1
|
Carleton M, Oesch NW. Bridging the gap of vision restoration. Front Cell Neurosci 2024; 18:1502473. [PMID: 39640234 PMCID: PMC11617155 DOI: 10.3389/fncel.2024.1502473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Retinitis pigmentosa (RP) and Age-Related Macular Degeneration (AMD) are similar in that both result in photoreceptor degeneration leading to permanent progressive vision loss. This affords the possibility of implementing vision restoration techniques, where light signaling is restored to spared retinal circuitry to recreate vision. There are far more AMD patients (Wong et al., 2014), yet more resources have been put towards researching and developing vision restoration strategies for RP despite it rarity, because of the tractability of RP disease models. The hope is that these therapies will extend to the AMD population, however, many questions remain about how the implementation of prosthetic or optogenetic vision restoration technologies will translate between RP and AMD patients. In this review, we discuss the difference and similarities of RP and AMD with a focus on aspects expected to impact vision restoration strategies, and we identify key gaps in knowledge needed to further improve vision restoration technologies for a broad patient population.
Collapse
Affiliation(s)
- Maya Carleton
- Department of Psychology, University of California San Diego, La Jolla, CA, United States
| | - Nicholas W. Oesch
- Department of Psychology, University of California San Diego, La Jolla, CA, United States
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, United States
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
2
|
Akiba R, Lind Boniec S, Knecht S, Uyama H, Tu HY, Baba T, Takahashi M, Mandai M, Wong RO. Cellular and circuit remodeling of the primate foveal midget pathway after acute photoreceptor loss. Proc Natl Acad Sci U S A 2024; 121:e2413104121. [PMID: 39231211 PMCID: PMC11406236 DOI: 10.1073/pnas.2413104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024] Open
Abstract
The retinal fovea in human and nonhuman primates is essential for high acuity and color vision. Within the fovea lies specialized circuitry in which signals from a single cone photoreceptor are largely conveyed to one ON and one OFF type midget bipolar cell (MBC), which in turn connect to a single ON or OFF midget ganglion cell (MGC), respectively. Restoring foveal vision requires not only photoreceptor replacement but also appropriate reconnection with surviving ON and OFF MBCs and MGCs. However, our current understanding of the effects of cone loss on the remaining foveal midget pathway is limited. We thus used serial block-face electron microscopy to determine the degree of plasticity and potential remodeling of this pathway in adult Macaca fascicularis several months after acute photoreceptor loss upon photocoagulation. We reconstructed MBC structure and connectivity within and adjacent to the region of cone loss. We found that MBC dendrites within the scotoma retracted and failed to reach surviving cones to form new connections. However, both surviving cones and ON and OFF MBC dendrites at the scotoma border exhibited remodeling, suggesting that these neurons can demonstrate plasticity and rewiring at maturity. At six months postlesion, disconnected OFF MBCs clearly lost output ribbon synapses with their postsynaptic partners, whereas the majority of ON MBCs maintained their axonal ribbon numbers, suggesting differential timing or extent in ON and OFF midget circuit remodeling after cone loss. Our findings raise rewiring considerations for cell replacement approaches in the restoration of foveal vision.
Collapse
Affiliation(s)
- Ryutaro Akiba
- Department of Biological Structure, University of Washington, Seattle, WA 98195
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Department of Ophthalmology and Visual Sciences, Chiba University Graduate School of Medicine, Chiba 260-8677, Japan
| | - Shane Lind Boniec
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - Sharm Knecht
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - Hirofumi Uyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Takayuki Baba
- Department of Ophthalmology and Visual Sciences, Chiba University Graduate School of Medicine, Chiba 260-8677, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Research Center, Kobe City Eye Hospital Research Center, Kobe, Hyogo 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Research Center, Kobe City Eye Hospital Research Center, Kobe, Hyogo 650-0047, Japan
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| |
Collapse
|
3
|
Biswas S, Shahriar S, Bachay G, Arvanitis P, Jamoul D, Brunken WJ, Agalliu D. Glutamatergic neuronal activity regulates angiogenesis and blood-retinal barrier maturation via Norrin/β-catenin signaling. Neuron 2024; 112:1978-1996.e6. [PMID: 38599212 PMCID: PMC11189759 DOI: 10.1016/j.neuron.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Interactions among neuronal, glial, and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA sequencing (scRNA-seq), and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1-/- retinas where neurons fail to release glutamate. By contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1-/- retinas, where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/β-catenin signaling are downregulated in Vglut1-/- retinas and upregulated in Gnat1-/- retinas. Pharmacological activation of endothelial Norrin/β-catenin signaling in Vglut1-/- retinas rescues defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/β-catenin signaling.
Collapse
Affiliation(s)
- Saptarshi Biswas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Sanjid Shahriar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Galina Bachay
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Panos Arvanitis
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Danny Jamoul
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; John Jay College of Criminal Justice, City University of New York, New York, NY 10019, USA
| | - William J Brunken
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dritan Agalliu
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
4
|
Becker S, L'Ecuyer Z, Jones BW, Zouache MA, McDonnell FS, Vinberg F. Modeling complex age-related eye disease. Prog Retin Eye Res 2024; 100:101247. [PMID: 38365085 PMCID: PMC11268458 DOI: 10.1016/j.preteyeres.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Modeling complex eye diseases like age-related macular degeneration (AMD) and glaucoma poses significant challenges, since these conditions depend highly on age-related changes that occur over several decades, with many contributing factors remaining unknown. Although both diseases exhibit a relatively high heritability of >50%, a large proportion of individuals carrying AMD- or glaucoma-associated genetic risk variants will never develop these diseases. Furthermore, several environmental and lifestyle factors contribute to and modulate the pathogenesis and progression of AMD and glaucoma. Several strategies replicate the impact of genetic risk variants, pathobiological pathways and environmental and lifestyle factors in AMD and glaucoma in mice and other species. In this review we will primarily discuss the most commonly available mouse models, which have and will likely continue to improve our understanding of the pathobiology of age-related eye diseases. Uncertainties persist whether small animal models can truly recapitulate disease progression and vision loss in patients, raising doubts regarding their usefulness when testing novel gene or drug therapies. We will elaborate on concerns that relate to shorter lifespan, body size and allometries, lack of macula and a true lamina cribrosa, as well as absence and sequence disparities of certain genes and differences in their chromosomal location in mice. Since biological, rather than chronological, age likely predisposes an organism for both glaucoma and AMD, more rapidly aging organisms like small rodents may open up possibilities that will make research of these diseases more timely and financially feasible. On the other hand, due to the above-mentioned anatomical and physiological features, as well as pharmacokinetic and -dynamic differences small animal models are not ideal to study the natural progression of vision loss or the efficacy and safety of novel therapies. In this context, we will also discuss the advantages and pitfalls of alternative models that include larger species, such as non-human primates and rabbits, patient-derived retinal organoids, and human organ donor eyes.
Collapse
Affiliation(s)
- Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Zia L'Ecuyer
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Moussa A Zouache
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Fiona S McDonnell
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
Bhuckory MB, Monkongpitukkul N, Shin A, Goldstein AK, Jensen N, Shah SV, Pham-Howard D, Butt E, Dalal R, Galambos L, Mathieson K, Kamins T, Palanker D. Enhancing Prosthetic Vision by Upgrade of a Subretinal Photovoltaic Implant in situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589465. [PMID: 38659843 PMCID: PMC11042236 DOI: 10.1101/2024.04.15.589465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In patients with atrophic age-related macular degeneration, subretinal photovoltaic implant (PRIMA) provided visual acuity up to 20/440, matching its 100μm pixels size. Next-generation implants with smaller pixels should significantly improve the acuity. This study in rats evaluates removal of a subretinal implant, replacement with a newer device, and the resulting grating acuity in-vivo. Six weeks after the initial implantation with planar and 3-dimensional devices, the retina was re-detached, and the devices were successfully removed. Histology demonstrated a preserved inner nuclear layer. Re-implantation of new devices into the same location demonstrated retinal re-attachment to a new implant. New devices with 22μm pixels increased the grating acuity from the 100μm capability of PRIMA implants to 28μm, reaching the limit of natural resolution in rats. Reimplanted devices exhibited the same stimulation threshold as for the first implantation of the same implants in a control group. This study demonstrates the feasibility of safely upgrading the subretinal photovoltaic implants to improve prosthetic visual acuity.
Collapse
Affiliation(s)
- Mohajeet B Bhuckory
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94303, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - Nicharee Monkongpitukkul
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Faculty of Medicine, Prince of Songkla University, Thailand
| | - Andrew Shin
- Department of Material Science, Stanford University, Stanford, CA, USA
| | | | - Nathan Jensen
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Sarthak V Shah
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - Davis Pham-Howard
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94303, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - Emma Butt
- Department of Physics, University of Strathclyde, Glasgow, Scotland, UK
| | - Roopa Dalal
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - Ludwig Galambos
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94303, USA
| | - Keith Mathieson
- Department of Physics, University of Strathclyde, Glasgow, Scotland, UK
| | - Theodore Kamins
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94303, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Biswas S, Shahriar S, Bachay G, Arvanitis P, Jamoul D, Brunken WJ, Agalliu D. Glutamatergic neuronal activity regulates angiogenesis and blood-retinal barrier maturation via Norrin/β-catenin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.10.548410. [PMID: 37503079 PMCID: PMC10369888 DOI: 10.1101/2023.07.10.548410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Interactions among neuronal, glial and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA-sequencing and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1 -/- retinas where neurons fail to release glutamate. In contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1 -/- retinas where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/β-catenin signaling are downregulated in Vglut1 -/- retinas, and upregulated in Gnat1 -/- retinas. Pharmacological activation of endothelial Norrin/β-catenin signaling in Vglut1 -/- retinas rescued defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/β-catenin signaling.
Collapse
|
7
|
Bhuckory MB, Wang BY, Chen ZC, Shin A, Huang T, Galambos L, Vounotrypidis E, Mathieson K, Kamins T, Palanker D. Cellular migration into a subretinal honeycomb-shaped prosthesis for high-resolution prosthetic vision. Proc Natl Acad Sci U S A 2023; 120:e2307380120. [PMID: 37831740 PMCID: PMC10589669 DOI: 10.1073/pnas.2307380120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
In patients blinded by geographic atrophy, a subretinal photovoltaic implant with 100 µm pixels provided visual acuity closely matching the pixel pitch. However, such flat bipolar pixels cannot be scaled below 75 µm, limiting the attainable visual acuity. This limitation can be overcome by shaping the electric field with 3-dimensional (3-D) electrodes. In particular, elevating the return electrode on top of the honeycomb-shaped vertical walls surrounding each pixel extends the electric field vertically and decouples its penetration into tissue from the pixel width. This approach relies on migration of the retinal cells into the honeycomb wells. Here, we demonstrate that majority of the inner retinal neurons migrate into the 25 µm deep wells, leaving the third-order neurons, such as amacrine and ganglion cells, outside. This enables selective stimulation of the second-order neurons inside the wells, thus preserving the intraretinal signal processing in prosthetic vision. Comparable glial response to that with flat implants suggests that migration and separation of the retinal cells by the walls does not cause additional stress. Furthermore, retinal migration into the honeycombs does not negatively affect its electrical excitability, while grating acuity matches the pixel pitch down to 40 μm and reaches the 27 μm limit of natural resolution in rats with 20 μm pixels. These findings pave the way for 3-D subretinal prostheses with pixel sizes of cellular dimensions.
Collapse
Affiliation(s)
- Mohajeet B. Bhuckory
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA94305
- Department of Ophthalmology, Stanford University, Stanford, CA94305
| | - Bing-Yi Wang
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA94305
- Department of Physics, Stanford University, Stanford, CA94305
| | - Zhijie Charles Chen
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA94305
- Department of Electrical Engineering, Stanford University, Stanford, CA94305
| | - Andrew Shin
- Department of Material Science, Stanford University, Stanford, CA94305
| | - Tiffany Huang
- Department of Electrical Engineering, Stanford University, Stanford, CA94305
| | - Ludwig Galambos
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA94305
| | | | - Keith Mathieson
- Department of Physics, University of Strathclyde, G1 1XQGlasgow, Scotland, United Kingdom
| | - Theodore Kamins
- Department of Electrical Engineering, Stanford University, Stanford, CA94305
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA94305
- Department of Ophthalmology, Stanford University, Stanford, CA94305
| |
Collapse
|
8
|
Bejarano E, Whitcomb EA, Pfeiffer RL, Rose KL, Asensio MJ, Rodríguez-Navarro JA, Ponce-Mora A, Canto A, Almansa I, Schey KL, Jones BW, Taylor A, Rowan S. Unbalanced redox status network as an early pathological event in congenital cataracts. Redox Biol 2023; 66:102869. [PMID: 37677999 PMCID: PMC10495660 DOI: 10.1016/j.redox.2023.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
The lens proteome undergoes dramatic composition changes during development and maturation. A defective developmental process leads to congenital cataracts that account for about 30% of cases of childhood blindness. Gene mutations are associated with approximately 50% of early-onset forms of lens opacity, with the remainder being of unknown etiology. To gain a better understanding of cataractogenesis, we utilized a transgenic mouse model expressing a mutant ubiquitin protein in the lens (K6W-Ub) that recapitulates most of the early pathological changes seen in human congenital cataracts. We performed mass spectrometry-based tandem-mass-tag quantitative proteomics in E15, P1, and P30 control or K6W-Ub lenses. Our analysis identified targets that are required for early normal differentiation steps and altered in cataractous lenses, particularly metabolic pathways involving glutathione and amino acids. Computational molecular phenotyping revealed that glutathione and taurine were spatially altered in the K6W-Ub cataractous lens. High-performance liquid chromatography revealed that both taurine and the ratio of reduced glutathione to oxidized glutathione, two indicators of redox status, were differentially compromised in lens biology. In sum, our research documents that dynamic proteome changes in a mouse model of congenital cataracts impact redox biology in lens. Our findings shed light on the molecular mechanisms associated with congenital cataracts and point out that unbalanced redox status due to reduced levels of taurine and glutathione, metabolites already linked to age-related cataract, could be a major underlying mechanism behind lens opacities that appear early in life.
Collapse
Affiliation(s)
- Eloy Bejarano
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, Valencia, Spain
| | - Elizabeth A Whitcomb
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Rebecca L Pfeiffer
- Moran Eye Center, The University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Maria José Asensio
- Servicio de Neurobiología, Departamento de Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| | - José Antonio Rodríguez-Navarro
- Servicio de Neurobiología, Departamento de Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain; Department of Cell Biology, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Ponce-Mora
- School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, Valencia, Spain
| | - Antolín Canto
- School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, Valencia, Spain
| | - Inma Almansa
- School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, Valencia, Spain
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bryan W Jones
- Moran Eye Center, The University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Allen Taylor
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA, USA.
| | - Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
9
|
Occelli LM, Jones BW, Cervantes TJ, Petersen-Jones SM. Metabolic changes and retinal remodeling in Heterozygous CRX mutant cats (CRX RDY/+). Exp Eye Res 2023; 235:109630. [PMID: 37625575 DOI: 10.1016/j.exer.2023.109630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
CRX is a transcription factor essential for normal photoreceptor development and survival. The CRXRdy cat has a naturally occurring truncating mutation in CRX and is a large animal model for dominant Leber congenital amaurosis. This study investigated retinal remodeling that occurs as photoreceptors degenerate. CRXRdy/+ cats from 6 weeks to 10 years of age were investigated. In vivo structural changes of retinas were analyzed by fundus examination, confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography. Histologic analyses included immunohistochemistry for computational molecular phenotyping with macromolecules and small molecules. Affected cats had a cone-led photoreceptor degeneration starting in the area centralis. Initially there was preservation of inner retinal cells such as bipolar, amacrine and horizontal cells but with time migration of the deafferented neurons occurred. Early in the process of degeneration glial activation occurs ultimately resulting in formation of a glial seal. With progression the macula-equivalent area centralis developed severe atrophy including loss of retinal pigmentary epithelium. Microneuroma formation occured in advanced stages as more marked retinal remodeling occurred. This study indicates that retinal degeneration in the CrxRdy/+ cat retina follows the progressive, phased revision of retina that have been previously described for retinal remodeling. These findings suggest that therapy dependent on targeting inner retinal cells may be useful in young adults with preserved inner retinas prior to advanced stages of retinal remodeling and neuronal cell loss.
Collapse
Affiliation(s)
- Laurence M Occelli
- Small Animal Clinical Sciences, Michigan State University, 736 Wilson Road, East Lansing, MI, USA.
| | - Bryan W Jones
- Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| | - Taylor J Cervantes
- Small Animal Clinical Sciences, Michigan State University, 736 Wilson Road, East Lansing, MI, USA.
| | - Simon M Petersen-Jones
- Small Animal Clinical Sciences, Michigan State University, 736 Wilson Road, East Lansing, MI, USA.
| |
Collapse
|
10
|
Nag TC. Müller cell vulnerability in aging human retina: Implications on photoreceptor cell survival. Exp Eye Res 2023; 235:109645. [PMID: 37683797 DOI: 10.1016/j.exer.2023.109645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Müller glial cells (MC) support various metabolic functions of the retinal neurons, and maintain the homeostasis. Oxidative stress is intensified with aging, and in human retina, MC and photoreceptors undergo lipid peroxidation and protein nitration. Information on how MC respond to oxidative stress is vital to understand the fate of aging retinal neurons. This study examined age-related changes in MC of donor human retina (age: 35-98 years; N = 18 donors). Ultrastructural and immunohistochemical observations indicate that MC undergo gliosis and increased lipid peroxidation, and show osmotic changes with advanced aging (>80 years). Photoreceptor cells also undergo oxidative-nitrosative stress with aging, and their synapses also show clear osmotic swelling. MC respond to oxidative stress via proliferation of smooth endoplasmic reticulum in their processes, and increased expression of aquaporin-4 in endfeet and outer retina. In advanced aged retinas (81-98 years), they showed mitochondrial disorganisation, accumulation of lipids and autophagosomes, lipofuscin granules and axonal remnants in phagolysosomes in their inner processes, suggesting a reduced phagocytotic potential in them with aging. Glutamine synthetase expression does not alter until advanced aging, when the retinas show its increased expression in endfeet and Henle fiber layer. It is evident that MC are vulnerable with normal aging and this could be a reason for photoreceptor cell abnormalities reported with aging of the human retina.
Collapse
Affiliation(s)
- Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
11
|
Pfeiffer RL, Jones BW. Retinal Pathoconnectomics: A Window into Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:297-301. [PMID: 37440048 PMCID: PMC11342915 DOI: 10.1007/978-3-031-27681-1_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Over the past decade, the field of retinal connectomics has made huge strides in describing the precise topologies underlying retinal visual processing. The same techniques that allowed these advancements are also applicable to understanding the progression of rewiring in retinal remodeling: retinal pathoconnectomics. Pathoconnectomics is unique in its unbiased approach to understanding the impacts of deafferentation on the remaining network components and identifying aberrant connectivities leading to visual processing defects. Pathoconnectomics also paves the way for identifying underlying rules of rewiring that may be recapitulated throughout the nervous system in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebecca L Pfeiffer
- John A. Moran Eye Center, Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA.
| | - Bryan W Jones
- John A. Moran Eye Center, Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
12
|
Völkner M, Wagner F, Kurth T, Sykes AM, Del Toro Runzer C, Ebner LJA, Kavak C, Alexaki VI, Cimalla P, Mehner M, Koch E, Karl MO. Modeling inducible neuropathologies of the retina with differential phenotypes in organoids. Front Cell Neurosci 2023; 17:1106287. [PMID: 37213216 PMCID: PMC10196395 DOI: 10.3389/fncel.2023.1106287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/06/2023] [Indexed: 05/23/2023] Open
Abstract
Neurodegenerative diseases remain incompletely understood and therapies are needed. Stem cell-derived organoid models facilitate fundamental and translational medicine research. However, to which extent differential neuronal and glial pathologic processes can be reproduced in current systems is still unclear. Here, we tested 16 different chemical, physical, and cell functional manipulations in mouse retina organoids to further explore this. Some of the treatments induce differential phenotypes, indicating that organoids are competent to reproduce distinct pathologic processes. Notably, mouse retina organoids even reproduce a complex pathology phenotype with combined photoreceptor neurodegeneration and glial pathologies upon combined (not single) application of HBEGF and TNF, two factors previously associated with neurodegenerative diseases. Pharmacological inhibitors for MAPK signaling completely prevent photoreceptor and glial pathologies, while inhibitors for Rho/ROCK, NFkB, and CDK4 differentially affect them. In conclusion, mouse retina organoids facilitate reproduction of distinct and complex pathologies, mechanistic access, insights for further organoid optimization, and modeling of differential phenotypes for future applications in fundamental and translational medicine research.
Collapse
Affiliation(s)
- Manuela Völkner
- Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Felix Wagner
- Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Thomas Kurth
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform Core Facility Electron Microscopy and Histology, Dresden, Germany
| | - Alex M. Sykes
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Lynn J. A. Ebner
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Cagri Kavak
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Vasileia Ismini Alexaki
- Technische Universität Dresden, Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Dresden, Germany
| | - Peter Cimalla
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
| | - Mirko Mehner
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
| | - Edmund Koch
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
| | - Mike O. Karl
- Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- *Correspondence: Mike O. Karl, ,
| |
Collapse
|
13
|
Xu R, Wang Y, Du J, Salido EM. Retinal Metabolic Profile on IMPG2 Deficiency Mice with Subretinal Lesions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:457-463. [PMID: 37440072 DOI: 10.1007/978-3-031-27681-1_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The interphotoreceptor matrix (IPM) is the extracellular matrix between the photoreceptors and the retinal pigment epithelium (RPE). The IPM has two proteoglycans: the IPM proteoglycans 1 and 2 (IMPG1 and IMPG2, respectively). Patients with mutations on IMPG2 develop subretinal vitelliform lesions that affect vision. We previously created an IMPG2 knockout (KO) mice model that generates subretinal lesions similar to those found in humans. These subretinal lesions in IMPG2 KO mice retinas are, in part, composed of mislocalized IMPG1. In addition, IMPG2 KO mice show microscopic IMPG1 material accumulation between the RPE and the photoreceptor outer segments. In this work we discuss the possibility that material accumulation on IMPG2 KO mice retinas affects photoreceptor metabolism. To further investigate this idea, we used targeted metabolomics to profile retinal metabolome on IMPG2 KO mice. The metabolite set enrichment analysis showed reduced glutamate metabolism, urea cycle, and galactose metabolism suggesting affected energy metabolism in mice retinas of IMPG2 KO mice with subretinal lesion.
Collapse
Affiliation(s)
- Rong Xu
- Departments of Biochemistry and molecular medicine, and Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA
| | - Yekai Wang
- Departments of Biochemistry and molecular medicine, and Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA
| | - Jianhai Du
- Departments of Biochemistry and molecular medicine, and Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA
| | - Ezequiel M Salido
- Departments of Biochemistry and molecular medicine, and Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
14
|
Pfeiffer RL, Jones BW. Current perspective on retinal remodeling: Implications for therapeutics. Front Neuroanat 2022; 16:1099348. [PMID: 36620193 PMCID: PMC9813390 DOI: 10.3389/fnana.2022.1099348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The retinal degenerative diseases retinitis pigmentosa and age-related macular degeneration are a leading cause of irreversible vision loss. Both present with progressive photoreceptor degeneration that is further complicated by processes of retinal remodeling. In this perspective, we discuss the current state of the field of retinal remodeling and its implications for vision-restoring therapeutics currently in development. Here, we discuss the challenges and pitfalls retinal remodeling poses for each therapeutic strategy under the premise that understanding the features of retinal remodeling in totality will provide a basic framework with which therapeutics can interface. Additionally, we discuss the potential for approaching therapeutics using a combined strategy of using diffusible molecules in tandem with other vision-restoring therapeutics. We end by discussing the potential of the retina and retinal remodeling as a model system for more broadly understanding the progression of neurodegeneration across the central nervous system.
Collapse
|
15
|
Chucair-Elliott AJ, Ocañas SR, Pham K, Van Der Veldt M, Cheyney A, Stanford D, Gurley J, Elliott MH, Freeman WM. Translatomic response of retinal Müller glia to acute and chronic stress. Neurobiol Dis 2022; 175:105931. [PMID: 36423879 PMCID: PMC9875566 DOI: 10.1016/j.nbd.2022.105931] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Analysis of retina cell type-specific epigenetic and transcriptomic signatures is crucial to understanding the pathophysiology of retinal degenerations such as age-related macular degeneration (AMD) and delineating cell autonomous and cell-non-autonomous mechanisms. We have discovered that Aldh1l1 is specifically expressed in the major macroglia of the retina, Müller glia, and, unlike the brain, is not expressed in retinal astrocytes. This allows use of Aldh1l1 cre drivers and Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) constructs for temporally controlled labeling and paired analysis of Müller glia epigenomes and translatomes. As validated through a variety of approaches, the Aldh1l1cre/ERT2-NuTRAP model provides Müller glia specific translatomic and epigenomic profiles without the need to isolate whole cells. Application of this approach to models of acute injury (optic nerve crush) and chronic stress (aging) uncovered few common Müller glia-specific transcriptome changes in inflammatory pathways, and mostly differential signatures for each stimulus. The expression of members of the IL-6 and integrin-linked kinase signaling pathways was enhanced in Müller glia in response to optic nerve crush but not aging. Unique changes in neuroinflammation and fibrosis signaling pathways were observed in response to aging but not with optic nerve crush. The Aldh1l1cre/ERT2-NuTRAP model allows focused molecular analyses of a single, minority cell type within the retina, providing more substantial effect sizes than whole tissue analyses. The NuTRAP model, nucleic acid isolation, and validation approaches presented here can be applied to any retina cell type for which a cell type-specific cre is available.
Collapse
Affiliation(s)
- Ana J. Chucair-Elliott
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA,Corresponding authors at: Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA. (A.J. Chucair-Elliott), (W.M. Freeman)
| | - Sarah R. Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin Pham
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael Van Der Veldt
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ashley Cheyney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David Stanford
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jami Gurley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael H. Elliott
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M. Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA,Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA,Corresponding authors at: Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA. (A.J. Chucair-Elliott), (W.M. Freeman)
| |
Collapse
|
16
|
Wang BY, Chen ZC, Bhuckory M, Huang T, Shin A, Zuckerman V, Ho E, Rosenfeld E, Galambos L, Kamins T, Mathieson K, Palanker D. Electronic photoreceptors enable prosthetic visual acuity matching the natural resolution in rats. Nat Commun 2022; 13:6627. [PMID: 36333326 PMCID: PMC9636145 DOI: 10.1038/s41467-022-34353-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Localized stimulation of the inner retinal neurons for high-acuity prosthetic vision requires small pixels and minimal crosstalk from the neighboring electrodes. Local return electrodes within each pixel limit the crosstalk, but they over-constrain the electric field, thus precluding the efficient stimulation with subretinal pixels smaller than 55 μm. Here we demonstrate a high-resolution prosthetic vision based on a novel design of a photovoltaic array, where field confinement is achieved dynamically, leveraging the adjustable conductivity of the diodes under forward bias to turn the designated pixels into transient returns. We validated the computational modeling of the field confinement in such an optically-controlled circuit by in-vitro and in-vivo measurements. Most importantly, using this strategy, we demonstrated that the grating acuity with 40 μm pixels matches the pixel pitch, while with 20 μm pixels, it reaches the 28 μm limit of the natural visual resolution in rats. This method enables customized field shaping based on individual retinal thickness and distance from the implant, paving the way to higher acuity of prosthetic vision in atrophic macular degeneration.
Collapse
Affiliation(s)
- Bing-Yi Wang
- Department of Physics, Stanford University, Stanford, CA, USA.
| | - Zhijie Charles Chen
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Mohajeet Bhuckory
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - Tiffany Huang
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Andrew Shin
- Department of Material Science, Stanford University, Stanford, CA, USA
| | - Valentina Zuckerman
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Elton Ho
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - Ethan Rosenfeld
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Ludwig Galambos
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Theodore Kamins
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Keith Mathieson
- Department of Physics, Institute of Photonics, University of Strathclyde, Glasgow, Scotland, UK
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Martínez-Vacas A, Di Pierdomenico J, Gallego-Ortega A, Valiente-Soriano FJ, Vidal-Sanz M, Picaud S, Villegas-Pérez MP, García-Ayuso D. Systemic taurine treatment affords functional and morphological neuroprotection of photoreceptors and restores retinal pigment epithelium function in RCS rats. Redox Biol 2022; 57:102506. [PMID: 36270186 PMCID: PMC9583577 DOI: 10.1016/j.redox.2022.102506] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of our work was to study whether taurine administration has neuroprotective effects in dystrophic Royal College of Surgeons (RCS) rats, suffering retinal degeneration secondary to impaired retinal pigment epithelium phagocytosis caused by a MERTK mutation. Dystrophic RCS-p + female rats (n = 36) were divided into a non-treated group (n = 16) and a treated group (n = 20) that received taurine (0.2 M) in drinking water from postnatal day (P)21 to P45, when they were processed. Retinal function was assessed with electroretinogram. Retinal morphology was assessed in cross-sections using immunohistochemical techniques to label photoreceptors, retinal microglial and macroglial cells, active zones of conventional and ribbon synaptic connections, and oxidative stress. Retinal pigment epithelium function was examined using intraocular fluorogold injections. Our results document that taurine treatment increases taurine plasma levels and photoreceptor survival in dystrophic rats. The number of photoreceptor nuclei rows at P45 was 3-5 and 6-11 in untreated and treated animals, respectively. Electroretinograms showed increases of 70% in the rod response, 400% in the a-wave amplitude, 30% in the b-wave amplitude and 75% in the photopic b-wave response in treated animals. Treated animals also showed decreased numbers of microglial cells in the outer retinal layers, decreased glial fibrillary acidic protein (GFAP) expression in Müller cells, decreased oxidative stress in the outer and inner nuclear layers and improved maintenance of synaptic connections. Treated animals showed increased FG phagocytosis in the retinal pigment epithelium cells. In conclusion, systemic taurine treatment decreases photoreceptor degeneration and increases electroretinographic responses in dystrophic RCS rats and these effects may be mediated through various neuroprotective mechanisms.
Collapse
Affiliation(s)
- Ana Martínez-Vacas
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Serge Picaud
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain.
| |
Collapse
|
18
|
Völkner M, Wagner F, Steinheuer LM, Carido M, Kurth T, Yazbeck A, Schor J, Wieneke S, Ebner LJA, Del Toro Runzer C, Taborsky D, Zoschke K, Vogt M, Canzler S, Hermann A, Khattak S, Hackermüller J, Karl MO. HBEGF-TNF induce a complex outer retinal pathology with photoreceptor cell extrusion in human organoids. Nat Commun 2022; 13:6183. [PMID: 36261438 PMCID: PMC9581928 DOI: 10.1038/s41467-022-33848-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Human organoids could facilitate research of complex and currently incurable neuropathologies, such as age-related macular degeneration (AMD) which causes blindness. Here, we establish a human retinal organoid system reproducing several parameters of the human retina, including some within the macula, to model a complex combination of photoreceptor and glial pathologies. We show that combined application of TNF and HBEGF, factors associated with neuropathologies, is sufficient to induce photoreceptor degeneration, glial pathologies, dyslamination, and scar formation: These develop simultaneously and progressively as one complex phenotype. Histologic, transcriptome, live-imaging, and mechanistic studies reveal a previously unknown pathomechanism: Photoreceptor neurodegeneration via cell extrusion. This could be relevant for aging, AMD, and some inherited diseases. Pharmacological inhibitors of the mechanosensor PIEZO1, MAPK, and actomyosin each avert pathogenesis; a PIEZO1 activator induces photoreceptor extrusion. Our model offers mechanistic insights, hypotheses for neuropathologies, and it could be used to develop therapies to prevent vision loss or to regenerate the retina in patients suffering from AMD and other diseases.
Collapse
Affiliation(s)
- Manuela Völkner
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Felix Wagner
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lisa Maria Steinheuer
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Madalena Carido
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Thomas Kurth
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform Core Facility Electron Microscopy and Histology, Dresden, Germany
| | - Ali Yazbeck
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Jana Schor
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Stephanie Wieneke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lynn J A Ebner
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | | | - David Taborsky
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Katja Zoschke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Marlen Vogt
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Sebastian Canzler
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Andreas Hermann
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- Department of Neurology, Technische Universität Dresden, 01307, Dresden, Germany
| | - Shahryar Khattak
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform Core Facility Electron Microscopy and Histology, Dresden, Germany
| | - Jörg Hackermüller
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Computer Science, Leipzig University, Leipzig, Germany
| | - Mike O Karl
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.
| |
Collapse
|
19
|
Telegina DV, Antonenko AK, Fursova AZ, Kolosova NG. The glutamate/GABA system in the retina of male rats: effects of aging, neurodegeneration, and supplementation with melatonin and antioxidant SkQ1. Biogerontology 2022; 23:571-585. [PMID: 35969289 DOI: 10.1007/s10522-022-09983-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
Abstract
Glutamate and -aminobutyric acid (GABA) are the most abundant amino acids in the retina. An imbalance of the glutamate/GABA system is involved in the pathogenesis of various neurodegenerative disorders. Here we for the first time analyzed alterations of expression of glutamate- and GABA-synthesizing enzymes, transporters, and relevant receptors in the retina with age in Wistar rats and in senescence-accelerated OXYS rats who develop AMD-like retinopathy. We noted consistent age-dependent expression changes of GABAergic-system proteins (GAD67, GABA-T, and GAT1) in OXYS and Wistar rats: upregulation by age 3 months and downregulation at age 18 months. At a late stage of AMD-like retinopathy in OXYS rats (18 months), there was significant upregulation of glutaminase and downregulation of glutamine synthetase, possibly indicating an increasing level of glutamate in the retina. AMD-like-retinopathy development in the OXYS strain was accompanied by underexpression of glutamate transporter GLAST. Prolonged supplementation with both melatonin and SkQ1 (separately) suppressed the progression of the AMD-like pathology in OXYS rats without affecting the glutamate/GABA system but worsened the condition of the Wistar rat's retina during normal aging. We observed decreasing protein levels of glutamine synthetase, GLAST, and GABAAR1 and an increasing level of glutaminase in Wistar rats. In summary, both melatonin and mitochondrial antioxidant SkQ1 had different effect on the retinal glutamate / GABA in healthy Wistar and senescence-accelerated OXYS rats.
Collapse
|
20
|
Wu J, Rountree CM, Kare SS, Ramkumar PK, Finan JD, Troy JB. Progress on Designing a Chemical Retinal Prosthesis. Front Cell Neurosci 2022; 16:898865. [PMID: 35774083 PMCID: PMC9239740 DOI: 10.3389/fncel.2022.898865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
The last major review of progress toward a chemical retinal prosthesis was a decade ago. Many important advancements have been made since then with the aim of producing an implantable device for animal testing. We review that work here discussing the potential advantages a chemical retinal prosthesis may possess, the spatial and temporal resolutions it might provide, the materials from which an implant might be constructed and its likely effectiveness in stimulating the retina in a natural fashion. Consideration is also given to implant biocompatibility, excitotoxicity of dispensed glutamate and known changes to photoreceptor degenerate retinas.
Collapse
Affiliation(s)
- Jiajia Wu
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, United States
| | - Corey M. Rountree
- Department of Mechanical and Industrial Engineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Sai-Siva Kare
- Department of Mechanical and Industrial Engineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Pradeep Kumar Ramkumar
- Department of Mechanical and Industrial Engineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - John D. Finan
- Department of Mechanical and Industrial Engineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - John B. Troy
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, United States
- *Correspondence: John B. Troy,
| |
Collapse
|
21
|
Lindner M, Gilhooley MJ, Hughes S, Hankins MW. Optogenetics for visual restoration: From proof of principle to translational challenges. Prog Retin Eye Res 2022; 91:101089. [PMID: 35691861 DOI: 10.1016/j.preteyeres.2022.101089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
Degenerative retinal disorders are a diverse family of diseases commonly leading to irreversible photoreceptor death, while leaving the inner retina relatively intact. Over recent years, innovative gene replacement therapies aiming to halt the progression of certain inherited retinal disorders have made their way into clinics. By rendering surviving retinal neurons light sensitive optogenetic gene therapy now offers a feasible treatment option that can restore lost vision, even in late disease stages and widely independent of the underlying cause of degeneration. Since proof-of-concept almost fifteen years ago, this field has rapidly evolved and a detailed first report on a treated patient has recently been published. In this article, we provide a review of optogenetic approaches for vision restoration. We discuss the currently available optogenetic tools and their relative advantages and disadvantages. Possible cellular targets will be discussed and we will address the question how retinal remodelling may affect the choice of the target and to what extent it may limit the outcomes of optogenetic vision restoration. Finally, we will analyse the evidence for and against optogenetic tool mediated toxicity and will discuss the challenges associated with clinical translation of this promising therapeutic concept.
Collapse
Affiliation(s)
- Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037, Marburg, Germany
| | - Michael J Gilhooley
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; The Institute of Ophthalmology, University College London, EC1V 9EL, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Mark W Hankins
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
22
|
Abbas F, Becker S, Jones BW, Mure LS, Panda S, Hanneken A, Vinberg F. Revival of light signalling in the postmortem mouse and human retina. Nature 2022; 606:351-357. [PMID: 35545677 PMCID: PMC10000337 DOI: 10.1038/s41586-022-04709-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 03/31/2022] [Indexed: 12/21/2022]
Abstract
Death is defined as the irreversible cessation of circulatory, respiratory or brain activity. Many peripheral human organs can be transplanted from deceased donors using protocols to optimize viability. However, tissues from the central nervous system rapidly lose viability after circulation ceases1,2, impeding their potential for transplantation. The time course and mechanisms causing neuronal death and the potential for revival remain poorly defined. Here, using the retina as a model of the central nervous system, we systemically examine the kinetics of death and neuronal revival. We demonstrate the swift decline of neuronal signalling and identify conditions for reviving synchronous in vivo-like trans-synaptic transmission in postmortem mouse and human retina. We measure light-evoked responses in human macular photoreceptors in eyes removed up to 5 h after death and identify modifiable factors that drive reversible and irreversible loss of light signalling after death. Finally, we quantify the rate-limiting deactivation reaction of phototransduction, a model G protein signalling cascade, in peripheral and macular human and macaque retina. Our approach will have broad applications and impact by enabling transformative studies in the human central nervous system, raising questions about the irreversibility of neuronal cell death, and providing new avenues for visual rehabilitation.
Collapse
Affiliation(s)
- Fatima Abbas
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Ludovic S Mure
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Institute of Physiology, University of Bern, Bern, Switzerland
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland
| | | | - Anne Hanneken
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
- Retina Consultants San Diego, La Jolla, CA, USA.
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
23
|
Sharf T, Kalakuntla T, J Lee D, Gokoffski KK. Electrical devices for visual restoration. Surv Ophthalmol 2022; 67:793-800. [PMID: 34487742 PMCID: PMC9241872 DOI: 10.1016/j.survophthal.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022]
Abstract
Given the rising number of patients with blindness from macular, optic nerve, and visual pathway disease, there is considerable interest in the potential of electrical stimulation devices to restore vision. Electrical devices for restoration of visual function can be grouped into three categories: (1) visual prostheses whose goal is to bypass damaged areas and directly activate downstream intact portions of the visual pathway; (2) electric field stimulation whose goal is to activate endogenous transcriptional and molecular signaling pathways to promote neuroprotection and neuro-regeneration; and (3) neuromodulation whose stimulation would resuscitate neural circuits vital to coordinating responses to visual input. In this review, we discuss these three approaches, describe advances made in the different fields, and comment on limitations and potential future directions.
Collapse
Affiliation(s)
- Tamara Sharf
- Keck School of Medicine, University of Southern California, CA, USA
| | - Tej Kalakuntla
- Keck School of Medicine, University of Southern California, CA, USA
| | - Darrin J Lee
- Department of Neurological Surgery, University of Southern California, CA, USA
| | - Kimberly K Gokoffski
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, CA, USA.
| |
Collapse
|
24
|
Klyucherev TO, Olszewski P, Shalimova AA, Chubarev VN, Tarasov VV, Attwood MM, Syvänen S, Schiöth HB. Advances in the development of new biomarkers for Alzheimer's disease. Transl Neurodegener 2022; 11:25. [PMID: 35449079 PMCID: PMC9027827 DOI: 10.1186/s40035-022-00296-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, heterogeneous, progressive disease and is the most common type of neurodegenerative dementia. The prevalence of AD is expected to increase as the population ages, placing an additional burden on national healthcare systems. There is a large need for new diagnostic tests that can detect AD at an early stage with high specificity at relatively low cost. The development of modern analytical diagnostic tools has made it possible to determine several biomarkers of AD with high specificity, including pathogenic proteins, markers of synaptic dysfunction, and markers of inflammation in the blood. There is a considerable potential in using microRNA (miRNA) as markers of AD, and diagnostic studies based on miRNA panels suggest that AD could potentially be determined with high accuracy for individual patients. Studies of the retina with improved methods of visualization of the fundus are also showing promising results for the potential diagnosis of the disease. This review focuses on the recent developments of blood, plasma, and ocular biomarkers for the diagnosis of AD.
Collapse
Affiliation(s)
- Timofey O Klyucherev
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pawel Olszewski
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Alena A Shalimova
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir N Chubarev
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
25
|
McGregor JE, Kunala K, Xu Z, Murphy PJ, Godat T, Strazzeri JM, Bateman BA, Fischer WS, Parkins K, Chu CJ, Puthussery T, Williams DR, Merigan WH. Optogenetic therapy restores retinal activity in primate for at least a year following photoreceptor ablation. Mol Ther 2022; 30:1315-1328. [PMID: 34547460 PMCID: PMC8899524 DOI: 10.1016/j.ymthe.2021.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022] Open
Abstract
All retina-based vision restoration approaches rely on the assumption that photoreceptor loss does not preclude reactivation of the remaining retinal architecture. Whether extended periods of vision loss limit the efficacy of restorative therapies at the retinal level is unknown. We examined long-term changes in optogenetic responsivity of foveal retinal ganglion cells (RGCs) in non-human primates following localized photoreceptor ablation by high-intensity laser exposure. By performing fluorescence adaptive optics scanning light ophthalmoscopy (AOSLO) of RGCs expressing both the calcium indicator GCaMP6s and the optogenetic actuator ChrimsonR, it was possible to track optogenetic-mediated calcium responses in deafferented RGCs over time. Fluorescence fundus photography revealed a 40% reduction in ChrimsonR fluorescence from RGCs lacking photoreceptor input over the 3 weeks following photoreceptor ablation. Despite this, in vivo imaging revealed good cellular preservation of RGCs 3 months after the loss of photoreceptor input, and histology confirmed good structural preservation at 2 years. Optogenetic responses of RGCs in primate persisted for at least 1 year after the loss of photoreceptor input, with a sensitivity index similar to optogenetic responses recorded in intact retina. These results are promising for all potential therapeutic approaches to vision restoration that rely on preservation and reactivation of RGCs.
Collapse
Affiliation(s)
- Juliette E. McGregor
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA,Corresponding author: Juliette E. McGregor, Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Karteek Kunala
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zhengyang Xu
- Institute of Optics, University of Rochester, Rochester, NY 14627, USA
| | - Peter J. Murphy
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA,Institute of Optics, University of Rochester, Rochester, NY 14627, USA
| | - Tyler Godat
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA,Institute of Optics, University of Rochester, Rochester, NY 14627, USA
| | - Jennifer M. Strazzeri
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA,Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| | | | - William S. Fischer
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Keith Parkins
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Colin J. Chu
- Translational Health Sciences, University of Bristol, Bristol BS105NB, United Kingdom
| | - Teresa Puthussery
- School of Optometry & Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - David R. Williams
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA,Institute of Optics, University of Rochester, Rochester, NY 14627, USA
| | - William H. Merigan
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA,Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA,Corresponding author: William H. Merigan, Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
26
|
Mut SR, Mishra S, Vazquez M. A Microfluidic Eye Facsimile System to Examine the Migration of Stem-like Cells. MICROMACHINES 2022; 13:mi13030406. [PMID: 35334698 PMCID: PMC8954941 DOI: 10.3390/mi13030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023]
Abstract
Millions of adults are affected by progressive vision loss worldwide. The rising incidence of retinal diseases can be attributed to damage or degeneration of neurons that convert light into electrical signals for vision. Contemporary cell replacement therapies have transplanted stem and progenitor-like cells (SCs) into adult retinal tissue to replace damaged neurons and restore the visual neural network. However, the inability of SCs to migrate to targeted areas remains a fundamental challenge. Current bioengineering projects aim to integrate microfluidic technologies with organotypic cultures to examine SC behaviors within biomimetic environments. The application of neural phantoms, or eye facsimiles, in such systems will greatly aid the study of SC migratory behaviors in 3D. This project developed a bioengineering system, called the μ-Eye, to stimulate and examine the migration of retinal SCs within eye facsimiles using external chemical and electrical stimuli. Results illustrate that the imposed fields stimulated large, directional SC migration into eye facsimiles, and that electro-chemotactic stimuli produced significantly larger increases in cell migration than the individual stimuli combined. These findings highlight the significance of microfluidic systems in the development of approaches that apply external fields for neural repair and promote migration-targeted strategies for retinal cell replacement therapy.
Collapse
Affiliation(s)
- Stephen Ryan Mut
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ 08854, USA;
| | - Shawn Mishra
- Regeneron, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA;
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ 08854, USA;
- Correspondence:
| |
Collapse
|
27
|
Martínez-Vacas A, Di Pierdomenico J, Valiente-Soriano FJ, Vidal-Sanz M, Picaud S, Villegas-Pérez MP, García-Ayuso D. Glial Cell Activation and Oxidative Stress in Retinal Degeneration Induced by β-Alanine Caused Taurine Depletion and Light Exposure. Int J Mol Sci 2021; 23:346. [PMID: 35008772 PMCID: PMC8745531 DOI: 10.3390/ijms23010346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
We investigate glial cell activation and oxidative stress induced by taurine deficiency secondary to β-alanine administration and light exposure. Two months old Sprague-Dawley rats were divided into a control group and three experimental groups that were treated with 3% β-alanine in drinking water (taurine depleted) for two months, light exposed or both. Retinal and external thickness were measured in vivo at baseline and pre-processing with Spectral-Domain Optical Coherence Tomography (SD-OCT). Retinal cryostat cross sections were immunodetected with antibodies against various antigens to investigate microglial and macroglial cell reaction, photoreceptor outer segments, synaptic connections and oxidative stress. Taurine depletion caused a decrease in retinal thickness, shortening of photoreceptor outer segments, microglial cell activation, oxidative stress in the outer and inner nuclear layers and the ganglion cell layer and synaptic loss. These events were also observed in light exposed animals, which in addition showed photoreceptor death and macroglial cell reactivity. Light exposure under taurine depletion further increased glial cell reaction and oxidative stress. Finally, the retinal pigment epithelial cells were Fluorogold labeled and whole mounted, and we document that taurine depletion impairs their phagocytic capacity. We conclude that taurine depletion causes cell damage to various retinal layers including retinal pigment epithelial cells, photoreceptors and retinal ganglion cells, and increases the susceptibility of the photoreceptor outer segments to light damage. Thus, beta-alanine supplements should be used with caution.
Collapse
Affiliation(s)
- Ana Martínez-Vacas
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Francisco J. Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Serge Picaud
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, 75012 Paris, France;
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| |
Collapse
|
28
|
Lyu Y, Zauhar R, Dana N, Strang CE, Hu J, Wang K, Liu S, Pan N, Gamlin P, Kimble JA, Messinger JD, Curcio CA, Stambolian D, Li M. Implication of specific retinal cell-type involvement and gene expression changes in AMD progression using integrative analysis of single-cell and bulk RNA-seq profiling. Sci Rep 2021; 11:15612. [PMID: 34341398 PMCID: PMC8329233 DOI: 10.1038/s41598-021-95122-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease with no unifying theme for its etiology. We used single-cell RNA sequencing to analyze the transcriptomes of ~ 93,000 cells from the macula and peripheral retina from two adult human donors and bulk RNA sequencing from fifteen adult human donors with and without AMD. Analysis of our single-cell data identified 267 cell-type-specific genes. Comparison of macula and peripheral retinal regions found no cell-type differences but did identify 50 differentially expressed genes (DEGs) with about 1/3 expressed in cones. Integration of our single-cell data with bulk RNA sequencing data from normal and AMD donors showed compositional changes more pronounced in macula in rods, microglia, endothelium, Müller glia, and astrocytes in the transition from normal to advanced AMD. KEGG pathway analysis of our normal vs. advanced AMD eyes identified enrichment in complement and coagulation pathways, antigen presentation, tissue remodeling, and signaling pathways including PI3K-Akt, NOD-like, Toll-like, and Rap1. These results showcase the use of single-cell RNA sequencing to infer cell-type compositional and cell-type-specific gene expression changes in intact bulk tissue and provide a foundation for investigating molecular mechanisms of retinal disease that lead to new therapeutic targets.
Collapse
Affiliation(s)
- Yafei Lyu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Randy Zauhar
- Department of Chemistry and Biochemistry, The University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA
| | - Nicholas Dana
- Departments of Ophthalmology and Human Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Christianne E Strang
- Department of Psychology, University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kui Wang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Information Theory and Data Science, School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 30071, China
| | - Shanrun Liu
- Department of Biochemistry and Molecular Genetics, University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | - Naifei Pan
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | - James A Kimble
- Department of Ophthalmology and Visual Sciences, University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | - Dwight Stambolian
- Departments of Ophthalmology and Human Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
SUBRETINAL DRUSENOID DEPOSIT IN AGE-RELATED MACULAR DEGENERATION: Histologic Insights Into Initiation, Progression to Atrophy, and Imaging. Retina 2021; 40:618-631. [PMID: 31599795 DOI: 10.1097/iae.0000000000002657] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To clarify the role of subretinal drusenoid deposits (SDD; pseudodrusen) in the progression of age-related macular degeneration through high-resolution histology. METHODS In 33 eyes of 32 donors (early age-related macular degeneration, n = 15; geographic atrophy, n = 9; neovascular age-related macular degeneration, n = 7; unremarkable, n = 2), and 2 eyes of 2 donors with in vivo multimodal imaging including optical coherence tomography, examples of SDD contacting photoreceptors were assessed. RESULTS Subretinal drusenoid deposits were granular extracellular deposits at the apical retinal pigment epithelium (RPE); the smallest were 4-µm wide. Outer segment (OS) fragments and RPE organelles appeared in some larger deposits. A continuum of photoreceptor degeneration included OS disruption, intrusion into inner segments, and disturbance of neurosensory retina. In a transition to outer retinal atrophy, SDD appeared to shrink, OS disappeared, inner segment shortened, and the outer nuclear layer thinned and became gliotic. Stage 1 SDD on optical coherence tomography correlated with displaced OS. Confluent and disintegrating Stage 2 to 3 SDD on optical coherence tomography and dot pseudodrusen by color fundus photography correlated with confluent deposits and ectopic RPE. CONCLUSION Subretinal drusenoid deposits may start at the RPE as granular, extracellular deposits. Photoreceptor OS, RPE organelles, and cell bodies may appear in some advanced deposits. A progression to atrophy associated with deposit diminution was confirmed. Findings support a biogenesis hypothesis of outer retinal lipid cycling.
Collapse
|
30
|
Gauvain G, Akolkar H, Chaffiol A, Arcizet F, Khoei MA, Desrosiers M, Jaillard C, Caplette R, Marre O, Bertin S, Fovet CM, Demilly J, Forster V, Brazhnikova E, Hantraye P, Pouget P, Douar A, Pruneau D, Chavas J, Sahel JA, Dalkara D, Duebel J, Benosman R, Picaud S. Optogenetic therapy: high spatiotemporal resolution and pattern discrimination compatible with vision restoration in non-human primates. Commun Biol 2021; 4:125. [PMID: 33504896 PMCID: PMC7840970 DOI: 10.1038/s42003-020-01594-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/09/2020] [Indexed: 01/06/2023] Open
Abstract
Vision restoration is an ideal medical application for optogenetics, because the eye provides direct optical access to the retina for stimulation. Optogenetic therapy could be used for diseases involving photoreceptor degeneration, such as retinitis pigmentosa or age-related macular degeneration. We describe here the selection, in non-human primates, of a specific optogenetic construct currently tested in a clinical trial. We used the microbial opsin ChrimsonR, and showed that the AAV2.7m8 vector had a higher transfection efficiency than AAV2 in retinal ganglion cells (RGCs) and that ChrimsonR fused to tdTomato (ChR-tdT) was expressed more efficiently than ChrimsonR. Light at 600 nm activated RGCs transfected with AAV2.7m8 ChR-tdT, from an irradiance of 1015 photons.cm−2.s−1. Vector doses of 5 × 1010 and 5 × 1011 vg/eye transfected up to 7000 RGCs/mm2 in the perifovea, with no significant immune reaction. We recorded RGC responses from a stimulus duration of 1 ms upwards. When using the recorded activity to decode stimulus information, we obtained an estimated visual acuity of 20/249, above the level of legal blindness (20/400). These results lay the groundwork for the ongoing clinical trial with the AAV2.7m8 - ChR-tdT vector for vision restoration in patients with retinitis pigmentosa. Gauvain et al demonstrate that optogenetic therapy using the AAV2.7m8- ChR-tdT construct can partially restore vision in non-human primates to levels above those considered legally-blind. This study enables the identification of the most suitable construct for ongoing clinical trials attempting vision restoration in patients with retinitis pigmentosa.
Collapse
Affiliation(s)
- Gregory Gauvain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
| | - Himanshu Akolkar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.,Department of Ophthalmology, University Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Antoine Chaffiol
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Fabrice Arcizet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Mina A Khoei
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Mélissa Desrosiers
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Céline Jaillard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Romain Caplette
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Stéphane Bertin
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012, Paris, France
| | - Claire-Maelle Fovet
- Département des Sciences du Vivant (DSV), MIRcen, Institut d'imagerie Biomédicale (I2BM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 92260, Fontenay-aux-Roses, France
| | - Joanna Demilly
- Département des Sciences du Vivant (DSV), MIRcen, Institut d'imagerie Biomédicale (I2BM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 92260, Fontenay-aux-Roses, France
| | - Valérie Forster
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Elena Brazhnikova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Philippe Hantraye
- Département des Sciences du Vivant (DSV), MIRcen, Institut d'imagerie Biomédicale (I2BM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 92260, Fontenay-aux-Roses, France
| | - Pierre Pouget
- ICM, UMRS 1127 UPMC - U 1127 INSERM - UMR 7225 CNRS, Paris, France
| | - Anne Douar
- Gensight Biologics, 74 rue du faubourg Saint Antoine, F-75012, Paris, France
| | - Didier Pruneau
- Gensight Biologics, 74 rue du faubourg Saint Antoine, F-75012, Paris, France
| | - Joël Chavas
- Gensight Biologics, 74 rue du faubourg Saint Antoine, F-75012, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.,Department of Ophthalmology, University Pittsburgh Medical Center, Pittsburgh, PA, USA.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Jens Duebel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Ryad Benosman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.,Department of Ophthalmology, University Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
| |
Collapse
|
31
|
Telias M, Nawy S, Kramer RH. Degeneration-Dependent Retinal Remodeling: Looking for the Molecular Trigger. Front Neurosci 2021; 14:618019. [PMID: 33390897 PMCID: PMC7775662 DOI: 10.3389/fnins.2020.618019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/27/2020] [Indexed: 11/23/2022] Open
Abstract
Vision impairment and blindness in humans are most frequently caused by the degeneration and loss of photoreceptor cells in the outer retina, as is the case for age-related macular degeneration, retinitis pigmentosa, retinal detachment and many other diseases. While inner retinal neurons survive degeneration, they undergo fundamental pathophysiological changes, collectively known as “remodeling.” Inner retinal remodeling downstream to photoreceptor death occurs across mammalian retinas from mice to humans, independently of the cause of degeneration. It results in pervasive spontaneous hyperactivity and membrane hyperpermeability in retinal ganglion cells, which funnel all retinal signals to the brain. Remodeling reduces light detection in vision-impaired patients and precludes meaningful vision restoration in blind individuals. In this review, we summarize current hypotheses proposed to explain remodeling and their potential medical significance highlighting the important role played by retinoic acid and its receptor.
Collapse
Affiliation(s)
- Michael Telias
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Scott Nawy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| |
Collapse
|
32
|
Li B, Zhang T, Liu W, Wang Y, Xu R, Zeng S, Zhang R, Zhu S, Gillies MC, Zhu L, Du J. Metabolic Features of Mouse and Human Retinas: Rods versus Cones, Macula versus Periphery, Retina versus RPE. iScience 2020; 23:101672. [PMID: 33196018 PMCID: PMC7644940 DOI: 10.1016/j.isci.2020.101672] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Photoreceptors, especially cones, which are enriched in the human macula, have high energy demands, making them vulnerable to metabolic stress. Metabolic dysfunction of photoreceptors and their supporting retinal pigment epithelium (RPE) is an important underlying cause of degenerative retinal diseases. However, how cones and the macula support their exorbitant metabolic demand and communicate with RPE is unclear. By profiling metabolite uptake and release and analyzing metabolic genes, we have found cone-rich retinas and human macula share specific metabolic features with upregulated pathways in pyruvate metabolism, mitochondrial TCA cycle, and lipid synthesis. Human neural retina and RPE have distinct but complementary metabolic features. Retinal metabolism centers on NADH production and neurotransmitter biosynthesis. The retina needs aspartate to sustain its aerobic glycolysis and mitochondrial metabolism. RPE metabolism is directed toward NADPH production and biosynthesis of acetyl-rich metabolites, serine, and others. RPE consumes multiple nutrients, including proline, to produce metabolites for the retina.
Collapse
Affiliation(s)
- Bo Li
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA.,Department of Ophthalmology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225100, China
| | - Ting Zhang
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Wei Liu
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yekai Wang
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA
| | - Rong Xu
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA
| | - Shaoxue Zeng
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Rui Zhang
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Siyan Zhu
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA
| | - Mark C Gillies
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Ling Zhu
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Jianhai Du
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA
| |
Collapse
|
33
|
Leinonen H, Pham NC, Boyd T, Santoso J, Palczewski K, Vinberg F. Homeostatic plasticity in the retina is associated with maintenance of night vision during retinal degenerative disease. eLife 2020; 9:e59422. [PMID: 32960171 PMCID: PMC7529457 DOI: 10.7554/elife.59422] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022] Open
Abstract
Neuronal plasticity of the inner retina has been observed in response to photoreceptor degeneration. Typically, this phenomenon has been considered maladaptive and may preclude vision restoration in the blind. However, several recent studies utilizing triggered photoreceptor ablation have shown adaptive responses in bipolar cells expected to support normal vision. Whether such homeostatic plasticity occurs during progressive photoreceptor degenerative disease to help maintain normal visual behavior is unknown. We addressed this issue in an established mouse model of Retinitis Pigmentosa caused by the P23H mutation in rhodopsin. We show robust modulation of the retinal transcriptomic network, reminiscent of the neurodevelopmental state, and potentiation of rod - rod bipolar cell signaling following rod photoreceptor degeneration. Additionally, we found highly sensitive night vision in P23H mice even when more than half of the rod photoreceptors were lost. These results suggest retinal adaptation leading to persistent visual function during photoreceptor degenerative disease.
Collapse
Affiliation(s)
- Henri Leinonen
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, IrvineIrvineUnited States
| | - Nguyen C Pham
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| | - Taylor Boyd
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| | - Johanes Santoso
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, IrvineIrvineUnited States
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, IrvineIrvineUnited States
- Departments of Physiology and Biophysics, and Chemistry, University of California, IrvineIrvineUnited States
| | - Frans Vinberg
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| |
Collapse
|
34
|
Pfeiffer RL, Anderson JR, Dahal J, Garcia JC, Yang JH, Sigulinsky CL, Rapp K, Emrich DP, Watt CB, Johnstun HA, Houser AR, Marc RE, Jones BW. A pathoconnectome of early neurodegeneration: Network changes in retinal degeneration. Exp Eye Res 2020; 199:108196. [PMID: 32810483 DOI: 10.1016/j.exer.2020.108196] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/27/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Connectomics has demonstrated that synaptic networks and their topologies are precise and directly correlate with physiology and behavior. The next extension of connectomics is pathoconnectomics: to map neural network synaptology and circuit topologies corrupted by neurological disease in order to identify robust targets for therapeutics. In this report, we characterize a pathoconnectome of early retinal degeneration. This pathoconnectome was generated using serial section transmission electron microscopy to achieve an ultrastructural connectome with 2.18nm/px resolution for accurate identification of all chemical and gap junctional synapses. We observe aberrant connectivity in the rod-network pathway and novel synaptic connections deriving from neurite sprouting. These observations reveal principles of neuron responses to the loss of network components and can be extended to other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebecca L Pfeiffer
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA.
| | - James R Anderson
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Jeebika Dahal
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Jessica C Garcia
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Jia-Hui Yang
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | | | - Kevin Rapp
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Daniel P Emrich
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Carl B Watt
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Hope Ab Johnstun
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Alexis R Houser
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Robert E Marc
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA; Signature Immunologics, Torrey, UT, USA
| | - Bryan W Jones
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
35
|
Werginz P, Wang BY, Chen ZC, Palanker D. On optimal coupling of the 'electronic photoreceptors' into the degenerate retina. J Neural Eng 2020; 17:045008. [PMID: 32613948 PMCID: PMC10948023 DOI: 10.1088/1741-2552/aba0d2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Objective To restore sight in atrophic age-related macular degeneration, the lost photoreceptors can be replaced with electronic implants, which replicate their two major functions: (1) converting light into an electric signal, and (2) transferring visual information to the secondary neurons in the retinal neural network—the bipolar cells (BC). We study the selectivity of BC activation by subretinal implants and dynamics of their response to pulsatile waveforms in order to optimize the electrical stimulation scheme such that retinal signal processing with 'electronic photoreceptors' remains as close to natural as possible. Approach A multicompartmental model of a BC was implemented to simulate responses of the voltage-gated calcium channels and subsequent synaptic vesicle release under continuous and pulsatile stimuli. We compared the predicted response under various frequencies, pulse durations, and alternating gratings to the corresponding experimental measurements. In addition, electric field was computed for various electrode configurations in a 3-d finite element model to assess the stimulation selectivity via spatial confinement of the field. Main results The modeled BC-mediated retinal responses were, in general, in good agreement with previously published experimental results. Kinetics of the calcium pumps and of the neurotransmitter release in ribbon synapses, which underpin the BC's temporal filtering and rectifying functions, allow mimicking the natural BC response with high frequency pulsatile stimulation, thereby preserving features of the retinal signal processing, such as flicker fusion, adaptation to static stimuli and non-linear summation of subunits in receptive field. Selectivity of the BC stimulation while avoiding direct activation of the downstream neurons (amacrine and ganglion cells—RGCs) is improved with local return electrodes. Significance If the retinal neural network is preserved to a large extent in age-related macular degeneration, selective stimulation of BCs with proper spatial and temporal modulation of the extracellular electric field may retain many features of the natural retinal signal processing and hence allow highly functional restoration of sight.
Collapse
Affiliation(s)
- Paul Werginz
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria. Author to whom any correspondence should be adressed
| | | | | | | |
Collapse
|
36
|
Di Pierdomenico J, Martínez-Vacas A, Hernández-Muñoz D, Gómez-Ramírez AM, Valiente-Soriano FJ, Agudo-Barriuso M, Vidal-Sanz M, Villegas-Pérez MP, García-Ayuso D. Coordinated Intervention of Microglial and Müller Cells in Light-Induced Retinal Degeneration. Invest Ophthalmol Vis Sci 2020; 61:47. [PMID: 32232352 PMCID: PMC7401701 DOI: 10.1167/iovs.61.3.47] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose To analyze the role of microglial and Müller cells in the formation of rings of photoreceptor degeneration caused by phototoxicity. Methods Two-month-old Sprague-Dawley rats were exposed to light and processed 1, 2, or 3 months later. Retinas were dissected as whole-mounts, immunodetected for microglial cells, Müller cells, and S- and L/M-cones and analyzed using fluorescence, thunder imaging, and confocal microscopy. Cone populations were automatically counted and isodensity maps constructed to document cone topography. Results Phototoxicity causes a significant progressive loss of S- and L/M-cones of up to 68% and 44%, respectively, at 3 months after light exposure (ALE). One month ALE, we observed rings of cone degeneration in the photosensitive area of the superior retina. Two and 3 months ALE, these rings had extended to the central and inferior retina. Within the rings of cone degeneration, there were degenerating cones, often activated microglial cells, and numerous radially oriented processes of Müller cells that showed increased expression of intermediate filaments. Between 1 and 3 months ALE, the rings coalesced, and at the same time the microglial cells resumed a mosaic-like distribution, and there was a decrease of Müller cell gliosis at the areas devoid of cones. Conclusions Light-induced photoreceptor degeneration proceeds with rings of cone degeneration, as observed in inherited retinal degenerations in which cone death is secondary to rod degeneration. The spatiotemporal relationship of cone death microglial cell activation and Müller cell gliosis within the rings of cone degeneration suggests that, although both glial cells are involved in the formation of the rings, they may have coordinated actions and, while microglial cells may be more involved in photoreceptor phagocytosis, Müller cells may be more involved in cone and microglial cell migration, retinal remodeling and glial seal formation.
Collapse
|
37
|
Trinh M, Tong J, Yoshioka N, Zangerl B, Kalloniatis M, Nivison-Smith L. Macula Ganglion Cell Thickness Changes Display Location-Specific Variation Patterns in Intermediate Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2020; 61:2. [PMID: 32150251 PMCID: PMC7401429 DOI: 10.1167/iovs.61.3.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose The purpose of this study was to examine changes in the ganglion cell layer (GCL) of individuals with intermediate age-related macular degeneration (AMD) using grid-wise analysis for macular optical coherence tomography (OCT) volume scans. We also aim to validate the use of age-correction functions for GCL thickness in diseased eyes. Methods OCT macular cube scans covering 30° × 25° were acquired using Spectralis spectral-domain OCT for 87 eyes with intermediate AMD, 77 age-matched normal eyes, and 254 non-age-matched normal eyes. The thickness of the ganglion cell layer (GCL) was defined after segmentation at 60 locations across an 8 × 8 grid centered on the fovea, where each grid location covered 0.74 mm2 (approximately 3° × 3°) within the macula. Each GCL location of normal eyes (n = 77) were assigned to a specific iso-ganglion cell density cluster in the macula, based on patterns of age-related GCL thickness loss. Analyses were then performed comparing AMD GCL grid-wise data against corresponding spatial clusters, and significant AMD GCL thickness changes were denoted as values outside the 95% distribution limits. Results Analysis of GCL thickness changes revealed significant differences between spatial clusters, with thinning toward the fovea, and thickening toward the peripheral macula. The direction of GCL thickness changes in AMD were associated more so with thickening than thinning in all analyses. Results were corroborated by the application of GCL thickness age-correction functions. Conclusions GCL thickness changed significantly and nonuniformly within the macula of intermediate AMD eyes. Further characterization of these changes is critical to improve diagnoses and monitoring of GCL-altering pathologies.
Collapse
|
38
|
Retinal Drug Delivery: Rethinking Outcomes for the Efficient Replication of Retinal Behavior. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The retina is a highly organized structure that is considered to be "an approachable part of the brain." It is attracting the interest of development scientists, as it provides a model neurovascular system. Over the last few years, we have been witnessing significant development in the knowledge of the mechanisms that induce the shape of the retinal vascular system, as well as knowledge of disease processes that lead to retina degeneration. Knowledge and understanding of how our vision works are crucial to creating a hardware-adaptive computational model that can replicate retinal behavior. The neuronal system is nonlinear and very intricate. It is thus instrumental to have a clear view of the neurophysiological and neuroanatomic processes and to take into account the underlying principles that govern the process of hardware transformation to produce an appropriate model that can be mapped to a physical device. The mechanistic and integrated computational models have enormous potential toward helping to understand disease mechanisms and to explain the associations identified in large model-free data sets. The approach used is modulated and based on different models of drug administration, including the geometry of the eye. This work aimed to review the recently used mathematical models to map a directed retinal network.
Collapse
|
39
|
Curcio CA, McGwin G, Sadda SR, Hu Z, Clark ME, Sloan KR, Swain T, Crosson JN, Owsley C. Functionally validated imaging endpoints in the Alabama study on early age-related macular degeneration 2 (ALSTAR2): design and methods. BMC Ophthalmol 2020; 20:196. [PMID: 32429847 PMCID: PMC7236516 DOI: 10.1186/s12886-020-01467-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/08/2020] [Indexed: 12/29/2022] Open
Abstract
Background Age-related macular degeneration (AMD), a leading cause of irreversible vision impairment in the United States and globally, is a disease of the photoreceptor support system involving the retinal pigment epithelium (RPE), Bruch’s membrane, and the choriocapillaris in the setting of characteristic extracellular deposits between outer retinal cells and their blood supply. Research has clearly documented the selective vulnerability of rod photoreceptors and rod-mediated (scotopic) vision in early AMD, including delayed rod-mediated dark adaptation (RMDA) and impaired rod-mediated light and pattern sensitivity. The unifying hypothesis of the Alabama Study on Early Macular Degeneration (ALSTAR2) is that early AMD is a disease of micronutrient deficiency and vascular insufficiency, due to detectable structural changes in the retinoid re-supply route from the choriocapillaris to the photoreceptors. Functionally this is manifest as delayed rod-mediated dark adaptation and eventually as rod-mediated visual dysfunction in general. Methods A cohort of 480 older adults either in normal macular health or with early AMD will be enrolled and followed for 3 years to examine cross-sectional and longitudinal associations between structural and functional characteristics of AMD. Using spectral domain optical coherence tomography, the association between (1) subretinal drusenoid deposits and drusen, (2) RPE cell bodies, and (3) the choriocapillaris’ vascular density and rod- and cone-mediated vision will be examined. An accurate map and timeline of structure-function relationships in aging and early AMD gained from ALSTAR2, especially the critical transition from aging to disease, will identify major characteristics relevant to future treatments and preventative measures. Discussion A major barrier to developing treatments and prevention strategies for early AMD is a limited understanding of the temporal interrelationships among structural and functional characteristics while transitioning from aging to early AMD. ALSTAR2 will enable the development of functionally valid, structural biomarkers for early AMD, suitable for use in forthcoming clinical trials as endpoint/outcome measures. The comprehensive dataset will also allow hypothesis-testing for mechanisms that underlie the transition from aging to AMD, one of which is a newly developed Center-Surround model of cone resilience and rod vulnerability. Trial registration ClinicalTrials.gov Identifier NCT04112667, October 7, 2019.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Srinivas R Sadda
- Doheny Eye Institute, P.O. Box 86228, Los Angeles, CA, 90033, USA
| | - Zhihong Hu
- Doheny Eye Institute, P.O. Box 86228, Los Angeles, CA, 90033, USA
| | - Mark E Clark
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA
| | - Kenneth R Sloan
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA.,Department of Computer Science, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Thomas Swain
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA
| | - Jason N Crosson
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA.,Retina Consultants of Alabama, Birmingham, AL, 35233, USA
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA.
| |
Collapse
|
40
|
Homeostatic Plasticity Shapes the Retinal Response to Photoreceptor Degeneration. Curr Biol 2020; 30:1916-1926.e3. [PMID: 32243858 DOI: 10.1016/j.cub.2020.03.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/28/2020] [Accepted: 03/12/2020] [Indexed: 11/21/2022]
Abstract
Homeostatic plasticity stabilizes input and activity levels during neural development, but whether it can restore connectivity and preserve circuit function during neurodegeneration is unknown. Photoreceptor degeneration is the most common cause of blindness in the industrialized world. Visual deficits are dominated by cone loss, which progresses slowly, leaving a window during which rewiring of second-order neurons (i.e., bipolar cells) could preserve function. Here we establish a transgenic model to induce cone degeneration with precise control and analyze bipolar cell responses and their effects on vision through anatomical reconstructions, in vivo electrophysiology, and behavioral assays. In young retinas, we find that three bipolar cell types precisely restore input synapse numbers when 50% of cones degenerate but one does not. Of the three bipolar cell types that rewire, two contact new cones within stable dendritic territories, whereas one expands its dendrite arbors to reach new partners. In mature retinas, only one of four bipolar cell types rewires homeostatically. This steep decline in homeostatic plasticity is accompanied by reduced light responses of bipolar cells and deficits in visual behaviors. By contrast, light responses and behavioral performance are preserved when cones degenerate in young mice. Our results reveal unexpected cell type specificity and a steep maturational decline of homeostatic plasticity. The effect of homeostatic plasticity on functional outcomes identify it as a promising therapeutic target for retinal and other neurodegenerative diseases.
Collapse
|
41
|
Pfeiffer RL, Marc RE, Jones BW. Müller Cell Metabolic Signatures: Evolutionary Conservation and Disruption in Disease. Trends Endocrinol Metab 2020; 31:320-329. [PMID: 32187524 PMCID: PMC7188339 DOI: 10.1016/j.tem.2020.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/05/2019] [Accepted: 01/09/2020] [Indexed: 01/21/2023]
Abstract
Müller cells are glia that play important regulatory roles in retinal metabolism. These roles have been evolutionarily conserved across at least 300 million years. Müller cells have a tightly locked metabolic signature in the healthy retina, which rapidly degrades in response to insult and disease. This variation in metabolic signature occurs in a chaotic fashion, involving some central metabolic pathways. The cause of this divergence of Müller cells, from a single class with a unique metabolic signature to numerous separable metabolic classes, is currently unknown and illuminates potential alternative metabolic pathways that may be revealed in disease. Understanding the impacts of this heterogeneity on degenerate retinas and the implications for the metabolic support of surrounding neurons will be critical to long-term integration of retinal therapeutics for the restoration of visual perception following photoreceptor degeneration.
Collapse
Affiliation(s)
- Rebecca L Pfeiffer
- Moran Eye Center, University of Utah Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA. *
| | - Robert E Marc
- Moran Eye Center, University of Utah Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA; Signature Immunologics, Torrey, UT, USA
| | - Bryan W Jones
- Moran Eye Center, University of Utah Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
42
|
Elsner AE, Papay JA, Johnston KD, Sawides L, de Castro A, King BJ, Jones DW, Clark CA, Gast TJ, Burns SA. Cones in ageing and harsh environments: the neural economy hypothesis. Ophthalmic Physiol Opt 2020; 40:88-116. [PMID: 32017191 PMCID: PMC7155023 DOI: 10.1111/opo.12670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/31/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE Cones are at great risk in a wide variety of retinal diseases, especially when there is a harsh microenvironment and retinal pigment epithelium is damaged. We provide established and new methods for assessing cones and retinal pigment epithelium, together with new results. We investigated conditions under which cones can be imaged and could guide light, despite the proximity of less than ideal retinal pigment epithelium. RECENT FINDINGS We used a variety of imaging methods to detect and localise damage to the retinal pigment epithelium. As age-related macular degeneration is a particularly widespread disease, we imaged clinical hallmarks: drusen and hyperpigmentation. Using near infrared light provided improved imaging of the deeper fundus layers. We compared confocal and multiply scattered light images, using both the variation of detection apertures and polarisation analysis. We used optical coherence tomography to examine distances between structures and thickness of retinal layers, as well as identifying damage to the retinal pigment epithelium. We counted cones using adaptive optics scanning laser ophthalmoscopy. We compared the results of five subjects with geographic atrophy to data from a previous normative ageing study. Using near infrared imaging and layer analysis of optical coherence tomography, the widespread aspect of drusen became evident. Both multiply scattered light imaging and analysis of the volume in the retinal pigment epithelial layer from the optical coherence tomography were effective in localising drusen and hyperpigmentation beneath the photoreceptors. Cone photoreceptors in normal older eyes were shorter than in younger eyes. Cone photoreceptors survived in regions of atrophy, but with greatly reduced and highly variable density. Regular arrays of cones were found in some locations, despite abnormal retinal pigment epithelium. For some subjects, the cone density was significantly greater than normative values in some retinal locations outside the atrophy. SUMMARY The survival of cones within atrophy is remarkable. The unusually dense packing of cones at some retinal locations outside the atrophy indicates more fluidity in cone distribution than typically thought. Together these findings suggest strategies for therapy that includes preserving cones.
Collapse
|
43
|
Shrestha R, Wen YT, Tsai RK. Effective Differentiation and Biological Characterization of Retinal Pigment Epithelium Derived from Human Induced Pluripotent Stem Cells. Curr Eye Res 2020; 45:1155-1167. [PMID: 31984806 DOI: 10.1080/02713683.2020.1722180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE Human induced pluripotent stem cells (hiPSC)-derived retinal pigment epithelium (RPE) cells are therapeutic cells that have been shown to be promising in the rescue of lost photoreceptors. In this study, we generated hiPSC from human epidermal keratinocytes and subsequently differentiated them into RPE cells to investigate their ability to influence the retinal functions of the Royal College of Surgeon (RCS) rats. METHODS Keratinocytes were reprogrammed to hiPSC using a non-integrating Sendai reprogramming system. Established hiPSCs were differentiated into RPE cells, and complete characterization was performed. Next, the suspension of hiPSC-RPE cells was transplanted into the subretinal space of 3-week-old RCS rats (n = 12). Posttransplantation evaluations were performed using optical coherence tomography (OCT), electroretinography, and immunohistochemical analysis. RESULTS The hiPSC colonies were identical to embryonic stem-like cells that revealed the expression of pluripotency markers and retention of the normal genome. These cells exhibited the ability to differentiate into an amalgam of germ layers and produce RPE cells. The differentiated RPE cells exhibited an identical pigmented morphology that expressed RPE-specific markers, such as CRALBP, BESTROPHIN, RPE65, and MERTK. At 8 weeks of longitudinal culture, the RPE cells exhibited maximum pigmentation with in vitro phagocytotic activity. Furthermore, transplantation data showed improved retinal function till week 12 post-transplantation and a significantly higher number of rod/cone ratios in transplanted eyes compared to non-surgery control eyes. CONCLUSION hiPSC-derived RPE cells exhibited naïve RPE cell properties and functionality that provided trophic support and the transient rescue of photoreceptor cells.
Collapse
Affiliation(s)
- Rupendra Shrestha
- Institute of Medical Sciences, Tzu Chi University , Hualien, Taiwan.,Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation , Hualien, Taiwan
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation , Hualien, Taiwan
| | - Rong-Kung Tsai
- Institute of Medical Sciences, Tzu Chi University , Hualien, Taiwan.,Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation , Hualien, Taiwan
| |
Collapse
|
44
|
Pfeiffer RL, Marc RE, Jones BW. Persistent remodeling and neurodegeneration in late-stage retinal degeneration. Prog Retin Eye Res 2020; 74:100771. [PMID: 31356876 PMCID: PMC6982593 DOI: 10.1016/j.preteyeres.2019.07.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
Abstract
Retinal remodeling is a progressive series of negative plasticity revisions that arise from retinal degeneration, and are seen in retinitis pigmentosa, age-related macular degeneration and other forms of retinal disease. These processes occur regardless of the precipitating event leading to degeneration. Retinal remodeling then culminates in a late-stage neurodegeneration that is indistinguishable from progressive central nervous system (CNS) proteinopathies. Following long-term deafferentation from photoreceptor cell death in humans, and long-lived animal models of retinal degeneration, most retinal neurons reprogram, then die. Glial cells reprogram into multiple anomalous metabolic phenotypes. At the same time, survivor neurons display degenerative inclusions that appear identical to progressive CNS neurodegenerative disease, and contain aberrant α-synuclein (α-syn) and phosphorylated α-syn. In addition, ultrastructural analysis indicates a novel potential mechanism for misfolded protein transfer that may explain how proteinopathies spread. While neurodegeneration poses a barrier to prospective retinal interventions that target primary photoreceptor loss, understanding the progression and time-course of retinal remodeling will be essential for the establishment of windows of therapeutic intervention and appropriate tuning and design of interventions. Finally, the development of protein aggregates and widespread neurodegeneration in numerous retinal degenerative diseases positions the retina as a ideal platform for the study of proteinopathies, and mechanisms of neurodegeneration that drive devastating CNS diseases.
Collapse
Affiliation(s)
- Rebecca L Pfeiffer
- Dept of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA.
| | - Robert E Marc
- Dept of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Bryan William Jones
- Dept of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
45
|
An update on retinal prostheses. Clin Neurophysiol 2019; 131:1383-1398. [PMID: 31866339 DOI: 10.1016/j.clinph.2019.11.029] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/23/2022]
Abstract
Retinal prostheses are designed to restore a basic sense of sight to people with profound vision loss. They require a relatively intact posterior visual pathway (optic nerve, lateral geniculate nucleus and visual cortex). Retinal implants are options for people with severe stages of retinal degenerative disease such as retinitis pigmentosa and age-related macular degeneration. There have now been three regulatory-approved retinal prostheses. Over five hundred patients have been implanted globally over the past 15 years. Devices generally provide an improved ability to localize high-contrast objects, navigate, and perform basic orientation tasks. Adverse events have included conjunctival erosion, retinal detachment, loss of light perception, and the need for revision surgery, but are rare. There are also specific device risks, including overstimulation (which could cause damage to the retina) or delamination of implanted components, but these are very unlikely. Current challenges include how to improve visual acuity, enlarge the field-of-view, and reduce a complex visual scene to its most salient components through image processing. This review encompasses the work of over 40 individual research groups who have built devices, developed stimulation strategies, or investigated the basic physiology underpinning retinal prostheses. Current technologies are summarized, along with future challenges that face the field.
Collapse
|
46
|
Behavioural responses to a photovoltaic subretinal prosthesis implanted in non-human primates. Nat Biomed Eng 2019; 4:172-180. [PMID: 31792423 DOI: 10.1038/s41551-019-0484-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/23/2019] [Indexed: 11/09/2022]
Abstract
Retinal dystrophies and age-related macular degeneration related to photoreceptor degeneration can cause blindness. In blind patients, although the electrical activation of the residual retinal circuit can provide useful artificial visual perception, the resolutions of current retinal prostheses have been limited either by large electrodes or small numbers of pixels. Here we report the evaluation, in three awake non-human primates, of a previously reported near-infrared-light-sensitive photovoltaic subretinal prosthesis. We show that multipixel stimulation of the prosthesis within radiation safety limits enabled eye tracking in the animals, that they responded to stimulations directed at the implant with repeated saccades and that the implant-induced responses were present two years after device implantation. Our findings pave the way for the clinical evaluation of the prosthesis in patients affected by dry atrophic age-related macular degeneration.
Collapse
|
47
|
García-Ayuso D, Di Pierdomenico J, Vidal-Sanz M, Villegas-Pérez MP. Retinal Ganglion Cell Death as a Late Remodeling Effect of Photoreceptor Degeneration. Int J Mol Sci 2019; 20:ijms20184649. [PMID: 31546829 PMCID: PMC6770703 DOI: 10.3390/ijms20184649] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022] Open
Abstract
Inherited or acquired photoreceptor degenerations, one of the leading causes of irreversible blindness in the world, are a group of retinal disorders that initially affect rods and cones, situated in the outer retina. For many years it was assumed that these diseases did not spread to the inner retina. However, it is now known that photoreceptor loss leads to an unavoidable chain of events that cause neurovascular changes in the retina including migration of retinal pigment epithelium cells, formation of “subretinal vascular complexes”, vessel displacement, retinal ganglion cell (RGC) axonal strangulation by retinal vessels, axonal transport alteration and, ultimately, RGC death. These events are common to all photoreceptor degenerations regardless of the initial trigger and thus threaten the outcome of photoreceptor substitution as a therapeutic approach, because with a degenerating inner retina, the photoreceptor signal will not reach the brain. In conclusion, therapies should be applied early in the course of photoreceptor degeneration, before the remodeling process reaches the inner retina.
Collapse
Affiliation(s)
- Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), 30120 Murcia, Spain.
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), 30120 Murcia, Spain.
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), 30120 Murcia, Spain.
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), 30120 Murcia, Spain.
| |
Collapse
|
48
|
Differential effects of antipsychotic drugs on contrast response functions of retinal ganglion cells in wild-type Sprague-Dawley rats and P23H retinitis pigmentosa rats. PLoS One 2019; 14:e0218200. [PMID: 31181134 PMCID: PMC6557501 DOI: 10.1371/journal.pone.0218200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/28/2019] [Indexed: 11/26/2022] Open
Abstract
Antipsychotic drugs haloperidol and clozapine have been reported to increase the sensitivity of retinal ganglion cells (RGCs) to flashes of light in the P23H rat model of retinitis pigmentosa. In order to better understand the effects of these antipsychotic drugs on the visual responses of P23H rat RGCs, I examined the responses of RGCs to a drifting sinusoidal grating of various contrasts. In-vitro multielectrode array recordings were made from P23H rat RGCs and healthy Sprague-Dawley (SD) rat RGCs. Retinas were stimulated with a drifting sinusoidal grating with eight values of contrast (0, 4, 6, 8.5, 13, 26, 51, and 83%). Contrast response functions based on response amplitudes were fitted with a hyperbolic ratio function and contrast thresholds were determined from the fitted curves. SD rat RGCs were divided into two categories, saturating and non-saturating cells, based on whether they showed saturation of responses at high contrast levels. Most SD rat RGCs (58%) were saturating cells. Haloperidol and clozapine decreased the responses of saturating SD rat RGCs to all grating contrasts, except for the highest contrast tested. Clozapine also decreased the responses of non-saturating SD rat RGCs to all grating contrasts, except for the highest contrast tested. Haloperidol did not however significantly affect the responses of non-saturating SD rat RGCs. Haloperidol and clozapine increased the contrast thresholds of both saturating and non-saturating cells in SD rat retinas. Most (73%) P23H rat RGCs could be categorized as either saturating or non-saturating cells. The remaining ‘uncategorized’ cells were poorly responsive to the drifting grating and were analyzed separately. Haloperidol and clozapine increased the responses of non-saturating and uncategorized P23H rat RGCs to most grating contrasts, including the highest contrast tested. Haloperidol and clozapine also increased the responses of saturating P23H rat RGCs to most grating contrasts but these increases were not statistically significant. Haloperidol and clozapine decreased the contrast thresholds of saturating cells, non-saturating cells and uncategorized cells in P23H rat retinas, although the decrease in contrast thresholds of saturating cells was not found to be statistically significant. Overall, the findings show that haloperidol and clozapine have differential effects on the contrast response functions of SD and P23H rat RGCs. In contrast to the effects observed on SD rat RGCs, both haloperidol and clozapine increased the responsiveness of P23H rat RGCs to both low and high contrast visual stimuli and decreased contrast thresholds.
Collapse
|
49
|
Zhu J, Frech T. Gut disease in systemic sclerosis - new approaches to common problems. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2019; 5:11-19. [PMID: 31750073 DOI: 10.1007/s40674-019-00117-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Purpose of review The goal of this manuscript is to discuss the new diagnostic and potential treatment options for gut disease in systemic sclerosis (SSc). The concepts of quantification of gut perfusion and motility is reviewed. The risks of empiric therapeutics and challenges of studying the microbiome in SSc is discussed. Recent findings There are diagnostics that can provide information on gut perfusion and function that are of value in SSc. Easily implemented diagnostic tests are critical to avoid complications of empiric therapy. The role of the microbiome and drugs that target dysmotility are areas of active research. Summary SSc-related gastrointestinal tract involvement can be heterogeneous in clinical presentation and disease course. Noninvasive gastrointestinal measurement techniques that quantify neural communications with microvasculature in SSc can potentially guide the proper addition and discontinuation of therapeutics. The role of the microbiome and the role of nitric oxide on gut function are important areas of research for understanding gut dysfunction in SSc.
Collapse
Affiliation(s)
- Jessica Zhu
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Tracy Frech
- Department of Internal Medicine, Division of Rheumatology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
50
|
Pfeiffer RL, Anderson JR, Emrich DP, Dahal J, Sigulinsky CL, Morrison HAB, Yang JH, Watt CB, Rapp KD, Kondo M, Terasaki H, Garcia JC, Marc RE, Jones BW. Pathoconnectome Analysis of Müller Cells in Early Retinal Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:365-370. [PMID: 31884639 DOI: 10.1007/978-3-030-27378-1_60] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glia play important roles in neural function, including but not limited to amino acid recycling, ion homeostasis, glucose metabolism, and waste removal. During retinal degeneration and subsequent retinal remodeling, Müller cells (MCs) are the first cells to show metabolic and morphological alterations in response to stress. Metabolic alterations in MCs chaotically progress in retina undergoing photoreceptor degeneration; however, what relationship these alterations have with neuronal stress, synapse maintenance, or glia-glia interactions is currently unknown. The work described here reconstructs a MC from a pathoconnectome of early retinal remodeling retinal pathoconnectome 1 (RPC1) and explores relationships between MC structural and metabolic phenotypes in the context of neighboring neurons and glia. Here we find variations in intensity of osmication inter- and intracellularly, variation in small molecule metabolic content of MCs, as well as morphological alterations of glial endfeet. RPC1 provides a framework to analyze these relationships in early retinal remodeling through ultrastructural reconstructions of both neurons and glia. These reconstructions, informed by quantitative metabolite labeling via computational molecular phenotyping (CMP), allow us to evaluate neural-glial interactions in early retinal degeneration with unprecedented resolution and sensitivity.
Collapse
Affiliation(s)
- Rebecca L Pfeiffer
- Departments of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| | - James R Anderson
- Departments of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Daniel P Emrich
- Departments of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Jeebika Dahal
- Departments of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Crystal L Sigulinsky
- Departments of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Hope A B Morrison
- Departments of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Jia-Hui Yang
- Departments of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Carl B Watt
- Departments of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Kevin D Rapp
- Departments of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Mineo Kondo
- Departments of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroko Terasaki
- Departments of Ophthalmology, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Jessica C Garcia
- Departments of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Robert E Marc
- Departments of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA.,Departments of Ophthalmology, Signature Immunologics, Torrey, UT, USA
| | - Bryan W Jones
- Departments of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|