated stomach preparation was quantified in video recordings. We furthermore tested optogenetic stimulation in a gastroparesis model induced by neuronal- and ICC-specific damage through methylene blue photo-toxicity. Results: In the stomachs, eYFP signals were restricted to SMC in which blue light (460 nm) induced inward currents typical for ChR2. These depolarizing currents led to contractions in antral smooth muscle strips that were stronger than those triggered by supramaximal electrical field stimulation and comparable to those evoked by global depolarization with high K+ concentration. In the intact stomach, panoramic illumination efficiently increased intragastric pressure achieving 239±46% (n=6) of the pressure induced by electrical field stimulation and triggered gastric transport. Within the gastroparesis model, electric field stimulation completely failed but light still efficiently generated pressure waves. Conclusions: We demonstrate direct optogenetic stimulation of SMC to control gastric contractility. This completely new approach could allow for the restoration of motility in gastroparesis in the future.
Collapse
|
16
|
Fang XZ, Zhou T, Xu JQ, Wang YX, Sun MM, He YJ, Pan SW, Xiong W, Peng ZK, Gao XH, Shang Y. Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell Biosci 2021; 11:13. [PMID: 33422128 PMCID: PMC7796548 DOI: 10.1186/s13578-020-00522-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Mechanotransduction couples mechanical stimulation with ion flux, which is critical for normal biological processes involved in neuronal cell development, pain sensation, and red blood cell volume regulation. Although they are key mechanotransducers, mechanosensitive ion channels in mammals have remained difficult to identify. In 2010, Coste and colleagues revealed a novel family of mechanically activated cation channels in eukaryotes, consisting of Piezo1 and Piezo2 channels. These have been proposed as the long-sought-after mechanosensitive cation channels in mammals. Piezo1 and Piezo2 exhibit a unique propeller-shaped architecture and have been implicated in mechanotransduction in various critical processes, including touch sensation, balance, and cardiovascular regulation. Furthermore, several mutations in Piezo channels have been shown to cause multiple hereditary human disorders, such as autosomal recessive congenital lymphatic dysplasia. Notably, mutations that cause dehydrated hereditary xerocytosis alter the rate of Piezo channel inactivation, indicating the critical role of their kinetics in normal physiology. Given the importance of Piezo channels in understanding the mechanotransduction process, this review focuses on their structural details, kinetic properties and potential function as mechanosensors. We also briefly review the hereditary diseases caused by mutations in Piezo genes, which is key for understanding the function of these proteins.
Collapse
Affiliation(s)
- Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Qian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Miao-Miao Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Jun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shang-Wen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe-Kang Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Hui Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Furness JB, Di Natale M, Hunne B, Oparija-Rogenmozere L, Ward SM, Sasse KC, Powley TL, Stebbing MJ, Jaffey D, Fothergill LJ. The identification of neuronal control pathways supplying effector tissues in the stomach. Cell Tissue Res 2020; 382:433-445. [PMID: 33156383 DOI: 10.1007/s00441-020-03294-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
The stomach acts as a buffer between the ingestion of food and its processing in the small intestine. It signals to the brain to modulate food intake and it in turn regulates the passage of a nutrient-rich fluid, containing partly digested food, into the duodenum. These processes need to be finely controlled, for example to restrict reflux into the esophagus and to transfer digesta to the duodenum at an appropriate rate. Thus, the efferent pathways that control gastric volume, gastric peristalsis and digestive juice production are critically important. We review these pathways with an emphasis on the identities of the final motor neurons and comparisons between species. The major types of motor neurons arising from gastric enteric ganglia are as follows: immunohistochemically distinguishable excitatory and inhibitory muscle motor neurons; four neuron types innervating mucosal effectors (parietal cells, chief cells, gastrin cells and somatostatin cells); and vasodilator neurons. Sympathetic efferent neurons innervate intramural arteries, myenteric ganglia and gastric muscle. Vagal efferent neurons with cell bodies in the brain stem do not directly innervate gastric effector tissues; they are pre-enteric neurons that innervate each type of gastric enteric motor neuron. The principal transmitters and co-transmitters of gastric motor neurons, as well as key immunohistochemical markers, are the same in rat, pig, human and other species.
Collapse
Affiliation(s)
- John B Furness
- Department of Anatomy & Neuroscience, University of Melbourne, VIC, 3010, Parkville, Australia. .,Florey Institute of Neuroscience and Mental Health, VIC, 3010, Parkville, Australia.
| | - Madeleine Di Natale
- Department of Anatomy & Neuroscience, University of Melbourne, VIC, 3010, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, VIC, 3010, Parkville, Australia
| | - Billie Hunne
- Department of Anatomy & Neuroscience, University of Melbourne, VIC, 3010, Parkville, Australia
| | | | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, NV, Reno, USA
| | - Kent C Sasse
- Sasse Surgical Associates, and Renown Regional Medical Center, NV, Reno, USA
| | - Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Martin J Stebbing
- Department of Anatomy & Neuroscience, University of Melbourne, VIC, 3010, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, VIC, 3010, Parkville, Australia
| | - Deborah Jaffey
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Linda J Fothergill
- Department of Anatomy & Neuroscience, University of Melbourne, VIC, 3010, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, VIC, 3010, Parkville, Australia
| |
Collapse
|
18
|
Kollmann P, Elfers K, Maurer S, Klingenspor M, Schemann M, Mazzuoli-Weber G. Submucosal enteric neurons of the cavine distal colon are sensitive to hypoosmolar stimuli. J Physiol 2020; 598:5317-5332. [PMID: 32880976 DOI: 10.1113/jp280309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2020] [Accepted: 08/24/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neurons of the enteric submucous plexus are challenged by osmolar fluctuations during digestion and absorption of nutrients. Central neurons are very sensitive to changes in osmolality but knowledge on that issue related to enteric neurons is sparse. The present study focuses on investigation of osmosensitivity of submucosal neurons including potential molecular mediating mechanisms. Results show that submucosal neurons respond to hypoosmolar stimuli with increased activity which is partially mediated by the transient receptor potential vanilloid 4 channel. We provided important information on osmosensitive properties of enteric neurons. These data are fundamental to better explain the nerve-mediated control of the gastrointestinal functions during physiological and pathophysiological (diarrhoea) conditions. ABSTRACT Enteric neurons are located inside the gut wall, where they are confronted with changes in osmolality during (inter-) digestive periods. In particular, neurons of the submucous plexus (SMP), located between epithelial cells and blood vessels may sense and respond to osmotic shifts. The present study was conducted to investigate osmosensitivity of enteric submucosal neurons and the potential role of the transient receptor potential vanilloid 4 channel (TRPV4) as a mediator of enteric neuronal osmosensitivity. Therefore, freshly dissected submucosal preparations from guinea pig colon were investigated for osmosensitivity using voltage-sensitive dye and Ca2+ imaging. Acute hypoosmolar stimuli (final osmolality reached at ganglia of 94, 144 and 194 mOsm kg-1 ) were applied to single ganglia using a local perfusion system. Expression of TRPV4 in the SMP was quantified using qRT-PCR, and GSK1016790A and HC-067047 were used to activate or block the receptor, respectively, revealing its relevance in enteric osmosensitivity. On average, 11.0 [7.0/17.0] % of submucosal neurons per ganglion responded to the hypoosmolar stimulus. The Ca2+ imaging experiments showed that glia responded to the hypoosmolar stimulus, but with a delay in comparison with neurons. mRNA expression of TRPV4 could be shown in the SMP and blockade of the receptor by HC-067047 significantly decreased the number of responding neurons (0.0 [0.0/6.3] %) while the TRPV4 agonist GSK1016790A caused action potential discharge in a subpopulation of osmosensitive enteric neurons. The results of the present study provide insight into the osmosensitivity of submucosal enteric neurons and strongly indicate the involvement of TRPV4 as an osmotransducer.
Collapse
Affiliation(s)
- Patrick Kollmann
- Chair of Human Biology, Technical University of Munich, Freising, Germany
| | - Kristin Elfers
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Stefanie Maurer
- Chair of Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine & ZIEL Institute for Food & Health, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine & ZIEL Institute for Food & Health, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Michael Schemann
- Chair of Human Biology, Technical University of Munich, Freising, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, Foundation, Hannover, Germany
| |
Collapse
|
19
|
Compression and stretch sensitive submucosal neurons of the porcine and human colon. Sci Rep 2020; 10:13791. [PMID: 32796868 PMCID: PMC7428018 DOI: 10.1038/s41598-020-70216-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2020] [Accepted: 07/24/2020] [Indexed: 01/28/2023] Open
Abstract
The pig is commonly believed to be a relevant model for human gut functions-however, there are only a few comparative studies and none on neural control mechanisms. To address this lack we identified as one central aspect mechanosensitive enteric neurons (MEN) in porcine and human colon. We used neuroimaging techniques to record responses to tensile or compressive forces in submucous neurons. Compression and stretch caused Ca-transients and immediate spike discharge in 5-11% of porcine and 15-24% of human enteric neurons. The majority of these MEN exclusively responded to either stimulus quality but about 9% responded to both. Most of the MEN expressed choline acetyltransferase and substance P; nitric oxide synthase-positive MEN primarily occurred in distal colon. The findings reveal common features of MEN in human and pig colon which we interpret as a result of species-independent evolutionary conservation rather than a specific functional proximity between the two species.
Collapse
|
20
|
Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 2020; 17:338-351. [PMID: 32152479 PMCID: PMC7474470 DOI: 10.1038/s41575-020-0271-2] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the only internal organ to have evolved with its own independent nervous system, known as the enteric nervous system (ENS). This Review provides an update on advances that have been made in our understanding of how neurons within the ENS coordinate sensory and motor functions. Understanding this function is critical for determining how deficits in neurogenic motor patterns arise. Knowledge of how distension or chemical stimulation of the bowel evokes sensory responses in the ENS and central nervous system have progressed, including critical elements that underlie the mechanotransduction of distension-evoked colonic peristalsis. Contrary to original thought, evidence suggests that mucosal serotonin is not required for peristalsis or colonic migrating motor complexes, although it can modulate their characteristics. Chemosensory stimuli applied to the lumen can release substances from enteroendocrine cells, which could subsequently modulate ENS activity. Advances have been made in optogenetic technologies, such that specific neurochemical classes of enteric neurons can be stimulated. A major focus of this Review will be the latest advances in our understanding of how intrinsic sensory neurons in the ENS detect and respond to sensory stimuli and how these mechanisms differ from extrinsic sensory nerve endings in the gut that underlie the gut-brain axis.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, Australia.
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
21
|
Anetsberger D, Kürten S, Jabari S, Brehmer A. Morphological and Immunohistochemical Characterization of Human Intrinsic Gastric Neurons. Cells Tissues Organs 2019; 206:183-195. [PMID: 31230045 DOI: 10.1159/000500566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2019] [Accepted: 04/24/2019] [Indexed: 11/19/2022] Open
Abstract
Our knowledge about human gastric enteric neuron types is even more limited than that of human intestinal types. Here, we immunohistochemically stained wholemounts and sections of gastric specimens obtained from 18 tumor-resected patients. Myenteric wholemounts were labeled for choline acetyl transferase (ChAT), neuronal nitric oxide synthase (NOS), and the human neuronal protein HuC/D (as pan-neuronal marker for quantitative analysis) or alternatively for neurofilament (for morphological evaluation). ChAT-positive neurons outnumbered NOS-positive neurons (56 vs. 27%), and neurons negative for both markers accounted for 17%. Two larger groups of neurons (each between 12 and 14%) costained for ChAT and vasoactive intestinal peptide (VIP) or for NOS and VIP, respectively. Clear morphochemical correlation was found for uniaxonal stubby type I neurons (ChAT+; putative excitatory inter- or motor neurons), for uniaxonal spiny type I neurons (NOS+/VIP+; putative inhibitory motor or interneurons), and for multiaxonal type II neurons (ChAT+; putative afferent neurons; immunostaining of additional wholemounts revealed their coreactivity for somatostatin). Whereas these latter neuron types were already known from the human intestine, the morphology of gastric myenteric neurons coreactive for ChAT and VIP was newly described: they had numerous short, extremely thin dendrites and resembled, together with their cell bodies, a "hairy" head. In our sections, nerve fibers coreactive for ChAT and VIP were commonly found only in the mucosa. We suggest these myenteric ChAT+/VIP+/hairy neurons to be mucosal effector neurons. In contrast to myenteric neurons, the much less common submucosal neurons were not embedded in a continuous plexus and did not display any clear morphochemical phenotypes.
Collapse
Affiliation(s)
- Daniel Anetsberger
- Institute of Anatomy and Cell Biology, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefanie Kürten
- Institute of Anatomy and Cell Biology, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Samir Jabari
- Institute of Neuropathology, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Axel Brehmer
- Institute of Anatomy and Cell Biology, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany,
| |
Collapse
|
22
|
Spencer NJ, Hibberd TJ, Travis L, Wiklendt L, Costa M, Hu H, Brookes SJ, Wattchow DA, Dinning PG, Keating DJ, Sorensen J. Identification of a Rhythmic Firing Pattern in the Enteric Nervous System That Generates Rhythmic Electrical Activity in Smooth Muscle. J Neurosci 2018; 38:5507-5522. [PMID: 29807910 PMCID: PMC8174132 DOI: 10.1523/jneurosci.3489-17.2018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2017] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 11/21/2022] Open
Abstract
The enteric nervous system (ENS) contains millions of neurons essential for organization of motor behavior of the intestine. It is well established that the large intestine requires ENS activity to drive propulsive motor behaviors. However, the firing pattern of the ENS underlying propagating neurogenic contractions of the large intestine remains unknown. To identify this, we used high-resolution neuronal imaging with electrophysiology from neighboring smooth muscle. Myoelectric activity underlying propagating neurogenic contractions along murine large intestine [also referred to as colonic migrating motor complexes, (CMMCs)] consisted of prolonged bursts of rhythmic depolarizations at a frequency of ∼2 Hz. Temporal coordination of this activity in the smooth muscle over large spatial fields (∼7 mm, longitudinally) was dependent on the ENS. During quiescent periods between neurogenic contractions, recordings from large populations of enteric neurons, in mice of either sex, revealed ongoing activity. The onset of neurogenic contractions was characterized by the emergence of temporally synchronized activity across large populations of excitatory and inhibitory neurons. This neuronal firing pattern was rhythmic and temporally synchronized across large numbers of ganglia at ∼2 Hz. ENS activation preceded smooth muscle depolarization, indicating rhythmic depolarizations in smooth muscle were controlled by firing of enteric neurons. The cyclical emergence of temporally coordinated firing of large populations of enteric neurons represents a unique neural motor pattern outside the CNS. This is the first direct observation of rhythmic firing in the ENS underlying rhythmic electrical depolarizations in smooth muscle. The pattern of neuronal activity we identified underlies the generation of CMMCs.SIGNIFICANCE STATEMENT How the enteric nervous system (ENS) generates neurogenic contractions of smooth muscle in the gastrointestinal (GI) tract has been a long-standing mystery in vertebrates. It is well known that myogenic pacemaker cells exist in the GI tract [called interstitial cells of Cajal (ICCs)] that generate rhythmic myogenic contractions. However, the mechanisms underlying the generation of rhythmic neurogenic contractions of smooth muscle in the GI tract remains unknown. We developed a high-resolution neuronal imaging method with electrophysiology to address this issue. This technique revealed a novel pattern of rhythmic coordinated neuronal firing in the ENS that has never been identified. Rhythmic neuronal firing in the ENS was found to generate rhythmic neurogenic depolarizations in smooth muscle that underlie contraction of the GI tract.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia,
| | - Timothy J Hibberd
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - Lee Travis
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - Lukasz Wiklendt
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - Marcello Costa
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Simon J Brookes
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - David A Wattchow
- Discipline of Surgery and Gastroenterology, Flinders Medical Centre, Bedford Park 5042, South Australia, Australia, and
| | - Phil G Dinning
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
- Discipline of Surgery and Gastroenterology, Flinders Medical Centre, Bedford Park 5042, South Australia, Australia, and
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - Julian Sorensen
- Cyber Sensing and Shaping, Cyber and Electronic Warfare Division, Defence, Science and Technology Group, Edinburgh, South Australia 5111, Australia
| |
Collapse
|
23
|
Kugler EM, Michel K, Kirchenbüchler D, Dreissen G, Csiszár A, Merkel R, Schemann M, Mazzuoli-Weber G. Sensitivity to Strain and Shear Stress of Isolated Mechanosensitive Enteric Neurons. Neuroscience 2018; 372:213-224. [PMID: 29317262 DOI: 10.1016/j.neuroscience.2017.12.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
Within the enteric nervous system, the neurons in charge to control motility of the gastrointestinal tract reside in a particular location nestled between two perpendicular muscle layers which contract and relax. We used primary cultured myenteric neurons of male guinea pigs to study mechanosensitivity of enteric neurons in isolation. Ultrafast Neuroimaging with a voltage-sensitive dye technique was used to record neuronal activity in response to shear stress and strain. Strain was induced by locally deforming the elastic cell culture substrate next to a neuron. Measurements showed that substrate strain was mostly elongating cells. Shear stress was exerted by hydrodynamic forces in a microchannel. Both stimuli induced excitatory responses. Strain activated 14% of the stimulated myenteric neurons that responded with a spike frequency of 1.9 (0.7/3.2) Hz, whereas shear stress excited only a few neurons (5.6%) with a very low spike frequency of 0 (0/0.6) Hz. Thus, shear stress does not seem to be an adequate stimulus for mechanosensitive enteric neurons (MEN) while strain activates enteric neurons in a relevant manner. Analyzing the adaptation behavior of MEN showed that shear stress activated rapidly/slowly/ultraslowly adapting MEN (2/62/36%) whereas strain only slowly (46%) and ultraslowly (54%) MEN. Paired experiments with strain and normal stress revealed three mechanosensitive enteric neuronal populations: one strain-sensitive (37%), one normal stress-sensitive (17%) and one strain- and stress-sensitive (46%). These results indicate that shear stress does not play a role in the neuronal control of motility but normal stress and strain.
Collapse
Affiliation(s)
- Eva Maria Kugler
- Human Biology, Technische Universität München, Freising-Weihenstephan, 85354, Germany.
| | - Klaus Michel
- Human Biology, Technische Universität München, Freising-Weihenstephan, 85354, Germany.
| | - David Kirchenbüchler
- Institute of Complex Systems - Biomechanics, Research Center Jülich, 52425 Jülich, Germany.
| | - Georg Dreissen
- Institute of Complex Systems - Biomechanics, Research Center Jülich, 52425 Jülich, Germany.
| | - Agnes Csiszár
- Institute of Complex Systems - Biomechanics, Research Center Jülich, 52425 Jülich, Germany.
| | - Rudolf Merkel
- Institute of Complex Systems - Biomechanics, Research Center Jülich, 52425 Jülich, Germany.
| | - Michael Schemann
- Human Biology, Technische Universität München, Freising-Weihenstephan, 85354, Germany.
| | - Gemma Mazzuoli-Weber
- Human Biology, Technische Universität München, Freising-Weihenstephan, 85354, Germany.
| |
Collapse
|
24
|
Rychlik A, Gonkowski S, Nowicki M, Calka J. Inflammatory bowel disease affects density of nitrergic nerve fibers in the mucosal layer of the canine gastrointestinal tract. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2017; 81:129-136. [PMID: 28408781 PMCID: PMC5370539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Academic Contribution Register] [Received: 05/23/2016] [Accepted: 10/18/2016] [Indexed: 06/07/2023]
Abstract
The objective of this study was to determine the effect of inflammatory bowel disease (IBD) on the density of nitrergic nerve fibers in the mucosal layer of different sections of the gastrointestinal tract of dogs. Twenty-eight German shepherd hybrid dogs of both sexes, weighing from 15 to 25 kg and aged 6 to 10 y, were studied. The dogs were divided into 4 groups with 7 animals in each group: healthy animals, as well as dogs suffering from mild, moderate, and severe IBD. Immunoreactivity to neuronal isoform of nitric oxide synthase, which is a marker of nitrergic neurons, in samples of the mucosal layer in the duodenum, jejunum, and descending colon was studied using the single immunofluorescence method and the number of nerve fibers was evaluated in each observation field. The obtained results showed that IBD causes an increase in the number of nitrergic nerve fibers in all intestinal segments studied and these changes are directly proportional to the intensity of the disease process. These observations may be useful in diagnostic evaluation of the stage of canine inflammatory bowel disease in veterinary practice. The pathological mechanisms of these observed changes and the specific reasons for them are still not completely explained, however, and further study is required.
Collapse
Affiliation(s)
- Andrzej Rychlik
- Address all correspondence to Prof. Andrzej Rychlik; telephone: +48 895233746; fax: +48 895233744; e-mail:
| | | | | | | |
Collapse
|