1
|
Lu Y, Bartoszek EM, Cortada M, Bodmer D, Levano Huaman S. Mitochondrial-derived peptides, HNG and SHLP3, protect cochlear hair cells against gentamicin. Cell Death Discov 2024; 10:445. [PMID: 39433756 PMCID: PMC11493991 DOI: 10.1038/s41420-024-02215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Preservation of hair cells is critical for maintaining hearing function, as damage to sensory cells potentially leads to irreparable sensorineural hearing loss. Hair cell loss is often associated with inflammation and oxidative stress. One promising class of bioactive peptides is mitochondrial-derived peptides (MDPs), which have already been proven to protect various tissues from cellular stresses and delay aging processes. Humanin (HN) is one of the best-known members of this family, and recently, we have shown its protective effect in hair cells. The synthetic derivate HN S14G (HNG) has a more potent protective effect than natural HN making it a more useful peptide candidate to promote cytoprotection. A less-known MDP is small humanin-like peptide 3 (SHLP3), which has cytoprotective effects similar to HN, but likely acts through different signaling pathways. Therefore, we examined the effect of exogenous HNG and SHLP3 in auditory hair cells and investigated the molecular mechanisms involved. For this purpose, explants of the organ of Corti (OC) were treated with gentamicin in the presence and absence of HNG or SHLP3. Administration of HNG and SHLP3 reduced gentamicin-induced hair cell loss. The protective mechanisms of HNG and SHLP3 in OC explants included, in part, modulation of AKT and AMPKα. In addition, treatment with HNG and SHLP3 reduced gentamicin-induced oxidative stress and inflammatory gene overexpression. Overall, our data show that HNG and SHLP3 protect hair cells from gentamicin-induced toxicity. This offers new perspectives for the development of therapeutic strategies with MDPs against hearing loss.
Collapse
Affiliation(s)
- Yu Lu
- Department of Biomedicine, University of Basel Hospital, Basel, Switzerland
| | | | - Maurizio Cortada
- Department of Biomedicine, University of Basel Hospital, Basel, Switzerland
- Department of Otolaryngology, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| | - Daniel Bodmer
- Department of Biomedicine, University of Basel Hospital, Basel, Switzerland
- Department of Otolaryngology, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| | | |
Collapse
|
2
|
Noda M, Koshu R, Shimada DM, Sajjaviriya C, Saito C, Ito M, Koshimizu TA. A convolutional neural network model detecting lasting behavioral changes in mice with kanamycin-induced unilateral inner ear dysfunction. Heliyon 2024; 10:e38938. [PMID: 39435078 PMCID: PMC11492029 DOI: 10.1016/j.heliyon.2024.e38938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
In acute aminoglycoside ototoxicity of the unilateral inner ear, physical abnormalities, such as nystagmus and postural alteration, are relieved within a few days by neural compensation. To examine exploratory behavior over an extended period, behaviors of freely moving mice after unilateral kanamycin injection into the inner ear were recorded in a home cage environment. The tail was excluded from deep learning-mediated object detection because of its delayed movement relative to the body. All detection results were confirmed using a convolutional neural network classification model. In kanamycin-injected mice, the total distance moved in 15 min increased on postoperative day 3. Furthermore, injured mice turned more frequently toward the healthy side up to 17 days after the surgery. This tendency resulted in increased clockwise movements in home cage recordings. Moreover, tail suspension and twisting toward the healthy side induced a physical sign for up to 14 days after the injury; the mice rapidly rotated with dorsal bending. Our analysis strategy employing deep learning helps to evaluate neuronal compensatory processes for an extended period and is useful for assessing the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Masao Noda
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Japan
- Department of Otolaryngology and Head and Neck Surgery, Jichi Medical University, Japan
| | - Ryota Koshu
- Department of Otolaryngology and Head and Neck Surgery, Jichi Medical University, Japan
| | - Dias Mari Shimada
- Department of Otolaryngology and Head and Neck Surgery, Jichi Medical University, Japan
| | - Chortip Sajjaviriya
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Japan
| | - Chizu Saito
- Department of Otolaryngology and Head and Neck Surgery, Jichi Medical University, Japan
| | - Makoto Ito
- Department of Otolaryngology and Head and Neck Surgery, Jichi Medical University, Japan
| | - Taka-aki Koshimizu
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Japan
| |
Collapse
|
3
|
Li Y, Xu H, Shi J, Li C, Li M, Zhang X, Xue Q, Qiu J, Cui L, Sun Y, Song X, Chen L. Regulation of the p53/SLC7A11/GPX4 Pathway by Gentamicin Induces Ferroptosis in HEI-OC1 Cells. Otol Neurotol 2024; 45:947-953. [PMID: 39072683 PMCID: PMC11462884 DOI: 10.1097/mao.0000000000004271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
BACKGROUND Gentamicin is a commonly used aminoglycoside antibiotic, with ototoxicity as a significant side effect. Ferroptosis, an iron-dependent form of cell death, has been implicated in a variety of disorders. Whether ferroptosis impacts gentamicin ototoxicity is not yet known. The current work used an in-vitro model to examine the influence of gentamicin-induced ferroptosis on cochlear hair cell damage and probable molecular biological pathways. METHODS House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were treated with different concentrations of gentamicin for 24 hours, with or without ferrostatin-1 pretreatment, to observe gentamicin-induced ferroptosis. The role of p53/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling in gentamicin-induced ferroptosis was explored by pretreating cells with the p53 inhibitor pifithrin-α (PFT-α). We investigated the effect of gentamicin on cells by assessing cell viability. Cellular proteins were isolated and Western blots were performed to detect changes in the expression of p53, SLC7A11, and GPX4. Fluorescence staining was used to assess levels of reactive oxygen species. An enzymatic detection kit was used to detect glutathione, Fe, and malondialdehyde markers. RESULTS Gentamicin reduced cell viability, glutathione content, and SLC7A11 and GPX4 protein levels, and increased levels of p53 protein, reactive oxygen species, malondialdehyde, and Fe. These effects were largely blocked by pretreatment with ferrostatin-1. Pretreatment with the p53 inhibitor PFT-α prevented the gentamicin-induced reduction in SLC7A11 and GPX4, which alleviated several features of ferroptosis including glutathione depletion, iron overload, and lipid peroxidation build-up. CONCLUSION Gentamicin induces ferroptosis in the HEI-OC1 cell line, and the mechanism may be related to the p53/SLC7A11/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Yingying Li
- The Second Medical College of Binzhou Medical University
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai
| | - Hui Xu
- Department of Stomatology
| | - Jinping Shi
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai
| | - Cong Li
- Department of Otolaryngology, Maternity and Child Health Care of Zaozhuang, Zaozhuang 277100, Shandong, PR China
| | - Mengxin Li
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai
| | - Xiaoling Zhang
- The Second Medical College of Binzhou Medical University
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai
| | - Qing Xue
- The Second Medical College of Binzhou Medical University
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai
| | - Jingjing Qiu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai
| | - Limei Cui
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai
| | - Yan Sun
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai
| | - Liang Chen
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai
| |
Collapse
|
4
|
Maniaci A, La Via L, Lechien JR, Sangiorgio G, Iannella G, Magliulo G, Pace A, Mat Q, Lavalle S, Lentini M. Hearing Loss and Oxidative Stress: A Comprehensive Review. Antioxidants (Basel) 2024; 13:842. [PMID: 39061910 PMCID: PMC11274311 DOI: 10.3390/antiox13070842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Hearing loss is a prevalent condition affecting millions of people worldwide. Hearing loss has been linked to oxidative stress as a major factor in its onset and progression. The goal of this thorough analysis is to investigate the connection between oxidative stress and hearing loss, with an emphasis on the underlying mechanisms and possible treatments. The review addressed the many forms of hearing loss, the role of reactive oxygen species (ROS) in causing damage to the cochlea, and the auditory system's antioxidant defensive mechanisms. The review also goes over the available data that support the use of antioxidants and other methods to lessen hearing loss brought on by oxidative stress. We found that oxidative stress is implicated in multiple types of hearing loss, including age-related, noise-induced, and ototoxic hearing impairment. The cochlea's unique anatomical and physiological characteristics, such as high metabolic activity and limited blood supply, make it particularly susceptible to oxidative damage. Antioxidant therapies have shown promising results in both animal models and clinical studies for preventing and mitigating hearing loss. Emerging therapeutic approaches, including targeted drug delivery systems and gene therapy, offer new possibilities for addressing oxidative stress in the auditory system. The significance of this review lies in its comprehensive analysis of the intricate relationship between oxidative stress and hearing loss. By synthesizing current knowledge and identifying gaps in understanding, this review provides valuable insights for both researchers and clinicians. It highlights the potential of antioxidant-based interventions and emphasizes the need for further research into personalized treatment strategies. Our findings on oxidative stress mechanisms may also affect clinical practice and future research directions. This review serves as a foundation for developing novel therapeutic approaches and may inform evidence-based strategies for the prevention and treatment of hearing loss, ultimately contributing to improved quality of life for millions affected by this condition worldwide.
Collapse
Affiliation(s)
- A. Maniaci
- Faculty of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy;
- ASP Ragusa-Hospital Giovanni Paolo II, 97100 Ragusa, Italy;
- Otology Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (J.R.L.); (G.I.); (A.P.); (Q.M.)
| | - L. La Via
- Department of Anaesthesia and Intensive Care, University Hospital Policlinico-San Marco, 95125 Catania, Italy
| | - J. R. Lechien
- Otology Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (J.R.L.); (G.I.); (A.P.); (Q.M.)
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), 7000 Mons, Belgium
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), 78180 Paris, France
- Department of Otolaryngology-Head & Neck Surgery, EpiCURA Hospital, 7301 Hornu, Belgium
| | - G. Sangiorgio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - G. Iannella
- Otology Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (J.R.L.); (G.I.); (A.P.); (Q.M.)
- Department of ‘Organi di Senso’, University “Sapienza”, 00185 Rome, Italy;
| | - G. Magliulo
- Department of ‘Organi di Senso’, University “Sapienza”, 00185 Rome, Italy;
| | - A. Pace
- Otology Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (J.R.L.); (G.I.); (A.P.); (Q.M.)
- Department of ‘Organi di Senso’, University “Sapienza”, 00185 Rome, Italy;
| | - Q. Mat
- Otology Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (J.R.L.); (G.I.); (A.P.); (Q.M.)
- Department of Otorhinolaryngology, C.H.U. Charleroi, Chaussée de Bruxelles 140, 6042 Charleroi, Belgium
| | - S. Lavalle
- Faculty of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy;
| | - M. Lentini
- ASP Ragusa-Hospital Giovanni Paolo II, 97100 Ragusa, Italy;
| |
Collapse
|
5
|
Maraslioglu-Sperber A, Blanc F, Heller S. Murine cochlear damage models in the context of hair cell regeneration research. Hear Res 2024; 447:109021. [PMID: 38703432 DOI: 10.1016/j.heares.2024.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Understanding the complex pathologies associated with hearing loss is a significant motivation for conducting inner ear research. Lifelong exposure to loud noise, ototoxic drugs, genetic diversity, sex, and aging collectively contribute to human hearing loss. Replicating this pathology in research animals is challenging because hearing impairment has varied causes and different manifestations. A central aspect, however, is the loss of sensory hair cells and the inability of the mammalian cochlea to replace them. Researching therapeutic strategies to rekindle regenerative cochlear capacity, therefore, requires the generation of animal models in which cochlear hair cells are eliminated. This review discusses different approaches to ablate cochlear hair cells in adult mice. We inventoried the cochlear cyto- and histo-pathology caused by acoustic overstimulation, systemic and locally applied drugs, and various genetic tools. The focus is not to prescribe a perfect damage model but to highlight the limitations and advantages of existing approaches and identify areas for further refinement of damage models for use in regenerative studies.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fabian Blanc
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Otolaryngology - Head & Neck Surgery, University Hospital Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Amiri M, Kaviari MA, Rostaminasab G, Barimani A, Rezakhani L. A novel cell-free therapy using exosomes in the inner ear regeneration. Tissue Cell 2024; 88:102373. [PMID: 38640600 DOI: 10.1016/j.tice.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 04/03/2024] [Indexed: 04/21/2024]
Abstract
Cellular and molecular alterations associated with hearing loss are now better understood with advances in molecular biology. These changes indicate the participation of distinct damage and stress pathways that are unlikely to be fully addressed by conventional pharmaceutical treatment. Sensorineural hearing loss is a common and debilitating condition for which comprehensive pharmacologic intervention is not available. The complex and diverse molecular pathology that underlies hearing loss currently limits our ability to intervene with small molecules. The present review focuses on the potential for the use of extracellular vesicles in otology. It examines a variety of inner ear diseases and hearing loss that may be treatable using exosomes (EXOs). The role of EXOs as carriers for the treatment of diseases related to the inner ear as well as EXOs as biomarkers for the recognition of diseases related to the ear is discussed.
Collapse
Affiliation(s)
- Masoumeh Amiri
- Faculty of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mohammad Amin Kaviari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Barimani
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Chen LC, Chen HH, Chan MH. Calcium channel inhibitor and extracellular calcium improve aminoglycoside-induced hair cell loss in zebrafish. Arch Toxicol 2024; 98:1827-1842. [PMID: 38563869 DOI: 10.1007/s00204-024-03720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Aminoglycosides are commonly used antibiotics for treatment of gram-negative bacterial infections, however, they might act on inner ear, leading to hair-cell death and hearing loss. Currently, there is no targeted therapy for aminoglycoside ototoxicity, since the underlying mechanisms of aminoglycoside-induced hearing impairments are not fully defined. This study aimed to investigate whether the calcium channel blocker verapamil and changes in intracellular & extracellular calcium could ameliorate aminoglycoside-induced ototoxicity in zebrafish. The present findings showed that a significant decreased number of neuromasts in the lateral lines of zebrafish larvae at 5 days' post fertilization after neomycin (20 μM) and gentamicin (20 mg/mL) exposure, which was prevented by verapamil. Moreover, verapamil (10-100 μM) attenuated aminoglycoside-induced toxic response in different external calcium concentrations (33-3300 μM). The increasing extracellular calcium reduced hair cell loss from aminoglycoside exposure, while lower calcium facilitated hair cell death. In contrast, calcium channel activator Bay K8644 (20 μM) enhanced aminoglycoside-induced ototoxicity and reversed the protective action of higher external calcium on hair cell loss. However, neomycin-elicited hair cell death was not altered by caffeine, ryanodine receptor (RyR) agonist, and RyR antagonists, including thapsigargin, ryanodine, and ruthenium red. The uptake of neomycin into hair cells was attenuated by verapamil and under high external calcium concentration. Consistently, the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin was also reduced by verapamil and high external calcium. Significantly, zebrafish larvae when exposed to neomycin exhibited decreased swimming distances in reaction to droplet stimulus when compared to the control group. Verapamil and elevated external calcium effectively protected the impaired swimming ability of zebrafish larvae induced by neomycin. These data imply that prevention of hair cell damage correlated with swimming behavior against aminoglycoside ototoxicity by verapamil and higher external calcium might be associated with inhibition of excessive ROS production and aminoglycoside uptake through cation channels. These findings indicate that calcium channel blocker and higher external calcium could be applied to protect aminoglycoside-induced listening impairments.
Collapse
Affiliation(s)
- Liao-Chen Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan.
- Animal Behavior Core, National Health Research Institutes, Miaoli, Taiwan.
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University, Taipei, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
8
|
Gansemer BM, Rahman MT, Zhang Z, Green SH. Spiral ganglion neuron degeneration in aminoglycoside-deafened rats involves innate and adaptive immune responses not requiring complement. Front Mol Neurosci 2024; 17:1389816. [PMID: 38840777 PMCID: PMC11151750 DOI: 10.3389/fnmol.2024.1389816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Spiral ganglion neurons (SGNs) transmit auditory information from cochlear hair cells to the brain. SGNs are thus not only important for normal hearing, but also for effective functioning of cochlear implants, which stimulate SGNs when hair cells are missing. SGNs slowly degenerate following aminoglycoside-induced hair cell loss, a process thought to involve an immune response. However, the specific immune response pathways involved remain unknown. We used RNAseq to gain a deeper understanding immune-related and other transcriptomic changes that occur in the rat spiral ganglion after kanamycin-induced deafening. Among the immune and inflammatory genes that were selectively upregulated in deafened spiral ganglia, the complement cascade genes were prominent. We then assessed SGN survival, as well as immune cell numbers and activation, in the spiral ganglia of rats with a CRISPR-Cas9-mediated knockout of complement component 3 (C3). Similar to previous findings in our lab and other deafened rodent models, we observed an increase in macrophage number and increased expression of CD68, a marker of phagocytic activity and cell activation, in macrophages in the deafened ganglia. Moreover, we found an increase in MHCII expression on spiral ganglion macrophages and an increase in lymphocyte number in the deafened ganglia, suggestive of an adaptive immune response. However, C3 knockout did not affect SGN survival or increase in macrophage number/activation, implying that complement activation does not play a role in SGN death after deafening. Together, these data suggest that both innate and adaptive immune responses are activated in the deafened spiral ganglion, with the adaptive response directly contributing to cochlear neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - Steven H. Green
- Department of Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
9
|
Pasdelou MP, Byelyayeva L, Malmström S, Pucheu S, Peytavy M, Laullier H, Hodges DB, Tzafriri AR, Naert G. Ototoxicity: a high risk to auditory function that needs to be monitored in drug development. Front Mol Neurosci 2024; 17:1379743. [PMID: 38756707 PMCID: PMC11096496 DOI: 10.3389/fnmol.2024.1379743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Hearing loss constitutes a major global health concern impacting approximately 1.5 billion people worldwide. Its incidence is undergoing a substantial surge with some projecting that by 2050, a quarter of the global population will experience varying degrees of hearing deficiency. Environmental factors such as aging, exposure to loud noise, and the intake of ototoxic medications are implicated in the onset of acquired hearing loss. Ototoxicity resulting in inner ear damage is a leading cause of acquired hearing loss worldwide. This could be minimized or avoided by early testing of hearing functions in the preclinical phase of drug development. While the assessment of ototoxicity is well defined for drug candidates in the hearing field - required for drugs that are administered by the otic route and expected to reach the middle or inner ear during clinical use - ototoxicity testing is not required for all other therapeutic areas. Unfortunately, this has resulted in more than 200 ototoxic marketed medications. The aim of this publication is to raise awareness of drug-induced ototoxicity and to formulate some recommendations based on available guidelines and own experience. Ototoxicity testing programs should be adapted to the type of therapy, its indication (targeting the ear or part of other medications classes being potentially ototoxic), and the number of assets to test. For multiple molecules and/or multiple doses, screening options are available: in vitro (otic cell assays), ex vivo (cochlear explant), and in vivo (in zebrafish). In assessing the ototoxicity of a candidate drug, it is good practice to compare its ototoxicity to that of a well-known control drug of a similar class. Screening assays provide a streamlined and rapid method to know whether a drug is generally safe for inner ear structures. Mammalian animal models provide a more detailed characterization of drug ototoxicity, with a possibility to localize and quantify the damage using functional, behavioral, and morphological read-outs. Complementary histological measures are routinely conducted notably to quantify hair cells loss with cochleogram. Ototoxicity studies can be performed in rodents (mice, rats), guinea pigs and large species. However, in undertaking, or at the very least attempting, all preclinical investigations within the same species, is crucial. This encompasses starting with pharmacokinetics and pharmacology efficacy studies and extending through to toxicity studies. In life read-outs include Auditory Brainstem Response (ABR) and Distortion Product OtoAcoustic Emissions (DPOAE) measurements that assess the activity and integrity of sensory cells and the auditory nerve, reflecting sensorineural hearing loss. Accurate, reproducible, and high throughput ABR measures are fundamental to the quality and success of these preclinical trials. As in humans, in vivo otoscopic evaluations are routinely carried out to observe the tympanic membrane and auditory canal. This is often done to detect signs of inflammation. The cochlea is a tonotopic structure. Hair cell responsiveness is position and frequency dependent, with hair cells located close to the cochlea apex transducing low frequencies and those at the base transducing high frequencies. The cochleogram aims to quantify hair cells all along the cochlea and consequently determine hair cell loss related to specific frequencies. This measure is then correlated with the ABR & DPOAE results. Ototoxicity assessments evaluate the impact of drug candidates on the auditory and vestibular systems, de-risk hearing loss and balance disorders, define a safe dose, and optimize therapeutic benefits. These types of studies can be initiated during early development of a therapeutic solution, with ABR and otoscopic evaluations. Depending on the mechanism of action of the compound, studies can include DPOAE and cochleogram. Later in the development, a GLP (Good Laboratory Practice) ototoxicity study may be required based on otic related route of administration, target, or known potential otic toxicity.
Collapse
|
10
|
Zhang Y, Yu S, Guo X, Wang L, Yu L, Wang P. Therapeutic potential of salidroside in preserving rat cochlea organ of corti from gentamicin-induced injury through modulation of NRF2 signaling and GSK3β/NF-κB pathway. PLoS One 2024; 19:e0298529. [PMID: 38483863 PMCID: PMC10939193 DOI: 10.1371/journal.pone.0298529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 03/17/2024] Open
Abstract
Salidroside (SAL) is a phenol glycoside compound found in plants of the Rhodiola genus which has natural antioxidant and free radical scavenging properties. SAL are able to protect against manganese-induced ototoxicity. However, the molecular mechanism by which SAL reduces levels of reactive oxygen species (ROS) is unclear. Here, we established an in vitro gentamicin (GM) ototoxicity model to observe the protective effect of SAL on GM-induced hair cells (HC) damage. Cochlear explants of postnatal day 4 rats were obtained and randomly divided into six groups: two model groups (treatment with 0.2 mM or 0.4 mM GM for 24 h); two 400 μmol/L SAL-pretreated groups pretreatment with SAL for 3 h followed by GM treatment (0.2 mM or 0.4 mM) for 24 h; 400 μmol/L SAL group (treatment with SAL for 24 h); control group (normal cultured cochlear explants). The protective effects of SAL on GM-induced HC damage, and on mRNA and protein levels of antioxidant enzymes were observed. HC loss occurred after 24 h of GM treatment. Pretreatment with SAL significantly reduced GM-induced OHC loss. In cochlear tissues, mRNA and protein levels of NRF2 and HO-1 were enhanced in the GM alone group compared with the SAL pretreatment GM treatment group. SAL may protect against GM-induced ototoxicity by regulating the antioxidant defense system of cochlear tissues; SAL can activate NRF2/HO-1 signaling, inhibit NF-κB activation, activate AKT, and increase inhibitory phosphorylation of GSK3β to decrease GSK3 activity, all of which exert antioxidant effects.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shuyuan Yu
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyi Guo
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Luoying Wang
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Jilin, China
| | - Ling Yu
- Department of Pharmacy, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Bustad E, Mudrock E, Nilles EM, Mcquate A, Bergado M, Gu A, Galitan L, Gleason N, Ou HC, Raible DW, Hernandez RE, Ma S. In vivo screening for toxicity-modulating drug interactions identifies antagonism that protects against ototoxicity in zebrafish. Front Pharmacol 2024; 15:1363545. [PMID: 38515847 PMCID: PMC10955247 DOI: 10.3389/fphar.2024.1363545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction: Ototoxicity is a debilitating side effect of over 150 medications with diverse mechanisms of action, many of which could be taken concurrently to treat multiple conditions. Approaches for preclinical evaluation of drug-drug interactions that might impact ototoxicity would facilitate design of safer multi-drug regimens and mitigate unsafe polypharmacy by flagging combinations that potentially cause adverse interactions for monitoring. They may also identify protective agents that antagonize ototoxic injury. Methods: To address this need, we have developed a novel workflow that we call Parallelized Evaluation of Protection and Injury for Toxicity Assessment (PEPITA), which empowers high-throughput, semi-automated quantification of ototoxicity and otoprotection in zebrafish larvae via microscopy. We used PEPITA and confocal microscopy to characterize in vivo the consequences of drug-drug interactions on ototoxic drug uptake and cellular damage of zebrafish lateral line hair cells. Results and discussion: By applying PEPITA to measure ototoxic drug interaction outcomes, we discovered antagonistic interactions between macrolide and aminoglycoside antibiotics that confer protection against aminoglycoside-induced damage to lateral line hair cells in zebrafish larvae. Co-administration of either azithromycin or erythromycin in zebrafish protected against damage from a broad panel of aminoglycosides, at least in part via inhibiting drug uptake into hair cells via a mechanism independent from hair cell mechanotransduction. Conversely, combining macrolides with aminoglycosides in bacterial inhibition assays does not show antagonism of antimicrobial efficacy. The proof-of-concept otoprotective antagonism suggests that combinatorial interventions can potentially be developed to protect against other forms of toxicity without hindering on-target drug efficacy.
Collapse
Affiliation(s)
- Ethan Bustad
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Emma Mudrock
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Elizabeth M. Nilles
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Andrea Mcquate
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Monica Bergado
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alden Gu
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Louie Galitan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Natalie Gleason
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Henry C. Ou
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
- Department of Pediatrics, Seattle Children’s Hospital, Seattle, WA, United States
| | - David W. Raible
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
- VM Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Rafael E. Hernandez
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
- Pathobiology Graduate Program, Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Wang SX, Streit A. Shared features in ear and kidney development - implications for oto-renal syndromes. Dis Model Mech 2024; 17:dmm050447. [PMID: 38353121 PMCID: PMC10886756 DOI: 10.1242/dmm.050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The association between ear and kidney anomalies has long been recognized. However, little is known about the underlying mechanisms. In the last two decades, embryonic development of the inner ear and kidney has been studied extensively. Here, we describe the developmental pathways shared between both organs with particular emphasis on the genes that regulate signalling cross talk and the specification of progenitor cells and specialised cell types. We relate this to the clinical features of oto-renal syndromes and explore links to developmental mechanisms.
Collapse
Affiliation(s)
- Scarlet Xiaoyan Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
13
|
Hsieh CY, Tsai CY, Chou YF, Hsu CJ, Wu HP, Wu CC. Otoprotection against aminoglycoside- and cisplatin-induced ototoxicity focusing on the upstream drug uptake pathway. J Chin Med Assoc 2024; 87:17-24. [PMID: 37962398 DOI: 10.1097/jcma.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Aminoglycoside- and cisplatin-induced ototoxicity, which is a significant issue owing to the widespread use of these drugs in clinical practice, involves the entry of aminoglycosides and cisplatin into the endolymph and hair cells via specific channels or transporters, followed by reactive oxygen species (ROS) generation and hair cells apoptosis. Current strategies focalize primarily on interference with downstream ROS effects; however, recent evidence has demonstrated that inhibiting the uptake of aminoglycosides and cisplatin by hair cells is another promising strategy for tackling the upstream drug uptake pathway. With advances in structural biology, the conformations of certain aminoglycoside and cisplatin channels and transporters, such as the mechanoelectrical transduction channel and organic cation transporter-2, have been largely elucidated. These channels and transporters may become potential targets for the introduction of new otoprotective strategies. This review focuses on the strategies for inhibiting ototoxic drugs uptake by auditory hair cells and provides potential targets for recent developments in the field of otoprotection. Molecular dynamics (MD) simulations of these proteins could help identify the molecules that inhibit the uptake of aminoglycosides and cisplatin by hair cells. Integrating upstream drug uptake pathway targets and MD simulations may help dissect molecular mechanisms and develop novel otoprotective strategies for aminoglycoside- and cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Cheng-Yu Hsieh
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Cheng-Yu Tsai
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Fan Chou
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chuan-Jen Hsu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Hung-Pin Wu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan, ROC
| |
Collapse
|
14
|
Bustad E, Mudrock E, Nilles EM, McQuate A, Bergado M, Gu A, Galitan L, Gleason N, Ou HC, Raible DW, Hernandez RE, Ma S. In vivo screening for toxicity-modulating drug interactions identifies antagonism that protects against ototoxicity in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566159. [PMID: 37986751 PMCID: PMC10659329 DOI: 10.1101/2023.11.08.566159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Ototoxicity is a debilitating side effect of over 150 medications with diverse mechanisms of action, many of which could be taken concurrently to treat multiple conditions. Approaches for preclinical evaluation of drug interactions that might impact ototoxicity would facilitate design of safer multi-drug regimens and mitigate unsafe polypharmacy by flagging combinations that potentially cause adverse interactions for monitoring. They may also identify protective agents that antagonize ototoxic injury. To address this need, we have developed a novel workflow that we call Parallelized Evaluation of Protection and Injury for Toxicity Assessment (PEPITA), which empowers high-throughput, semi-automated quantification of ototoxicity and otoprotection in zebrafish larvae. By applying PEPITA to characterize ototoxic drug interaction outcomes, we have discovered antagonistic interactions between macrolide and aminoglycoside antibiotics that confer protection against aminoglycoside-induced damage to lateral line hair cells in zebrafish larvae. Co-administration of either azithromycin or erythromycin in zebrafish protected against damage from a broad panel of aminoglycosides, at least in part via inhibiting drug uptake into hair cells via a mechanism independent from hair cell mechanotransduction. Conversely, combining macrolides with aminoglycosides in bacterial inhibition assays does not show antagonism of antimicrobial efficacy. The proof-of-concept otoprotective antagonism suggests that combinatorial interventions can potentially be developed to protect against other forms of toxicity without hindering on-target drug efficacy.
Collapse
|
15
|
Palomar-Siles M, Yurevych V, Bykov VJN, Wiman KG. Pharmacological induction of translational readthrough of nonsense mutations in the retinoblastoma (RB1) gene. PLoS One 2023; 18:e0292468. [PMID: 37917619 PMCID: PMC10621805 DOI: 10.1371/journal.pone.0292468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
The retinoblastoma protein (Rb) is encoded by the RB1 tumor suppressor gene. Inactivation of RB1 by inherited or somatic mutation occurs in retinoblastoma and various other types of tumors. A significant fraction (25.9%) of somatic RB1 mutations are nonsense substitutions leading to a premature termination codon (PTC) in the RB1 coding sequence and expression of truncated inactive Rb protein. Here we show that aminoglycoside G418, a known translational readthrough inducer, can induce full-length Rb protein in SW1783 astrocytoma cells with endogenous R579X nonsense mutant RB1 as well as in MDA-MB-436 breast carcinoma cells transiently transfected with R251X, R320X, R579X or Q702X nonsense mutant RB1 cDNA. Readthrough was associated with increased RB1 mRNA levels in nonsense mutant RB1 cells. Induction of full-length Rb protein was potentiated by the cereblon E3 ligase modulator CC-90009. These results suggest that pharmacological induction of translational readthrough could be a feasible strategy for therapeutic targeting of tumors with nonsense mutant RB1.
Collapse
Affiliation(s)
- Mireia Palomar-Siles
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Viktor Yurevych
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir J. N. Bykov
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Klas G. Wiman
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Janky K, Steyger PS. Mechanisms and Impact of Aminoglycoside-Induced Vestibular Deficits. Am J Audiol 2023; 32:746-760. [PMID: 37319406 PMCID: PMC10721243 DOI: 10.1044/2023_aja-22-00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE Acquired vestibulotoxicity from hospital-prescribed medications such as aminoglycoside antibiotics affects as many as 40,000 people each year in North America. However, there are no current federally approved drugs to prevent or treat the debilitating and permanent loss of vestibular function caused by bactericidal aminoglycoside antibiotics. This review will cover our current understanding of the impact of, and mechanisms underlying, aminoglycoside-induced vestibulotoxicity and highlight the gaps in our knowledge that remain. CONCLUSIONS Aminoglycoside-induced vestibular deficits have long-term impacts on patients across the lifespan. Additionally, the prevalence of aminoglycoside-induced vestibulotoxicity appears to be greater than cochleotoxicity. Thus, monitoring for vestibulotoxicity should be independent of auditory monitoring and encompass patients of all ages from young children to older adults before, during, and after aminoglycoside therapy.
Collapse
Affiliation(s)
- Kristen Janky
- Department of Audiology, Boys Town National Research Hospital, Omaha, NE
| | - Peter S. Steyger
- Bellucci Translational Hearing Center, Creighton University, Omaha, NE
| |
Collapse
|
17
|
Waldmann D, Lu Y, Cortada M, Bodmer D, Levano Huaman S. Exogenous humanin and MOTS-c function as protective agents against gentamicin-induced hair cell damage. Biochem Biophys Res Commun 2023; 678:115-121. [PMID: 37633181 DOI: 10.1016/j.bbrc.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Loss of hair cells can lead to irreversible sensorineural hearing loss. Therefore, hair cell preservation is critical for hearing. Mitochondrial derived peptides (MDPs) are bioactive peptides and prominent members of this family are humanin (HN) and the mitochondrial-open-reading frame of the twelve S c (MOTS-c). The protective roles of HN and MOTS-c in age-related diseases and in various tissues exposed to cellular stresses have been demonstrated. The involvement of MDPs in the inner ear remains to be investigated. Therefore, we determined the expression of rattin, the homolog of humanin, in inner ear tissues. Then, we found that HN and MOTS-c showed a significant protective effect on hair cells in organ of Corti explants exposed to gentamicin. Treatment with HN decreased gentamicin-induced phosphorylation of AKT, whereas treatment with MOTS-c increased phosphorylation of AMPKα in explants. Our data indicate that MDPs exert a protective function in gentamicin-induced hair cell damage. Therefore, MDPs may contribute to design new preventive strategies against hearing loss.
Collapse
Affiliation(s)
- Dominique Waldmann
- University of Basel Hospital, Department of Biomedicine, Basel, Switzerland.
| | - Yu Lu
- University of Basel Hospital, Department of Biomedicine, Basel, Switzerland.
| | - Maurizio Cortada
- University of Basel Hospital, Department of Biomedicine, Basel, Switzerland; University of Basel Hospital, Clinic for Otolaryngology, Head and Neck Surgery, Basel, Switzerland.
| | - Daniel Bodmer
- University of Basel Hospital, Department of Biomedicine, Basel, Switzerland; University of Basel Hospital, Clinic for Otolaryngology, Head and Neck Surgery, Basel, Switzerland.
| | | |
Collapse
|
18
|
El Latif AA, Zahra AEA, Badr A, Elbialy ZI, Alghamdi AAA, Althobaiti NA, Assar DH, Abouzed TK. The potential role of upregulated PARP-1/RIPK1 expressions in amikacin-induced oxidative damage and nephrotoxicity in Wistar rats. Toxicol Res (Camb) 2023; 12:979-989. [PMID: 37915468 PMCID: PMC10615830 DOI: 10.1093/toxres/tfad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 11/03/2023] Open
Abstract
This study aimed to investigate the gene expression levels associated with nephrotoxic action of amikacin, as well as the post-treatment effect of diuretics on its nephrotoxic effects. Sixty male rats were divided equally into six groups, including the control group receiving saline intra-peritoneally (ip), and the five treated groups including therapeutic and double therapeutic dose groups, injected ip (15 and 30 mg/kg b.wt./day) respectively for seven days, and another two rat groups treated as therapeutic and double therapeutic dose groups then administered the diuretic orally for seven days and the last group received amikacin ip at a rate of 15 mg/kg/day for seven days, then given free access to water without diuretics for another seven days and was kept as a self-recovery group. Amikacin caused kidney injury, which was exacerbated by the double therapeutic dose, as evidenced by abnormal serum renal injury biomarkers, elevated renal MDA levels, inhibition of renal catalase and SOD enzyme activities, with renal degenerative and necrotic changes. Moreover, comet assays also revealed renal DNA damage. Interestingly, amikacin administration markedly elevated expression levels of the PARP-1, RIP1, TNF-α, IL-1β, and iNOS genes as compared to the control group. However, compared to the self-recovery group, post-amikacin diuretic treatment modulates amikacin-induced altered findings and alleviates amikacin nephrotoxic effects more efficiently. Our findings suggested the potential role of PARP-1 and RIPK1 expressions that influence the expression of proinflammatory cytokines such as IL-1β and TNF-α by exaggerating oxidative stress which may contribute to the pathogenesis of amikacin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Amera Abd El Latif
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Abo Elnasr A Zahra
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - AlShimaa Badr
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Zizy I Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Abdullah A A Alghamdi
- Department of Biology, Faculty of Science, Albaha University, Kafrelsheikh University, El-Gish Street, Albaha 1988, Kingdom of Saudi Arabia
| | - Norah A Althobaiti
- Biology Department, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Kafrelsheikh University, El-Gish Street, El-Gish Street, Al Quwaiiyah 19257, Kingdom of Saudi Arabia
| | - Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Tarek kamal Abouzed
- Biochemistry Department, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh, 33516, Egypt
| |
Collapse
|
19
|
Ramirez DM, Ramirez D, Dhiman S, Arora R, Lozeau C, Arthur G, Zhanel G, Schweizer F. Guanidinylated Amphiphilic Tobramycin Derivatives Synergize with β-Lactam/β-Lactamase Inhibitor Combinations against Pseudomonas aeruginosa. ACS Infect Dis 2023; 9:1754-1768. [PMID: 37603592 DOI: 10.1021/acsinfecdis.3c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) was designated as a critical priority pathogen by the World Health Organization for which new therapeutic solutions are required. With the rapid dissemination of β-lactamases in P. aeruginosa, β-lactam (BL) antibiotics are used in conjunction with β-lactamase inhibitors (BLI). The effectiveness of the BL/BLI combination could be further enhanced with the inclusion of an outer membrane (OM) permeabilizer, such as aminoglycosides and aminoglycoside-based adjuvants. Thus, the development of seven tobramycin derivatives reported herein focused on improving OM permeabilizing capabilities and reducing associated toxicity. The structure-activity relationship studies emphasized the effects of the nature of the cationic group; the number of polar head groups and positive charges; and flexibility, length, and steric bulk of the hydrophobic moiety. The optimized guanidinylated tobramycin-biphenyl derivative was noncytotoxic and demonstrated the ability to potentiate ceftazidime and aztreonam monotherapy and in dual combinations with avibactam against multidrug-resistant (MDR) and β-lactamase harboring isolates of P. aeruginosa. The triple combination of ceftazidime/avibactam plus guanidinylated tobramycin-biphenyl resulted in rapid bactericidal activity within 4-8 h of treatment, demonstrating the potential application of these guanidinylated amphiphilic tobramycin derivatives in augmenting BL/BLI combinations.
Collapse
Affiliation(s)
| | - Danyel Ramirez
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Shiv Dhiman
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Rajat Arora
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Christian Lozeau
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MBR3E 0W2, Canada
| | - George Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MBR3E 0J9, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MBR3E 0J9, Canada
| |
Collapse
|
20
|
Erkoç E, Çakır Çetin A, Mungan Durankaya S, Çilaker Mıçılı S, Keskinoğlu P, Yılmaz O, Kırkım G, Güneri EA. Effects of Cross-linked Hyaluronic Acid in a Rat Model of Vestibular and Cochlear Toxicity. Turk Arch Otorhinolaryngol 2023; 61:124-133. [PMID: 38020411 PMCID: PMC10652050 DOI: 10.4274/tao.2023.2023-5-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/24/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To investigate the effects of cross-linked hyaluronic acid (CLHA) in an experimental model of vestibulotoxicity and cochleotoxicity. Methods Twenty-eight female Wistar albino rats (200-250 g) were divided into four groups. Group A received 0.06 mL of 13.33 mg/mL gentamicin, Group B received 0.06 mL of CLHA, Group C received 0.03 mL of 26.66 mg/mL gentamicin and 0.03 mL CLHA, and Group D received 0.06 mL of 0.09% saline. All groups underwent auditory brainstem response testing at 4-32 kHz, signal-to-noise ratio of distortion product otoacoustic emission measurements at 1.5-8 kHz and vestibular tests on days 0,1,7,10. The rats were sacrificed, and their labyrinths were histologically assessed and scored. Results The hearing thresholds of Groups A and C were similar and significantly higher than those of the other groups at all frequencies, beginning from day 1. The vestibular and histological scores of Groups A and C were similar and significantly higher than those of the other groups from day 1. The audiological results, vestibular scores, and histological scores of Groups B and D were similar, except for a temporary middle ear effusion and hearing threshold shift in Group B. No significant deterioration was observed in the audiological, vestibular, and histological analyses of Groups B and D. Conclusion That both Group A and Group C similarly showed worsening audiological, vestibular, and histological tests suggests that CLHA did not alter the pharmacokinetics and histologic results of gentamicin.
Collapse
Affiliation(s)
- Erdal Erkoç
- Department of Otorhinolaryngology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Aslı Çakır Çetin
- Department of Otorhinolaryngology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | | | - Serap Çilaker Mıçılı
- Department of Histology and Embryology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Pembe Keskinoğlu
- Department of Biostatistics and Medical Informatics, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Osman Yılmaz
- Department of Laboratory of Animal Science, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Günay Kırkım
- Department of Audiology, Dokuz Eylül University Faculty of Health Sciences, İzmir, Turkey
| | - Enis Alpin Güneri
- Department of Otorhinolaryngology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| |
Collapse
|
21
|
Yu Z, Liao Y, Liu J, Wu Q, Cheng Y, Huang K. A smartphone-based gold nanoparticle colorimetric sensing platform for kanamycin detection in food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4282-4288. [PMID: 37599591 DOI: 10.1039/d3ay01076g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The misuse of kanamycin in the breeding industry can pose a threat to human health through food exposure. Therefore, it is crucial to monitor kanamycin (Kana) levels in food. This study presents a novel colorimetric approach for detecting kanamycin based on the aggregation of gold nanoparticles (AuNPs) induced by kanamycin. To achieve this, a single-stranded DNA (ssDNA) aptamer was employed to bind the surface of AuNPs and maintain their dispersion under high salt concentrations. Upon adding Kana, the aptamer selectively binds to it and separates from the gold surface, resulting in the aggregation of AuNPs. This leads to a color change in the solution (from red to purple to blue) which can be observed under salt conditions. The proposed sensor demonstrated a linear range of 0.5-3 nM and a limit of detection (LOD) of 0.11 nM under optimal conditions. Its practicability was tested by monitoring kanamycin in six food samples, including milk, honey, vitamin C effervescent tablets, vegetable, and meat with satisfactory spiked recoveries. The sensor's miniaturization, convenience, simplicity, and low cost make it a desirable choice for fast and highly sensitive detection of Kana.
Collapse
Affiliation(s)
- Ziyan Yu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| | - Yaxiao Liao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| | - Jie Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| | - Qin Wu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| | - Yu Cheng
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| | - Ke Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| |
Collapse
|
22
|
Kim DY, Sharma SK, Rasool K, Koduru JR, Syed A, Ghodake G. Development of Novel Peptide-Modified Silver Nanoparticle-Based Rapid Biosensors for Detecting Aminoglycoside Antibiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12883-12898. [PMID: 37603424 DOI: 10.1021/acs.jafc.3c03565] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The detection and monitoring of aminoglycoside antibiotics (AGAs) have become of utmost importance due to their widespread use in human and animal therapy, as well as the associated risks of exposure, toxicity, and the emergence of antimicrobial resistance. In this study, we successfully synthesized casein hydrolysate peptides-functionalized silver nanoparticles (CHPs@AgNPs) and employed them as a novel colorimetric analytical platform to demonstrate remarkable specificity and sensitivity toward AGAs. The colorimetric and spectral response of the CHPs@AgNPs was observed at 405 and 520 nm, showing a linear correlation with the concentration of streptomycin, a representative AGA. The color changes from yellow to orange provided a visual indication of the analyte concentration, enabling quantitative determination for real-world samples. The AgNP assay exhibited excellent sensitivity with dynamic ranges of approximately 200-650 and 100-700 nM for streptomycin-spiked tap water and dairy whey with limits of detection found to be ∼98 and 56 nM, respectively. The mechanism behind the selective aggregation of CHPs@AgNPs in the presence of AGAs involves the amine groups of the target analytes acting as molecular bridges for electrostatic coupling with hydroxyl or carboxyl functionalities of adjacent NPs, driving the formation of stable NP aggregates. The developed assay offers several advantages, making it suitable for various practical applications. It is characterized by its simplicity, rapidity, specificity, sensitivity, and cost-effectiveness. These unique features make the method a promising tool for monitoring water quality, ensuring food safety, and dealing with emergent issues of antibiotic resistance.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University - Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Sanjeev K Sharma
- Biomaterials and Sensors Laboratory, Department of Physics, CCS University, Meerut Campus, Meerut 250004, Uttar Pradesh, India
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, Dongguk University - Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| |
Collapse
|
23
|
Yang W, Zhao X, Chai R, Fan J. Progress on mechanisms of age-related hearing loss. Front Neurosci 2023; 17:1253574. [PMID: 37727326 PMCID: PMC10505809 DOI: 10.3389/fnins.2023.1253574] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Age-related hearing loss, or presbycusis, is a common cause of hearing loss in elderly people worldwide. It typically presents as progressive, irreversible, and usually affects the high frequencies of hearing, with a tremendous impact on the quality of life. Presbycusis is a complex multidimensional disorder, in addition to aging, multiple factors including exposure to noise, or ototoxic agents, genetic susceptibility, metabolic diseases and lifestyle can influence the onset and severity of presbycusis. With the aging of the body, its ability to clean up deleterious substances produced in the metabolic process is weakened, and the self-protection and repair function of the body is reduced, which in turn leads to irreversible damage to the cochlear tissue, resulting in the occurrence of presbycusis. Presently, oxidative stress (OS), mitochondrial DNA damage, low-grade inflammation, decreased immune function and stem cell depletion have been demonstrated to play a critical role in developing presbycusis. The purpose of this review is to illuminate the various mechanisms underlying this age-related hearing loss, with the goal of advancing our understanding, prevention, and treatment of presbycusis.
Collapse
Affiliation(s)
- Wen Yang
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolong Zhao
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Renjie Chai
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
24
|
Gould S, Templin MV. Off target toxicities and links with physicochemical properties of medicinal products, including antibiotics, oligonucleotides, lipid nanoparticles (with cationic and/or anionic charges). Data review suggests an emerging pattern. Toxicol Lett 2023; 384:14-29. [PMID: 37454775 DOI: 10.1016/j.toxlet.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Toxicology is an essential part of any drug development plan. Circumnavigating the risk of failure because of a toxicity issue can be a challenge, and failure in late development is extremely costly. To identify potential risks, it requires more than just understanding the biological target. The toxicologist needs to consider a compound's structure, it's physicochemical properties (including the impact of the overall formulation), as well as the biological target (e.g., receptor interactions). Understanding the impact of the physicochemical properties can be used to predict potential toxicities in advance by incorporating key endpoints in early screening strategies and/or used to compare toxicity profiles across lead candidates. This review discussed the risks of off-target and/or non-specific toxicities that may be associated with the physicochemical properties of compounds, especially those carrying dominant positive or negative charges, including amphiphilic small molecules, peptides, oligonucleotides and lipids/liposomes/lipid nanoparticles. The latter of which are being seen more and more in drug development, including the recent Covid pandemic, where mRNA and lipid nanoparticle technology is playing more of a role in vaccine development. The translation between non-clinical and clinical data is also considered, questioning how a physicochemical driven toxicity may be more universal across species, which means that such toxicity may be reassuringly translatable between species and as such, this information may also be considered as a support to the 3 R's, particularly in the early screening stages of a drug development plan.
Collapse
|
25
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer SD, Crawford LK, Engelhardt JA, Galbreath EJ, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Technical Review: Biology and Pathology of Ganglia in Animal Species Used for Nonclinical Safety Testing. Toxicol Pathol 2023; 51:278-305. [PMID: 38047294 DOI: 10.1177/01926233231213851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dorsal root ganglia (DRG), trigeminal ganglia (TG), other sensory ganglia, and autonomic ganglia may be injured by some test article classes, including anti-neoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, nerve growth factor inhibitors, and aminoglycoside antibiotics. This article reviews ganglion anatomy, cytology, and pathology (emphasizing sensory ganglia) among common nonclinical species used in assessing product safety for such test articles (TAs). Principal histopathologic findings associated with sensory ganglion injury include neuron degeneration, necrosis, and/or loss; increased satellite glial cell and/or Schwann cell numbers; and leukocyte infiltration and/or inflammation. Secondary nerve fiber degeneration and/or glial reactions may occur in nerves, dorsal spinal nerve roots, spinal cord (dorsal and occasionally lateral funiculi), and sometimes the brainstem. Ganglion findings related to TA administration may result from TA exposure and/or trauma related to direct TA delivery into the central nervous system or ganglia. In some cases, TA-related effects may need to be differentiated from a spectrum of artifactual and/or spontaneous background changes.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
26
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer S, Crawford LK, Engelhardt JA, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Points to Consider: Sampling, Processing, Evaluation, Interpretation, and Reporting of Test Article-Related Ganglion Pathology for Nonclinical Toxicity Studies. Toxicol Pathol 2023; 51:176-204. [PMID: 37489508 DOI: 10.1177/01926233231179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Certain biopharmaceutical products consistently affect dorsal root ganglia, trigeminal ganglia, and/or autonomic ganglia. Product classes targeting ganglia include antineoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, and anti-nerve growth factor agents. This article outlines "points to consider" for sample collection, processing, evaluation, interpretation, and reporting of ganglion findings; these points are consistent with published best practices for peripheral nervous system evaluation in nonclinical toxicity studies. Ganglion findings often occur as a combination of neuronal injury (e.g., degeneration, necrosis, and/or loss) and/or glial effects (e.g., increased satellite glial cell cellularity) with leukocyte accumulation (e.g., mononuclear cell infiltration or inflammation). Nerve fiber degeneration and/or glial reactions may be seen in nerves, dorsal spinal nerve roots, spinal cord, and occasionally brainstem. Interpretation of test article (TA)-associated effects may be confounded by incidental background changes or experimental procedure-related changes and limited historical control data. Reports should describe findings at these sites, any TA relationship, and the criteria used for assigning severity grades. Contextualizing adversity of ganglia findings can require a weight-of-evidence approach because morphologic changes of variable severity occur in ganglia but often are not accompanied by observable overt in-life functional alterations detectable by conventional behavioral and neurological testing techniques.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Gene Therapy Program, Philadelphia, Pennsylvania, USA
| | | | - LaTasha K Crawford
- University of Wisconsin-Madison, School of Veterinary Medicine, Madison, Wisconsin, USA
| | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
27
|
Mohamad-Ramshan R, Ande C, Matsushita T, Haldimann K, Vasella A, Hobbie SN, Crich D. Synthesis of 4- O-(4-Amino-4-deoxy-β-D-xylopyranosyl)paromomycin and 4- S-(β-D-Xylopyranosyl)-4-deoxy-4'-thio-paromomycin and Evaluation of their Antiribosomal and Antibacterial Activity. Tetrahedron 2023; 135:133330. [PMID: 37035443 PMCID: PMC10081503 DOI: 10.1016/j.tet.2023.133330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The design, synthesis and antiribosomal and antibacterial activity of two novel glycosides of the aminoglycoside antibiotic paromomycin are described. The first carries of 4-amino-4-deoxy-β-D-xylopyranosyl moiety at the paromomycin 4'-position and is approximately two-fold more active than the corresponding β-D-xylopyranosyl derivative. The second is a 4'-(β-D-xylopyranosylthio) derivative of 4'-deoxyparomomycin that is unexpectedly less active than the simple β-D-xylopyranosyl derivative, perhaps because of the insertion of the conformationally more mobile thioglycosidic linkage.
Collapse
Affiliation(s)
| | - Chennaiah Ande
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
| | - Takahiko Matsushita
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
28
|
Milinic T, McElvaney OJ, Goss CH. Diagnosis and Management of Cystic Fibrosis Exacerbations. Semin Respir Crit Care Med 2023; 44:225-241. [PMID: 36746183 PMCID: PMC10131792 DOI: 10.1055/s-0042-1760250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the improving survival of cystic fibrosis (CF) patients and the advent of highly effective cystic fibrosis transmembrane conductance regulator (CFTR) therapy, the clinical spectrum of this complex multisystem disease continues to evolve. One of the most important clinical events for patients with CF in the course of this disease is acute pulmonary exacerbation (PEx). Clinical and microbial epidemiology studies of CF PEx continue to provide important insight into the disease course, prognosis, and complications. This work has now led to several large-scale clinical trials designed to clarify the treatment paradigm for CF PEx. The primary goal of this review is to provide a summary and update of the pathophysiology, clinical and microbial epidemiology, outcome and treatment of CF PEx, biomarkers for exacerbation, and the impact of highly effective modulator therapy on these events moving forward.
Collapse
Affiliation(s)
- Tijana Milinic
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Oliver J McElvaney
- Cysic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington
| | - Christopher H Goss
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Cysic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
29
|
Freimane L, Barkāne L, Kivrane A, Sadovska D, Ulanova V, Ranka R. Assessment of Amikacin- and Capreomycin-Related Adverse Drug Reactions in Patients with Multidrug-Resistant Tuberculosis and Exploring the Role of Genetic Factors. J Pers Med 2023; 13:jpm13040599. [PMID: 37108985 PMCID: PMC10145258 DOI: 10.3390/jpm13040599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Following the introduction of all-oral treatment regimens for patients with drug-resistant tuberculosis (TB), second-line injectable drug applications have been reduced in the last few years. However, they are still important for anti-TB therapy. This study aims to analyze the occurrence of amikacin- and capreomycin-related adverse drug reactions (ADR) in patients with multidrug-resistant tuberculosis (MDR-TB) and evaluate the role of multiple patient-, disease-, and therapy-related factors on the frequency of the observed adverse events. In addition, the possible role of genetic risk factors was studied by full-length mitochondrial DNA sequencing. Toward this aim, we retrospectively evaluated 47 patients with MDR-TB who received amikacin and/or capreomycin. In total, 16 (34.0%) patients developed ototoxicity and 13 (27.7%) developed nephrotoxicity, including 3 (6.4%) patients who experienced both adverse events. Ototoxicity development was more common in patients who received amikacin. No other factors showed a significant impact. Nephrotoxicity was likely associated with previous renal health impairment. Full mitochondrial genome sequencing did not reveal any specific ADR-associated variants, and results showed no differences in adverse event occurrence for any specific variants, mutation count, or mitochondrial haplogroup. The absence of the previously reported ototoxicity-related mtDNA variants in our patients with ototoxicity and nephrotoxicity highlighted the complex nature of the ADR occurrence.
Collapse
|
30
|
Stevenson LJ, Biagio-de Jager L, Graham MA, Swanepoel DW. Extended High-Frequency Audiometry for Ototoxicity Monitoring: A Longitudinal Evaluation of Drug-Resistant Tuberculosis Treatment. Am J Audiol 2023; 32:70-80. [PMID: 36490390 DOI: 10.1044/2022_aja-22-00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The aim of this study was to describe extended high-frequency (EHF) pure-tone audiometry monitoring of ototoxicity in a longitudinal treatment program for drug-resistant tuberculosis (DRTB). METHOD This was a retrospective record review of longitudinal conventional (0.25-8 kHz) and EHF (9-16 kHz) audiometry for ototoxicity monitoring of DRTB patients undergoing treatment at community-based clinics between 2013 and 2017. Data from 69 patients with an average age of 37.9 years (SD = 11.2, range: 16.0-63.8 years) were included. Patients were assessed by primary health care audiologists (87%) or community health workers (13%) using portable audiological equipment. The average length of time between initial and exit assessments was 84.6 days (SD = 74.2, range: 2-335 days). RESULTS EHF ototoxicity of a mild or greater degree of hearing loss (> 25 dB HL in one or both ears across frequencies) was evident in 85.5% of patients' posttreatment, compared with 47.8% of patients across conventional frequencies. EHF audiometry demonstrated an ototoxic shift (American Speech-Language-Hearing Association criteria) in 56.5% of cases compared with 31.9% when only conventional audiometry was considered. Mean hearing deterioration for patients was significant across EHFs (9-16 kHz) bilaterally (p < .05). Absent EHF thresholds at the initial assessment, owing to maximum output limits, was a limitation that occurred most frequently at 16 kHz (17.4%, 24/138). CONCLUSIONS EHF audiometry is most sensitive for the early detection of ototoxicity and should be included in monitoring programs. Clinical ototoxicity monitoring protocols should consider shortened assessment approaches that target frequencies most sensitive to ototoxicity, including EHFs. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.21651242.
Collapse
Affiliation(s)
- Lucia Jane Stevenson
- Department of Speech-Language Pathology and Audiology, Faculty of Humanities, University of Pretoria, South Africa
| | - Leigh Biagio-de Jager
- Department of Speech-Language Pathology and Audiology, Faculty of Humanities, University of Pretoria, South Africa
| | - Marien Alet Graham
- Department of Science, Mathematics and Technology Education, Faculty of Education, University of Pretoria, South Africa
| | - De Wet Swanepoel
- Department of Speech-Language Pathology and Audiology, Faculty of Humanities, University of Pretoria, South Africa.,Ear Science Institute Australia, Perth, Western Australia
| |
Collapse
|
31
|
Li H, Wang D, Zhang W, Xu G, Xu C, Liu W, Li J. Potential side effects of antibacterial coatings in orthopaedic implants: A systematic review of clinical studies. Front Bioeng Biotechnol 2023; 11:1111386. [PMID: 36845182 PMCID: PMC9947536 DOI: 10.3389/fbioe.2023.1111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Objective: The systematic review aimed to determine the potential side effects of antibacterial coatings in orthopaedic implants. Methods: Publications were searched in the databases of Embase, PubMed, Web of Science and Cochrane Library using predetermined keywords up to 31 October 2022. Clinical studies reporting side effects of the surface or coating materials were included. Results: A total of 23 studies (20 cohort studies and three case reports) reporting the concerns about the side effects of antibacterial coatings were identified. Three types of coating materials, silver, iodine and gentamicin were included. All of studies raised the concerns regarding safety of antibacterial coatings, and the occurrence of adverse events was observed in seven studies. The main side effect of silver coatings was the development of argyria. For iodine coatings, only one anaphylactic case was reported as an adverse event. No systemic or other general side effects were reported for gentamicin. Conclusion: Clinical studies on the side effects of antibacterial coatings were limited. Based on the available outcomes, the most reported side effects of antibacterial coatings in clinical use were argyria with silver coatings. However, researchers should always pay attention to the potential side effects of antibacterial materials, such as systematic or local toxicity and allergy.
Collapse
Affiliation(s)
- Hua Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Daofeng Wang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Wupeng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China,School of Medicine, Nankai University, Tianjin, China
| | - Gaoxiang Xu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Cheng Xu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China,*Correspondence: Cheng Xu, ; Wanheng Liu, ; Jiantao Li,
| | - Wanheng Liu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China,*Correspondence: Cheng Xu, ; Wanheng Liu, ; Jiantao Li,
| | - Jiantao Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China,*Correspondence: Cheng Xu, ; Wanheng Liu, ; Jiantao Li,
| |
Collapse
|
32
|
O'Sullivan JDB, Bullen A, Mann ZF. Mitochondrial form and function in hair cells. Hear Res 2023; 428:108660. [PMID: 36525891 DOI: 10.1016/j.heares.2022.108660] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Hair cells (HCs) are specialised sensory receptors residing in the neurosensory epithelia of inner ear sense organs. The precise morphological and physiological properties of HCs allow us to perceive sound and interact with the world around us. Mitochondria play a significant role in normal HC function and are also intricately involved in HC death. They generate ATP essential for sustaining the activity of ion pumps, Ca2+ transporters and the integrity of the stereociliary bundle during transduction as well as regulating cytosolic calcium homoeostasis during synaptic transmission. Advances in imaging techniques have allowed us to study mitochondrial populations throughout the HC, and how they interact with other organelles. These analyses have identified distinct mitochondrial populations between the apical and basolateral portions of the HC, in which mitochondrial morphology appears determined by the physiological processes in the different cellular compartments. Studies in HCs across species show that ototoxic agents, ageing and noise damage directly impact mitochondrial structure and function resulting in HC death. Deciphering the molecular mechanisms underlying this mitochondrial sensitivity, and how their morphology relates to their function during HC death, requires that we first understand this relationship in the context of normal HC function.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K
| | - Anwen Bullen
- UCL Ear Institute, University College London, London WC1×8EE, U.K.
| | - Zoë F Mann
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K.
| |
Collapse
|
33
|
Shi T, Beaulieu MO, Saunders LM, Fabian P, Trapnell C, Segil N, Crump JG, Raible DW. Single-cell transcriptomic profiling of the zebrafish inner ear reveals molecularly distinct hair cell and supporting cell subtypes. eLife 2023; 12:82978. [PMID: 36598134 PMCID: PMC9851615 DOI: 10.7554/elife.82978] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023] Open
Abstract
A major cause of human deafness and vestibular dysfunction is permanent loss of the mechanosensory hair cells of the inner ear. In non-mammalian vertebrates such as zebrafish, regeneration of missing hair cells can occur throughout life. While a comparative approach has the potential to reveal the basis of such differential regenerative ability, the degree to which the inner ears of fish and mammals share common hair cells and supporting cell types remains unresolved. Here, we perform single-cell RNA sequencing of the zebrafish inner ear at embryonic through adult stages to catalog the diversity of hair cells and non-sensory supporting cells. We identify a putative progenitor population for hair cells and supporting cells, as well as distinct hair and supporting cell types in the maculae versus cristae. The hair cell and supporting cell types differ from those described for the lateral line system, a distributed mechanosensory organ in zebrafish in which most studies of hair cell regeneration have been conducted. In the maculae, we identify two subtypes of hair cells that share gene expression with mammalian striolar or extrastriolar hair cells. In situ hybridization reveals that these hair cell subtypes occupy distinct spatial domains within the three macular organs, the utricle, saccule, and lagena, consistent with the reported distinct electrophysiological properties of hair cells within these domains. These findings suggest that primitive specialization of spatially distinct striolar and extrastriolar hair cells likely arose in the last common ancestor of fish and mammals. The similarities of inner ear cell type composition between fish and mammals validate zebrafish as a relevant model for understanding inner ear-specific hair cell function and regeneration.
Collapse
Affiliation(s)
- Tuo Shi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Marielle O Beaulieu
- Department of Otolaryngology-Head and Neck Surgery, University of WashingtonSeattleUnited States
| | - Lauren M Saunders
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - Peter Fabian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Cole Trapnell
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - David W Raible
- Department of Otolaryngology-Head and Neck Surgery, University of WashingtonSeattleUnited States
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Department of Biological Structure, University of WashingtonSeattleUnited States
| |
Collapse
|
34
|
Le Prell CG, Clavier OH, Bao J. Noise-induced hearing disorders: Clinical and investigational tools. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:711. [PMID: 36732240 PMCID: PMC9889121 DOI: 10.1121/10.0017002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
A series of articles discussing advanced diagnostics that can be used to assess noise injury and associated noise-induced hearing disorders (NIHD) was developed under the umbrella of the United States Department of Defense Hearing Center of Excellence Pharmaceutical Interventions for Hearing Loss working group. The overarching goals of the current series were to provide insight into (1) well-established and more recently developed metrics that are sensitive for detection of cochlear pathology or diagnosis of NIHD, and (2) the tools that are available for characterizing individual noise hazard as personal exposure will vary based on distance to the sound source and placement of hearing protection devices. In addition to discussing the utility of advanced diagnostics in patient care settings, the current articles discuss the selection of outcomes and end points that can be considered for use in clinical trials investigating hearing loss prevention and hearing rehabilitation.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing Science, University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | - Jianxin Bao
- Gateway Biotechnology Inc., St. Louis, Missouri 63132, USA
| |
Collapse
|
35
|
Heldin A, Cancer M, Palomar-Siles M, Öhlin S, Zhang M, Sun-Zhang A, Mariani A, Liu J, Bykov VJN, Wiman KG. Novel compounds that synergize with aminoglycoside G418 or eRF3 degraders for translational readthrough of nonsense mutant TP53 and PTEN. RNA Biol 2023; 20:368-383. [PMID: 37339263 DOI: 10.1080/15476286.2023.2222250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023] Open
Abstract
The TP53 and PTEN tumour suppressor genes are inactivated by nonsense mutations in a significant fraction of human tumours. TP53 nonsense mutatant tumours account for approximately one million new cancer cases per year worldwide. We have screened chemical libraries with the aim of identifying compounds that induce translational readthrough and expression of full-length p53 protein in cells with nonsense mutation in this gene. Here we describe two novel compounds with readthrough activity, either alone or in combination with other known readthrough-promoting substances. Both compounds induced levels of full-length p53 in cells carrying R213X nonsense mutant TP53. Compound C47 showed synergy with the aminoglycoside antibiotic and known readthrough inducer G418, whereas compound C61 synergized with eukaryotic release factor 3 (eRF3) degraders CC-885 and CC-90009. C47 alone showed potent induction of full-length PTEN protein in cells with different PTEN nonsense mutations. These results may facilitate further development of novel targeted cancer therapy by pharmacological induction of translational readthrough.
Collapse
Affiliation(s)
- Angelos Heldin
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Matko Cancer
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Mireia Palomar-Siles
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Öhlin
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Meiqiongzi Zhang
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Sun-Zhang
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Anna Mariani
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Jianping Liu
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Vladimir J N Bykov
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Klas G Wiman
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Lubriks D, Haldimann K, Hobbie SN, Vasella A, Suna E, Crich D. Synthesis, Antibacterial and Antiribosomal Activity of the 3 C-Aminoalkyl Modification in the Ribofuranosyl Ring of Apralogs (5- O-Ribofuranosyl Apramycins). Antibiotics (Basel) 2022; 12:antibiotics12010025. [PMID: 36671225 PMCID: PMC9854789 DOI: 10.3390/antibiotics12010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The synthesis and antiribosomal and antibacterial activity of both anomers of a novel apralog, 5-O-(5-amino-3-C-dimethylaminopropyl-D-ribofuranosyl)apramycin, are reported. Both anomers show excellent activity for the inhibition of bacterial ribosomes and that of MRSA and various wild-type Gram negative pathogens. The new compounds retain activity in the presence of the aminoglycoside phosphoryltransferase aminoglycoside modifying enzymes that act on the primary hydroxy group of typical 4,5-(2-deoxystreptamine)-type aminoglycoside and related apramycin derivatives. Unexpectedly, the two anomers have comparable activity both for the inhibition of bacterial ribosomes and of the various bacterial strains tested.
Collapse
Affiliation(s)
- Dmitrijs Lubriks
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Sven N. Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
- Correspondence: (E.S.); (D.C.); Tel.: +37-16-701-4895 (E.S.); Tel.: +1-706-542-5605 (D.C.)
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA 30602, USA
- Correspondence: (E.S.); (D.C.); Tel.: +37-16-701-4895 (E.S.); Tel.: +1-706-542-5605 (D.C.)
| |
Collapse
|
37
|
Fogliano C, Motta CM, Avallone B. Salicylate attenuates gentamicin-induced ototoxicity and facilitates the recovery in the basilar papilla of the lizard Podarcis siculus. Neurotoxicology 2022; 93:301-310. [DOI: 10.1016/j.neuro.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022]
|
38
|
Palomar-Siles M, Heldin A, Zhang M, Strandgren C, Yurevych V, van Dinter JT, Engels SAG, Hofman DA, Öhlin S, Meineke B, Bykov VJN, van Heesch S, Wiman KG. Translational readthrough of nonsense mutant TP53 by mRNA incorporation of 5-Fluorouridine. Cell Death Dis 2022; 13:997. [PMID: 36433934 PMCID: PMC9700717 DOI: 10.1038/s41419-022-05431-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
TP53 nonsense mutations in cancer produce truncated inactive p53 protein. We show that 5-FU metabolite 5-Fluorouridine (FUr) induces full-length p53 in human tumor cells carrying R213X nonsense mutant TP53. Ribosome profiling visualized translational readthrough at the R213X premature stop codon and demonstrated that FUr-induced readthrough is less permissive for canonical stop codon readthrough compared to aminoglycoside G418. FUr is incorporated into mRNA and can potentially base-pair with guanine, allowing insertion of Arg tRNA at the TP53 R213X UGA premature stop codon and translation of full-length wild-type p53. We confirmed that full-length p53 rescued by FUr triggers tumor cell death by apoptosis. FUr also restored full-length p53 in TP53 R213X mutant human tumor xenografts in vivo. Thus, we demonstrate a novel strategy for therapeutic rescue of nonsense mutant TP53 and suggest that FUr should be explored for treatment of patients with TP53 nonsense mutant tumors.
Collapse
Affiliation(s)
- Mireia Palomar-Siles
- grid.4714.60000 0004 1937 0626Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Angelos Heldin
- grid.4714.60000 0004 1937 0626Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Meiqiongzi Zhang
- grid.4714.60000 0004 1937 0626Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Strandgren
- grid.4714.60000 0004 1937 0626Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Viktor Yurevych
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jip T. van Dinter
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sem A. G. Engels
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Damon A. Hofman
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Susanne Öhlin
- grid.4714.60000 0004 1937 0626Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Birthe Meineke
- grid.4714.60000 0004 1937 0626Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir J. N. Bykov
- grid.4714.60000 0004 1937 0626Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sebastiaan van Heesch
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Klas G. Wiman
- grid.4714.60000 0004 1937 0626Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Jana S, Crich D. Synthesis of Gentamicin Minor Components: Gentamicin C1a and Gentamicin C2b. Org Lett 2022; 24:8564-8567. [DOI: 10.1021/acs.orglett.2c03616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Santanu Jana
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
| |
Collapse
|
40
|
Kimple AJ, Senior BA, Naureckas ET, Gudis DA, Meyer T, Hempstead SE, Resnick HE, Albon D, Barfield W, Benoit MM, Beswick DM, Callard E, Cofer S, Downer V, Elson EC, Garinis A, Halderman A, Hamburger L, Helmick M, McCown M, McKinzie CJ, Phan H, Rodriguez K, Rubenstein RC, Severin A, Shah G, Shenoy A, Sprouse B, Virgin F, Woodworth BA, Lee SE. Cystic Fibrosis Foundation otolaryngology care multidisciplinary consensus recommendations. Int Forum Allergy Rhinol 2022; 12:1089-1103. [PMID: 35089650 PMCID: PMC9545592 DOI: 10.1002/alr.22974] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) is a multisystem disease that often requires otolaryngology care. Individuals with CF commonly have chronic rhinosinusitis but also present with hearing loss and dysphonia. Given these manifestations of CF, otolaryngologists are frequently involved in the care of patients with CF; however, there is limited consensus on optimal management of sinonasal, otologic, and laryngologic symptoms. METHODS The Cystic Fibrosis Foundation convened a multidisciplinary team of otolaryngologists, pulmonologists, audiologists, pharmacists, a social worker, a nurse coordinator, a respiratory therapist, two adults with CF, and a caregiver of a child with CF to develop consensus recommendations. Workgroups developed draft recommendation statements based on a systematic literature review, and a ≥80% consensus was required for acceptance of each recommendation statement. RESULTS The committee voted on 25 statements. Eleven statements were adopted recommending a treatment or intervention, while five statements were formulated recommending against a specific treatment or intervention. The committee recommended eight statements as an option for select patients in certain circumstances, and one statement did not reach consensus. CONCLUSION These multidisciplinary consensus recommendations will help providers navigate decisions related to otolaryngology consultation, medical and surgical management of CF-CRS, hearing, and voice in individuals with CF. A collaborative and multidisciplinary approach is advocated to best care for our patients with CF. Future clinical research is needed utilizing standardized, validated outcomes with comprehensive reporting of patient outcome, effects of modulator therapies, and genetic characteristics to help continue to advance care, decrease morbidity, and improve the quality of life for individuals with CF.
Collapse
Affiliation(s)
- Adam J. Kimple
- Department of Otolaryngology/Head & Neck SurgeryThe University of North CarolinaChapel HillNorth CarolinaUSA
| | - Brent A. Senior
- Department of Otolaryngology/Head & Neck SurgeryThe University of North CarolinaChapel HillNorth CarolinaUSA
| | - Edward T. Naureckas
- Department of Pulmonary MedicineCritical Care MedicineUniversity of Chicago MedicineChicagoIllinoisUSA
| | - David A. Gudis
- Department of Otolaryngology – Head and Neck SurgeryColumbia University Irving Medical Center/New York‐Presbyterian HospitalNew YorkNew YorkUSA
| | - Ted Meyer
- Department of Otolaryngology/Head & Neck SurgeryThe University of North CarolinaChapel HillNorth CarolinaUSA
- Department of Otolaryngology – Head and Neck SurgeryMedical University of South CarolinaSouth CarolinaUSA
| | | | | | - Dana Albon
- Department of Internal MedicineDivision of Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Wayne Barfield
- Pediatric and Adult CF CenterMedical University of South CarolinaSouth CarolinaUSA
| | - Margo McKenna Benoit
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Daniel M. Beswick
- Department of Head and Neck SurgeryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Eliza Callard
- Community Advisor to the Cystic Fibrosis FoundationBethesdaMarylandUSA
| | - Shelagh Cofer
- Mayo Clinic‐Otolaryngology (ENT)/Head and Neck SurgeryRochesterMinnesotaUSA
| | | | - E. Claire Elson
- Department of PharmacyChildren's Mercy Kansas CityKansas CityMissouriUSA
| | - Angela Garinis
- Oregon Hearing Research CenterOregon Health & Science UniversityPortlandOregonUSA
| | - Ashleigh Halderman
- Department of Otolaryngology/Head and Neck SurgeryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Lisa Hamburger
- Community Advisor to the Cystic Fibrosis FoundationBethesdaMarylandUSA
| | - Meagan Helmick
- Community Advisor to the Cystic Fibrosis FoundationBethesdaMarylandUSA
| | - Michael McCown
- Department of PediatricsWalter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Cameron J. McKinzie
- Department of PharmacyUniversity of North Carolina Medical CenterChapel HillNorth CarolinaUSA
| | - Hanna Phan
- College of Pharmacy, Department of Clinical Pharmacy, The University of MichiganC.S. Mott Children's Hospital, Michigan MedicineMichiganUSA
| | - Kenneth Rodriguez
- Department of OtolaryngologyUniversity Hospitals Cleveland Medical CenterClevelandOhioUSA
| | - Ronald C. Rubenstein
- Allergy and Pulmonary Medicine, Department of PediatricsWashington University School of MedicineSt. LouisMissouriUSA
| | - Ashley Severin
- Department of Social WorkChildren's Mercy Kansas CityKansas CityMissouriUSA
| | - Gopi Shah
- Department of Otolaryngology/Head and Neck SurgeryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Ambika Shenoy
- Department of Pediatrics, Division of Pediatric PulmonologyNemours Alfred I. duPont Hospital for ChildrenWilmingtonDelawareUSA
| | - Brittney Sprouse
- Department of Pediatrics, Division of Pediatric PulmonologyNemours Alfred I. duPont Hospital for ChildrenWilmingtonDelawareUSA
- University of Chicago MedicineChicagoIllinoisUSA
| | - Frank Virgin
- Department of Otolaryngology – Head and Neck SurgeryMonroe Carell Jr. Children's Hospital at VanderbiltNashvilleTennesseeUSA
| | - Bradford A. Woodworth
- Department of Otolaryngology – Head and Neck SurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Stella E. Lee
- Brigham and Women's Hospital, Division of Otolaryngology‐Head & Neck SurgeryHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
41
|
VanDevanter DR, West NE, Sanders DB, Skalland M, Goss CH, Flume PA, Heltshe SL. Antipseudomonal treatment decisions during CF exacerbation management. J Cyst Fibros 2022; 21:753-758. [PMID: 35466039 PMCID: PMC9509480 DOI: 10.1016/j.jcf.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) pulmonary exacerbation (PEx) treatment guidelines suggest that Pseudomonas aeruginosa (Pa) airway infection be treated with two antipseudomonal agents. METHODS We retrospectively studied treatment responses for STOP2 PEx treatment trial (NCT02781610) participants with a history of Pa infection. Mean lung function and symptom changes from intravenous (IV) antimicrobial treatment start to Visit 2 (7 to 10 days later) were compared between those receiving one, two, and three+ antipseudomonal classes before Visit 2 by ANCOVA. Odds of PEx retreatment with IV antimicrobials within 30 days and future IV-treated PEx hazard were modeled by logistic and Cox proportional hazards regression, respectively. Sensitivity analyses limited to the most common one-, two-, and three-class regimens, to only IV/oral antipseudomonal treatments, and with more stringent Pa infection definitions were conducted. RESULTS Among 751 participants, 50 (6.7%) were treated with one antipseudomonal class before Visit 2, while 552 (73.5%) and 149 (19.8%) were treated with two and with three+ classes, respectively. Females and participants with a negative Pa culture in the prior month were more likely to be treated with a single class. The most common single, double, and triple class regimens were beta-lactam (BL; n = 42), BL/aminoglycoside (AG; n = 459), and BL/AG/fluoroquinolone (FQ; n = 73). No lung function or symptom response, odds of retreatment, or future PEx hazard differences were observed by number of antipseudomonal classes administered in primary or sensitivity analyses. CONCLUSIONS We were unable to identify additional benefit when multiple antipseudomonal classes are used to treat PEx in people with CF and Pa.
Collapse
Affiliation(s)
- D R VanDevanter
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| | - N E West
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - D B Sanders
- Department of Pediatrics, Indiana University, Indianapolis, IN, United States
| | - M Skalland
- CF Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, United States
| | - C H Goss
- CF Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, United States; Department of Medicine, University of Washington, Seattle, WA, United States; Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - P A Flume
- Departments of Medicine and Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - S L Heltshe
- CF Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, United States; Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
42
|
Bellairs JA, Redila VA, Wu P, Tong L, Webster A, Simon JA, Rubel EW, Raible DW. An in vivo Biomarker to Characterize Ototoxic Compounds and Novel Protective Therapeutics. Front Mol Neurosci 2022; 15:944846. [PMID: 35923755 PMCID: PMC9342690 DOI: 10.3389/fnmol.2022.944846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
There are no approved therapeutics for the prevention of hearing loss and vestibular dysfunction from drugs like aminoglycoside antibiotics. While the mechanisms underlying aminoglycoside ototoxicity remain unresolved, there is considerable evidence that aminoglycosides enter inner ear mechanosensory hair cells through the mechanoelectrical transduction (MET) channel. Inhibition of MET-dependent uptake with small molecules or modified aminoglycosides is a promising otoprotective strategy. To better characterize mammalian ototoxicity and aid in the translation of emerging therapeutics, a biomarker is needed. In the present study we propose that neonatal mice systemically injected with the aminoglycosides G418 conjugated to Texas Red (G418-TR) can be used as a histologic biomarker to characterize in vivo aminoglycoside toxicity. We demonstrate that postnatal day 5 mice, like older mice with functional hearing, show uptake and retention of G418-TR in cochlear hair cells following systemic injection. When we compare G418-TR uptake in other tissues, we find that kidney proximal tubule cells show similar retention. Using ORC-13661, an investigational hearing protection drug, we demonstrate in vivo inhibition of aminoglycoside uptake in mammalian hair cells. This work establishes how systemically administered fluorescently labeled ototoxins in the neonatal mouse can reveal important details about ototoxic drugs and protective therapeutics.
Collapse
Affiliation(s)
- Joseph A. Bellairs
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
| | - Van A. Redila
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Patricia Wu
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Ling Tong
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Alyssa Webster
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Julian A. Simon
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Edwin W. Rubel
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - David W. Raible
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| |
Collapse
|
43
|
Identification of Target Proteins Involved in Cochlear Hair Cell Progenitor Cytotoxicity following Gentamicin Exposure. J Clin Med 2022; 11:jcm11144072. [PMID: 35887836 PMCID: PMC9319054 DOI: 10.3390/jcm11144072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Given the non-labile, terminal differentiation of inner-ear sensory cells, preserving their function is critical since sensory cell damage results in irreversible hearing loss. Gentamicin-induced cytotoxicity is one of the major causes of sensory cell damage and consequent sensorineural hearing loss. However, the precise molecular mechanisms and target proteins involved in ototoxicity are still unknown. The objective of the present study was to identify target proteins involved in gentamicin-induced cytotoxicity to better characterize the molecular pathways involved in sensory cell damage following ototoxic drug administration using House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). We identified several unique proteins involved in gentamicin-induced cytotoxicity, expression of which were further confirmed using confocal microscopy. Further investigation of these pathways can inform the design and discovery of novel treatment modalities to prevent sensory cell damage and preserve their function.
Collapse
|
44
|
Shahbazi F, Shojaei L, Farvadi F, Kadivarian S. Antimicrobial safety considerations in critically ill patients: part II: focused on anti-microbial toxicities. Expert Rev Clin Pharmacol 2022; 15:563-573. [PMID: 35734938 DOI: 10.1080/17512433.2022.2093716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Antibiotic prescription is a challenging issue in critical care settings. Different pharmacokinetic and pharmacodynamic properties, polypharmacy, drug interactions, and high incidence of multidrug-resistant microorganisms in this population can influence the selection, safety, and efficacy of prescribed antibiotics. AREAS COVERED In the current article we searched PubMed, Scopus and Google Scholar for neurotoxicities, hematologic toxicity and fluid stewardship in intensive care units. EXPERT OPINION Critically ill patients who receive antimicrobial agents should be monitored for neurological, hematologic toxicities especially seizure, thrombocytopenia, and clostridioides infections. Other toxicities including QTc prolongation, electrolyte disturbances, liver enzyme elevation, and infusion-related reactions were being considered. Other changes, including fluid overload, hypoalbuminemia, augmented renal clearance, increased cardiac outputs in septic shock, and acute kidney injury, may influence treatment efficiency and patient outcome.
Collapse
Affiliation(s)
- Foroud Shahbazi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Lida Shojaei
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fakhrossadat Farvadi
- Center for nanotechnology in drug delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Kadivarian
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
45
|
Cichoric Acid May Play a Role in Protecting Hair Cells from Ototoxic Drugs. Int J Mol Sci 2022; 23:ijms23126701. [PMID: 35743144 PMCID: PMC9224198 DOI: 10.3390/ijms23126701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Ototoxic hearing loss due to antibiotic medication including aminoglycosides and excess free radical production causes irreversible hair cell injury. Cichoric acid, a naturally occurring phenolic acid, has recently been found to exert anti-oxidative and anti-inflammatory properties through its free radical scavenging capacity. The present study aimed to investigate the protective effects of cichoric acid against neomycin-induced ototoxicity using transgenic zebrafish (pvalb3b: TagGFP). Our results indicated that cichoric acid in concentrations up to 5 μM did not affect zebrafish viability during the 2 h treatment period. Therefore, the otoprotective concentration of cichoric acid was identified as 5 μM under 2 h treatment by counting viable hair cells within the neuromasts of the anterior- and posterior-lateral lines in the study. Pretreatment of transgenic zebrafish with 5 μM of cichoric acid for 2 h significantly protected against neomycin-induced hair cell death. Protection mediated by cichoric acid was, however, lost over time. A terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and FM4-64 staining, respectively, provided in situ evidence that cichoric acid ameliorated apoptotic signals and mechanotransduction machinery impairment caused by neomycin. A fish locomotor test (distance move, velocity, and rotation frequency) assessing behavioral alteration after ototoxic damage revealed rescue due to cichoric acid pretreatment before neomycin exposure. These findings suggest that cichoric acid in 5 μM under 2 h treatment has antioxidant effects and can attenuate neomycin-induced hair cell death in neuromasts. Although cichoric acid offered otoprotection, there is only a small difference between pharmacological and toxic concentrations, and hence cichoric acid can be considered a rather prototypical compound for the development of safer otoprotective compounds.
Collapse
|
46
|
Ramkumar V, Sheth S, Dhukhwa A, Al Aameri R, Rybak L, Mukherjea D. Transient Receptor Potential Channels and Auditory Functions. Antioxid Redox Signal 2022; 36:1158-1170. [PMID: 34465184 PMCID: PMC9221156 DOI: 10.1089/ars.2021.0191] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Transient receptor potential (TRP) channels are cation-gated channels that serve as detectors of various sensory modalities, such as pain, heat, cold, and taste. These channels are expressed in the inner ear, suggesting that they could also contribute to the perception of sound. This review provides more details on the different types of TRP channels that have been identified in the cochlea to date, focusing on their cochlear distribution, regulation, and potential contributions to auditory functions. Recent Advances: To date, the effect of TRP channels on normal cochlear physiology in mammals is still unclear. These channels contribute, to a limited extent, to normal cochlear physiology such as the hair cell mechanoelectrical transduction channel and strial functions. More detailed information on a number of these channels in the cochlea awaits future studies. Several laboratories focusing on TRPV1 channels have shown that they are responsive to cochlear stressors, such as ototoxic drugs and noise, and regulate cytoprotective and/or cell death pathways. TRPV1 expression in the cochlea is under control of oxidative stress (produced primarily by NOX3 NADPH oxidase) as well as STAT1 and STAT3 transcription factors, which differentially modulate inflammatory and apoptotic signals in the cochlea. Inhibition of oxidative stress or inflammation reduces the expression of TRPV1 channels and protects against cochlear damage and hearing loss. Critical Issues: TRPV1 channels are activated by both capsaicin and cisplatin, which produce differential effects on the inner ear. How these differential actions are produced is yet to be determined. It is clear that TRPV1 is an essential component of cisplatin ototoxicity as knockdown of these channels protects against hearing loss. In contrast, activation of TRPV1 by capsaicin protected against subsequent hearing loss induced by cisplatin. The cellular targets that are influenced by these two drugs to account for their differential profiles need to be fully elucidated. Furthermore, the potential involvement of different TRP channels present in the cochlea in regulating cisplatin ototoxicity needs to be determined. Future Directions: TRPV1 has been shown to mediate the entry of aminoglycosides into the hair cells. Thus, novel otoprotective strategies could involve designing drugs to inhibit entry of aminoglycosides and possibly other ototoxins into cochlear hair cells. TRP channels, including TRPV1, are expressed on circulating and resident immune cells. These receptors modulate immune cell functions. However, whether they are activated by cochlear stressors to initiate cochlear inflammation and ototoxicity needs to be determined. A better understanding of the function and regulation of these TRP channels in the cochlea could enable development of novel treatments for treating hearing loss. Antioxid. Redox Signal. 36, 1158-1170.
Collapse
Affiliation(s)
- Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, Florida, USA
| | - Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Raheem Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Leonard Rybak
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA.,Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Debashree Mukherjea
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
47
|
Lee SY, Kim S, Han K, Woong Choi J, Byung Chae H, Yeon Choi D, Min Lee S, Kyun Park M, Mun S, Koo JW. Microarray analysis of lipopolysaccharide-induced endotoxemia in the cochlea. Gene 2022; 823:146347. [PMID: 35227853 DOI: 10.1016/j.gene.2022.146347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 11/24/2022]
Abstract
Lipopolysaccharide (LPS)-induced endotoxemia alters intracochlear homeostasis and potentiates aminoglycoside-induced ototoxicity. However, the pathological mechanisms in the cochlea following systemic LPS-induced inflammation are unclear. In this study, three groups of mice received intraperitoneal injections [group A, saline control (n = 10); group B, 1 mg/kg LPS (n = 10); group C, 10 mg/kg LPS (n = 10)]. After 24 h, gene expression in cochlea samples was analyzed using DNA microarrays covering 28,853 genes in a duplicate manner. A total of 505 differentially expressed genes (DEGs) (≥2.0-fold change; p < 0.05) were identified. Interferon- and chemotaxis-related genes, including gbp2, gbp5, cxcl10, and Rnf125, were dose-dependently upregulated by LPS-induced endotoxemia. These results were verified by RT-qPCR. Upregulated DEGs were associated with inflammation, positive regulation of immune responses, and regulation of cell adhesion, while downregulated ones were associated with chemical synaptic transmission and the synaptic vesicle cycle. Protein-protein interaction included four functional clusters associated with interleukin-4, -10, and -13 and G protein-coupled receptor (GPCR) ligand binding; activation of matrix metalloproteinases and collagen degradation; recruitment of amyloid A proteins; and neutrophil degranulation. The findings of this study provide an additional basis on changes in the expression of genes in the cochlea in response to LPS-induced endotoxemia.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, South Korea
| | - Songmi Kim
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, South Korea; Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, South Korea
| | - Kyudong Han
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, South Korea; Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, South Korea
| | - Jin Woong Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University, College of Medicine, Daejeon, South Korea
| | - Ho Byung Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Da Yeon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - So Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seyoung Mun
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea.
| | - Ja-Won Koo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, South Korea.
| |
Collapse
|
48
|
Kim J, Hemachandran S, Cheng AG, Ricci AJ. Identifying targets to prevent aminoglycoside ototoxicity. Mol Cell Neurosci 2022; 120:103722. [PMID: 35341941 PMCID: PMC9177639 DOI: 10.1016/j.mcn.2022.103722] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022] Open
Abstract
Aminoglycosides are potent antibiotics that are commonly prescribed worldwide. Their use carries significant risks of ototoxicity by directly causing inner ear hair cell degeneration. Despite their ototoxic side effects, there are currently no approved antidotes. Here we review recent advances in our understanding of aminoglycoside ototoxicity, mechanisms of drug transport, and promising sites for intervention to prevent ototoxicity.
Collapse
Affiliation(s)
- Jinkyung Kim
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sriram Hemachandran
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
49
|
Lin JN, Wang JS, Lin CC, Lin HY, Yu SH, Wen YH, Tseng GF, Hsu CJ, Wu HP. Ameliorative effect of taxifolin on gentamicin-induced ototoxicity via down-regulation of apoptotic pathways in mouse cochlear UB/OC-2 cells. J Chin Med Assoc 2022; 85:617-626. [PMID: 35286283 DOI: 10.1097/jcma.0000000000000708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Taxifolin is a flavanonol with efficacious cytoprotective properties, such as anti-inflammatory, antioxidant, anticancer, hepatoprotective, and nephroprotective effects. However, the potential protective effects of taxifolin against gentamicin-induced ototoxicity have not been confirmed. In this study, the possible mechanisms underlying the effects of taxifolin on gentamicin-induced death of UB/OC-2 cochlear cells were investigated. METHODS Mouse cochlear UB/OC-2 cells with or without taxifolin pretreatment were exposed to gentamicin, and the effects on cytotoxicity, reactive oxygen species (ROS) production, mitochondrial permeability transition, and apoptotic marker expression were examined using biochemical techniques, flow cytometry, western blotting, and fluorescent staining. RESULTS Little or no apparent effect of taxifolin on cell viability was observed at concentrations less than 40 μM. Further investigations showed that gentamicin significantly inhibited cell viability in a concentration-dependent manner. Pretreatment with taxifolin attenuated gentamicin-induced lactate dehydrogenase release, as well as cellular cytotoxicity. In addition, taxifolin significantly prevented gentamicin-induced cell damage by decreasing ROS production, stabilizing mitochondrial membrane potential, and downregulating the mitochondrial pathway of apoptosis. CONCLUSION In summary, pretreatment with taxifolin is effective for mitigating gentamicin-induced apoptotic cell death mediated by the mitochondrial pathway. Our data suggest that taxifolin provides a new approach to combat gentamicin-induced ototoxicity.
Collapse
Affiliation(s)
- Jia-Ni Lin
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
| | - Jen-Shu Wang
- Department of Chinese Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chung-Ching Lin
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
| | - Hui-Yi Lin
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan, ROC
| | - Szu-Hui Yu
- Department of Music, Tainan University of Technology, Tainan, Taiwan, ROC
| | - Yu-Hsuan Wen
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
- Department of Otolaryngology, Head and Neck Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Guo-Fang Tseng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chuan-Jen Hsu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Hung-Pin Wu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| |
Collapse
|
50
|
Gauvin DV, McComb M, Tapp R, Yoder J, Zimmermann ZJ. Distortion Product Otoacoustic Emission Test is Not the Test to Use in Nonclinical Safety Assessment. Int J Toxicol 2022; 41:243-252. [PMID: 35443823 DOI: 10.1177/10915818221081841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ototoxicity and ocular toxicity screening are but two examples of specialty product lines that are often employed as Tier II or III nonclinical safety/hazard screening assessments. Compared to the regulatory guidelines that govern over standard toxicology or neurotoxicology programs, there is a paucity of regulatory strategies to address these specialized product lines. With respect to ototoxicity testing, we argue for the inclusion of the "least burdensome principles" adopted by the US FDA in providing the most pragmatic, efficient, and directed identification of potential harm to auditory function in the nonclinical safety arena. We argue for the exclusive use of the auditory brainstem response and the exclusion of the distortion product otoacoustic emissions (DPOAEs) in these Tiered II safety assessment programs. The inclusion of both are a burden on operational staff and, due to the extended episodes of anesthesia required to conduct both assays, this strategy poses a health and welfare concern for the selected animal species to be used. The DPOAE does not provide any sufficiently valid or reliable data above and beyond the gold standard ABR data, followed by complete oto-histopathology and cytocochleogram combination designs.
Collapse
Affiliation(s)
| | - Margaret McComb
- Neurobehavioral Studies, 537465Charles River Laboratories, Inc., Mattawan, Mattawan, MI, USA
| | - Rachel Tapp
- Neurobehavioral Studies, 537465Charles River Laboratories, Inc., Mattawan, Mattawan, MI, USA
| | - Joshua Yoder
- Neurobehavioral Studies, 537465Charles River Laboratories, Inc., Mattawan, Mattawan, MI, USA
| | - Zachary J Zimmermann
- Neurobehavioral Studies, 537465Charles River Laboratories, Inc., Mattawan, Mattawan, MI, USA
| |
Collapse
|