1
|
Nelson CA, Brundage JN, Williams BM, Baldridge JK, Stockard AL, Bassett CH, Burger BJ, Gunter BT, Payne AJ, Yorgason JT, Steffensen SC, Bills KB. Voluntary Exercise Ameliorates Chronic Ethanol Withdrawal-Induced Adaptations of Opioid Receptor Expression in the Nucleus Accumbens, Dopamine Release, and Ethanol Consumption. Biomedicines 2024; 12:1593. [PMID: 39062166 PMCID: PMC11274624 DOI: 10.3390/biomedicines12071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Exercise has increasingly been recognized as an adjunctive therapy for alcohol-use disorder (AUD), yet our understanding of its underlying neurological mechanisms remains limited. This knowledge gap impedes the development of evidence-based exercise guidelines for AUD treatment. Chronic ethanol (EtOH) exposure has been shown to upregulate and sensitize kappa opioid receptors (KORs) in the nucleus accumbens (NAc), which is innervated by dopamine (DA) neurons in the midbrain ventral tegmental area (VTA), which may contribute to AUD-related behaviors. In this study, we investigated the impact of voluntary exercise in EtOH-dependent mice on EtOH consumption, KOR and delta opioid receptor (DOR) expression in the NAc and VTA, and functional effects on EtOH-induced alterations in DA release in the NAc. Our findings reveal that voluntary exercise reduces EtOH consumption, reduces KOR and enhances DOR expression in the NAc, and modifies EtOH-induced adaptations in DA release, suggesting a competitive interaction between exercise-induced and EtOH-induced alterations in KOR expression. We also found changes to DOR expression in the NAc and VTA with voluntary exercise but no significant changes to DA release. These findings elucidate the complex interplay of AUD-related neurobiological processes, highlighting the potential for exercise as a therapeutic intervention for AUD.
Collapse
Affiliation(s)
- Christina A. Nelson
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA; (C.A.N.); (K.B.B.)
| | - James N. Brundage
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA (J.K.B.); (A.L.S.)
| | - Benjamin M. Williams
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA (J.K.B.); (A.L.S.)
| | - Jared K. Baldridge
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA (J.K.B.); (A.L.S.)
| | - Alyssa L. Stockard
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA (J.K.B.); (A.L.S.)
| | - Charlton H. Bassett
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA (J.K.B.); (A.L.S.)
| | - Brandon J. Burger
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA; (C.A.N.); (K.B.B.)
| | - Bridger T. Gunter
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA; (C.A.N.); (K.B.B.)
| | - Andrew J. Payne
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA; (C.A.N.); (K.B.B.)
| | - Jordan T. Yorgason
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA (J.K.B.); (A.L.S.)
| | - Scott C. Steffensen
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA; (C.A.N.); (K.B.B.)
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA (J.K.B.); (A.L.S.)
| | - Kyle B. Bills
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA; (C.A.N.); (K.B.B.)
| |
Collapse
|
2
|
Estave PM, Albertson SE, Karkhanis AN, Jones SR. Co-targeting the kappa opioid receptor and dopamine transporter reduces motivation to self-administer cocaine and partially reverses dopamine system dysregulation. Sci Rep 2024; 14:6509. [PMID: 38499566 PMCID: PMC10948819 DOI: 10.1038/s41598-024-53463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Cocaine disrupts dopamine (DA) and kappa opioid receptor (KOR) system activity, with long-term exposure reducing inhibiton of DA uptake by cocaine and increasing KOR system function. Single treatment therapies have not been successful for cocaine use disorder; therefore, this study focuses on a combination therapy targeting the dopamine transporter (DAT) and KOR. Sprague Dawley rats self-administered 5 days of cocaine (1.5 mg/kg/inf, max 40 inf/day, FR1), followed by 14 days on a progressive ratio (PR) schedule (0.19 mg/kg/infusion). Behavioral effects of individual and combined administration of phenmetrazine and nBNI were then examined using PR. Additionally, ex vivo fast scan cyclic voltammetry was then used to assess alterations in DA and KOR system activity in the nucleus accumbens before and after treatments. Chronic administration of phenmetrazine as well as the combination of phenmetrazine and nBNI-but not nBNI alone-significantly reduced PR breakpoints. In addition, the combination of phenmetrazine and nBNI partially reversed cocaine-induced neurodysregulations of the KOR and DA systems, indicating therapeutic benefits of targeting the DA and KOR systems in tandem. These data highlight the potential benefits of the DAT and KOR as dual-cellular targets to reduce motivation to administer cocaine and reverse cocaine-induced alterations of the DA system.
Collapse
Affiliation(s)
- Paige M Estave
- Department of Physiology and Pharmacology, Wake University Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157, USA
| | - Steven E Albertson
- Department of Physiology and Pharmacology, Wake University Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157, USA
| | - Anushree N Karkhanis
- Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, 13902, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake University Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157, USA.
| |
Collapse
|
3
|
Flores-Ramirez FJ, Illenberger JM, Pascasio G, Terenius L, Martin-Fardon R. LY2444296, a κ-opioid receptor antagonist, selectively reduces alcohol drinking in male and female Wistar rats with a history of alcohol dependence. Sci Rep 2024; 14:5804. [PMID: 38461355 PMCID: PMC10925033 DOI: 10.1038/s41598-024-56500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Abstract
Alcohol use disorder (AUD) remains a major public health concern. The dynorphin (DYN)/κ-opioid receptor (KOP) system is involved in actions of alcohol, particularly its withdrawal-associated negative affective states. This study tested the ability of LY2444296, a selective, short-acting, KOP antagonist, to decrease alcohol self-administration in dependent male and female Wistar rats at 8 h abstinence. Animals were trained to orally self-administer 10% alcohol (30 min/day for 21 sessions) and were made dependent via chronic intermittent alcohol vapor exposure for 6 weeks or exposed to air (nondependent). After 6 weeks, the effect of LY2444296 (0, 3, and 10 mg/kg, p.o.) was tested on alcohol self-administration at 8 h of abstinence. A separate cohort of rats was prepared in parallel, and their somatic withdrawal signs and alcohol self-administration were measured after LY2444296 administration at 8 h, 2 weeks, and 4 weeks abstinence. LY2444296 at 3 and 10 mg/kg significantly reduced physical signs of withdrawal in dependent rats at 8 h abstinence, only. Furthermore, 3 and 10 mg/kg selectively decreased alcohol self-administration in dependent rats at only 8 h abstinence. These results highlight the DYN/KOP system in actions of alcohol during acute abstinence, suggesting KOP antagonism could be beneficial for mitigating acute withdrawal signs and, in turn, significantly reduce excessive alcohol consumption associated with AUD.
Collapse
Affiliation(s)
- Francisco J Flores-Ramirez
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA.
| | - Jessica M Illenberger
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Glenn Pascasio
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Lars Terenius
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| |
Collapse
|
4
|
Pina MM, Pati D, Neira S, Taxier LR, Stanhope CM, Mahoney AA, D'Ambrosio S, Kash TL, Navarro M. Insula Dynorphin and Kappa Opioid Receptor Systems Regulate Alcohol Drinking in a Sex-Specific Manner in Mice. J Neurosci 2023; 43:5158-5171. [PMID: 37217307 PMCID: PMC10342226 DOI: 10.1523/jneurosci.0406-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/12/2023] [Accepted: 04/15/2023] [Indexed: 05/24/2023] Open
Abstract
Alcohol use disorder is complex and multifaceted, involving the coordination of multiple signaling systems across numerous brain regions. Previous work has indicated that both the insular cortex and dynorphin (DYN)/kappa opioid receptor (KOR) systems contribute to excessive alcohol use. More recently, we identified a microcircuit in the medial aspect of the insular cortex that signals through DYN/KOR. Here, we explored the role of insula DYN/KOR circuit components on alcohol intake in a long-term intermittent access (IA) procedure. Using a combination of conditional knock-out strategies and site-directed pharmacology, we discovered distinct and sex-specific roles for insula DYN and KOR in alcohol drinking and related behavior. Our findings show that insula DYN deletion blocked escalated consumption and decreased the overall intake of and preference for alcohol in male and female mice. This effect was specific to alcohol in male mice, as DYN deletion did not impact sucrose intake. Further, insula KOR antagonism reduced alcohol intake and preference during the early phase of IA in male mice only. Alcohol consumption was not affected by insula KOR knockout in either sex. In addition, we found that long-term IA decreased the intrinsic excitability of DYN and deep layer pyramidal neurons (DLPNs) in the insula of male mice. Excitatory synaptic transmission was also impacted by IA, as it drove an increase in excitatory synaptic drive in both DYN neurons and DLPNs. Combined, our findings suggest there is a dynamic interplay between excessive alcohol consumption and insula DYN/KOR microcircuitry.SIGNIFICANCE STATEMENT The insular cortex is a complex region that serves as an integratory hub for sensory inputs. In our previous work, we identified a microcircuit in the insula that signals through the kappa opioid receptor (KOR) and its endogenous ligand dynorphin (DYN). Both the insula and DYN/KOR systems have been implicated in excessive alcohol use and alcohol use disorder (AUD). Here, we use converging approaches to determine how insula DYN/KOR microcircuit components contribute to escalated alcohol consumption. Our findings show that insula DYN/KOR systems regulate distinct phases of alcohol consumption in a sex-specific manner, which may contribute to the progression to AUD.
Collapse
Affiliation(s)
- Melanie M Pina
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Anatomy & Neurobiology, and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Dipanwita Pati
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sofia Neira
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Lisa R Taxier
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Christina M Stanhope
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Alexandra A Mahoney
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Shannon D'Ambrosio
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Montserrat Navarro
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Psychology and Neuroscience, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
5
|
Koob GF, Vendruscolo L. Theoretical Frameworks and Mechanistic Aspects of Alcohol Addiction: Alcohol Addiction as a Reward Deficit/Stress Surfeit Disorder. Curr Top Behav Neurosci 2023. [PMID: 37421551 DOI: 10.1007/7854_2023_424] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Alcohol use disorder (AUD) can be defined by a compulsion to seek and take alcohol, the loss of control in limiting intake, and the emergence of a negative emotional state when access to alcohol is prevented. Alcohol use disorder impacts multiple motivational mechanisms and can be conceptualized as a disorder that includes a progression from impulsivity (positive reinforcement) to compulsivity (negative reinforcement). Compulsive drug seeking that is associated with AUD can be derived from multiple neuroadaptations, but the thesis argued herein is that a key component involves the construct of negative reinforcement. Negative reinforcement is defined as drug taking that alleviates a negative emotional state. The negative emotional state that drives such negative reinforcement is hypothesized to derive from the dysregulation of specific neurochemical elements that are involved in reward and stress within basal forebrain structures that involve the ventral striatum and extended amygdala, respectively. Specific neurochemical elements in these structures include decreases in reward neurotransmission (e.g., decreases in dopamine and opioid peptide function in the ventral striatum) and the recruitment of brain stress systems (e.g., corticotropin-releasing factor [CRF]) in the extended amygdala, which contributes to hyperkatifeia and greater alcohol intake that is associated with dependence. Glucocorticoids and mineralocorticoids may play a role in sensitizing the extended amygdala CRF system. Other components of brain stress systems in the extended amygdala that may contribute to the negative motivational state of withdrawal include norepinephrine in the bed nucleus of the stria terminalis, dynorphin in the nucleus accumbens, hypocretin and vasopressin in the central nucleus of the amygdala, and neuroimmune modulation. Decreases in the activity of neuropeptide Y, nociception, endocannabinoids, and oxytocin in the extended amygdala may also contribute to hyperkatifeia that is associated with alcohol withdrawal. Such dysregulation of emotional processing may also significantly contribute to pain that is associated with alcohol withdrawal and negative urgency (i.e., impulsivity that is associated with hyperkatifeia during hyperkatifeia). Thus, an overactive brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of AUD. The combination of the loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for a negative emotional state that is responsible for the negative reinforcement that at least partially drives the compulsivity of AUD.
Collapse
Affiliation(s)
- George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Leandro Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
6
|
Pirino BE, Kelley AM, Karkhanis AN, Barson JR. A critical review of effects on ethanol intake of the dynorphin/kappa opioid receptor system in the extended amygdala: From inhibition to stimulation. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1027-1038. [PMID: 37042026 PMCID: PMC10289127 DOI: 10.1111/acer.15078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023]
Abstract
The dynorphin (DYN)/kappa opioid receptor (KOR) system has increasingly been investigated as a possible pharmacotherapeutic target for alcohol use disorder, but findings on the direction of its effects have been mixed. Activation of KORs by DYN has been shown to elicit dysphoric effects, and the DYN/KOR system has canonically been considered particularly important in driving alcohol intake through negative reinforcement in dependent states. However, this review also highlights its activity in opposing the positive reinforcement that drives alcohol intake at earlier stages. Both DYN and KORs are concentrated in the extended amygdala, a set of interconnected regions that includes the bed nucleus of the stria terminalis, central nucleus of the amygdala, and nucleus accumbens shell. This review focuses on the role of the DYN/KOR system in the extended amygdala in ethanol use. It begins by examining the effects of ethanol on the expression of DYN/KOR in the extended amygdala, expression of DYN/KOR in alcohol-preferring and alcohol-avoiding animals, and the effects of knocking out DYN/KOR genes on ethanol intake. Then, it examines the effects on ethanol use in both dependent and nondependent states from systemic pharmacological manipulations of DYN/KOR and from specific manipulation of this system in regions of the extended amygdala. We propose that greater expression and binding of DYN/KOR, by reducing the positive reinforcement that drives early stages of intake, initially acts to prevent the escalation of ethanol drinking. However, prolonged, binge-like, or intermittent ethanol intake enhances levels of DYN/KOR in the extended amygdala such that the system ultimately facilitates the negative reinforcement that drives later stages of ethanol drinking. This review highlights the potential of the DYN/KOR system as a target that can affect different outcomes across different stages of ethanol drinking and the development of alcohol use disorder.
Collapse
Affiliation(s)
- Breanne E. Pirino
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, P.A. 19129
| | - Abigail M. Kelley
- Department of Psychology, Binghamton University – SUNY, Binghamton, N.Y. 13902
| | | | - Jessica R. Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, P.A. 19129
| |
Collapse
|
7
|
Grigsby KB, Mangieri RA, Roberts AJ, Lopez MF, Firsick EJ, Townsley KG, Beneze A, Bess J, Eisenstein TK, Meissler JJ, Light JM, Miller J, Quello S, Shadan F, Skinner M, Aziz HC, Metten P, Morrisett RA, Crabbe JC, Roberto M, Becker HC, Mason BJ, Ozburn AR. Preclinical and clinical evidence for suppression of alcohol intake by apremilast. J Clin Invest 2023; 133:e159103. [PMID: 36656645 PMCID: PMC10014105 DOI: 10.1172/jci159103] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Treatment options for alcohol use disorders (AUDs) have minimally advanced since 2004, while the annual deaths and economic toll have increased alarmingly. Phosphodiesterase type 4 (PDE4) is associated with alcohol and nicotine dependence. PDE4 inhibitors were identified as a potential AUD treatment using a bioinformatics approach. We prioritized a newer PDE4 inhibitor, apremilast, as ideal for repurposing (i.e., FDA approved for psoriasis, low incidence of adverse events, excellent safety profile) and tested it using multiple animal strains and models, as well as in a human phase IIa study. We found that apremilast reduced binge-like alcohol intake and behavioral measures of alcohol motivation in mouse models of genetic risk for drinking to intoxication. Apremilast also reduced excessive alcohol drinking in models of stress-facilitated drinking and alcohol dependence. Using site-directed drug infusions and electrophysiology, we uncovered that apremilast may act to lessen drinking in mice by increasing neural activity in the nucleus accumbens, a key brain region in the regulation of alcohol intake. Importantly, apremilast (90 mg/d) reduced excessive drinking in non-treatment-seeking individuals with AUD in a double-blind, placebo-controlled study. These results demonstrate that apremilast suppresses excessive alcohol drinking across the spectrum of AUD severity.
Collapse
Affiliation(s)
- Kolter B. Grigsby
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, Oregon, USA
| | - Regina A. Mangieri
- Waggoner Center for Alcohol and Addiction Research, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, California, USA
| | - Marcelo F. Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Evan J. Firsick
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, Oregon, USA
| | - Kayla G. Townsley
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, Oregon, USA
| | - Alan Beneze
- Pearson Center for Alcoholism and Addiction Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jessica Bess
- Pearson Center for Alcoholism and Addiction Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Toby K. Eisenstein
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Joseph J. Meissler
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | | | - Jenny Miller
- Pearson Center for Alcoholism and Addiction Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Susan Quello
- Pearson Center for Alcoholism and Addiction Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Farhad Shadan
- Pearson Center for Alcoholism and Addiction Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Michael Skinner
- Pearson Center for Alcoholism and Addiction Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Heather C. Aziz
- Waggoner Center for Alcohol and Addiction Research, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Pamela Metten
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, Oregon, USA
| | - Richard A. Morrisett
- Waggoner Center for Alcohol and Addiction Research, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - John C. Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, Oregon, USA
| | - Marisa Roberto
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Howard C. Becker
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina, USA
| | - Barbara J. Mason
- Pearson Center for Alcoholism and Addiction Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Angela R. Ozburn
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
8
|
Margolis EB, Moulton MG, Lambeth PS, O'Meara MJ. The life and times of endogenous opioid peptides: Updated understanding of synthesis, spatiotemporal dynamics, and the clinical impact in alcohol use disorder. Neuropharmacology 2023; 225:109376. [PMID: 36516892 PMCID: PMC10548835 DOI: 10.1016/j.neuropharm.2022.109376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The opioid G-protein coupled receptors (GPCRs) strongly modulate many of the central nervous system structures that contribute to neurological and psychiatric disorders including pain, major depressive disorder, and substance use disorders. To better treat these and related diseases, it is essential to understand the signaling of their endogenous ligands. In this review, we focus on what is known and unknown about the regulation of the over two dozen endogenous peptides with high affinity for one or more of the opioid receptors. We briefly describe which peptides are produced, with a particular focus on the recently proposed possible synthesis pathways for the endomorphins. Next, we describe examples of endogenous opioid peptide expression organization in several neural circuits and how they appear to be released from specific neural compartments that vary across brain regions. We discuss current knowledge regarding the strength of neural activity required to drive endogenous opioid peptide release, clues about how far peptides diffuse from release sites, and their extracellular lifetime after release. Finally, as a translational example, we discuss the mechanisms of action of naltrexone (NTX), which is used clinically to treat alcohol use disorder. NTX is a synthetic morphine analog that non-specifically antagonizes the action of most endogenous opioid peptides developed in the 1960s and FDA approved in the 1980s. We review recent studies clarifying the precise endogenous activity that NTX prevents. Together, the works described here highlight the challenges and opportunities the complex opioid system presents as a therapeutic target.
Collapse
Affiliation(s)
- Elyssa B Margolis
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, CA, USA.
| | - Madelyn G Moulton
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Philip S Lambeth
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Gano A, Lebonville CL, Becker HC. TLR3 activation with poly I:C exacerbates escalated alcohol consumption in dependent male C57BL/6J mice. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022:1-12. [PMID: 36095319 DOI: 10.1080/00952990.2022.2092492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Background: Activation of TLR3 receptors, which are sensitive to viral infection, has emerged as a possible mechanism that increases alcohol intake in rodents.Objectives: These studies examined whether a history of ethanol dependence exacerbated the increase in drinking driven by the TLR3 agonist poly I:C.Methods: Male C57BL/6J mice (>10 per group) were given access to ethanol (20% v/v) 2 hours a day following a history of home cage drinking or after having been rendered ethanol-dependent using a chronic intermittent ethanol (CIE) vapor model. After testing multiple doses, a 5 mg/kg repeated poly I:C challenge was used to probe the effects of repeated immune challenge, alone or in conjunction with repeated cycles of CIE, on voluntary drinking. An ethanol (12% v/v) operant self-administration model was used to test the effects of poly I:C on stress-induced reinstatement of ethanol seeking and consumption.Results: Poly I:C in naive animals resulted in transient, modest increases in ethanol intake in the home cage and in self-administration (p < 0.05). However, poly I:C challenge resulted in sensitized stress-induced ethanol consumption and evoked a strong and persistent escalation of drinking in mice with a history of dependence (p < 0.05 for both).Conclusion: Activation of viral immune defense may affect ethanol consumption in dependence and sensitivity to future stressors. As patients who suffer from alcohol use disorder are at a heightened risk for viral infection, this interaction could generate risk factors for exacerbating behaviors associated with Alcohol Use Disorders via an immune mechanism.
Collapse
Affiliation(s)
- Anny Gano
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Christina L Lebonville
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- RHJ Department of Veterans Affairs Medical Center, Charleston, SC, USA
| |
Collapse
|
10
|
Borrego MB, Chan AE, Ozburn AR. Regulation of alcohol drinking by ventral striatum and extended amygdala circuitry. Neuropharmacology 2022; 212:109074. [PMID: 35487273 PMCID: PMC9677601 DOI: 10.1016/j.neuropharm.2022.109074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder is a complex psychiatric disorder that can be modeled in rodents using a number of drinking paradigms. Drinking-in-the-dark (DID) is widely used to model the binge/intoxication stage of addiction, and chronic intermittent ethanol vapor procedures (CIE) are used to induce dependence and model withdrawal/negative affect induced escalation of drinking. We discuss experiments showing the ventral striatum (vStr) and extended amygdala (EA) are engaged in response to ethanol in rodents through c-Fos/Fos immunoreactivity studies. We also discuss experiments in rodents that span a wide variety of techniques where the function of vStr and EA structures are changed following DID or CIE, and the role of neurotransmitter and neuropeptide systems studies in these ethanol-related outcomes. We note where signaling systems converge across regions and paradigms and where there are still gaps in the literature. Dynorphin/κ-opioid receptor (KOR) signaling, as well as corticotropin releasing factor (CRF)/CRF receptor signaling were found to be important regulators of drinking behaviors across brain regions and drinking paradigms. Future research will require that females and a variety of rodent strains are used in preclinical experiments in order to strengthen the generalizability of findings and improve the likelihood of success for testing potential therapeutics in human laboratory studies.
Collapse
Affiliation(s)
- Marissa B Borrego
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, USA
| | - Amy E Chan
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, USA
| | - Angela R Ozburn
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, USA.
| |
Collapse
|
11
|
Haun HL, Lebonville CL, Solomon MG, Griffin WC, Lopez MF, Becker HC. Dynorphin/Kappa Opioid Receptor Activity Within the Extended Amygdala Contributes to Stress-Enhanced Alcohol Drinking in Mice. Biol Psychiatry 2022; 91:1019-1028. [PMID: 35190188 PMCID: PMC9167153 DOI: 10.1016/j.biopsych.2022.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND While there is high comorbidity of stress-related disorders and alcohol use disorder, few effective treatments are available and elucidating underlying neurobiological mechanisms has been hampered by a general lack of reliable animal models. Here, we use a novel mouse model demonstrating robust and reproducible stress-enhanced alcohol drinking to examine the role of dynorphin/kappa opioid receptor (DYN/KOR) activity within the extended amygdala in mediating this stress-alcohol interaction. METHODS Mice received repeated weekly cycles of chronic intermittent ethanol exposure alternating with weekly drinking sessions ± forced swim stress exposure. Pdyn messenger RNA expression was measured in the central amygdala (CeA), and DYN-expressing CeA neurons were then targeted for chemogenetic inhibition. Finally, a KOR antagonist was microinjected into the CeA or bed nucleus of the stria terminalis to examine the role of KOR signaling in promoting stress-enhanced drinking. RESULTS Stress (forced swim stress) selectively increased alcohol drinking in mice with a history of chronic intermittent ethanol exposure, and this was accompanied by elevated Pdyn messenger RNA levels in the CeA. Targeted chemogenetic silencing of DYN-expressing CeA neurons blocked stress-enhanced drinking, and KOR antagonism in the CeA or bed nucleus of the stria terminalis significantly reduced stress-induced elevated alcohol consumption without altering moderate intake in control mice. CONCLUSIONS Using a novel and robust model of stress-enhanced alcohol drinking, a significant role for DYN/KOR activity within extended amygdala circuitry in mediating this effect was demonstrated, thereby providing further evidence that the DYN/KOR system may be a valuable target in the development of more effective treatments for individuals presenting with comorbidity of stress-related disorders and alcohol use disorder.
Collapse
Affiliation(s)
- Harold L Haun
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Christina L Lebonville
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Matthew G Solomon
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - William C Griffin
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina; Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina.
| |
Collapse
|
12
|
Bloch S, Holleran KM, Kash TL, Vazey EM, Rinker JA, Lebonville CL, O'Hara K, Lopez MF, Jones SR, Grant KA, Becker HC, Mulholland PJ. Assessing negative affect in mice during abstinence from alcohol drinking: Limitations and future challenges. Alcohol 2022; 100:41-56. [PMID: 35181404 PMCID: PMC8983487 DOI: 10.1016/j.alcohol.2022.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/09/2023]
Abstract
Alcohol use disorder (AUD) is frequently comorbid with mood disorders, and these co-occurring neuropsychiatric disorders contribute to the development and maintenance of alcohol dependence and relapse. In preclinical models, mice chronically exposed to alcohol display anxiety-like and depressive-like behaviors during acute withdrawal and protracted abstinence. However, in total, results from studies using voluntary alcohol-drinking paradigms show variable behavioral outcomes in assays measuring negative affective behaviors. Thus, the main objective of this review is to summarize the literature on the variability of negative affective behaviors in mice after chronic alcohol exposure. We compare the behavioral phenotypes that emerge during abstinence across different exposure models, including models of alcohol and stress interactions. The complicated outcomes from these studies highlight the difficulties of assessing negative affective behaviors in mouse models designed for the study of AUD. We discuss new behavioral assays, comprehensive platforms, and unbiased machine-learning algorithms as promising approaches to better understand the interaction between alcohol and negative affect in mice. New data-driven approaches in the understanding of mouse behavior hold promise for improving the identification of mechanisms, cell subtypes, and neurocircuits that mediate negative affect. In turn, improving our understanding of the neurobehavioral basis of alcohol-associated negative affect will provide a platform to test hypotheses in mouse models that aim to improve the development of more effective strategies for treating individuals with AUD and co-occurring mood disorders.
Collapse
Affiliation(s)
- Solal Bloch
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Katherine M Holleran
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Elena M Vazey
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Jennifer A Rinker
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Christina L Lebonville
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Krysten O'Hara
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Marcelo F Lopez
- Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, United States
| | - Howard C Becker
- Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
13
|
Estave PM, Spodnick MB, Karkhanis AN. KOR Control over Addiction Processing: An Exploration of the Mesolimbic Dopamine Pathway. Handb Exp Pharmacol 2022; 271:351-377. [PMID: 33301050 PMCID: PMC8192597 DOI: 10.1007/164_2020_421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug addiction is a complex, persistent, and chronically relapsing neurological disorder exacerbated by acute and chronic stress. It is well known that the dynorphin/kappa opioid receptor (KOR) system regulates stress perception and responsivity, while the mesolimbic dopamine system plays a role in reward and reinforcement associated with alcohol and substance use disorders. Interestingly, the dopamine and dynorphin/KOR systems are highly integrated in mesolimbic areas, with KOR activation leading to inhibition of dopamine release, further altering the perception of reinforcing and aversive stimuli. Chronic or repeated exposure to stress or drugs potentiates KOR function ultimately contributing to a hypodopaminergic state. This hypodopaminergic state is one of the hallmarks of hyperkatifeia, defined as the hypersensitivity to emotional distress that is exacerbated during drug withdrawal and abstinence. The relationship between stress and drug addiction is bidirectional; repeated/chronic stress promotes pro-addictive behaviors, and repeated cycles of drug exposure and withdrawal, across various drug classes, produces stress. Neuroadaptations driven by this bidirectional relationship ultimately influence the perception of the reinforcing value of rewarding stimuli. In this chapter, we address the involvement of the dopamine and dynorphin/KOR systems and their interactions in shaping reinforcement value processing after drug and stress exposure, as well as a combinatorial impact of both drugs and stress.
Collapse
Affiliation(s)
- Paige M Estave
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mary B Spodnick
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, Binghamton, NY, USA
| | - Anushree N Karkhanis
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, Binghamton, NY, USA.
| |
Collapse
|
14
|
Anderson EM, Lopez MF, Kastner A, Mulholland PJ, Becker HC, Cowan CW. The histone methyltransferase G9a mediates stress-regulated alcohol drinking. Addict Biol 2022; 27:e13060. [PMID: 34013595 PMCID: PMC8602448 DOI: 10.1111/adb.13060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 01/03/2023]
Abstract
The epigenetic enzyme G9a is a histone methyltransferase that dimethylates lysine 9 on histone H3 (H3K9me2), and in the adult nucleus accumbens (NAc), G9a regulates multiple behaviors associated with substance use disorder. We show here that chronic intermittent ethanol (CIE) exposure in male mice reduced both G9a and H3K9me2 levels in the adult NAc, but not dorsal striatum. Viral-mediated reduction of G9a in the NAc had no effects on baseline volitional ethanol drinking or escalated alcohol drinking produced by CIE exposure; however, NAc G9a was required for stress-regulated changes in ethanol drinking, including potentiated alcohol drinking produced by activation of the kappa-opioid receptor. In addition, we observed that chronic systemic administration of a G9a inhibitor, UNC0642, also blocked stress-potentiated alcohol drinking. Together, our findings suggest that chronic alcohol use, similar to other abused substances, produces a NAc-selective reduction in G9a levels that serves to limit stress-regulated alcohol drinking. Moreover, our findings suggest that pharmacological inhibition of G9a might provide a novel therapeutic approach to treat stress-induced alcohol drinking, which is a major trigger of relapse in individuals suffering from AUD.
Collapse
Affiliation(s)
- Ethan M. Anderson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC
| | - Marcelo F. Lopez
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC
| | - Abigail Kastner
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC
| | - Patrick J. Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC
| | - Howard C. Becker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC
| | - Christopher W. Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
15
|
Bloodgood DW, Hardaway JA, Stanhope CM, Pati D, Pina MM, Neira S, Desai S, Boyt KM, Palmiter RD, Kash TL. Kappa opioid receptor and dynorphin signaling in the central amygdala regulates alcohol intake. Mol Psychiatry 2021; 26:2187-2199. [PMID: 32099099 PMCID: PMC8124770 DOI: 10.1038/s41380-020-0690-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/14/2020] [Accepted: 02/13/2020] [Indexed: 01/09/2023]
Abstract
Excessive alcohol drinking has been shown to modify brain circuitry to predispose individuals for future alcohol abuse. Previous studies have implicated the central nucleus of the amygdala (CeA) as an important site for mediating the somatic symptoms of withdrawal and for regulating alcohol intake. In addition, recent work has established a role for both the Kappa Opioid Receptor (KOR) and its endogenous ligand dynorphin in mediating these processes. However, it is unclear whether these effects are due to dynorphin or KOR arising from within the CeA itself or other input brain regions. To directly examine the role of preprodynorphin (PDYN) and KOR expression in CeA neurons, we performed region-specific conditional knockout of these genes and assessed the effects on the Drinking in the Dark (DID) and Intermittent Access (IA) paradigms. Conditional gene knockout resulted in sex-specific responses wherein PDYN knockout decreased alcohol drinking in both male and female mice, whereas KOR knockout decreased drinking in males only. We also found that neither PDYN nor KOR knockout protected against anxiety caused by alcohol drinking. Lastly, a history of alcohol drinking did not alter synaptic transmission in PDYN neurons in the CeA of either sex, but excitability of PDYN neurons was increased in male mice only. Taken together, our findings indicate that PDYN and KOR signaling in the CeA plays an important role in regulating excessive alcohol consumption and highlight the need for future studies to examine how this is mediated through downstream effector regions.
Collapse
Affiliation(s)
- Daniel W Bloodgood
- Bowles Center for Alcohol Studies, Curriculum in Neuroscience, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - J Andrew Hardaway
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Christina M Stanhope
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Dipanwita Pati
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Melanie M Pina
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Sofia Neira
- Bowles Center for Alcohol Studies, Curriculum in Neuroscience, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Shivani Desai
- Department of Biology, University of North Carolina College of Arts and Sciences, Chapel Hill, NC, USA
| | - Kristen M Boyt
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, Curriculum in Neuroscience, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Maiya R, Pomrenze MB, Tran T, Tiwari GR, Beckham A, Paul MT, Mayfield RD, Messing RO. Differential regulation of alcohol consumption and reward by the transcriptional cofactor LMO4. Mol Psychiatry 2021; 26:2175-2186. [PMID: 32144357 PMCID: PMC7558853 DOI: 10.1038/s41380-020-0706-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 01/04/2023]
Abstract
Repeated alcohol exposure leads to changes in gene expression that are thought to underlie the transition from moderate to excessive drinking. However, the mechanisms by which these changes are integrated into a maladaptive response that leads to alcohol dependence are not well understood. One mechanism could involve the recruitment of transcriptional co-regulators that bind and modulate the activity of transcription factors. Our results indicate that the transcriptional regulator LMO4 is one such candidate regulator. Lmo4-deficient mice (Lmo4gt/+) consumed significantly more and showed enhanced preference for alcohol in a 24 h intermittent access drinking procedure. shRNA-mediated knockdown of Lmo4 in the nucleus accumbens enhanced alcohol consumption, whereas knockdown in the basolateral amygdala (BLA) decreased alcohol consumption and reduced conditioned place preference for alcohol. To ascertain the molecular mechanisms that underlie these contrasting phenotypes, we carried out unbiased transcriptome profiling of these two brain regions in wild type and Lmo4gt/+ mice. Our results revealed that the transcriptional targets of LMO4 are vastly different between the two brain regions, which may explain the divergent phenotypes observed upon Lmo4 knockdown. Bioinformatic analyses revealed that Oprk1 and genes related to the extracellular matrix (ECM) are important transcriptional targets of LMO4 in the BLA. Chromatin immunoprecipitation revealed that LMO4 bound Oprk1 promoter elements. Consistent with these results, disruption of the ECM or infusion of norbinaltorphimine, a selective kappa opioid receptor antagonist, in the BLA reduced alcohol consumption. Hence our results indicate that an LMO4-regulated transcriptional network regulates alcohol consumption in the BLA.
Collapse
Affiliation(s)
- Rajani Maiya
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA. .,Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA. .,Department of Neurology, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Matthew B. Pomrenze
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA,Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thi Tran
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Gayatri R. Tiwari
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea Beckham
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Madison T. Paul
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - R. Dayne Mayfield
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA,Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O. Messing
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA,Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA,Department of Neurology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
17
|
Cannady R, Nguyen T, Padula AE, Rinker JA, Lopez MF, Becker HC, Woodward JJ, Mulholland PJ. Interaction of chronic intermittent ethanol and repeated stress on structural and functional plasticity in the mouse medial prefrontal cortex. Neuropharmacology 2021; 182:108396. [PMID: 33181147 PMCID: PMC7942177 DOI: 10.1016/j.neuropharm.2020.108396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 11/06/2020] [Indexed: 01/27/2023]
Abstract
Stress is a risk factor that plays a considerable role in the development and maintenance of alcohol (ethanol) abuse and relapse. Preclinical studies examining ethanol-stress interactions have demonstrated elevated ethanol drinking, cognitive deficits, and negative affective behaviors in mice. However, the neural adaptations in prefrontal cortical regions that drive these aberrant behaviors produced by ethanol-stress interactions are unknown. In this study, male C57BL/6J mice were exposed to chronic intermittent ethanol (CIE) and repeated forced swim stress (FSS). After two cycles of CIE x FSS, brain slices containing the prelimbic (PrL) and infralimbic (IfL) cortex were prepared for analysis of adaptations in dendritic spines and synaptic plasticity. In the PrL cortex, total spine density was increased in mice exposed to CIE. Immediately following induction of long-term potentiation (LTP), the fEPSP slope was increased in the PrL of CIE x FSS treated mice, indicative of a presynaptic adaptation on post-tetanic potentiation (PTP). In the IfL cortex, CIE exposure regardless of FSS experience resulted in an increase in spine density. FSS alone or when combined with CIE exposure increased PTP following LTP induction. Repeated FSS episodes increased IfL cortical paired-pulse facilitation, a second measure of presynaptic plasticity. In summary, CIE exposure resulted in structural adaptations while repeated stress exposure drove metaplastic changes in presynaptic function, demonstrating distinct morphological and functional changes in PrL and IfL cortical neurons. Thus, the structural and functional adaptations may be one mechanism underlying the development of excessive drinking and cognitive deficits associated with ethanol-stress interactions.
Collapse
Affiliation(s)
- Reginald Cannady
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA; Department of Biology, College of Science and Technology, North Carolina Agricultural & Technical State University, 1601 East Market Street, Barnes Hall 215, Greensboro, NC, 27411, USA
| | - Tiffany Nguyen
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Audrey E Padula
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Marcelo F Lopez
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Howard C Becker
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA.
| |
Collapse
|
18
|
Koob GF. Drug Addiction: Hyperkatifeia/Negative Reinforcement as a Framework for Medications Development. Pharmacol Rev 2021; 73:163-201. [PMID: 33318153 PMCID: PMC7770492 DOI: 10.1124/pharmrev.120.000083] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Compulsive drug seeking that is associated with addiction is hypothesized to follow a heuristic framework that involves three stages (binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation) and three domains of dysfunction (incentive salience/pathologic habits, negative emotional states, and executive function, respectively) via changes in the basal ganglia, extended amygdala/habenula, and frontal cortex, respectively. This review focuses on neurochemical/neurocircuitry dysregulations that contribute to hyperkatifeia, defined as a greater intensity of negative emotional/motivational signs and symptoms during withdrawal from drugs of abuse in the withdrawal/negative affect stage of the addiction cycle. Hyperkatifeia provides an additional source of motivation for compulsive drug seeking via negative reinforcement. Negative reinforcement reflects an increase in the probability of a response to remove an aversive stimulus or drug seeking to remove hyperkatifeia that is augmented by genetic/epigenetic vulnerability, environmental trauma, and psychiatric comorbidity. Neurobiological targets for hyperkatifeia in addiction involve neurocircuitry of the extended amygdala and its connections via within-system neuroadaptations in dopamine, enkephalin/endorphin opioid peptide, and γ-aminobutyric acid/glutamate systems and between-system neuroadaptations in prostress corticotropin-releasing factor, norepinephrine, glucocorticoid, dynorphin, hypocretin, and neuroimmune systems and antistress neuropeptide Y, nociceptin, endocannabinoid, and oxytocin systems. Such neurochemical/neurocircuitry dysregulations are hypothesized to mediate a negative hedonic set point that gradually gains allostatic load and shifts from a homeostatic hedonic state to an allostatic hedonic state. Based on preclinical studies and translational studies to date, medications and behavioral therapies that reset brain stress, antistress, and emotional pain systems and return them to homeostasis would be promising new targets for medication development. SIGNIFICANCE STATEMENT: The focus of this review is on neurochemical/neurocircuitry dysregulations that contribute to hyperkatifeia, defined as a greater intensity of negative emotional/motivational signs and symptoms during withdrawal from drugs of abuse in the withdrawal/negative affect stage of the drug addiction cycle and a driving force for negative reinforcement in addiction. Medications and behavioral therapies that reverse hyperkatifeia by resetting brain stress, antistress, and emotional pain systems and returning them to homeostasis would be promising new targets for medication development.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Lopez MF, Reasons SE, Carper BA, Nolen TL, Williams RL, Becker HC. Evaluation of the effect of doxasozin and zonisamide on voluntary ethanol intake in mice that experienced chronic intermittent ethanol exposure and stress. Alcohol 2020; 89:37-42. [PMID: 32712186 DOI: 10.1016/j.alcohol.2020.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/15/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
The comorbidity between alcohol use disorder and post-traumatic stress disorder represents a serious health care burden with few effective treatment options. The current study was designed to evaluate the effect of an alpha 1 receptor antagonist (doxazosin) and a novel anticonvulsant (zonisamide) in a model of alcohol (ethanol) dependence and stress exposure. The main dependent variable was voluntary ethanol intake in mice that experienced chronic intermittent ethanol (CIE) exposure and forced swim stress (FSS) alone, and in combination. Adult male and female C57BL/6J mice had access to a single bottle of 15% (v/v) ethanol for 1-hr in the home cage, 3-hr into the dark phase of the light/dark cycle. Once stable ethanol intake was established (~4 weeks), mice were separated into four groups (CTL, CIE, FSS, CIE + FSS). Mice in the FSS condition received 10-min FSS exposure 4-hr prior to drinking sessions (remaining mice were not disturbed). During baseline and the first two test cycles, all mice received vehicle (saline) injections (IP) 30-min before ethanol access. As previously observed, FSS increased ethanol drinking in dependent (CIE-exposed) mice but not in nondependent control (CTL) mice. In the following test cycles mice were evaluated for ethanol intake after administration of doxazosin, zonisamide or their combination. Results indicated that the three doses of doxazosin evaluated significantly reduced voluntary ethanol intake in all mice. Zonisamide had a more modest effect and may require a more prolonged treatment regime. The combined administration of both compounds was not more effective than each drug alone. This study suggests that doxazosin is reliable at reducing voluntary ethanol intake in mice independently of their history of ethanol dependence and stress exposure.
Collapse
|
21
|
Tabbara RI, Rahbarnia A, Lê AD, Fletcher PJ. The pharmacological stressor yohimbine, but not U50,488, increases responding for conditioned reinforcers paired with ethanol or sucrose. Psychopharmacology (Berl) 2020; 237:3689-3702. [PMID: 32840668 DOI: 10.1007/s00213-020-05647-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
RATIONALE Environmental stimuli paired with alcohol can function as conditioned reinforcers (CRfs) and trigger relapse to alcohol-seeking. In animal models, pharmacological stressors can enhance alcohol consumption and reinstate alcohol-seeking, but it is unknown whether stress can potentiate the conditioned reinforcing properties of alcohol-paired stimuli. OBJECTIVES We examined whether the pharmacological stressors, the α-2 adrenoreceptor antagonist yohimbine (vehicle, 1.25, 2.5 mg/kg; IP) and the K-opioid receptor agonist U50,488 (vehicle, 1.25, 2.5 mg/kg; SC), increase responding for conditioned reinforcement, and if their effects interact with the nature of the reward (alcohol vs. sucrose). We subsequently examined the effects of yohimbine (vehicle, 1.25, 2.5 mg/kg; IP) on responding for sensory reinforcement. METHODS Male Long-Evans underwent Pavlovian conditioning, wherein a tone-light conditioned stimulus (CS) was repeatedly paired with 12% EtOH or 21.7% sucrose. Next, tests of responding for a CRf were conducted. Responding on the CRf lever delivered the CS, whereas responding on the other lever had no consequences. In a separate cohort of rats, the effects of yohimbine on responding just for the sensory reinforcer were examined. RESULTS Both doses of yohimbine, but not U50,488, increased responding for conditioned reinforcement. This enhancement occurred independently of the nature of the reward used during Pavlovian conditioning. Yohimbine-enhanced responding for a CRf was reproducible and stable over five tests; it even persisted when the CS was omitted. Both doses of yohimbine also increased responding for sensory reinforcement. CONCLUSIONS Yohimbine increases operant responding for a variety of sensory and conditioned reinforcers. This enhancement may be independent of its stress-like effects.
Collapse
Affiliation(s)
- Rayane I Tabbara
- Section of Biopsychology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Arya Rahbarnia
- Section of Biopsychology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Anh D Lê
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Section of Biopsychology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Padula AE, Rinker JA, Lopez MF, Mulligan MK, Williams RW, Becker HC, Mulholland PJ. Bioinformatics identification and pharmacological validation of Kcnn3/K Ca2 channels as a mediator of negative affective behaviors and excessive alcohol drinking in mice. Transl Psychiatry 2020; 10:414. [PMID: 33247097 PMCID: PMC7699620 DOI: 10.1038/s41398-020-01099-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/16/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Mood disorders are often comorbid with alcohol use disorder (AUD) and play a considerable role in the development and maintenance of alcohol dependence and relapse. Because of this high comorbidity, it is necessary to determine shared and unique genetic factors driving heavy drinking and negative affective behaviors. In order to identify novel pharmacogenetic targets, a bioinformatics analysis was used to quantify the expression of amygdala K+ channel genes that covary with anxiety-related phenotypes in the well-phenotyped and fully sequenced family of BXD strains. We used a model of stress-induced escalation of drinking in alcohol-dependent mice to measure negative affective behaviors during abstinence. A pharmacological approach was used to validate the key bioinformatics findings in alcohol-dependent, stressed mice. Amygdalar expression of Kcnn3 correlated significantly with 40 anxiety-associated phenotypes. Further examination of Kcnn3 expression revealed a strong eigentrait for anxiety-like behaviors and negative correlations with binge-like and voluntary alcohol drinking. Mice treated with chronic intermittent alcohol exposure and repeated swim stress consumed more alcohol in their home cages and showed hypophagia on the novelty-suppressed feeding test during abstinence. Pharmacologically targeting Kcnn gene products with the KCa2 (SK) channel-positive modulator 1-EBIO decreased drinking and reduced feeding latency in alcohol-dependent, stressed mice. Collectively, these validation studies provide central nervous system links into the covariance of stress, negative affective behaviors, and AUD in the BXD strains. Further, the bioinformatics discovery tool is effective in identifying promising targets (i.e., KCa2 channels) for treating alcohol dependence exacerbated by comorbid mood disorders.
Collapse
Affiliation(s)
- Audrey E Padula
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
23
|
Lorente JD, Cuitavi J, Campos-Jurado Y, Hipólito L. Pain-induced alterations in the dynorphinergic system within the mesocorticolimbic pathway: Implication for alcohol addiction. J Neurosci Res 2020; 100:165-182. [PMID: 32770601 DOI: 10.1002/jnr.24703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/08/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
Latest studies have revealed that pain negatively impacts on reward processing and motivation leading to negative affective states and stress. These states not only reduce quality of life of patients by increasing the appearance of psychiatric comorbidities, but also have an important impact on vulnerability to drug abuse, including alcohol. In fact, clinical, epidemiological but also preclinical studies have revealed that the presence of pain is closely related to alcohol use disorders (AUDs). All this evidence suggests that pain is a factor that increases the risk of suffering AUD, predicting heavy drinking behavior and relapse drinking in those patients with a previous history of AUD. The negative consequences of chronic pain and its impact on stress and AUD are likely mediated by alterations in the central nervous system, especially in the stress and reward systems. Therefore, pain and stress impact on dopaminergic mesolimbic pathway can lead to an increase in drug abuse liability. In this mini review we analyze the interaction between pain, stress, and alcohol addiction, and how dynamic changes in the kappa opioid system might play a crucial role in the development of compulsive alcohol drinking in chronic pain patients.
Collapse
Affiliation(s)
- Jesús David Lorente
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Javier Cuitavi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Yolanda Campos-Jurado
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| |
Collapse
|
24
|
Vena AA, Zandy SL, Cofresí RU, Gonzales RA. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacol Ther 2020; 212:107573. [PMID: 32437827 PMCID: PMC7580704 DOI: 10.1016/j.pharmthera.2020.107573] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder has multiple characteristics including excessive ethanol consumption, impaired control over drinking behaviors, craving and withdrawal symptoms, compulsive seeking behaviors, and is considered a chronic condition. Relapse is common. Determining the neurobiological targets of ethanol and the adaptations induced by chronic ethanol exposure is critical to understanding the clinical manifestation of alcohol use disorders, the mechanisms underlying the various features of the disorder, and for informing medication development. In the present review, we discuss ethanol's interactions with a variety of neurotransmitter systems, summarizing findings from preclinical and translational studies to highlight recent progress in the field. We then describe animal models of ethanol self-administration, emphasizing the value, limitations, and validity of commonly used models. Lastly, we summarize the behavioral changes induced by chronic ethanol self-administration, with an emphasis on cue-elicited behavior, the role of ethanol-related memories, and the emergence of habitual ethanol seeking behavior.
Collapse
Affiliation(s)
- Ashley A Vena
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, United States of America
| | | | - Roberto U Cofresí
- Psychological Sciences, University of Missouri, United States of America
| | - Rueben A Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy and Institute for Neuroscience, The University of Texas at Austin, United States of America.
| |
Collapse
|
25
|
Adolescent Intermittent Ethanol Exposure Effects on Kappa Opioid Receptor Mediated Dopamine Transmission: Sex and Age of Exposure Matter. Brain Sci 2020; 10:brainsci10080472. [PMID: 32717830 PMCID: PMC7463732 DOI: 10.3390/brainsci10080472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022] Open
Abstract
Underage alcohol drinking increases the risk of developing alcohol use disorder (AUD). In rodents, adolescent ethanol exposure augments ethanol consumption and anxiety-like behavior while reducing social interaction. However, the underlying mechanisms driving these adaptations are unclear. The dopamine and kappa opioid receptor (KOR) systems in the nucleus accumbens (NAc) are implicated in affective disorders, including AUD, with studies showing augmented KOR function and reduced dopamine transmission in ethanol-dependent adult animals. Thus, here we examine the impact of adolescent intermittent ethanol (AIE) exposure on dopamine transmission and KOR function in the NAc. Rats were exposed to water or ethanol (4 g/kg, intragastrically) every other day during early (postnatal day (PD) 25–45) or late (PD 45–65) adolescence. While AIE exposure during early adolescence (early-AIE) did not alter dopamine release in male and female rats, AIE exposure during late adolescence (late-AIE) resulted in greater dopamine release in males and lower dopamine release in females. To determine the impact of AIE on KOR function, we measured the effect of KOR activation using U50,488 (0.01–1.00 µM) on dopamine release. Early-AIE exposure potentiated KOR-mediated inhibition of dopamine release in females, while late-AIE exposure attenuated this effect in males. Interestingly, no differences in KOR function were observed in early-AIE exposed males and late-AIE exposed females. Together, these data suggest that AIE exposure impact on neural processes is dependent on sex and exposure timing. These differences likely arise from differential developmental timing in males and females. This is the first study to show changes in KOR function following AIE exposure.
Collapse
|
26
|
Piggott VM, Lloyd SC, Perrine SA, Conti AC. Chronic Intermittent Ethanol Exposure Increases Ethanol Consumption Following Traumatic Stress Exposure in Mice. Front Behav Neurosci 2020; 14:114. [PMID: 32694985 PMCID: PMC7338656 DOI: 10.3389/fnbeh.2020.00114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/08/2020] [Indexed: 01/15/2023] Open
Abstract
Individuals with post-traumatic stress disorder (PTSD) often use alcohol to cope with their distress. This aberrant use of alcohol often develops into alcohol use disorder (AUD) leading to high rates of PTSD-AUD co-occurrence. Individuals with comorbid PTSD-AUD have more intense alcohol cravings and increased relapse rates during withdrawal than those with AUD alone. Also, individuals with PTSD or AUD alone often show similar psychological behaviors, such as impulsivity and anhedonia. Extensive clinical studies on the behavioral effects of PTSD-AUD comorbidity, namely alcohol use, have been performed. However, these effects have not been well studied or mechanistically explored in animal models. Therefore, the present study evaluated the effects of traumatic stress comorbid with alcohol exposures on ethanol intake, impulsivity, and anhedonia in mice. Adult male C57Bl/6 mice were first exposed to either mouse single-prolonged stress (mSPS), an animal model that has been validated for characteristics akin to PTSD symptoms, or control conditions. Baseline two-bottle choice ethanol consumption and preference tests were conducted after a 7-day isolation period, as part of the mSPS exposure. Next, mice were exposed to air or chronic intermittent ethanol (CIE), a vapor-induced ethanol dependence and withdrawal model, for 4 weeks. Two-bottle choice ethanol drinking was used to measure dependence-induced ethanol consumption and preference during periods intervening CIE cycles. The novelty suppressed feeding (NSF) test was used to evaluate impulsivity and anhedonia behaviors 48 h after mSPS and/or repeated CIE exposure. Results showed that, compared to control conditions, mSPS did not affect baseline ethanol consumption and preference. However, mSPS-CIE mice increased Post-CIE ethanol consumption compared to Control-Air mice. Mice exposed to mSPS had a shorter latency to feed during the NSF, whereas CIE-exposed mice consumed less palatable food reward in their home cage after the NSF. These results demonstrate that mice exposed to both mSPS and CIE are more vulnerable to ethanol withdrawal effects, and those exposed to mSPS have increased impulsivity, while CIE exposure increases anhedonia. Future studies to examine the relationship between behavioral outcomes and the molecular mechanisms in the brain after PTSD-AUD are warranted.
Collapse
Affiliation(s)
- Veronica M Piggott
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Scott C Lloyd
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Shane A Perrine
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alana C Conti
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
27
|
Karkhanis AN, Al-Hasani R. Dynorphin and its role in alcohol use disorder. Brain Res 2020; 1735:146742. [PMID: 32114059 DOI: 10.1016/j.brainres.2020.146742] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
The dynorphin / kappa opioid receptor (KOR) system has been implicated in many aspects that influence neuropsychiatric disorders. Namely, this system modulates neural circuits that primarily regulate reward seeking, motivation processing, stress responsivity, and pain sensitivity, thus affecting the development of substance and alcohol use disorder (AUD). The effects of this system are often bidirectional and depend on projection targets. To date, a majority of the studies focusing on this system have examined the KOR function using agonists and antagonists. Indeed, there are studies that have examined prodynorphin and dynorphin levels by measuring mRNA and tissue content levels; however, static levels of the neuropeptide and its precursor do not explain complete and online function of the peptide as would be explained by measuring dynorphin transmission in real time. New and exciting methods using optogenetics, chemogenetics, genetic sensors, fast scan cyclic voltammetry are now being developed to detect various neuropeptides with a focus on opioid peptides, including dynorphin. In this review we discuss studies that examine dynorphin projections in areas involved in AUD, its functional involvement in AUD and vulnerability to develop AUD at various ages. Moreover, we discuss dynorphin's role in promoting AUD by dysregulation motivation circuits and how advancements in opioid peptide detection will further our understanding.
Collapse
Affiliation(s)
- Anushree N Karkhanis
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Ream Al-Hasani
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, Department of Anesthesiology Washington University in St. Louis, Center for Clinical Pharmacology, Washington University School of Medicine & St. Louis College of Pharmacy 660 S.Euclid, Box 8054, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Nennig SE, Fulenwider HD, Eskew JE, Whiting KE, Cotton MR, McGinty GE, Solomon MG, Schank JR. Intermittent Ethanol Access Increases Sensitivity to Social Defeat Stress. Alcohol Clin Exp Res 2020; 44:600-610. [PMID: 31957041 DOI: 10.1111/acer.14278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Comorbidity between alcoholism and depression is extremely common. Recent evidence supports a relationship between alcohol exposure and stress sensitivity, an underlying factor in the development of depression. Our laboratory has recently shown that chronic alcohol gavage increases sensitivity to social defeat stress (SDS). However, the effects of voluntary alcohol consumption, resulting from protocols such as intermittent ethanol access (IEA), on defeat stress sensitivity have yet to be elucidated. METHODS We first assessed the effects of 4 weeks of IEA to 20% alcohol on sensitivity to subthreshold SDS exposure. Next, to examine neuroinflammatory mechanisms, we analyzed gene expression of inhibitor of NFkB (IkB) following IEA or chronic alcohol exposure (10 days of 3.0 g/kg alcohol via intragastric gavage). Then, we quantified NFkB activation via β-galactosidase immunohistochemistry following IEA or chronic alcohol gavage in NFkB-LacZ mice. RESULTS IEA-exposed mice displayed an increase in sensitivity to subthreshold SDS compared to water-drinking controls. We also found that IkB gene expression was decreased in the nucleus accumbens (NAC) and amygdala (AMY) following IEA but was not altered following chronic alcohol gavage. Finally, we observed increased NFkB activity in the central amygdala (CEA), basolateral amygdala (BLA), and medial amygdala (MEA) after IEA, and increased NFkB activity solely in the CEA following chronic alcohol gavage. CONCLUSIONS These findings further corroborate that prior alcohol exposure, in this case intermittent voluntary consumption, can impact development of depressive-like behavior by altering stress sensitivity. Furthermore, our results suggest the CEA as a potential mediator of alcohol's effects on stress sensitivity, as NFkB was activated in this region following both IEA and chronic alcohol gavage. Thus, this study provides novel insight on alterations in the NFkB pathway and identifies specific regions to target in future experiments assessing the functional role of NFkB in these processes.
Collapse
Affiliation(s)
- Sadie E Nennig
- From the, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Hannah D Fulenwider
- From the, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Jacob E Eskew
- From the, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Kimberly E Whiting
- From the, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Mallory R Cotton
- From the, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Gabrielle E McGinty
- From the, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Matthew G Solomon
- From the, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Jesse R Schank
- From the, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
29
|
Pucci M, Micioni Di Bonaventura MV, Wille-Bille A, Fernández MS, Maccarrone M, Pautassi RM, Cifani C, D’Addario C. Environmental stressors and alcoholism development: Focus on molecular targets and their epigenetic regulation. Neurosci Biobehav Rev 2019; 106:165-181. [DOI: 10.1016/j.neubiorev.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/13/2018] [Accepted: 07/09/2018] [Indexed: 01/17/2023]
|
30
|
Solomon MG, Griffin WC, Lopez MF, Becker HC. Brain Regional and Temporal Changes in BDNF mRNA and microRNA-206 Expression in Mice Exposed to Repeated Cycles of Chronic Intermittent Ethanol and Forced Swim Stress. Neuroscience 2019; 406:617-625. [PMID: 30790666 DOI: 10.1016/j.neuroscience.2019.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) expression and signaling activity in brain are influenced by chronic ethanol and stress. We previously demonstrated reduced Bdnf mRNA levels in the medial prefrontal cortex (mPFC) following chronic ethanol treatment and forced swim stress (FSS) enhanced escalated drinking associated with chronic ethanol exposure. The present study examined the effects of chronic ethanol and FSS exposure, alone and in combination, on Bdnf mRNA expression in different brain regions, including mPFC, central amygdala (CeA), and hippocampus (HPC). Additionally, since microRNA-206 has been shown to negatively regulate BDNF expression, the effects of chronic ethanol and FSS on its expression in the target brain regions were examined. Mice received four weekly cycles of chronic intermittent ethanol (CIE) vapor or air exposure and then starting 72-h later, the mice received either a single or 5 daily 10-min FSS sessions (or left undisturbed). Brain tissue samples were collected 4-h following final FSS testing and Bdnf mRNA and miR-206 levels were determined by qPCR assay. Results indicated dynamic brain regional and time-dependent changes in Bdnf mRNA and miR-206 expression. In general, CIE and FSS exposure reduced Bdnf mRNA expression while miR-206 levels were increased in the mPFC, CeA, and HPC. Further, in many instances, these effects were more robust in mice that experienced both CIE and FSS treatments. These results have important implications for the potential link between BDNF signaling in the brain and ethanol consumption related to stress interactions with chronic ethanol experience.
Collapse
Affiliation(s)
- Matthew G Solomon
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - William C Griffin
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; RHJ Department of Veterans Affairs Medical Center, Charleston, SC 20401, USA.
| |
Collapse
|
31
|
Zhou Y, Kreek MJ. Combination of Clinically Utilized Kappa-Opioid Receptor Agonist Nalfurafine With Low-Dose Naltrexone Reduces Excessive Alcohol Drinking in Male and Female Mice. Alcohol Clin Exp Res 2019; 43:1077-1090. [PMID: 30908671 DOI: 10.1111/acer.14033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nalfurafine is the first clinically approved kappa-opioid receptor (KOP-r) agonist as an antipruritus drug with few side effects in humans (e.g., sedation, depression, and dysphoria). No study, however, has been done using nalfurafine on alcohol drinking in rodents or humans. METHODS We investigated whether nalfurafine alone or in combination with mu-opioid receptor (MOP-r) antagonist naltrexone changed excessive alcohol drinking in male and female C57BL/6J (B6) mice subjected to a chronic intermittent-access drinking paradigm (2-bottle choice, 24-hour access every other day) for 3 weeks. Neuronal proopiomelanocortin enhancer (nPE) knockout mice with brain-specific deficiency of beta-endorphin (endogenous ligand of MOP-r) were used as a genetic control for the naltrexone effects. RESULTS Single administration of nalfurafine decreased alcohol intake and preference in both male and female B6 mice in a dose-dependent manner. Pretreatment with nor-BNI (a selective KOP-r antagonist) blocked the nalfurafine effect on alcohol drinking, indicating a KOP-r-mediated mechanism. Pharmacological effects of a 5-dosing nalfurafine regimen were further evaluated: The repeated nalfurafine administrations decreased alcohol consumption without showing any blunted effects, suggesting nalfurafine did not develop a tolerance after the multidosing regimen tested. Nalfurafine did not produce any sedation (spontaneous locomotor activity), anhedonia-like (sucrose preference test), anxiety-like (elevated plus maze test), or dysphoria-like (conditioned place aversion test) behaviors, suggesting that nalfurafine had few side effects. Investigating synergistic effects between low-dose naltrexone and nalfurafine, we found that single combinations of nalfurafine and naltrexone, at doses lower than individual effective dose, profoundly decreased excessive alcohol intake in both sexes. The effect of nalfurafine on decreasing alcohol consumption was confirmed in nPE-/- mice, suggesting independent mechanisms by which nalfurafine and naltrexone reduced alcohol drinking. CONCLUSION The clinically utilized KOP-r agonist nalfurafine in combination with low-dose naltrexone has potential in alcoholism treatment.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| |
Collapse
|
32
|
Dynorphin-kappa opioid receptor activity in the central amygdala modulates binge-like alcohol drinking in mice. Neuropsychopharmacology 2019; 44:1084-1092. [PMID: 30555162 PMCID: PMC6461883 DOI: 10.1038/s41386-018-0294-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Although previous research has demonstrated a role for kappa opioid receptor-mediated signaling in escalated alcohol consumption associated with dependence and stress exposure, involvement of the dynorphin/kappa opioid receptor (DYN/KOR) system in binge-like drinking has not been fully explored. Here we used pharmacological and chemogenetic approaches to examine the influence of DYN/KOR signaling on alcohol consumption in the drinking-in-the-dark (DID) model of binge-like drinking. Systemic administration of the KOR agonist U50,488 increased binge-like drinking (Experiment 1) while, conversely, systemic administration of the KOR antagonist nor-BNI reduced drinking in the DID model (Experiment 2). These effects of systemic KOR manipulation were selective for alcohol as neither drug influenced consumption of sucrose in the DID paradigm (Experiment 3). In Experiment 4, administration of the long-acting KOR antagonist nor-BNI into the central nucleus of the amygdala (CeA) decreased alcohol intake. Next, targeted "silencing" of DYN+ neurons in the CeA was accomplished using a chemogenetic strategy. Cre-dependent viral expression in DYN+ neurons was confirmed in CeA of Pdyn-IRES-Cre mice and functionality of an inhibitory (hM4Di) DREADD was validated (Experiment 5). Activating the inhibitory DREADD by CNO injection reduced binge-like alcohol drinking, but CNO injection did not alter alcohol intake in mice that were treated with control virus (Experiment 6). Collectively, these results demonstrate that DYN/KOR signaling in the CeA contributes to excessive alcohol consumption in a binge-drinking model.
Collapse
|
33
|
Age as a factor in stress and alcohol interactions: A critical role for the kappa opioid system. Alcohol 2018; 72:9-18. [PMID: 30322483 DOI: 10.1016/j.alcohol.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/27/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
Abstract
The endogenous kappa opioid system has primarily been shown to be involved with a state of dysphoria and aversion. Stress and exposure to drugs of abuse, particularly alcohol, can produce similar states of unease and anxiety, implicating the kappa opioid system as a target of stress and alcohol. Numerous behavioral studies have demonstrated reduced sensitivity to manipulations of the kappa opioid system in early life relative to adulthood, and recent reports have shown that the kappa opioid system is functionally different across ontogeny. Given the global rise in early-life stress and alcohol consumption, understanding how the kappa opioid system responds and adapts to stress and/or alcohol exposure differently in early life and adulthood is imperative. Therefore, the objective of this review is to highlight and discuss studies examining the impact of early-life stress and/or alcohol on the kappa opioid system, with focus on the documented neuroadaptations that may contribute to future vulnerability to stress and/or increase the risk of relapse. We first provide a brief summary of the importance of studying the effects of stress and alcohol during early life (prenatal, neonatal/juvenile, and adolescence). We then discuss the literature on the effects of stress or alcohol during early life and adulthood on the kappa opioid system. Finally, we discuss the few studies that have shown interactions between stress and alcohol on the kappa opioid system and provide some discussion about the need for studies investigating the development of the kappa opioid system.
Collapse
|
34
|
Jarman SK, Haney AM, Valdez GR. Kappa opioid regulation of depressive-like behavior during acute withdrawal and protracted abstinence from ethanol. PLoS One 2018; 13:e0205016. [PMID: 30265734 PMCID: PMC6161915 DOI: 10.1371/journal.pone.0205016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023] Open
Abstract
The dynorphin/kappa opioid receptor (DYN/KOR) system appears to be a key mediator of the behavioral effects of chronic exposure to alcohol. Although KOR opioid receptor antagonists have been shown to decrease stress-related behaviors in animal models during acute ethanol withdrawal, the role of the DYN/KOR system in regulating long-term behavioral changes following protracted abstinence from ethanol is not well understood. The objective of the current study was to further explore the role of the DYN/KOR system in regulating stress-related behavioral changes associated with acute withdrawal and protracted abstinence from ethanol. More specifically, the present experiments sought to examine the ability of the KOR antagonist norbinaltorphimine (nor-BNI) to reverse depressive-like behavior in the forced swim test in rats exposed to chronic ethanol. In the first experiment, rats were fed an ethanol or control liquid diet for 28-30 days, and then 24 hours after removal of the diet, were exposed to inescapable swim stress. Immediately following this procedure, rats were injected with nor-BNI (20 mg/kg) or saline and then tested 24 hours later in the forced swim test. A second experiment used a similar procedure to examine the effects of nor-BNI on behavioral changes during protracted abstinence in rats tested in the forced swim test 3 weeks after exposure to the ethanol liquid diet procedure. Ethanol-dependent rats showed increased immobility, which is thought to indicate a depressive-like state, when examined during acute withdrawal and protracted abstinence compared to controls, an effect attenuated by nor-BNI. These results suggest that the DYN/KOR system plays role in mediating both short- and long-term behavioral changes associated with depression following chronic alcohol exposure.
Collapse
Affiliation(s)
- Sorscha K. Jarman
- Department of Psychology, Grand Valley State University, Allendale, MI, United States of America
| | - Alison M. Haney
- Department of Psychology, Grand Valley State University, Allendale, MI, United States of America
| | - Glenn R. Valdez
- Department of Psychology, Grand Valley State University, Allendale, MI, United States of America
- * E-mail:
| |
Collapse
|
35
|
Erikson CM, Wei G, Walker BM. Maladaptive behavioral regulation in alcohol dependence: Role of kappa-opioid receptors in the bed nucleus of the stria terminalis. Neuropharmacology 2018; 140:162-173. [PMID: 30075159 DOI: 10.1016/j.neuropharm.2018.07.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 12/15/2022]
Abstract
There is an important emerging role for the endogenous opioid dynorphin (DYN) and the kappa-opioid receptor (KOR) in the treatment of alcohol dependence. Evidence suggests that the DYN/KOR system in the bed nucleus of the stria terminalis (BNST) contributes to maladaptive behavioral regulation during withdrawal in alcohol dependence. The current experiments were designed to assess dysregulation of the BNST DYN/KOR system by evaluating alcohol dependence-induced changes in DYN/KOR gene expression (Pdyn and Oprk1, respectively), and the sensitivity of alcohol self-administration, negative affective-like behavior and physiological withdrawal to intra-BNST KOR antagonism during acute withdrawal. Wistar rats trained to self-administer alcohol, or not trained, were subjected to an alcohol dependence induction procedure (14 h alcohol vapor/10 h air) or air-exposure. BNST micropunches from air- and vapor-exposed animals were analyzed using RT-qPCR to quantify dependence-induced changes in Pdyn and Oprk1 mRNA expression. In addition, vapor- and air-exposed groups received an intra-BNST infusion of a KOR antagonist or vehicle prior to measurement of alcohol self-administration. A separate cohort of vapor-exposed rats was assessed for physiological withdrawal and negative affective-like behavior signs following intra-BNST KOR antagonism. During acute withdrawal, following alcohol dependence induction, there was an upregulation in Oprk1 mRNA expression in alcohol self-administering animals, but not non-alcohol self-administering animals, that confirmed dysregulation of the KOR/DYN system within the BNST. Furthermore, intra-BNST KOR antagonism attenuated escalated alcohol self-administration and negative affective-like behavior during acute withdrawal without reliably impacting physiological symptoms of withdrawal. The results confirm KOR system dysregulation in the BNST in alcohol dependence, illustrating the therapeutic potential of targeting the KOR to treat alcohol dependence.
Collapse
Affiliation(s)
- Chloe M Erikson
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Alcohol and Drug Abuse Research Program, Translational Addiction Research Center, Washington State University, Pullman, WA, 99164-4820, USA
| | - Gengze Wei
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Alcohol and Drug Abuse Research Program, Translational Addiction Research Center, Washington State University, Pullman, WA, 99164-4820, USA
| | - Brendan M Walker
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Alcohol and Drug Abuse Research Program, Translational Addiction Research Center, Washington State University, Pullman, WA, 99164-4820, USA.
| |
Collapse
|
36
|
Zhou Y, Kreek MJ. Involvement of Activated Brain Stress Responsive Systems in Excessive and "Relapse" Alcohol Drinking in Rodent Models: Implications for Therapeutics. J Pharmacol Exp Ther 2018; 366:9-20. [PMID: 29669731 PMCID: PMC5988024 DOI: 10.1124/jpet.117.245621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
Addictive diseases, including addiction to alcohol, pose massive public health costs. Addiction is a chronic relapsing disease caused by both the direct effects induced by drugs and persistent neuroadaptations at the molecular, cellular, and behavioral levels. These drug-type specific neuroadaptations are brought on largely by the reinforcing effects of drugs on the central nervous system and environmental stressors. Results from animal experiments have demonstrated important interactions between alcohol and stress-responsive systems. Addiction to specific drugs such as alcohol, psychostimulants, and opioids shares some common direct or downstream effects on the brain's stress-responsive systems, including arginine vasopressin and its V1b receptors, dynorphin and the κ-opioid receptors, pro-opiomelanocortin/β-endorphin and the μ-opioid receptors, and the endocannabinoids. Further study of these systems through laboratory-based and translational research could lead to the discovery of novel treatment targets and the early optimization of interventions (for example, combination) for the pharmacologic therapy of alcoholism.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- Laboratory of Biology of Addictive Diseases, Rockefeller University, New York, New York
| |
Collapse
|
37
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
38
|
Siciliano CA, Karkhanis AN, Holleran KM, Melchior JR, Jones SR. Cross-Species Alterations in Synaptic Dopamine Regulation After Chronic Alcohol Exposure. Handb Exp Pharmacol 2018; 248:213-238. [PMID: 29675581 PMCID: PMC6195853 DOI: 10.1007/164_2018_106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcohol use disorders are a leading public health concern, engendering enormous costs in terms of both economic loss and human suffering. These disorders are characterized by compulsive and excessive alcohol use, as well as negative affect and alcohol craving during abstinence. Extensive research has implicated the dopamine system in both the acute pharmacological effects of alcohol and the symptomology of alcohol use disorders that develop after extended alcohol use. Preclinical research has shed light on many mechanisms by which chronic alcohol exposure dysregulates the dopamine system. However, many of the findings are inconsistent across experimental parameters such as alcohol exposure length, route of administration, and model organism. We propose that the dopaminergic alterations driving the core symptomology of alcohol use disorders are likely to be relatively stable across experimental settings. Recent work has been aimed at using multiple model organisms (mouse, rat, monkey) across various alcohol exposure procedures to search for commonalities. Here, we review recent advances in our understanding of the effects of chronic alcohol use on the dopamine system by highlighting findings that are consistent across experimental setting and species.
Collapse
Affiliation(s)
- Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Anushree N Karkhanis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Katherine M Holleran
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James R Melchior
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
39
|
Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the neural systems that drive alcohol motivation and are disrupted in alcohol use disorders is of critical importance in developing novel treatments. The dynorphin and orexin/hypocretin neuropeptide systems are particularly relevant with respect to alcohol use and misuse. Both systems are strongly associated with alcohol-seeking behaviors, particularly in cases of high levels of alcohol use as seen in dependence. Furthermore, both systems also play a role in stress and anxiety, indicating that disruption of these systems may underlie long-term homeostatic dysregulation seen in alcohol use disorders. These systems are also closely interrelated with one another - dynorphin/kappa opioid receptors and orexin/hypocretin receptors are found in similar regions and hypocretin/orexin neurons also express dynorphin - suggesting that these two systems may work together in the regulation of alcohol seeking and may be mutually disrupted in alcohol use disorders. This chapter reviews studies demonstrating a role for each of these systems in motivated behavior, with a focus on their roles in regulating alcohol-seeking and self-administration behaviors. Consideration is also given to evidence indicating that these neuropeptide systems may be viable targets for the development of potential treatments for alcohol use disorders.
Collapse
Affiliation(s)
- Rachel I Anderson
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.,Science and Technology Policy Fellowships, American Association for the Advancement of Science, Washington, DC, USA
| | - David E Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA. .,Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA. .,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA. .,Department of Veterans Affairs, Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
40
|
Karkhanis A, Holleran KM, Jones SR. Dynorphin/Kappa Opioid Receptor Signaling in Preclinical Models of Alcohol, Drug, and Food Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:53-88. [PMID: 29056156 DOI: 10.1016/bs.irn.2017.08.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dynorphin/kappa opioid receptor (KOR) system is implicated in the "dark side" of addiction, in which stress exacerbates maladaptive responses to drug and alcohol exposure. For example, acute stress and acute ethanol exposure result in an elevation in dynorphin, the KOR endogenous ligand. Activation of KORs results in modulation of several neurotransmitters; however, this chapter will focus on its regulatory effects on dopamine in mesolimbic areas. Specifically, KOR activation has an inhibitory effect on dopamine release, thereby influencing reward processing. Repeated stimulation of KORs, for example, via chronic drug and/or stress exposure, results in increased function of the dynorphin/KOR system. This augmentation in KOR function shifts the homeostatic balance in favor of an overall reduction in dopamine signaling via either by reducing dopamine release or by increasing dopamine transporter function. This chapter examines the effects of chronic ethanol exposure on KOR function and the downstream effects on dopamine transmission. Additionally, the impact of chronic cocaine exposure and its effects on KOR function will be explored. Further, KORs may also be involved in driving excessive consumption of food, contributing to the risk of developing obesity. While some studies have shown that KOR agonists reduce drug intake, other studies have shown that antagonists reduce addiction-like behaviors, demonstrating therapeutic potential. For example, KOR inhibition reduces ethanol intake in dependent animals, motivation to self-administer cocaine in chronic stress-exposed animals, and food consumption in obese animals. This chapter will delve into the mechanisms by which modulation of the dynorphin/KOR system may be therapeutic.
Collapse
Affiliation(s)
| | | | - Sara R Jones
- Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
41
|
Rodberg EM, den Hartog CR, Anderson RI, Becker H, Moorman DE, Vazey EM. Stress Facilitates the Development of Cognitive Dysfunction After Chronic Ethanol Exposure. Alcohol Clin Exp Res 2017; 41:1574-1583. [PMID: 28753742 PMCID: PMC5592109 DOI: 10.1111/acer.13444] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chronic exposure to stress or alcohol can drive neuroadaptations that alter cognition. Alterations in cognition may contribute to alcohol use disorders by reducing cognitive control over drinking and maintenance of abstinence. Here we examined effects of combined ethanol (EtOH) and stress exposure on prefrontal cortex (PFC)-dependent cognition. METHODS Adult male C57BL/6J mice were trained to drink EtOH (15%, v/v) on a 1 h/d 1-bottle schedule. Once stable, mice were exposed to cycles of chronic intermittent EtOH (CIE) or air-control vapor exposure (Air), followed by test cycles of 1 h/d EtOH drinking. During test drinking, mice received no stress (NS) or 10 minutes of forced swim stress (FSS) 4 hours before each test. This schedule produced 4 experimental groups: control, Air/NS; EtOH-dependent no stress, CIE/NS; nondependent stress, Air/FSS; or EtOH-dependent stress, CIE/FSS. After 2 cycles of CIE and FSS exposure, we assessed PFC-dependent cognition using object/context recognition and attentional set shifting. At the end of the study, mice were perfused and brains were collected for measurement of c-Fos activity in PFC and locus coeruleus (LC). RESULTS CIE/FSS mice escalated EtOH intake faster than CIE/NS and consumed more EtOH than Air/NS across all test cycles. After 2 cycles of CIE/FSS, mice showed impairments in contextual learning and extradimensional set-shifting relative to other groups. In addition to cognitive dysfunction, CIE/FSS mice demonstrated widespread reductions in c-Fos activity within prelimbic and infralimbic PFC as well as LC. CONCLUSIONS Together, these findings show that interactions between EtOH and stress exposure rapidly lead to disruptions in signaling across cognitive networks and impairments in PFC-dependent cognitive function.
Collapse
Affiliation(s)
| | | | | | | | - David E. Moorman
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst MA
| | - Elena M. Vazey
- Department of Biology, University of Massachusetts, Amherst MA
| |
Collapse
|
42
|
Becker HC. Influence of stress associated with chronic alcohol exposure on drinking. Neuropharmacology 2017; 122:115-126. [PMID: 28431971 PMCID: PMC5497303 DOI: 10.1016/j.neuropharm.2017.04.028] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/24/2022]
Abstract
Stress is commonly regarded as an important trigger for relapse and a significant factor that promotes increased motivation to drink in some individuals. However, the relationship between stress and alcohol is complex, likely changing in form during the transition from early moderated alcohol use to more heavy uncontrolled alcohol intake. A growing body of evidence indicates that prolonged excessive alcohol consumption serves as a potent stressor, producing persistent dysregulation of brain reward and stress systems beyond normal homeostatic limits. This progressive dysfunctional (allostatic) state is characterized by changes in neuroendocrine and brain stress pathways that underlie expression of withdrawal symptoms that reflect a negative affective state (dysphoria, anxiety), as well as increased motivation to self-administer alcohol. This review highlights literature supportive of this theoretical framework for alcohol addiction. In particular, evidence for stress-related neural, physiological, and behavioral changes associated with chronic alcohol exposure and withdrawal experience is presented. Additionally, this review focuses on the effects of chronic alcohol-induced changes in several pro-stress neuropeptides (corticotropin-releasing factor, dynorphin) and anti-stress neuropeptide systems (nocicepton, neuropeptide Y, oxytocin) in contributing to the stress, negative emotional, and motivational consequences of chronic alcohol exposure. Studies involving use of animal models have significantly increased our understanding of the dynamic stress-related physiological mechanisms and psychological underpinnings of alcohol addiction. This, in turn, is crucial for developing new and more effective therapeutics for treating excessive, harmful drinking, particularly stress-enhanced alcohol consumption. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Department of Neuroscience, Medical University of South Carolina, RHJ Department of Veterans Affairs, Charleston, SC 29464, USA.
| |
Collapse
|
43
|
Anderson RI, Becker HC. Role of the Dynorphin/Kappa Opioid Receptor System in the Motivational Effects of Ethanol. Alcohol Clin Exp Res 2017; 41:1402-1418. [PMID: 28425121 DOI: 10.1111/acer.13406] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
Evidence has demonstrated that dynorphin (DYN) and the kappa opioid receptor (KOR) system contribute to various psychiatric disorders, including anxiety, depression, and addiction. More recently, this endogenous opioid system has received increased attention as a potential therapeutic target for treating alcohol use disorders. In this review, we provide an overview and synthesis of preclinical studies examining the influence of alcohol (ethanol [EtOH]) exposure on DYN/KOR expression and function, as well as studies examining the effects of DYN/KOR manipulation on EtOH's rewarding and aversive properties. We then describe work that has characterized effects of KOR activation and blockade on EtOH self-administration and EtOH dependence/withdrawal-related behaviors. Finally, we address how the DYN/KOR system may contribute to stress-EtOH interactions. Despite an apparent role for the DYN/KOR system in motivational effects of EtOH, support comes from relatively few studies. Nevertheless, review of this literature reveals several common themes: (i) rodent strains genetically predisposed to consume more EtOH generally appear to have reduced DYN/KOR tone in brain reward circuitry; (ii) acute and chronic EtOH exposure typically up-regulate the DYN/KOR system; (iii) KOR antagonists reduce behavioral indices of negative affect associated with stress and chronic EtOH exposure/withdrawal; and (iv) KOR antagonists are effective in reducing EtOH consumption, but are often more efficacious under conditions that engender high levels of consumption, such as dependence or stress exposure. These results support the contention that the DYN/KOR system plays a significant role in contributing to dependence- and stress-induced elevation in EtOH consumption. Overall, more comprehensive analyses (on both behavioral and mechanistic levels) are needed to provide additional insight into how the DYN/KOR system is engaged and adapts to influence the motivation effects of EtOH. This information will be critical for the development of new pharmacological agents targeting KORs as promising novel therapeutics for alcohol use disorders and comorbid affective disorders.
Collapse
Affiliation(s)
- Rachel I Anderson
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina.,Department of Neuroscience , Medical University of South Carolina, Charleston, South Carolina.,RHJ Department of Veterans Affairs Medical Center , Charleston, South Carolina
| |
Collapse
|
44
|
Synergistic blockade of alcohol escalation drinking in mice by a combination of novel kappa opioid receptor agonist Mesyl Salvinorin B and naltrexone. Brain Res 2017; 1662:75-86. [PMID: 28263712 DOI: 10.1016/j.brainres.2017.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 12/29/2022]
Abstract
Mesyl Salvinorin B (MSB) is a potent selective kappa opioid receptor (KOP-r) agonist that has potential for development as an anti-psychostimulant agent with fewer side-effects (e.g., sedation, depression and dysphoria) than classic KOP-r agonists. However, no such study has been done on alcohol. We investigated whether MSB alone or in combination with naltrexone (mu-opioid receptor antagonist) altered voluntary alcohol drinking in both male and female mice. Mice, subjected to 3weeks of chronic escalation drinking (CED) in a two-bottle choice paradigm with 24-h access every other day, developed rapid escalation of alcohol intake and high preference. We found that single, acute administration of MSB dose-dependently reduced alcohol intake and preference in mice after 3-week CED. The effect was specific to alcohol, as shown by the lack of any effect of MSB on sucrose or saccharin intake. We also used the drinking-in-the-dark (DID) model with limited access (4h/day) to evaluate the pharmacological effect of MSB after 3weeks of DID. However, MSB had no effect on alcohol drinking after 3-week DID. Upon investigation of potential synergistic effects between naltrexone and MSB, we found that acute administration of a combination of MSB and naltrexone reduced alcohol intake profoundly after 3-week CED at doses lower than those individual effective doses. Repeated administrations of this combination showed less tolerance development than repeated MSB alone. Our study suggests that the novel KOP-r agonist MSB both alone and in combination with naltrexone shows potential in alcoholism treatment models.
Collapse
|
45
|
Reed B, Butelman ER, Kreek MJ. Endogenous opioid system in addiction and addiction-related behaviors. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Mulligan MK, Mozhui K, Pandey AK, Smith ML, Gong S, Ingels J, Miles MF, Lopez MF, Lu L, Williams RW. Genetic divergence in the transcriptional engram of chronic alcohol abuse: A laser-capture RNA-seq study of the mouse mesocorticolimbic system. Alcohol 2017; 58:61-72. [PMID: 27894806 DOI: 10.1016/j.alcohol.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Genetic factors that influence the transition from initial drinking to dependence remain enigmatic. Recent studies have leveraged chronic intermittent ethanol (CIE) paradigms to measure changes in brain gene expression in a single strain at 0, 8, 72 h, and even 7 days following CIE. We extend these findings using LCM RNA-seq to profile expression in 11 brain regions in two inbred strains - C57BL/6J (B6) and DBA/2J (D2) - 72 h following multiple cycles of ethanol self-administration and CIE. Linear models identified differential expression based on treatment, region, strain, or interactions with treatment. Nearly 40% of genes showed a robust effect (FDR < 0.01) of region, and hippocampus CA1, cortex, bed nucleus stria terminalis, and nucleus accumbens core had the highest number of differentially expressed genes after treatment. Another 8% of differentially expressed genes demonstrated a robust effect of strain. As expected, based on similar studies in B6, treatment had a much smaller impact on expression; only 72 genes (p < 0.01) are modulated by treatment (independent of region or strain). Strikingly, many more genes (415) show a strain-specific and largely opposite response to treatment and are enriched in processes related to RNA metabolism, transcription factor activity, and mitochondrial function. Over 3 times as many changes in gene expression were detected in D2 compared to B6, and weighted gene co-expression network analysis (WGCNA) module comparison identified more modules enriched for treatment effects in D2. Substantial strain differences exist in the temporal pattern of transcriptional neuroadaptation to CIE, and these may drive individual differences in risk of addiction following excessive alcohol consumption.
Collapse
Affiliation(s)
- Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States.
| | - Khyobeni Mozhui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Ashutosh K Pandey
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Maren L Smith
- Department of Molecular Biology and Genetics, Virginia Commonwealth University, United States
| | - Suzhen Gong
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Jesse Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Michael F Miles
- Department of Molecular Biology and Genetics, Virginia Commonwealth University, United States
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| |
Collapse
|
47
|
Rose JH, Karkhanis AN, Steiniger-Brach B, Jones SR. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure. Int J Mol Sci 2016; 17:ijms17081216. [PMID: 27472317 PMCID: PMC5000614 DOI: 10.3390/ijms17081216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/13/2022] Open
Abstract
The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs.
Collapse
Affiliation(s)
- Jamie H Rose
- Department of Physiology and Pharmacology Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Anushree N Karkhanis
- Department of Physiology and Pharmacology Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | | | - Sara R Jones
- Department of Physiology and Pharmacology Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|