1
|
Yu ZY, Liu J, Liu ZH, Liu XY, Tuo JM, Li JH, Tu YF, Tan Q, Ma YY, Bai YD, Xin JY, Huang S, Zeng GH, Shi AY, Wang J, Liu YH, Bu XL, Ye LL, Wan Y, Liu TF, Chen XW, Qiu ZL, Gao CY, Wang YJ. Roles of blood monocytes carrying TREM2 R47H mutation in pathogenesis of Alzheimer's disease and its therapeutic potential in APP/PS1 mice. Alzheimers Dement 2024. [PMID: 39740209 DOI: 10.1002/alz.14402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION The triggering receptor expressed on myeloid cells 2 (TREM2) arginine-47-histidine (R47H) mutation is a significant risk for Alzheimer's disease (AD) with unclear mechanisms. Previous studies focused on microglial amyloid-β (Aβ) phagocytosis with less attention on the impact of TREM2R47H mutation on blood monocytes. METHODS Bone marrow transplantation (BMT) models were used to assess the contribution of blood monocytes carrying TREM2R47H mutation to AD. RESULTS Aβ phagocytosis was compromised in mouse monocytes carrying the TREM2R47H mutation. Transplantation of bone marrow cells (BMCs) carrying TREM2R47H mutation increased cerebral Aβ burden and aggravated AD-type pathologies. Moreover, the replacement of TREM2R47H-BMCs restored monocytic Aβ phagocytosis, lowered Aβ levels in the blood and brain, and improved cognitive function. DISCUSSION Our study reveals that blood monocytes carrying the TREM2R47H mutation substantially contribute to the pathogenesis of AD, and correcting the TREM2R47H mutation in BMCs would be a potential therapeutic approach for those carrying this mutation. HIGHLIGHTS TREM2R47H mutation compromises the Aβ phagocytosis of blood monocytes. Blood monocytes carrying TREM2R47H mutation contribute substantially to AD pathogenesis. Correction of the TREM2R47H mutation in bone marrow cells ameliorates AD pathologies and cognitive impairments.
Collapse
Affiliation(s)
- Zhong-Yuan Yu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jie Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Zhi-Hao Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yu Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
- Department of Neurology, The 991st Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Xiangyang, China
| | - Jin-Mei Tuo
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jiang-Hui Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yun-Feng Tu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Qi Tan
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yuan-Yuan Ma
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yu-Di Bai
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jia-Yan Xin
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Shan Huang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Gui-Hua Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - An-Yu Shi
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xian-Le Bu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Li-Lin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ying Wan
- Biomedical Analysis Centre, Third Military Medical University, Chongqing, China
| | - Tong-Fei Liu
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Xiao-Wei Chen
- Institute of Brain and Intelligence, Chongqing, China
- Brain Research Centre, Collaborative Innovation Centre for Brain Science, Third Military Medical University, Chongqing, China
| | - Zi-Long Qiu
- Songjiang Hospital, Songjiang Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang-Yue Gao
- Department of Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Santoro M, Lam RK, Blumenfeld SE, Tan W, Ciari P, Chu EK, Saw NL, Rijsketic DR, Lin JS, Heifets BD, Shamloo M. Mapping of catecholaminergic denervation, neurodegeneration, and inflammation in 6-OHDA-treated Parkinson's disease mice. RESEARCH SQUARE 2024:rs.3.rs-5206046. [PMID: 39483924 PMCID: PMC11527254 DOI: 10.21203/rs.3.rs-5206046/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Efforts to develop disease-modifying treatments for Parkinson's disease (PD) have been hindered by the lack of animal models replicating all hallmarks of PD and the insufficient attention to extra-nigrostriatal regions pathologically critical for the prodromal appearance of non-motor symptoms. Among PD models, 6-hydroxydopamine (6-OHDA) infusion in mice has gained prominence since 2012, primarily focusing on the nigrostriatal region. This study characterized widespread tyrosine hydroxylase-positive neuron and fiber loss across the brain following a unilateral 6-OHDA (20 μg) infusion into the dorsal striatum. Our analysis integrates immunolabeling, brain clearing (iDISCO+), light sheet microscopy, and computational methods, including fMRI and machine learning tools. We also examined sex differences, disease progression, neuroinflammatory responses, and pro-apoptotic signaling in nigrostriatal regions of C57BL/6 mice exposed to varying 6-OHDA dosages (5, 10, or 20 μg). This comprehensive, spatiotemporal analysis of 6-OHDA-induced pathology may guide the future design of experimental PD studies and neurotherapeutic development.
Collapse
Affiliation(s)
| | | | | | - Weiqi Tan
- Stanford University School of Medicine
| | | | | | - Nay L Saw
- Stanford University School of Medicine
| | | | | | | | | |
Collapse
|
3
|
Wu J, Shao W, Liu X, Zheng F, Wang Y, Cai P, Guo Z, Hu H, Yu G, Guo J, Yao L, Wu S, Li H. Microglial exosomes in paraquat-induced Parkinson's disease: Neuroprotection and biomarker clues. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124035. [PMID: 38670424 DOI: 10.1016/j.envpol.2024.124035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The exact mechanisms underlying the initiation and exacerbation of Parkinson's disease (PD) by paraquat remain unclear. We have revealed that exosomes mediate neurotoxicity induced by low dose paraquat exposure by transmitting intercellular signaling. Exposure to 40 μM paraquat promoted exosome release from mouse microglia cells (BV2) in vitro. Paraquat exposure at 100 μM caused degeneration of mouse dopaminergic MN9D cells and inhibited microglia exosome uptake by fluorescently labeling exosomes. We established an incubation model for exosomes and dopaminergic neuron cells under PQ treatment. The results indicated that microglial exosomes alleviated degeneration, increasing proliferation and PD-related protein expression of dopaminergic neurons; however, paraquat reversed this effect. Then, through exosome high-throughput sequencing and qRT-PCR experiments, miR-92a-3p and miR-24-3p were observed to transfer from exosomes to dopaminergic neurons, inhibited by paraquat. The specificity of miR-92a-3p and miR-24-3p was verified in PD patients exosomes, indicating the potential diagnostic value of the exosomal miRNAs in paraquat-induced PD. These results suggest glia-neuron communication in paraquat-induced neurodegeneration and may identify stable paraquat-mediated PD biomarkers, offering clues for early recognition and prevention of pesticide-induced degenerative diseases.
Collapse
Affiliation(s)
- Jingwen Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fuzhou Center for Disease Control and Prevention, Fuzhou, 350200, China.
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Xu Liu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Yaping Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Ping Cai
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Jianhui Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Linlin Yao
- Affiliated Hospital of Jining Medical University, Jining, 272000, China.
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
4
|
Omar Khudhur Z, Ziyad Abdulqadir S, Faqiyazdin Ahmed Mzury A, Aziz Rasoul A, Wasman Smail S, Ghayour MB, Abdolmaleki A. Epothilone B loaded in acellular nerve allograft enhanced sciatic nerve regeneration in rats. Fundam Clin Pharmacol 2024; 38:307-319. [PMID: 37857403 DOI: 10.1111/fcp.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/19/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Epothilone B (EpoB) is a microtubule-stabilizing agent with neuroprotective properties. OBJECTIVES This study examines the regenerative properties of ANA supplemented with EpoB on a sciatic nerve deficit in male Wistar rats. METHODS For this purpose, the 10 mm nerve gap was filled with acellular nerve allografts (ANAs) containing EpoB at 0.1, 1, and 10 nM concentrations. The sensorimotor recovery was evaluated up to 16 weeks after the operation. Real-time PCR, histomorphometry analysis, and electrophysiological evaluation were also used to evaluate the process of nerve regeneration. RESULTS ANA/EpoB (0.1 nM) significantly improved sensorimotor recovery in rats compared to ANA, ANA/EpoB (1 nM), and ANA/EpoB (10 nM) groups. This led to reduced muscle atrophy, improved sciatic functional index, and thermal paw withdrawal reflex latency, indicating nerve regeneration and target organ reinnervation. The electrophysiological and histomorphometry findings also confirmed the ANA/EpoB regenerative properties (0.1 nM). EpoB only enhanced ANA regenerative properties at 0.1 nM, with no therapeutic effects at higher concentrations. CONCLUSION Totally, we concluded that ANA loaded with 0.1 nM EpoB can effectively reconstruct the transected sciatic nerve in rats, likely by enhancing axonal sprouting and extension.
Collapse
Affiliation(s)
- Zhikal Omar Khudhur
- Department of Biology Education, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | | | | | - Shukur Wasman Smail
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Mohammad B Ghayour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| |
Collapse
|
5
|
Kang J, Tian S, Zhang L, Yang G. Ferroptosis in early brain injury after subarachnoid hemorrhage: review of literature. Chin Neurosurg J 2024; 10:6. [PMID: 38347652 PMCID: PMC10863120 DOI: 10.1186/s41016-024-00357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH), mainly caused by ruptured intracranial aneurysms, is a serious acute cerebrovascular disease. Early brain injury (EBI) is all brain injury occurring within 72 h after SAH, mainly including increased intracranial pressure, decreased cerebral blood flow, disruption of the blood-brain barrier, brain edema, oxidative stress, and neuroinflammation. It activates cell death pathways, leading to neuronal and glial cell death, and is significantly associated with poor prognosis. Ferroptosis is characterized by iron-dependent accumulation of lipid peroxides and is involved in the process of neuron and glial cell death in early brain injury. This paper reviews the research progress of ferroptosis in early brain injury after subarachnoid hemorrhage and provides new ideas for future research.
Collapse
Affiliation(s)
- Junlin Kang
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Shilai Tian
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Lei Zhang
- Gansu Provincial Hospital, Lanzhou City, Gansu Province, China
| | - Gang Yang
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China.
| |
Collapse
|
6
|
Adrian M, Weber M, Tsai MC, Glock C, Kahn OI, Phu L, Cheung TK, Meilandt WJ, Rose CM, Hoogenraad CC. Polarized microtubule remodeling transforms the morphology of reactive microglia and drives cytokine release. Nat Commun 2023; 14:6322. [PMID: 37813836 PMCID: PMC10562429 DOI: 10.1038/s41467-023-41891-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Microglial reactivity is a pathological hallmark in many neurodegenerative diseases. During stimulation, microglia undergo complex morphological changes, including loss of their characteristic ramified morphology, which is routinely used to detect and quantify inflammation in the brain. However, the underlying molecular mechanisms and the relation between microglial morphology and their pathophysiological function are unknown. Here, proteomic profiling of lipopolysaccharide (LPS)-reactive microglia identifies microtubule remodeling pathways as an early factor that drives the morphological change and subsequently controls cytokine responses. We find that LPS-reactive microglia reorganize their microtubules to form a stable and centrosomally-anchored array to facilitate efficient cytokine trafficking and release. We identify cyclin-dependent kinase 1 (Cdk-1) as a critical upstream regulator of microtubule remodeling and morphological change in-vitro and in-situ. Cdk-1 inhibition also rescues tau and amyloid fibril-induced morphology changes. These results demonstrate a critical role for microtubule dynamics and reorganization in microglial reactivity and modulating cytokine-mediated inflammatory responses.
Collapse
Affiliation(s)
- Max Adrian
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Martin Weber
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Ming-Chi Tsai
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Caspar Glock
- Department of OMNI Bioinformatics, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Olga I Kahn
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Lilian Phu
- Department of Microchemistry, Proteomics and Lipidomics, South San Francisco, CA, 94080, USA
| | - Tommy K Cheung
- Department of Microchemistry, Proteomics and Lipidomics, South San Francisco, CA, 94080, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Christopher M Rose
- Department of Microchemistry, Proteomics and Lipidomics, South San Francisco, CA, 94080, USA
| | - Casper C Hoogenraad
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
7
|
Li X, Zeng L, Lu X, Chen K, Yu M, Wang B, Zhao M. Early Brain Injury and Neuroprotective Treatment after Aneurysmal Subarachnoid Hemorrhage: A Literature Review. Brain Sci 2023; 13:1083. [PMID: 37509013 PMCID: PMC10376973 DOI: 10.3390/brainsci13071083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Early brain injury (EBI) subsequent to subarachnoid hemorrhage (SAH) is strongly associated with delayed cerebral ischemia and poor patient prognosis. Based on investigations into the molecular mechanisms underlying EBI, neurovascular dysfunction resulting from SAH can be attributed to a range of pathological processes, such as microvascular alterations in brain tissue, ionic imbalances, blood-brain barrier disruption, immune-inflammatory responses, oxidative stress, and activation of cell death pathways. Research progress presents a variety of promising therapeutic approaches for the preservation of neurological function following SAH, including calcium channel antagonists, endothelin-1 receptor blockers, antiplatelet agents, anti-inflammatory agents, and anti-oxidative stress agents. EBI can be mitigated following SAH through neuroprotective measures. To enhance our comprehension of the relevant molecular pathways involved in brain injury, including brain ischemia-hypoxic injury, neuroimmune inflammation activation, and the activation of various cell-signaling pathways, following SAH, it is essential to investigate the evolution of these multifaceted pathophysiological processes. Facilitating neural repair following a brain injury is critical for improving patient survival rates and quality of life.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lang Zeng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuanzhen Lu
- Department of Neurology, The Third Hospital of Wuhan, Wuhan 430073, China
| | - Kun Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Maling Yu
- Department of Neurology, The Third Hospital of Wuhan, Wuhan 430073, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Rosito M, Sanchini C, Gosti G, Moreno M, De Panfilis S, Giubettini M, Debellis D, Catalano F, Peruzzi G, Marotta R, Indrieri A, De Leonibus E, De Stefano ME, Ragozzino D, Ruocco G, Di Angelantonio S, Bartolini F. Microglia reactivity entails microtubule remodeling from acentrosomal to centrosomal arrays. Cell Rep 2023; 42:112104. [PMID: 36787220 PMCID: PMC10423306 DOI: 10.1016/j.celrep.2023.112104] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/02/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Microglia reactivity entails a large-scale remodeling of cellular geometry, but the behavior of the microtubule cytoskeleton during these changes remains unexplored. Here we show that activated microglia provide an example of microtubule reorganization from a non-centrosomal array of parallel and stable microtubules to a radial array of more dynamic microtubules. While in the homeostatic state, microglia nucleate microtubules at Golgi outposts, and activating signaling induces recruitment of nucleating material nearby the centrosome, a process inhibited by microtubule stabilization. Our results demonstrate that a hallmark of microglia reactivity is a striking remodeling of the microtubule cytoskeleton and suggest that while pericentrosomal microtubule nucleation may serve as a distinct marker of microglia activation, inhibition of microtubule dynamics may provide a different strategy to reduce microglia reactivity in inflammatory disease.
Collapse
Affiliation(s)
- Maria Rosito
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Caterina Sanchini
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Giorgio Gosti
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy; Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Manuela Moreno
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Simone De Panfilis
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | | | - Doriana Debellis
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Federico Catalano
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Roberto Marotta
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; Institute for Genetic and Biomedical Research, National Research Council, 20090 Milan, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; Institute of Biochemistry and Cellular Biology, National Research Council, 00015 Rome, Italy
| | - Maria Egle De Stefano
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185 Rome, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00179 Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy; Department of Physics, Sapienza University, 00185 Rome, Italy
| | - Silvia Di Angelantonio
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; D-Tails s.r.l, 00165 Rome, Italy.
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Griffin JM, Hingorani Jai Prakash S, Bockemühl T, Benner JM, Schaffran B, Moreno-Manzano V, Büschges A, Bradke F. Rehabilitation enhances epothilone-induced locomotor recovery after spinal cord injury. Brain Commun 2023; 5:fcad005. [PMID: 36744011 PMCID: PMC9893225 DOI: 10.1093/braincomms/fcad005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Microtubule stabilization through epothilones is a promising preclinical therapy for functional recovery following spinal cord injury that stimulates axon regeneration, reduces growth-inhibitory molecule deposition and promotes functional improvements. Rehabilitation therapy is the only clinically validated approach to promote functional improvements following spinal cord injury. However, whether microtubule stabilization can augment the beneficial effects of rehabilitation therapy or act in concert with it to further promote repair remains unknown. Here, we investigated the pharmacokinetic, histological and functional efficacies of epothilone D, epothilone B and ixabepilone alone or in combination with rehabilitation following a moderate contusive spinal cord injury. Pharmacokinetic analysis revealed that ixabepilone only weakly crossed the blood-brain barrier and was subsequently excluded from further investigations. In contrast, epothilones B and D rapidly distributed to CNS compartments displaying similar profiles after either subcutaneous or intraperitoneal injections. Following injury and subcutaneous administration of epothilone B or D, rats were subjected to 7 weeks of sequential bipedal and quadrupedal training. For all outcome measures, epothilone B was efficacious compared with epothilone D. Specifically, epothilone B decreased fibrotic scaring which was associated with a retention of fibronectin localized to perivascular cells in sections distal to the lesion. This corresponded to a decreased number of cells present within the intralesional space, resulting in less axons within the lesion. Instead, epothilone B increased serotonergic fibre regeneration and vesicular glutamate transporter 1 expression caudal to the lesion, which was not affected by rehabilitation. Multiparametric behavioural analyses consisting of open-field locomotor scoring, horizontal ladder, catwalk gait analysis and hindlimb kinematics revealed that rehabilitation and epothilone B both improved several aspects of locomotion. Specifically, rehabilitation improved open-field locomotor and ladder scores, as well as improving the gait parameters of limb coupling, limb support, stride length and limb speed; epothilone B improved these same gait parameters but also hindlimb kinematic profiles. Functional improvements by epothilone B and rehabilitation acted complementarily on gait parameters leading to an enhanced recovery in the combination group. As a result, principal component analysis of gait showed the greatest improvement in the epothilone B plus rehabilitation group. Thus, these results support the combination of epothilone B with rehabilitation in a clinical setting.
Collapse
Affiliation(s)
- Jarred M Griffin
- Correspondence may also be addressed to: Jarred Griffin The German Center for Neurodegenerative Diseases (DZNE) Venusberg-Campus 1/99, Bonn 53127, Germany E-mail:
| | - Sonia Hingorani Jai Prakash
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain
| | - Till Bockemühl
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne 50674, Germany
| | - Jessica M Benner
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Barbara Schaffran
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne 50674, Germany
| | - Frank Bradke
- Correspondence to: Frank Bradke The German Center for Neurodegenerative Diseases (DZNE) Venusberg-Campus 1/99, Bonn 53127, Germany E-mail:
| |
Collapse
|
10
|
Crosstalk between PI3K/AKT/KLF4 signaling and microglia M1/M2 polarization as a novel mechanistic approach towards flibanserin repositioning in parkinson's disease. Int Immunopharmacol 2022; 112:109191. [PMID: 36055034 DOI: 10.1016/j.intimp.2022.109191] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 02/07/2023]
Abstract
Balancing microglia M1/M2 polarization has been shown as a prospective therapeutic strategy for Parkinson's disease (PD). Various vital signaling pathways are likely to govern the microglial phenotype. The implication of 5HT1A receptors in neurodegenerative disorders has raised interest in exploring the repositioning of flibanserin (Flib), a 5HT1A agonist, as an effective neuroprotective agent for PD. Therefore, this study was designed to assess the ability of Flib to modulate microglia phenotype switching from M1 to M2 via PI3K/AKT downstream targets in a rotenone model of PD. Rats received rotenone (1.5 mg/kg) every other day and were concurrently treated with Flib (40 mg/kg/day) with or without wortmannin (15 μg/kg/day), a PI3K inhibitor, for 21 days. Flib improved the motor perturbations induced by rotenone, as confirmed by the reversion of histopathological damage and tyrosine hydroxylase immunohistochemical alterations in both the striata and substantia nigra. The molecular signaling of Flib was elaborated by inducing striatal AKT phosphorylation and the expression of its substantial target, KLF4. Flib induced STAT6 phosphorylation to promote M2 polarization as demonstrated by the increased CD163++ microglial count with striatal arginase activity. In parallel, it markedly inhibited M1 activation as evidenced by the reduction in CD86++ microglia count with striatal proinflammatory mediators, IL-1β and iNOS. The pre-administration of wortmannin mostly negated Flib's neuroprotective effects. In conclusion, Flib AKT/ KLF4-dependently amended M1/M2 microglial imbalance to exert a promising neuroprotective effect, highlighting its potential as a revolutionary candidate for conquering PD.
Collapse
|
11
|
Yu ZY, Yi X, Wang YR, Zeng GH, Tan CR, Cheng Y, Sun PY, Liu ZH, Wang YJ, Liu YH. Inhibiting α1-adrenergic receptor signaling pathway ameliorates AD-type pathologies and behavioral deficits in APPswe/PS1 mouse model. J Neurochem 2022; 161:293-307. [PMID: 35244207 DOI: 10.1111/jnc.15603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/25/2022] [Accepted: 02/23/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Zhong-Yuan Yu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xu Yi
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ye-Ran Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Gui-Hua Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Cheng-Rong Tan
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yuan Cheng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Pu-Yang Sun
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhi-Hao Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
12
|
Lai X, Hu J, Liu H, Lan L, Long Y, Gao X, Deng J. A short peptide from sAPPα binding to BACE1-APP action site rescues Alzheimer-like pathology. Neurosci Lett 2021; 770:136397. [PMID: 34915100 DOI: 10.1016/j.neulet.2021.136397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Amyloid β-peptide (Aβ) is the driven force of Alzheimer's disease (AD), and reducing Aβ production could be a potential therapeutic strategy for AD. sAPPα appears to have the ability to specifically inhibit β-cleavage of APP without inhibiting BACE1 completely, direct administration of sAPPα may not be clinically applicable due to the low permeability of blood-brain barrier (BBB). In this study, we investigated the neuroprotective effects of a short peptide generated from sAPPα, which could specifically bind to BACE1 at the BACE1-APP action site. We found that this peptide significantly reduced Aβ production both in vivo and in vitro, thus further attenuated Aβ deposition, Tau hyperphosphorylation, neuroinflammation et al. and rescued behavioral deficits. Therefore, this short peptide may hold promise for the treatment of AD due to its neuroprotective effects, low molecular weight to cross BBB, and less safety concerns. The anti-neurodegenerative capacity of sAPPα may not result solely from direct inhibition of BACE1.
Collapse
Affiliation(s)
- Xia Lai
- Department of General Medicine and Center of Health Management Daping Hospital Third Military Medical University, Chongqing 400042, China
| | - Jie Hu
- Department of General Medicine and Center of Health Management Daping Hospital Third Military Medical University, Chongqing 400042, China
| | - He Liu
- Department of General Medicine and Center of Health Management Daping Hospital Third Military Medical University, Chongqing 400042, China
| | - Ling Lan
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yan Long
- Department of General Medicine and Center of Health Management Daping Hospital Third Military Medical University, Chongqing 400042, China
| | - Xia Gao
- Department of General Medicine and Center of Health Management Daping Hospital Third Military Medical University, Chongqing 400042, China
| | - Juan Deng
- Department of General Medicine and Center of Health Management Daping Hospital Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
13
|
Zhang Y, Shao W, Wu J, Huang S, Yang H, Luo Z, Zheng F, Wang YL, Cai P, Guo Z, Wu S, Li H. Inflammatory lncRNA AK039862 regulates paraquat-inhibited proliferation and migration of microglial and neuronal cells through the Pafah1b1/Foxa1 pathway in co-culture environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111424. [PMID: 33120262 DOI: 10.1016/j.ecoenv.2020.111424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/07/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Emerging evidences having suggested that particular lncRNAs have a potential effect on PD progression through provoking damage and inflammatory responses of microglia/ dopaminergic cells. In addition, paraquat can be accumulated in human body through various approaches and have an increased risk for Parkinson's disease. However, the specific role and mechanism of lncRNA related to neurotoxic in the progression of PD is unclear. In our study, a mouse PD model was established induced by the intraperitoneal injection of paraquat (5 mg/kg and 10 mg/kg) every three days (10 times). We determined differential expression of lncRNA AK039862 and its potential targeted genes Pafah1b1/Foxa1 in PD mouse model, then we used fluorescence in situ hybridization (FISH) to visualize the cellular distribution of AK039862. Short interfering RNAs (siRNAs) and overexpression plasmids were designed for knockdown or overexpression of AK039862. To simulate the coexisting dopaminergic cells and microglia cells in vitro, we applied several non-contact co-culture models, including conditioned medium and Transwell co-culture systems. Cytotoxicity of PQ was evaluated using bv2 cells with the concentrations: 30, 60 μM, and mn9d cells with the concentrations: 50, 100 μM. As a result, we depicted multiple interesting individual and interactive features of inflammatory lncRNA AK039862 involved in PQ-induced cellular functional effects. First, we detected that AK039862 contributed to the neuronal injury process in PQ-treated mice and co-localization of AK039862 with dopaminergic cells in vivo. And interestingly, we demonstrated that PQ significantly inhibited microglia and dopaminergic cells proliferation and microglia migration in vitro. Further research indicated that the PQ-induced low expression of AK039862 rescued microglia proliferation and migration inhibition via the AK039862/Pafah1b1/Foxa1 pathway. Meanwhile, AK039862 also participated in the interaction between microglia and dopaminergic cells with PQ treatment in non-contact co-culture models. In summary, we found that PQ inhibited the proliferation and migration of microglial cells, and elucidated AK039862 played a key role in PQ-induced neuroinflammatory damage through Pafah1b1/Foxa1. Finally, inflammatory AK039862 is involved in the complex communication between microglia and dopaminergic cells in the environment of PQ damage.
Collapse
Affiliation(s)
- Yinyin Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, The Second Military Medical University, Shanghai 200433, China.
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Jingwen Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Shouxiong Huang
- Department of Environmental Health, College of Medicine, University of Cincinnati, Ohio 45267, United States.
| | - Hongyu Yang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Zhousong Luo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Yuan-Liang Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Ping Cai
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
14
|
Boiarska Z, Passarella D. Microtubule-targeting agents and neurodegeneration. Drug Discov Today 2020; 26:604-615. [PMID: 33279455 DOI: 10.1016/j.drudis.2020.11.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 11/25/2022]
Abstract
The association of microtubule (MT) breakdown with neurodegeneration and neurotoxicity has provided an emerging therapeutic approach for neurodegenerative diseases. Tubulin binders are able to modulate MT dynamics and, as a result, are of particular interest both as potential therapeutics and experimental tools used to validate this strategy. Here, we provide a comprehensive overview of current knowledge and recent advancements regarding MT-targeting approaches for neurodegeneration and evaluate the potential application of MT-targeting agents (MTAs) based on available preclinical and clinical data.
Collapse
Affiliation(s)
- Zlata Boiarska
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
15
|
Miller JH, Das V. Potential for Treatment of Neurodegenerative Diseases with Natural Products or Synthetic Compounds that Stabilize Microtubules. Curr Pharm Des 2020; 26:4362-4372. [DOI: 10.2174/1381612826666200621171302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/08/2020] [Indexed: 01/04/2023]
Abstract
No effective therapeutics to treat neurodegenerative diseases exist, despite significant attempts to find
drugs that can reduce or rescue the debilitating symptoms of tauopathies such as Alzheimer’s disease, Parkinson’s
disease, frontotemporal dementia, amyotrophic lateral sclerosis, or Pick’s disease. A number of in vitro and in
vivo models exist for studying neurodegenerative diseases, including cell models employing induced-pluripotent
stem cells, cerebral organoids, and animal models of disease. Recent research has focused on microtubulestabilizing
agents, either natural products or synthetic compounds that can prevent the axonal destruction caused
by tau protein pathologies. Although promising results have come from animal model studies using brainpenetrant
natural product microtubule-stabilizing agents, such as paclitaxel analogs that can access the brain,
epothilones B and D, and other synthetic compounds such as davunetide or the triazolopyrimidines, early clinical
trials in humans have been disappointing. This review aims to summarize the research that has been carried out in
this area and discuss the potential for the future development of an effective microtubule stabilizing drug to treat
neurodegenerative disease.
Collapse
Affiliation(s)
- John H. Miller
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínska 5, 77900 Olomouc, Czech Republic
| |
Collapse
|
16
|
Liang J, Wang H, Bian X, Zhang Y, Zhao G, Ding X. Heterologous redox partners supporting the efficient catalysis of epothilone B biosynthesis by EpoK in Schlegelella brevitalea. Microb Cell Fact 2020; 19:180. [PMID: 32933531 PMCID: PMC7493146 DOI: 10.1186/s12934-020-01439-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epothilone B is a natural product that stabilizes microtubules, similar to paclitaxel (Taxol); therefore, epothilone B and several derivatives have shown obvious antitumour activities. Some of these products are in clinical trials, and one (ixabepilone, BMS) is already on the market, having been approved by the FDA in 2007. The terminal step in epothilone B biosynthesis is catalysed by the cytochrome P450 enzyme EpoK (CYP167A1), which catalyses the epoxidation of the C12-C13 double bond (in epothilone C and D) to form epothilone A and B, respectively. Although redox partners from different sources support the catalytic activity of EpoK in vitro, the conversion rates are low, and these redox partners are not applied to produce epothilone B in heterologous hosts. RESULTS Schlegelella brevitalea DSM 7029 contains electron transport partners that efficiently support the catalytic activity of EpoK. We screened and identified one ferredoxin, Fdx_0135, by overexpressing putative ferredoxin genes in vivo and identified two ferredoxin reductases, FdR_0130 and FdR_7100, by whole-cell biotransformation of epothilone C to effectively support the catalytic activity of EpoK. In addition, we obtained strain H7029-3, with a high epothilone B yield and found that the proportion of epothilone A + B produced by this strain was 90.93%. Moreover, the whole-cell bioconversion strain 7029-10 was obtained; this strain exhibited an epothilone C conversion rate of 100% in 12 h. Further RT-qPCR experiments were performed to analyse the overexpression levels of the target genes. Gene knock-out experiments showed that the selected ferredoxin (Fdx_0135) and its reductases (FdR_0130 and FdR_7100) might participate in critical physiological processes in DSM 7029. CONCLUSION Gene overexpression and whole-cell biotransformation were effective methods for identifying the electron transport partners of the P450 enzyme EpoK. In addition, we obtained an epothilone B high-yield strain and developed a robust whole-cell biotransformation system. This strain and system hold promise for the industrial production of epothilone B and its derivatives.
Collapse
Affiliation(s)
- Junheng Liang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Huimin Wang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Xiaoying Bian
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Guoping Zhao
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.,CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xiaoming Ding
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
17
|
Chen Y, Wang Y, Hu J, Tang Y, Tian Z, Hu W, Zeng F, Tan J, Dai Q, Hou Z, Luo F, Xu J, Dong S. Epothilone B prevents lipopolysaccharide-induced inflammatory osteolysis through suppressing osteoclastogenesis via STAT3 signaling pathway. Aging (Albany NY) 2020; 12:11698-11716. [PMID: 32527985 PMCID: PMC7343516 DOI: 10.18632/aging.103337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
Inflammatory osteolysis is a common osteolytic specificity that occurs during infectious orthopaedic surgery and is characterized by an imbalance in bone homeostasis due to excessive osteoclast bone resorption activity. Epothilone B (Epo B) induced α-tubulin polymerization and enhanced microtubule stability, which also played an essential role in anti-inflammatory effect on the regulation of many diseases. However, its effects on skeletal system have rarely been investigated. Our study demonstrated that Epo B inhibited osteoclastogenesis in vitro and prevented inflammatory osteolysis in vivo. Further analysis showed that Epo B also markedly induced mature osteoclasts apoptosis during osteoclastogenesis. Mechanistically, Epo B directly suppressed osteoclastogenesis by the inhibitory regulation of the phosphorylation and activation of PI3K/Akt/STAT3 signaling directly, and the suppressive regulation of the CD9/gp130/STAT3 signaling pathway indirectly. The negative regulatory effect on STAT3 signaling further restrained the translocation of NF-κB p65 and NFATc1 from the cytosol to the nuclei during RANKL stimulation. Additionally, the expression of osteoclast specific genes was also significantly attenuated during osteoclast fusion and differentiation. Taken together, these findings illustrated that Epo B protected against LPS-induced bone destruction through inhibiting osteoclastogenesis via regulating the STAT3 dependent signaling pathway.
Collapse
Affiliation(s)
- Yueqi Chen
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yiran Wang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Junxian Hu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yong Tang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhansong Tian
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Fanchun Zeng
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
- The Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
18
|
Yu ZY, Li WW, Yang HM, Mañucat-Tan NB, Wang J, Wang YR, Sun BL, Hu ZC, Zhang LL, Tan L, Deng J, Liu YH. Naturally Occurring Antibodies to Tau Exists in Human Blood and Are Not Changed in Alzheimer's Disease. Neurotox Res 2020; 37:1029-1035. [PMID: 32026360 DOI: 10.1007/s12640-020-00161-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/28/2019] [Accepted: 01/04/2020] [Indexed: 12/18/2022]
Abstract
Hyperphosphorylated tau is an important pathological agent in Alzheimer's disease (AD). Tau effluxes from the brain to the blood could potentially stimulate the production of naturally occurring antibodies (NAbs). We aimed to investigate whether NAbs to tau (NAbs-tau) was generated in human blood and to figure out the alteration of plasma NAbs-tau level in AD patients. About 192 AD patients and 192 age-matched and non-demented controls (NC) were enrolled in the present study. Immunofluorescence staining and western blot assays were used to confirm the existence of NAbs-tau in human blood. The plasma level of NAbs-tau in NC and AD group was analyzed by ELISA. Immunofluorescence staining and western blot assays confirmed the existence of NAbs-tau in human blood. However, no significant difference in the plasma level of NAbs-tau was observed between NC and AD group. Furthermore, the plasma level of NAbs-tau had no significant correlation with MMSE scores. The present study confirmed that NAbs-tau exists in human blood but does not differ in level between the NC and AD group. Plasma NAbs-tau is not a reliable biomarker for AD.
Collapse
Affiliation(s)
- Zhong-Yuan Yu
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Basic Medical College, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei-Wei Li
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hai-Mei Yang
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Noralyn B Mañucat-Tan
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Jun Wang
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ye-Ran Wang
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Bin-Lu Sun
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zi-Cheng Hu
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li-Li Zhang
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liang Tan
- Southwest hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Juan Deng
- Department of Healthy Management, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China.
| | - Yu-Hui Liu
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
19
|
Fletcher EJR, Moon LDF, Duty S. Chondroitinase ABC reduces dopaminergic nigral cell death and striatal terminal loss in a 6-hydroxydopamine partial lesion mouse model of Parkinson's disease. BMC Neurosci 2019; 20:61. [PMID: 31862005 PMCID: PMC6923832 DOI: 10.1186/s12868-019-0543-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/10/2019] [Indexed: 11/28/2022] Open
Abstract
Background Parkinson’s disease (PD) is characterised by dopaminergic cell loss within the substantia nigra pars compacta (SNc) that leads to reduced striatal dopamine content and resulting motor deficits. Identifying new strategies to protect these cells from degeneration and retain striatal dopaminergic innervation is therefore of great importance. Chondroitin sulphate proteoglycans (CSPGs) are recognised contributors to the inhibitory extracellular milieu known to hinder tissue recovery following CNS damage. Digestion of these molecules by the bacterial lyase chondroitinase ABC (ChABC) has been shown to promote functional recovery in animal models of neurological injury. Although ChABC has been shown to promote sprouting of dopaminergic axons following transection of the nigrostriatal pathway, its ability to protect against nigrostriatal degeneration in a toxin-based module with better construct validity for PD has yet to be explored. Here we examined the neuroprotective efficacy of ChABC treatment in the full and partial 6-hydroxydopamine (6-OHDA) lesion mouse models of PD. Results In mice bearing a full 6-OHDA lesion, ChABC treatment failed to protect against the loss of either nigral cells or striatal terminals. In contrast, in mice bearing a partial 6-OHDA lesion, ChABC treatment significantly protected cells of the rostral SNc, which remained at more than double the numbers seen in vehicle-treated animals. In the partial lesion model, ChABC treatment also significantly preserved dopaminergic fibres of the rostral dorsal striatum which increased from 15.3 ± 3.5% of the intact hemisphere in saline-treated animals to 36.3 ± 6.5% in the ChABC-treated group. These protective effects of ChABC treatment were not accompanied by improvements in either the cylinder or amphetamine-induced rotations tests of motor function. Conclusions ChABC treatment provided significant protection against a partial 6-OHDA lesion of the nigrostriatal tract although the degree of protection was not sufficient to improve motor outcomes. These results support further investigations into the benefits of ChABC treatment for providing neuroprotection in PD.
Collapse
Affiliation(s)
- Edward J R Fletcher
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Lawrence D F Moon
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Susan Duty
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
20
|
Ethanol Induction of Innate Immune Signals Across BV2 Microglia and SH-SY5Y Neuroblastoma Involves Induction of IL-4 and IL-13. Brain Sci 2019; 9:brainsci9090228. [PMID: 31510019 PMCID: PMC6770440 DOI: 10.3390/brainsci9090228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023] Open
Abstract
Innate immune signaling molecules, such as Toll-like receptors (TLRs), cytokines and transcription factor NFκB, are increased in post-mortem human alcoholic brain and may play roles in alcohol dependence and neurodegeneration. Innate immune signaling involves microglia -neuronal signaling which while poorly understood, may impact learning and memory. To investigate mechanisms of ethanol induction of innate immune signaling within and between brain cells, we studied immortalized BV2 microglia and SH-SY5Y human neuroblastoma to model microglial and neuronal signaling. Cells were treated alone or in co-culture using a Transwell system, which allows transfer of soluble mediators. We determined immune signaling mRNA using real-time polymerase chain reaction. Ethanol induced innate immune genes in both BV2 and SH-SY5Y cultured alone, with co-culture altering gene expression at baseline and following ethanol exposure. Co-culture blunted ethanol-induced high mobility group box protein 1 (HMGB1)-TLR responses, corresponding with reduced ethanol induction of several proinflammatory NFκB target genes. In contrast, co-culture resulted in ethanol upregulation of cytokines IL-4 and IL-13 in BV2 and corresponding receptors, that is, IL-4 and IL-13 receptors, in SH-SY5Y, suggesting induction of a novel signaling pathway. Co-culture reduction in HMGB1-TLR levels occurs in parallel with reduced proinflammatory gene induction and increased IL-4 and IL-13 ligands and receptors. Findings from these immortalized and tumor-derived cell lines could provide insight into microglial-neuronal interactions via release of soluble mediators in vivo.
Collapse
|
21
|
Ma Y, Liu T, Fu J, Fu S, Hu C, Sun B, Fan X, Zhu J. Lactobacillus acidophilus Exerts Neuroprotective Effects in Mice with Traumatic Brain Injury. J Nutr 2019; 149:1543-1552. [PMID: 31174208 DOI: 10.1093/jn/nxz105] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/11/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) causes dysbiosis and intestinal barrier disruption, which further exacerbate brain damage via an inflammatory pathway. Gut microbiota remodeling by Lactobacillus acidophilus (LA) is a potential intervention. OBJECTIVE The aim of this study was to investigate the neuroprotective effects of LA in TBI and elucidated underlying mechanisms. METHODS C57BL/6 male mice (aged 8-9 wk) were subjected to weight-drop impact and gavaged with saline (TBI + vehicle) or LA (1 × 1010 CFU) (TBI + LA) on the day of injury and each day after for 1, 3, or 7 d. The sham + vehicle mice underwent craniotomy without brain injury and were gavaged with saline. Sensorimotor functions were determined pre-TBI and 1, 3, and 7 d postinjury. Indexes of neuroinflammation, peripheral inflammation, and intestinal barrier function were measured on days 3 and 7. Microbiota composition was measured 3 d postinjury. The data were mainly analyzed by 2-factor ANOVA. RESULTS Compared with sham + vehicle mice, the TBI + vehicle mice exhibited impairments in the neurological severity score (+692%, day 3; +600%, day 7) and rotarod test (-58%, day 3; -45%, day 7) (P < 0.05), which were rescued by LA. The numbers of microglia (total and activated) and astrocytes and concentrations of TNF-α and IL1-β in the perilesional cortex were elevated in the TBI + vehicle mice on day 3 or 7 compared with sham + vehicle mice (P < 0.05) and were normalized by LA. Compared with sham + vehicle mice, the TBI + vehicle mice exhibited increased serum concentrations of endotoxin and TNF-α, and intestinal barrier permeability (D-lactate) on days 3 and 7 (P < 0.05), and these changes were alleviated by LA. Three days postinjury, the microbiota composition was disrupted in the TBI + vehicle mice compared with sham + vehicle mice (P < 0.05), which was restored by LA. CONCLUSION Our results demonstrate that LA exerts neuroprotective effects that may be associated with gut microbiota remodeling in TBI mice.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Basic Nursing, School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingjing Fu
- Department of Basic Nursing, School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shaoli Fu
- Department of Basic Nursing, School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chen Hu
- Department of Basic Nursing, School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China
| | - Bo Sun
- Department of Basic Nursing, School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingci Zhu
- Department of Basic Nursing, School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|