1
|
Piriyaprasath K, Kakihara Y, Hasegawa M, Iwamoto Y, Hasegawa Y, Fujii N, Yamamura K, Okamoto K. Nutritional Strategies for Chronic Craniofacial Pain and Temporomandibular Disorders: Current Clinical and Preclinical Insights. Nutrients 2024; 16:2868. [PMID: 39275184 PMCID: PMC11397166 DOI: 10.3390/nu16172868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
This narrative review provides an overview of current knowledge on the impact of nutritional strategies on chronic craniofacial pain associated with temporomandibular disorders (TMDs). Individuals experiencing painful TMDs alter their dietary habits, avoiding certain foods, possibly due to chewing difficulties, which might lead to nutrient deficiencies. Our literature investigation revealed that the causal links between nutritional changes and craniofacial pain remain unclear. However, clinical and preclinical studies suggest that nutraceuticals, including vitamins, minerals, polyphenols, omega-3 fatty acids, isoprenoids, carotenoids, lectins, polysaccharides, glucosamines, and palmitoylethanolamides, could have beneficial effects on managing TMDs. This is described in 12 clinical and 38 preclinical articles since 2000. Clinical articles discussed the roles of vitamins, minerals, glucosamine, and palmitoylethanolamides. The other nutraceuticals were assessed solely in preclinical studies, using TMD models, mostly craniofacial inflammatory rodents, with 36 of the 38 articles published since 2013. Our investigation indicates that current evidence is insufficient to assess the efficacy of these nutraceuticals. However, the existing data suggest potential for therapeutic intervention in TMDs. Further support from longitudinal and randomized controlled studies and well-designed preclinical investigations is necessary to evaluate the efficacy of each nutraceutical intervention and understand their underlying mechanisms in TMDs.
Collapse
Affiliation(s)
- Kajita Piriyaprasath
- Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok 650000, Thailand
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| | - Mana Hasegawa
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Division of General Dentistry and Dental Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata 951-8514, Japan
| | - Yuya Iwamoto
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Division of Dental Clinical Education, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yoko Hasegawa
- Division of Comprehensive Prosthodontics, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Noritaka Fujii
- Division of Dental Clinical Education, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Keiichiro Okamoto
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
2
|
Vieira CP, Lelis CA, Ochioni AC, Rosário DKA, Rosario ILS, Vieira IRS, Carvalho APA, Janeiro JM, da Costa MP, Lima FRS, Mariante RM, Alves LA, Foguel D, Junior CAC. Estimating the therapeutic potential of NSAIDs and linoleic acid-isomers supplementation against neuroinflammation. Biomed Pharmacother 2024; 177:116884. [PMID: 38889635 DOI: 10.1016/j.biopha.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) regulate inflammation, which is associated with their role in preventing neurodegenerative diseases in epidemiological studies. It has sparked interest in their unconventional application for reducing neuroinflammation, opening up new avenues in biomedical research. However, given the pharmacological drawbacks of NSAIDs, the development of formulations with naturally antioxidant/anti-inflammatory dietary fatty acids has been demonstrated to be advantageous for the clinical translation of anti-inflammatory-based therapies. It includes improved blood-brain barrier (BBB) permeability and reduced toxicity. It permits us to speculate about the value of linoleic acid (LA)-isomers in preventing and treating neuroinflammatory diseases compared to NSAIDs. Our research delved into the impact of various factors, such as administration route, dosage, timing of intervention, and BBB permeability, on the efficacy of NSAIDs and LA-isomers in preclinical and clinical settings. We conducted a systematic comparison between NSAIDs and LA-isomers regarding their therapeutic effectiveness, BBB compatibility, and side effects. Additionally, we explored their underlying mechanisms in addressing neuroinflammation. Through our analysis, we've identified challenges and drawn conclusions that could propel advancements in treating neurodegenerative diseases and inform the development of future alternative therapeutic strategies.
Collapse
Affiliation(s)
- Carla Paulo Vieira
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil; Cellular Communication Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | - Carini A Lelis
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Alan Clavelland Ochioni
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Denes Kaic A Rosário
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Iuri L S Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Zootechnies, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil
| | - Italo Rennan S Vieira
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Anna Paula A Carvalho
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - José Marcos Janeiro
- Glial Cell Biology Laboratory, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Marion P da Costa
- Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Zootechnies, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil; Graduate Program in Food Science (PGAli), Faculty of Pharmacy, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil
| | - Flavia R S Lima
- Glial Cell Biology Laboratory, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Rafael M Mariante
- Laboratory of Structural Biology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Luiz Anastácio Alves
- Cellular Communication Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | - Debora Foguel
- Laboratory of Protein Aggregation and Amyloidosis, Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Carlos Adam Conte Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil.
| |
Collapse
|
3
|
Ficco DBM, Petroni K, Mistura L, D'Addezio L. Polyphenols in Cereals: State of the Art of Available Information and Its Potential Use in Epidemiological Studies. Nutrients 2024; 16:2155. [PMID: 38999902 PMCID: PMC11243113 DOI: 10.3390/nu16132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Cereals are the basis of much of the world's daily diet. Recently, there has been considerable interest in the beneficial properties of wholegrains due to their content of phytochemicals, particularly polyphenols. Despite this, the existing data on polyphenolic composition of cereal-based foods reported in the most comprehensive databases are still not updated. Many cereal-based foods and phenolic compounds are missing, including pigmented ones. Observational epidemiological studies reporting the intake of polyphenols from cereals are limited and inconsistent, although experimental studies suggest a protective role for dietary polyphenols against cardiovascular disease, diabetes, and cancer. Estimating polyphenol intake is complex because of the large number of compounds present in foods and the many factors that affect their levels, such as plant variety, harvest season, food processing and cooking, making it difficult matching consumption data with data on food composition. Further, it should be taken into account that food composition tables and consumed foods are categorized in different ways. The present work provides an overview of the available data on polyphenols content reported in several existing databases, in terms of presence, missing and no data, and discusses the strengths and weaknesses of methods for assessing cereal polyphenol consumption. Furthermore, this review suggests a greater need for the inclusion of most up-to-date cereal food composition data and for the harmonization of standardized procedures in collecting cereal-based food data and adequate assessment tools for dietary intake.
Collapse
Affiliation(s)
- Donatella Bianca Maria Ficco
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA)-Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 m 25200, 71122 Foggia, Italy
| | - Katia Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| | - Lorenza Mistura
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA)-Centro di Ricerca Alimenti e Nutrizione, Via Ardeatina 546, 00178 Roma, Italy
| | - Laura D'Addezio
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA)-Centro di Ricerca Alimenti e Nutrizione, Via Ardeatina 546, 00178 Roma, Italy
| |
Collapse
|
4
|
Fathallah S, Abdellatif A, Saadeldin MK. Unleashing nature's potential and limitations: Exploring molecular targeted pathways and safe alternatives for the treatment of multiple sclerosis (Review). MEDICINE INTERNATIONAL 2023; 3:42. [PMID: 37680650 PMCID: PMC10481116 DOI: 10.3892/mi.2023.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Driven by the limitations and obstacles of the available approaches and medications for multiple sclerosis (MS) that still cannot treat the disease, but only aid in accelerating the recovery from its attacks, the use of naturally occurring molecules as a potentially safe and effective treatment for MS is being explored in model organisms. MS is a devastating disease involving the brain and spinal cord, and its symptoms vary widely. Multiple molecular pathways are involved in the pathogenesis of the disease. The present review showcases the recent advancements in harnessing nature's resources to combat MS. By deciphering the molecular pathways involved in the pathogenesis of the disease, a wealth of potential therapeutic agents is uncovered that may revolutionize the treatment of MS. Thus, a new hope can be envisioned in the future, aiming at paving the way toward identifying novel safe alternatives to improve the lives of patients with MS.
Collapse
Affiliation(s)
- Sara Fathallah
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Abdellatif
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Mona Kamal Saadeldin
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
Yamanaka G, Hayashi K, Morishita N, Takeshita M, Ishii C, Suzuki S, Ishimine R, Kasuga A, Nakazawa H, Takamatsu T, Watanabe Y, Morichi S, Ishida Y, Yamazaki T, Go S. Experimental and Clinical Investigation of Cytokines in Migraine: A Narrative Review. Int J Mol Sci 2023; 24:ijms24098343. [PMID: 37176049 PMCID: PMC10178908 DOI: 10.3390/ijms24098343] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The role of neuroinflammation in the pathophysiology of migraines is increasingly being recognized, and cytokines, which are important endogenous substances involved in immune and inflammatory responses, have also received attention. This review examines the current literature on neuroinflammation in the pathogenesis of migraine. Elevated TNF-α, IL-1β, and IL-6 levels have been identified in non-invasive mouse models with cortical spreading depolarization (CSD). Various mouse models to induce migraine attack-like symptoms also demonstrated elevated inflammatory cytokines and findings suggesting differences between episodic and chronic migraines and between males and females. While studies on human blood during migraine attacks have reported no change in TNF-α levels and often inconsistent results for IL-1β and IL-6 levels, serial analysis of cytokines in jugular venous blood during migraine attacks revealed consistently increased IL-1β, IL-6, and TNF-α. In a study on the interictal period, researchers reported higher levels of TNF-α and IL-6 compared to controls and no change regarding IL-1β levels. Saliva-based tests suggest that IL-1β might be useful in discriminating against migraine. Patients with migraine may benefit from a cytokine perspective on the pathogenesis of migraine, as there have been several encouraging reports suggesting new therapeutic avenues.
Collapse
Affiliation(s)
- Gaku Yamanaka
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Kanako Hayashi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Natsumi Morishita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Mika Takeshita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Chiako Ishii
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shinji Suzuki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Rie Ishimine
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Akiko Kasuga
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Haruka Nakazawa
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Tomoko Takamatsu
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yusuke Watanabe
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shinichiro Morichi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yu Ishida
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Takashi Yamazaki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Soken Go
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| |
Collapse
|
6
|
Modulation of Glia Activation by TRPA1 Antagonism in Preclinical Models of Migraine. Int J Mol Sci 2022; 23:ijms232214085. [PMID: 36430567 PMCID: PMC9697613 DOI: 10.3390/ijms232214085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
Preclinical data point to the contribution of transient receptor potential ankyrin 1 (TRPA1) channels to the complex mechanisms underlying migraine pain. TRPA1 channels are expressed in primary sensory neurons, as well as in glial cells, and they can be activated/sensitized by inflammatory mediators. The aim of this study was to investigate the relationship between TRPA1 channels and glial activation in the modulation of trigeminal hyperalgesia in preclinical models of migraine based on acute and chronic nitroglycerin challenges. Rats were treated with ADM_12 (TRPA1 antagonist) and then underwent an orofacial formalin test to assess trigeminal hyperalgesia. mRNA levels of pro- and anti-inflammatory cytokines, calcitonin gene-related peptide (CGRP) and glia cell activation were evaluated in the Medulla oblongata and in the trigeminal ganglia. In the nitroglycerin-treated rats, ADM_12 showed an antihyperalgesic effect in both acute and chronic models, and it counteracted the changes in CGRP and cytokine gene expression. In the acute nitroglycerin model, ADM_12 reduced nitroglycerin-induced increase in microglial and astroglial activation in trigeminal nucleus caudalis area. In the chronic model, we detected a nitroglycerin-induced activation of satellite glial cells in the trigeminal ganglia that was inhibited by ADM_12. These findings show that TRPA1 antagonism reverts experimentally induced hyperalgesia in acute and chronic models of migraine and prevents multiple changes in inflammatory pathways by modulating glial activation.
Collapse
|
7
|
Magni G, Riboldi B, Petroni K, Ceruti S. Flavonoids bridging the gut and the brain: intestinal metabolic fate, and direct or indirect effects of natural supporters against neuroinflammation and neurodegeneration. Biochem Pharmacol 2022; 205:115257. [PMID: 36179933 DOI: 10.1016/j.bcp.2022.115257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
In recent years, experimental evidence suggested a possible role of the gut microbiota in the onset and development of several neurodegenerative disorders, such as AD and PD, MS and pain. Flavonoids, including anthocyanins, EGCG, the flavonol quercetin, and isoflavones, are plant polyphenolic secondary metabolites that have shown therapeutic potential for the treatment of various pathological conditions, including neurodegenerative diseases. This is due to their antioxidant and anti-inflammatory properties, despite their low bioavailability which often limits their use in clinical practice. In more recent years it has been demonstrated that flavonoids are metabolized by specific bacterial strains in the gut to produce their active metabolites. On the other way round, both naturally-occurring flavonoids and their metabolites promote or limit the proliferation of specific bacterial strains, thus profoundly affecting the composition of the gut microbiota which in turn modifies its ability to further metabolize flavonoids. Thus, understanding the best way of acting on this virtuous circle is of utmost importance to develop innovative approaches to many brain disorders. In this review, we summarize some of the most recent advances in preclinical and clinical research on the neuroinflammatory and neuroprotective effects of flavonoids on AD, PD, MS and pain, with a specific focus on their mechanisms of action including possible interactions with the gut microbiota, to emphasize the potential exploitation of dietary flavonoids as adjuvants in the treatment of these pathological conditions.
Collapse
Affiliation(s)
- Giulia Magni
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Benedetta Riboldi
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Katia Petroni
- Department of Biosciences - Università degli Studi di Milano - via Celoria, 26 - 20133 MILAN (Italy)
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy).
| |
Collapse
|
8
|
Fabbrini M, D’Amico F, Barone M, Conti G, Mengoli M, Brigidi P, Turroni S. Polyphenol and Tannin Nutraceuticals and Their Metabolites: How the Human Gut Microbiota Influences Their Properties. Biomolecules 2022; 12:875. [PMID: 35883431 PMCID: PMC9312800 DOI: 10.3390/biom12070875] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Nutraceuticals have been receiving increasing attention in the last few years due to their potential role as adjuvants against non-communicable chronic diseases (cardiovascular disease, diabetes, cancer, etc.). However, a limited number of studies have been performed to evaluate the bioavailability of such compounds, and it is generally reported that a substantial elevation of their plasma concentration can only be achieved when they are consumed at pharmacological levels. Even so, positive effects have been reported associated with an average dietary consumption of several nutraceutical classes, meaning that the primary compound might not be solely responsible for all the biological effects. The in vivo activities of such biomolecules might be carried out by metabolites derived from gut microbiota fermentative transformation. This review discusses the structure and properties of phenolic nutraceuticals (i.e., polyphenols and tannins) and the putative role of the human gut microbiota in influencing the beneficial effects of such compounds.
Collapse
Affiliation(s)
- Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
| | - Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
9
|
Choque Delgado GT, Carlos Tapia KV, Pacco Huamani MC, Hamaker BR. Peruvian Andean grains: Nutritional, functional properties and industrial uses. Crit Rev Food Sci Nutr 2022; 63:9634-9647. [PMID: 35544604 DOI: 10.1080/10408398.2022.2073960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Andean geography induces favorable conditions for the growth of food plants of high nutritional and functional value. Among these plants are the Andean grains, which are recognized worldwide for their nutritional attributes. The objective of this article is to show the nutritional and functional properties, as well as industrial potential, of Andean grains. Quinoa, amaranth, canihua, and Andean corn are grains that contain bioactive compounds with antioxidant, antimicrobial, and anti-inflammatory activities that benefit the health of the consumer. Numerous in vitro and in vivo studies demonstrate their functional potential. These high-Andean crops could be used industrially to add value to other functional food products. These reports suggest the inclusion of these grains in the daily diets of people and the application of their active compounds in the food industry.
Collapse
Affiliation(s)
- Grethel Teresa Choque Delgado
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Katerin Victoria Carlos Tapia
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Maria Cecilia Pacco Huamani
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
10
|
Zhang Y, Capanoglu E, Jiao L, Yin L, Liu X, Wang R, Xiao J, Lu B. Coarse cereals modulating chronic low-grade inflammation: review. Crit Rev Food Sci Nutr 2022; 63:9694-9715. [PMID: 35503432 DOI: 10.1080/10408398.2022.2070596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic low-grade inflammation (CLGI) is closely associated with various chronic diseases. Researchers have paid attention to the comprehensive application and development of food materials with potential anti-inflammatory activity. Owing to their abundant nutrients and biological activities, coarse cereals have emerged as an important component of human diet. Increasing evidence has revealed their potential protective effects against CLGI in chronic conditions. However, this property has not been systematically discussed and summarized. In the present work, numerous published reports were reviewed to systematically analyze and summarize the protective effects of coarse cereals and their main active ingredients against CLGI. Their current utilization state was investigated. The future prospects, such as the synergistic effects among the active compounds in coarse cereals and the biomarker signatures of CLGI, were also discussed. Coarse cereals show promise as food diet resources for preventing CLGI in diseased individuals. Their active ingredients, including β-glucan, resistant starch, arabinoxylan, phenolic acids, flavonoids, phytosterols and lignans, function against CLGI through multiple possible intracellular signaling pathways and immunomodulatory effects. Therefore, coarse cereals play a crucial role in the food industry due to their health effects on chronic diseases and are worthy of further development for possible application in modulating chronic inflammation.
Collapse
Affiliation(s)
- Yongzhu Zhang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Linshu Jiao
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liqing Yin
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Xianjin Liu
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Baiyi Lu
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Does Plant Breeding for Antioxidant-Rich Foods Have an Impact on Human Health? Antioxidants (Basel) 2022; 11:antiox11040794. [PMID: 35453479 PMCID: PMC9024522 DOI: 10.3390/antiox11040794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Given the general beneficial effects of antioxidants-rich foods on human health and disease prevention, there is a continuous interest in plant secondary metabolites conferring attractive colors to fruits and grains and responsible, together with others, for nutraceutical properties. Cereals and Solanaceae are important components of the human diet, thus, they are the main targets for functional food development by exploitation of genetic resources and metabolic engineering. In this review, we focus on the impact of antioxidants-rich cereal and Solanaceae derived foods on human health by analyzing natural biodiversity and biotechnological strategies aiming at increasing the antioxidant level of grains and fruits, the impact of agronomic practices and food processing on antioxidant properties combined with a focus on the current state of pre-clinical and clinical studies. Despite the strong evidence in in vitro and animal studies supporting the beneficial effects of antioxidants-rich diets in preventing diseases, clinical studies are still not sufficient to prove the impact of antioxidant rich cereal and Solanaceae derived foods on human
Collapse
|
12
|
Nutritional Regimes Enriched with Antioxidants as an Efficient Adjuvant for IBD Patients under Infliximab Administration, a Pilot Study. Antioxidants (Basel) 2022; 11:antiox11010138. [PMID: 35052642 PMCID: PMC8773281 DOI: 10.3390/antiox11010138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Antioxidants are privileged candidates for the development of adjuvants able to improve the efficiency of pharmacological therapies, particularly for chronic inflammatory syndromes. During the last 20 years, anti-TNFα (tumor necrosis factor alpha) monoclonal antibodies infusion has been the biological therapy most frequently administered but there is still large space for improvement in disease remission rates and maintenance. In this context, nutritional bioactive compounds contained in dietary patterns or included as supplements, may act as adjuvants for the induction and maintenance of IBD (inflammatory bowel diseases) remission. To verify this possibility, a single-center preliminary study (SI-CURA, Soluzioni Innovative per la gestione del paziente e il follow up terapeutico della Colite UlceRosA) was designed and carried out to evaluate whether a daily administration of purple corn supplement could improve the response to Infliximab (IFX) infusion of IBD patients with both Crohn’s disease (CD) and ulcerative colitis (UC). A cohort of 47 patients was enrolled in the study. Biological samples were collected before the first and the third IFX infusion. All patients received nutritional guidelines, 27 of them received commercial red fruit tea with low anthocyanins content, while 20 received a purple corn supplement with a high anthocyanin content. Results show that the administration of an antioxidant-enriched purple corn supplement could improve IFX-mediated disease remission in terms of circulating inflammatory markers. Comparison between CD and UC patients revealed that, at this anthocyanin dosage, the purple corn extract administration improved the IFX response in CD but not in UC patients. Our results may pave the way for a new metacentric study of CD patients, recruiting a wider cohort and followed-up over a longer observational time.
Collapse
|
13
|
Cappellini F, Marinelli A, Toccaceli M, Tonelli C, Petroni K. Anthocyanins: From Mechanisms of Regulation in Plants to Health Benefits in Foods. FRONTIERS IN PLANT SCIENCE 2021; 12:748049. [PMID: 34777426 PMCID: PMC8580863 DOI: 10.3389/fpls.2021.748049] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/30/2021] [Indexed: 05/09/2023]
Abstract
Anthocyanins represent the major red, purple, and blue pigments in many flowers, fruits, vegetables, and cereals. They are also recognized as important health-promoting components in the human diet with protective effects against many chronic diseases, including cardiovascular diseases, obesity, and cancer. Anthocyanin biosynthesis has been studied extensively, and both biosynthetic and key regulatory genes have been isolated in many plant species. Here, we will provide an overview of recent progress in understanding the anthocyanin biosynthetic pathway in plants, focusing on the transcription factors controlling activation or repression of anthocyanin accumulation in cereals and fruits of different plant species, with special emphasis on the differences in molecular mechanisms between monocot and dicot plants. Recently, new insight into the transcriptional regulation of the anthocyanin biosynthesis, including positive and negative feedback control as well as epigenetic and post-translational regulation of MYB-bHLH-WD40 complexes, has been gained. We will consider how knowledge of regulatory mechanisms has helped to produce anthocyanin-enriched foods through conventional breeding and metabolic engineering. Additionally, we will briefly discuss the biological activities of anthocyanins as components of the human diet and recent findings demonstrating the important health benefits of anthocyanin-rich foods against chronic diseases.
Collapse
|
14
|
Persico G, Casciaro F, Marinelli A, Tonelli C, Petroni K, Giorgio M. Comparative Analysis of Histone H3K4me3 Distribution in Mouse Liver in Different Diets Reveals the Epigenetic Efficacy of Cyanidin-3- O-glucoside Dietary Intake. Int J Mol Sci 2021; 22:6503. [PMID: 34204393 PMCID: PMC8235383 DOI: 10.3390/ijms22126503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Different diets result in significantly different phenotypes through metabolic and genomic reprogramming. Epigenetic marks, identified in humans and mouse models through caloric restriction, a high-fat diet or the intake of specific bioactives, suggest that genomic reprogramming drives this metabolic reprogramming and mediates the effect of nutrition on health. Histone modifications encode the epigenetic signal, which adapts genome functions to environmental conditions, including diets, by tuning the structure and properties of chromatin. To date, the effect of different diets on the genome-wide distribution of critical histone marks has not been determined. METHODS Using chromatin immunoprecipitation sequencing, we investigated the distribution of the trimethylation of lysine 4 of histone H3 in the liver of mice fed for one year with five different diets, including: chow containing yellow corn powder as an extra source of plant bioactives or specifically enriched with cyanidin-3-O-Glucoside, high-fat-enriched obesogenic diets, and caloric-restricted pro-longevity diets. CONCLUSIONS Comparison of the resulting histone mark profiles revealed that functional food containing cyanidin determines a broad effect.
Collapse
Affiliation(s)
- Giuseppe Persico
- Department of Experimental Oncology, IRCCS-European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy;
| | - Francesca Casciaro
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| | - Alessandra Marinelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (A.M.); (C.T.)
| | - Chiara Tonelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (A.M.); (C.T.)
| | - Katia Petroni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (A.M.); (C.T.)
| | - Marco Giorgio
- Department of Experimental Oncology, IRCCS-European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy;
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| |
Collapse
|
15
|
Wu M, Cai J, Yu Y, Hu S, Wang Y, Wu M. Therapeutic Agents for the Treatment of Temporomandibular Joint Disorders: Progress and Perspective. Front Pharmacol 2021; 11:596099. [PMID: 33584275 PMCID: PMC7878564 DOI: 10.3389/fphar.2020.596099] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/19/2020] [Indexed: 02/05/2023] Open
Abstract
Temporomandibular joint disorders (TMD) are a common health condition caused by the structural or functional disorders of masticatory muscles and the temporomandibular joint (TMJ). Abnormal mandibular movement in TMD patients may cause pain, chronic inflammation, and other discomfort, which could be relieved by a variety of drugs through various delivery systems. In this study, we summarized commonly used therapeutic agents in the management of TMD as well as novel bioactive molecules in preclinical stage and clinical trials. The emerging therapy strategies such as novel intra-TMJ delivery systems and implants based on tissue engineering are also discussed. This comprehensive review will strengthen our understanding of pharmacological approaches for TMD therapy.
Collapse
Affiliation(s)
- Mengjie Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Jingyi Cai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomato-logy, Sichuan University, Chengdu, China
| | - Yeke Yu
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sihui Hu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Yingnan Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Mengrui Wu
- College of Life Sciences, Zhejiang University, Zhejiang, China
| |
Collapse
|
16
|
Wu B, Chang H, Marini R, Chopra S, Reddivari L. Characterization of Maize Near-Isogenic Lines With Enhanced Flavonoid Expression to Be Used as Tools in Diet-Health Complexity. FRONTIERS IN PLANT SCIENCE 2021; 11:619598. [PMID: 33584759 PMCID: PMC7874058 DOI: 10.3389/fpls.2020.619598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Increasing incidence of chronic diseases in the 21st century has emphasized the importance of developing crops with enhanced nutritional value. Plant-based diets are associated with reduced incidence of many chronic diseases. The growing population and increased food demand have prioritized the development of high-yielding commercial crop varieties at the expense of natural flavors as well as health-benefiting compounds including polyphenols. Flavonoids are a large subfamily of polyphenols abundant in the plant kingdom with known health-promoting effects, making them a promising trait to be re-introduced into elite lines. Given the vast array of flavonoids and the complexity of plant food metabolome interactions, it is difficult to identify with certainty the specific class(es) of flavonoids in the food matrix that are anti-inflammatory. To address this, we have developed four maize near-isogenic lines (NILs); a line that lacked both anthocyanins and phlobaphenes, a second NIL containing phlobaphenes, a third line had anthocyanins, and a fourth line that contained both anthocyanins and phlobaphenes. The phytochemical profiles and the antioxidant potential of the NILs were characterized. The accumulation of anthocyanins and phlobaphenes contributed significantly to antioxidant capacity compared to maize lines that lacked one or both of the compounds (p < 0.05). Pilot study showed that intake of flavonoid-rich maize diets were able to alleviate experimental colitis in mice. These NILs offer novel materials combining anthocyanins and phlobaphenes and can be used as powerful tools to investigate the disease-preventive effects of specific flavonoid compound in diet/feeding experiments.
Collapse
Affiliation(s)
- Binning Wu
- Department of Plant Science, The Pennsylvania State University, State College, PA, United States
- Interdisciplinary Graduate Program in Plant Biology, The Pennsylvania State University, State College, PA, United States
- Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Haotian Chang
- Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Rich Marini
- Department of Plant Science, The Pennsylvania State University, State College, PA, United States
| | - Surinder Chopra
- Department of Plant Science, The Pennsylvania State University, State College, PA, United States
- Interdisciplinary Graduate Program in Plant Biology, The Pennsylvania State University, State College, PA, United States
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
17
|
Colored Corn: An Up-Date on Metabolites Extraction, Health Implication, and Potential Use. Molecules 2021; 26:molecules26010199. [PMID: 33401767 PMCID: PMC7796034 DOI: 10.3390/molecules26010199] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Colored (orange, pink, red, purple, and blue) corn strongly attracted attention on its healthy properties mainly due to its anthocyanin and carotenoid composition which is also responsible for its pigmentation. The present review summarized the recent updates on the extraction and chemical characterization of the main plant secondary metabolites present in colored seeds, kernel, cob, husk, and silk. The main approaches used to stabilize the extracts have been discussed as well as their food and non-food uses. Both in vitro and in vivo (animal models) studies on the different effects (antibacterial, antimutagenic, antioxidant, and anti-inflammatory activities, effects on metabolic syndrome, diabetes, glucose and lipidic metabolism, and neuroprotection) of pigmented extracts on animal and human health have been summarized.
Collapse
|
18
|
Bracone F, De Curtis A, Di Castelnuovo A, Pilu R, Boccardi M, Cilla S, Macchia G, Deodato F, Costanzo S, Iacoviello L, de Gaetano G, Morganti AG, Petroni K, Tonelli C, Donati MB, Cerletti C. Skin toxicity following radiotherapy in patients with breast carcinoma: is anthocyanin supplementation beneficial? Clin Nutr 2020; 40:2068-2077. [PMID: 33051045 DOI: 10.1016/j.clnu.2020.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The EU-supported ATHENA project stems from a previous study suggesting that moderate wine consumption reduced the side-effects of radiotherapy (RT) in breast cancer patients, an effect possibly due to non-alcoholic anthocyanin fractions of wine. OBJECTIVE To evaluate the role of anthocyanins on RT skin side effects in breast cancer patients. METHODS Randomized, controlled, double-blind clinical trial. Patients were assigned to an intensity modulated radiation therapy (IMRT) either for three or five weeks, then randomized to receive three times a day a water-soluble anthocyanin (125 mg)-rich extract of corn cob or a placebo. Supplementation started one week before till the end of RT. Skin characteristics were detected by a standardized, non-invasive Cutometer® dual-MPA580, providing quantitative indices of skin maximal distensibility (R0), elasticity (R2, R5, R7) and viscoelasticity (R6); a Mexameter® MX18 probe evaluated the skin erythema (Er) and melanin (M). Measures were performed before (T0), at the end of RT and of supplementation (T1), and 1, 6 and 12 months after RT (T2-T4). Acute and late skin toxicity were scored according to the RTOG/EORTG scale. Selected biomarkers were measured at T0 and T1. RESULTS 193 patients previously assigned to 3- or 5-week RT schedules were randomized to either anthocyanin (97) or placebo (96) supplementation. RT induced changes in skin parameters: R0, R2, R5 and R7 decreased, while R6 increased; the changes in R0 and R6 continued in the same direction up to one year, while the others recovered towards basal values; Er and M peaked at T1 and T2, respectively, and returned to basal values at T4. Comparable skin changes were apparent in anthocyanin and placebo groups. A moderate RT-induced increase in total and HDL cholesterol and triglycerides was prevented by anthocyanins. CONCLUSIONS Anthocyanin supplementation did not prevent RT-induced local skin toxicity. The supplementation was well tolerated and safe.
Collapse
Affiliation(s)
- Francesca Bracone
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, IS, Italy
| | | | - Roberto Pilu
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milano, Italy
| | | | - Savino Cilla
- Medical Physics Unit, Gemelli Molise Hospital Campobasso, Italy
| | | | | | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, IS, Italy; Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, Varese, Italy
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Alessio Giuseppe Morganti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Katia Petroni
- Department of Bioscience, Università degli Studi di Milano, Milano, Italy
| | - Chiara Tonelli
- Department of Bioscience, Università degli Studi di Milano, Milano, Italy
| | | | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, IS, Italy.
| | | |
Collapse
|
19
|
Glial cell activation and altered metabolic profile in the spinal-trigeminal axis in a rat model of multiple sclerosis associated with the development of trigeminal sensitization. Brain Behav Immun 2020; 89:268-280. [PMID: 32659316 DOI: 10.1016/j.bbi.2020.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
Trigeminal neuralgia is often an early symptom of multiple sclerosis (MS), and it generally does not correlate with the severity of the disease. Thus, whether it is triggered simply by demyelination in specific central nervous system areas is currently questioned. Our aims were to monitor the development of spontaneous trigeminal pain in an animal model of MS, and to analyze: i) glial cells, namely astrocytes and microglia in the central nervous system and satellite glial cells in the trigeminal ganglion, and ii) metabolic changes in the trigeminal system. The subcutaneous injection of recombinant MOG1-125 protein fragment to Dark Agouti male rats led to the development of relapsing-remitting EAE, with a first peak after 13 days, a remission stage from day 16 and a second peak from day 21. Interestingly, orofacial allodynia developed from day 1 post injection, i.e. well before the onset of EAE, and worsened over time, irrespective of the disease phase. Activation of glial cells both in the trigeminal ganglia and in the brainstem, with no signs of demyelination in the latter tissue, was observed along with metabolic alterations in the trigeminal ganglion. Our data show, for the first time, the spontaneous development of trigeminal sensitization before the onset of relapsing-remitting EAE in rats. Additionally, pain is maintained elevated during all stages of the disease, suggesting the existence of parallel mechanisms controlling motor symptoms and orofacial pain, likely involving glial cell activation and metabolic alterations which can contribute to trigger the sensitization of sensory neurons.
Collapse
|
20
|
Salehi B, Sharifi-Rad J, Cappellini F, Reiner Ž, Zorzan D, Imran M, Sener B, Kilic M, El-Shazly M, Fahmy NM, Al-Sayed E, Martorell M, Tonelli C, Petroni K, Docea AO, Calina D, Maroyi A. The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. Front Pharmacol 2020; 11:1300. [PMID: 32982731 PMCID: PMC7479177 DOI: 10.3389/fphar.2020.01300] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Anthocyanins are natural phenolic pigments with biological activity. They are well-known to have potent antioxidant and antiinflammatory activity, which explains the various biological effects reported for these substances suggesting their antidiabetic and anticancer activities, and their role in cardiovascular and neuroprotective prevention. This review aims to comprehensively analyze different studies performed on this class of compounds, their bioavailability and their therapeutic potential. An in-depth look in preclinical, in vitro and in vivo, and clinical studies indicates the preventive effects of anthocyanins on cardioprotection, neuroprotection, antiobesity as well as their antidiabetes and anticancer effects.
Collapse
Affiliation(s)
- Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Debora Zorzan
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Muhammad Imran
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Bilge Sener
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mehtap Kilic
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Nouran M. Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Katia Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| |
Collapse
|
21
|
Polyphenols as Potential Agents in the Management of Temporomandibular Disorders. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155305] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Temporomandibular disorders (TMD) consist of multifactorial musculoskeletal disorders associated with the muscles of mastication, temporomandibular joint (TMJ), and annexed structures. This clinical condition is characterized by temporomandibular pain, restricted mandibular movement, and TMJ synovial inflammation, resulting in reduced quality of life of affected people. Commonly, TMD management aims to reduce pain and inflammation by using pharmacologic therapies that show efficacy in pain relief but their long-term use is frequently associated with adverse effects. For this reason, the use of natural compounds as an effective alternative to conventional drugs appears extremely interesting. Indeed, polyphenols could represent a potential therapeutic strategy, related to their ability to modulate the inflammatory responses involved in TMD. The present work reviews the mechanisms underlying inflammation-related TMD, highlighting the potential role of polyphenols as a promising approach to develop innovative management of temporomandibular diseases.
Collapse
|
22
|
Oliveira JP, Nampo FK, Souza MTS, Cercato LM, Camargo EA. The effect of natural products in animal models of temporomandibular disorders. J Appl Oral Sci 2020; 28:e20200272. [PMID: 32725048 PMCID: PMC7384486 DOI: 10.1590/1678-7757-2020-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/06/2020] [Indexed: 12/09/2022] Open
Abstract
Treatment of temporomandibular disorders (TMD) is a challenge for health care professionals. Therefore, new approaches have been investigated, such as the use of natural products.
Collapse
Affiliation(s)
- Janaíne Prata Oliveira
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | - Fernando Kenji Nampo
- Instituto Latino-Americano de Ciências Naturais, Universidade Federal de Integração Latino-Americana, Foz do Iguaçu, PR, Brasil
| | | | - Luana Mendonça Cercato
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | - Enilton Aparecido Camargo
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| |
Collapse
|
23
|
Ma Y, Liu S, Shu H, Crawford J, Xing Y, Tao F. Resveratrol alleviates temporomandibular joint inflammatory pain by recovering disturbed gut microbiota. Brain Behav Immun 2020; 87:455-464. [PMID: 32001342 PMCID: PMC9444375 DOI: 10.1016/j.bbi.2020.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 12/22/2022] Open
Abstract
Patients with temporomandibular disorders (TMDs) often experience persistent facial pain. However, the treatment of TMD pain is still inadequate. In recent years, the disturbance of gut microbiota has been shown to play an important role in the pathogenesis of different neurological diseases including chronic pain. In the present study, we investigated the involvement of gut microbiota in the development of temporomandibular joint (TMJ) inflammation. Intra-temporomandibular joint injection of complete Freund's adjuvant (CFA) was employed to induce TMJ inflammation. Resveratrol (RSV), a natural bioactive compound with anti-inflammatory property, was used to treat the CFA-induced TMJ inflammation. We observed that CFA injection not only induces persistent joint pain, but also causes the reduction of short-chain fatty acids (SCFAs, including acetic acid, propionic acid and butyric acid) in the gut as well as decreases relevant gut bacteria Bacteroidetes and Lachnospiraceae. Interestingly, systemic administration of RSV (i.p.) dose-dependently inhibits CFA-induced TMJ inflammation, reverses CFA-caused reduction of SCFAs and these gut bacteria. Moreover, CFA injection causes blood-brain barrier (BBB) leakage, activates microglia and enhances tumor necrosis factor alpha (TNFα) release in the spinal trigeminal nucleus caudalis (Sp5C). The RSV treatment restores the BBB integrity, inhibits microglial activation and decreases the release of TNFα in the Sp5C. Furthermore, fecal microbiota transplantation with feces from RSV-treated mice significantly diminishes the CFA-induced TMJ inflammation. Taken together, our results suggest that gut microbiome perturbation is critical for the development of TMJ inflammation and that recovering gut microbiome to normal levels could be a new therapeutic approach for treating such pain.
Collapse
Affiliation(s)
- Yajing Ma
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA,Department of Physiology and Neurobiology, Zhengzhou University School of Basic Medical Sciences, Zhengzhou, Henan, China
| | - Sufang Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA,Department of Physiology and Neurobiology, Zhengzhou University School of Basic Medical Sciences, Zhengzhou, Henan, China
| | - Hui Shu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Joshua Crawford
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Ying Xing
- Department of Physiology and Neurobiology, Zhengzhou University School of Basic Medical Sciences, Zhengzhou, Henan, China
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA; Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA.
| |
Collapse
|
24
|
Cristianini M, Guillén Sánchez JS. Extraction of bioactive compounds from purple corn using emerging technologies: A review. J Food Sci 2020; 85:862-869. [PMID: 32237090 DOI: 10.1111/1750-3841.15074] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/25/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
The increase in the use of bioactive compounds from purple corn in the food and pharmaceutical industries has led to the investigation of nonconventional extraction technologies that allow one to obtain more of these compounds. In this context, nonconventional techniques, known as emerging technologies, use more efficient processes that are safe for the environment, in addition to obtaining products with better functional characteristics as compared to those obtained by conventional technologies. This review aims to provide information on different nonconventional techniques used in the extraction of bioactive compounds from purple corn.
Collapse
Affiliation(s)
- Marcelo Cristianini
- Faculty of Food Engineering, Dept. of Food Technol., State Univ. of Campinas, UNICAMP, P. O. Box. 6121, 13083-862, Campinas, S.P., Brazil
| | - Jhoseline Stayce Guillén Sánchez
- Faculty of Food Engineering, Dept. of Food Technol., State Univ. of Campinas, UNICAMP, P. O. Box. 6121, 13083-862, Campinas, S.P., Brazil
| |
Collapse
|
25
|
Saclier M, Bonfanti C, Antonini S, Angelini G, Mura G, Zanaglio F, Taglietti V, Romanello V, Sandri M, Tonelli C, Petroni K, Cassano M, Messina G. Nutritional intervention with cyanidin hinders the progression of muscular dystrophy. Cell Death Dis 2020; 11:127. [PMID: 32071288 PMCID: PMC7028923 DOI: 10.1038/s41419-020-2332-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/25/2022]
Abstract
Muscular Dystrophies are severe genetic diseases due to mutations in structural genes, characterized by progressive muscle wasting that compromises patients' mobility and respiratory functions. Literature underlined oxidative stress and inflammation as key drivers of these pathologies. Interestingly among different myofiber classes, type I fibers display a milder dystrophic phenotype showing increased oxidative metabolism. This work shows the benefits of a cyanidin-enriched diet, that promotes muscle fiber-type switch and reduced inflammation in dystrophic alpha-sarcoglyan (Sgca) null mice having, as a net outcome, morphological and functional rescue. Notably, this benefit is achieved also when the diet is administered in dystrophic animals when the signs of the disease are seriously evident. Our work provides compelling evidence that a cyanidin-rich diet strongly delays the progression of muscular dystrophies, paving the way for a combinatorial approach where nutritional-based reduction of muscle inflammation and oxidative stress facilitate the successful perspectives of definitive treatments.
Collapse
Affiliation(s)
- Marielle Saclier
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Chiara Bonfanti
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Stefania Antonini
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Giuseppe Angelini
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Giada Mura
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Federica Zanaglio
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Valentina Taglietti
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Vanina Romanello
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Chiara Tonelli
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Katia Petroni
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Marco Cassano
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Graziella Messina
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
26
|
Purple corn (Zea mays L.) pericarp hydroalcoholic extracts obtained by conventional processes at atmospheric pressure and by processes at high pressure. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1007/s43153-020-00009-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Quesada-Molina M, Muñoz-Garach A, Tinahones FJ, Moreno-Indias I. A New Perspective on the Health Benefits of Moderate Beer Consumption: Involvement of the Gut Microbiota. Metabolites 2019; 9:metabo9110272. [PMID: 31717482 PMCID: PMC6918268 DOI: 10.3390/metabo9110272] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Beer is the most widely consumed fermented beverage in the world. A moderate consumption of beer has been related to important healthy outcomes, although the mechanisms have not been fully understood. Beer contains only a few raw ingredients but transformations that occur during the brewing process turn beer into a beverage that is enriched in micronutrients. Beer also contains an important number of phenolic compounds and it could be considered to be a source of dietary polyphenols. On the other hand, gut microbiota is now attracting special attention due to its metabolic effects and as because polyphenols are known to interact with gut microbiota. Among others, ferulic acid, xanthohumol, catechins, epicatechins, proanthocyanidins, quercetin, and rutin are some of the beer polyphenols that have been related to microbiota. However, scarce literature exists about the effects of moderate beer consumption on gut microbiota. In this review, we focus on the relationship between beer polyphenols and gut microbiota, with special emphasis on the health outcomes.
Collapse
Affiliation(s)
- Mar Quesada-Molina
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain; (M.Q.-M.); (A.M.-G.)
| | - Araceli Muñoz-Garach
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain; (M.Q.-M.); (A.M.-G.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 29010 Málaga, Spain
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain; (M.Q.-M.); (A.M.-G.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 29010 Málaga, Spain
- Correspondence: (F.J.T.); (I.M.-I.); Tel.: +34-951-036-2647 (F.J.T. & I.M.-I.)
| | - Isabel Moreno-Indias
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain; (M.Q.-M.); (A.M.-G.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 29010 Málaga, Spain
- Correspondence: (F.J.T.); (I.M.-I.); Tel.: +34-951-036-2647 (F.J.T. & I.M.-I.)
| |
Collapse
|
28
|
Tomay F, Marinelli A, Leoni V, Caccia C, Matros A, Mock HP, Tonelli C, Petroni K. Purple corn extract induces long-lasting reprogramming and M2 phenotypic switch of adipose tissue macrophages in obese mice. J Transl Med 2019; 17:237. [PMID: 31337415 PMCID: PMC6651915 DOI: 10.1186/s12967-019-1972-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023] Open
Abstract
Background Obesity is a chronic and systemic inflammatory disorder and an important risk factor for the onset of several chronic syndromes. Adipose tissue (AT) plays a crucial role in the development of obesity, promoting the infiltration and accumulation of leukocytes in the tissue and sustaining adipocyte expansion. Anthocyanins exert a broad range of health benefits, but their effect in improving obesity-related inflammation in vivo has been poorly characterized. We examined the effects of a purple corn cob extract in the context of AT inflammation in a murine diet-induced obesity (DIO) model. Methods Male C57BL/6J mice were subjected to control diet (CTR + H2O), high fat diet (HF + H2O) or high fat diet plus purple corn extract (HF + RED) for 12 weeks. Blood glucose, AT, and liver gene expression, metabolism, biochemistry, and histology were analysed and flow cytometry was performed on AT leukocytes and Kupffer cells. Results RED extract intake resulted in lower MCP-1 mediated recruitment and proliferation of macrophages into crown-like structures in the AT. AT macrophages (ATM) of HF + RED group upregulated M2 markers (ArgI, Fizz1, TGFβ), downregulating inflammatory mediators (TNF-α, IL-6, IL-1β, COX-2) thanks to the suppression of NF-kB signalling. ATM also increased the expression of iron metabolism-related genes (FABP4, Hmox1, Ferroportin, CD163, TfR1, Ceruloplasmin, FtL1, FtH1) associated with a reduction in iron storage and increased turnover. ATM from HF + RED mice did not respond to LPS treatment ex vivo, confirming the long-lasting effects of the treatment on M2 polarization. Adipocytes of HF + RED group improved lipid metabolism and displayed a lower inflammation grade. Liver histology revealed a remarkable reduction of steatosis in the HF + RED group, and Kupffer cell profiling displayed a marked switch towards the M2 phenotype. Conclusions RED extract attenuated AT inflammation in vivo, with a long-lasting reprogramming of ATM and adipocyte profiles towards the anti-inflammatory phenotype, therefore representing a valuable supplement in the context of obesity-associated disorders. Electronic supplementary material The online version of this article (10.1186/s12967-019-1972-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Federica Tomay
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy
| | - Claudio Caccia
- Laboratory of Clinical Pathology and Human Genetics, Foundation IRCCS Carlo Besta, Milan, Italy
| | - Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.,School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| | - Katia Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|