1
|
Ma C, Zhu H, Cai Y, Li N, Han Z, Wu H, Chen H. Photobiomodulation Combined With Human Umbilical Cord Mesenchymal Stem Cells Modulates the Polarization of Microglia. JOURNAL OF BIOPHOTONICS 2025:e202400468. [PMID: 39840548 DOI: 10.1002/jbio.202400468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/23/2025]
Abstract
Neuroinflammation plays a key role in the development of neurodegenerative diseases, with microglia regulating this process through pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) modulate neuroinflammation by secreting anti-inflammatory cytokines. Photobiomodulation (PBM), a non-invasive therapy, has demonstrated significant potential in alleviating neuroinflammation. This study examines the combined effects of PBM and hUCMSCs in an in vitro microglial inflammation model and an LPS-induced mouse model. The results show that PBM-pretreated hUCMSCs promoted M2 polarization and improved cognitive function in mice by downregulating the Notch signaling pathway, suggesting a promising new approach for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunyan Ma
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tiangong University, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative regeneration laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hongyu Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tiangong University, Tianjin, China
| | - Yuanhao Cai
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tiangong University, Tianjin, China
- School of Intelligent Information Engineering, Medicine &Technology College of Zunyi Medical University, Zunyi, China
| | - Na Li
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tiangong University, Tianjin, China
| | - Zhibo Han
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co. Ltd., Tianjin, China
| | - Huancheng Wu
- Department of Neurosurgery, Tianjin Beichen Hospital, Tianjin, China
| | - Hongli Chen
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative regeneration laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Cangzhou Institute of Tiangong University, Cangzhou, China
| |
Collapse
|
2
|
Mahmoudi J, Kazmi S, Vatandoust S, Athari SZ, Sadigh-Eteghad S, Morsali S, Bahari L, Ahmadi M, Hosseini L, Farajdokht F. Coenzyme Q10 and vitamin E alleviate heat stress-induced mood disturbances in male mice: Modulation of inflammatory pathways and the HPA axis. Behav Brain Res 2025; 476:115259. [PMID: 39303989 DOI: 10.1016/j.bbr.2024.115259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Heat stress, as an environmental stressor, can lead to temperature dysregulation and neuroinflammation, causing depression and anxiety by disrupting brain physiology and functional connectivity. This study looked at how co-enzyme Q10 (Q10) and vitamin E (Vit E), alone and together, affected heat stress-caused anxiety and depression symptoms and inflammation in male mice. Five groups were utilized in the study: control, heat stress (NS), Q10, Vit E, and the combination group (Q10+Vit E). The mice were subjected for 15 min/day to a temperature of 43°C for 14 consecutive days, followed by daily treatments for two weeks with either normal saline, Q10 (500 mg/kg), Vit E (250 mg/kg), or their combination. The forced swimming test (FST) and tail suspension test (TST) were employed to evaluate despair behavior, whereas the elevated plus maze (EPM) and open field test (OFT) were used to assess anxious behaviors. Subsequently, the animals were sacrificed, and serum corticosterone levels, protein expression of inflammasome-related proteins, and hsp70 gene expression were evaluated in the prefrontal cortex (PFC). The study revealed that treatment with Vit E and Q10, alone or together, provided anxiolytic and antidepressant effects in the heat-stress-subjected animals. Also, giving Vit E and Q10 alone or together greatly lowered serum corticosterone levels. In the PFC, they also lowered the levels of hsp70 mRNA and NF-κB, caspase 1, NLRP3, and IL-1β proteins. It is speculated that treatment with Q10 and Vit E can attenuate heat stress-associated anxious and depressive responses by inhibiting the inflammatory pathways and modulating the hypothalamus-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sareh Kazmi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Seyed Zanyar Athari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Morsali
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Bahari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Wang L, Mao L, Huang Z, Switzer JA, Hess DC, Zhang Q. Photobiomodulation: shining a light on depression. Theranostics 2025; 15:362-383. [PMID: 39744683 PMCID: PMC11671386 DOI: 10.7150/thno.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
Depression is a prevalent public health issue, characterized by persistent low mood, impaired concentration, and diminished motivation. Photobiomodulation (PBM), which involves the application of red or near-infrared light, modulates physiological processes by enhancing cerebral blood flow, reducing inflammation, inhibiting apoptosis, and promoting neurogenesis. PBM can be administered transcranially or through systemic approaches, offering a potentially effective intervention for depression. This review discusses the characteristics of PBM, its underlying neurobiological mechanisms, and relevant physical parameters. Recent progress in both animal and clinical research underscores PBM's therapeutic potential for depression and emphasizes the need for further studies to establish a robust theoretical basis for standardized treatment protocols.
Collapse
Affiliation(s)
- Lian Wang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Liwei Mao
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Jeffrey A. Switzer
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| |
Collapse
|
4
|
Li S, Wong TWL, Ng SSM. Potential and Challenges of Transcranial Photobiomodulation for the Treatment of Stroke. CNS Neurosci Ther 2024; 30:e70142. [PMID: 39692710 DOI: 10.1111/cns.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024] Open
Abstract
Photobiomodulation (PBM), also known as low-level laser therapy, employs red or near-infrared light emitted from a laser or light-emitting diode for the treatment of various conditions. Transcranial PBM (tPBM) is a form of PBM that is delivered to the head to improve brain health, as tPBM enhances mitochondrial function, improves antioxidant responses, reduces inflammation, offers protection from apoptosis, improves blood flow, increases cellular energy production, and promotes neurogenesis and neuroplasticity. As such, tPBM holds promise as a treatment for stroke. This review summarizes recent findings on tPBM as a treatment for stroke, presenting evidence from both animal studies and clinical trials that demonstrate its efficacy. Additionally, it discusses the potential and challenges encountered in the translation process. Furthermore, it proposes new technologies and directions for the development of light-delivery methods and emphasizes the need for extensive studies to validate and widen the application of tPBM in future treatments for stroke.
Collapse
Affiliation(s)
- Siyue Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Thomson W L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| |
Collapse
|
5
|
Yegin B, Donmez DB, Oz S, Aydin S. Dose-related effects of ciproxifan on brain tissue in rats with cerebral ischemia-reperfusion. Int J Neurosci 2024; 134:1569-1581. [PMID: 37874217 DOI: 10.1080/00207454.2023.2273767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE Cerebral ischemia is the result of decreased or interrupted blood flow to the brain. It is the third leading cause of death after cardiovascular disease and cancer. Cerebral ischemia is reversible or irreversible in neurons in the affected area, and subsequent free radical damage can be exacerbated if reperfusion occurs. Ciproxifan is used to study the involvement of histaminergic neurons in different phases such as wakefulness and cognition. We wanted to find out whether ciproxifan has a protective effect on the brain of rats with cerebral ischemia-reperfusion injury. MATERIALS AND METHODS A total of 64 adult rats (32 male and 32 female) were used for the experiment. Eight cages were formed with randomly selected rats. No substance was administered to the rats in Group 1 and no surgical procedure was performed. The cerebral ischemia-reperfusion model (clamping of the left common carotid artery for 15 min followed by reperfusion for 24 h) was applied to rats in Group 2, Group 3, and Group 4 after 7 days/single dose of saline and ciproxifan (10 mg/kg, 30 mg/kg). After that, the activitymeter, forced swim test (FST), and Morris water maze (MWM) were performed on all animals. RESULTS Rats treated with ciproxifan exhibit neurons and glial cells with histologic structures similar to those of the control group, and interestingly, these differences became more pronounced with increasing dose. Rats administered ciproxifan improved motor coordination, decreased total distance behavior, and improved learning ability. However, when the groups were compared by sex, no significant difference was found in the parameters. CONCLUSION Thus, we could conclude that ciproxifan has a protective effect on the brain to a certain extent, regardless of the dose.
Collapse
Affiliation(s)
- Bengi Yegin
- Departmant of Anatomy, Faculty of Medicine, Yuksek Ihtisas University, Cankaya, Turkey
| | - Dilek Burukoglu Donmez
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Odunpazarı, Turkey
| | - Semih Oz
- Departmant of Vocational School of Health Services, Eskisehir Osmangazi University, Odunpazarı, Turkey
| | - Sule Aydin
- Department of Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Odunpazarı, Turkey
| |
Collapse
|
6
|
Narala VR, Narala SR, Aiya Subramani P, Panati K, Kolliputi N. Role of mitochondria in inflammatory lung diseases. Front Pharmacol 2024; 15:1433961. [PMID: 39228517 PMCID: PMC11368744 DOI: 10.3389/fphar.2024.1433961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Mitochondria play a significant and varied role in inflammatory lung disorders. Mitochondria, known as the powerhouse of the cell because of their role in producing energy, are now recognized as crucial regulators of inflammation and immunological responses. Asthma, chronic obstructive pulmonary disease, and acute respiratory distress syndrome are characterized by complex interactions between immune cells, inflammatory substances, and tissue damage. Dysfunctional mitochondria can increase the generation of reactive oxygen species (ROS), triggering inflammatory pathways. Moreover, mitochondrial failure impacts cellular signaling, which in turn affects the expression of molecules that promote inflammation. In addition, mitochondria have a crucial role in controlling the behavior of immune cells, such as their activation and differentiation, which is essential in the development of inflammatory lung diseases. Their dynamic behavior, encompassing fusion, fission, and mitophagy, also impacts cellular responses to inflammation and oxidative stress. Gaining a comprehensive understanding of the intricate correlation between mitochondria and lung inflammation is essential in order to develop accurate treatment strategies. Targeting ROS generation, dynamics, and mitochondrial function may offer novel approaches to treating inflammatory lung diseases while minimizing tissue damage. Additional investigation into the precise contributions of mitochondria to lung inflammation will provide significant knowledge regarding disease mechanisms and potential therapeutic approaches. This review will focus on how mitochondria in the lung regulate these processes and their involvement in acute and chronic lung diseases.
Collapse
Affiliation(s)
| | | | | | - Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa, India
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
7
|
Ranjbar K, Komaki A, Fayazi B, Zarrinkalam E. Coenzyme Q10 and exercise training reinstate middle cerebral artery occlusion-induced behavioral deficits and hippocampal long-term potentiation suppression in aging rats. Psychopharmacology (Berl) 2024; 241:1577-1594. [PMID: 38627309 DOI: 10.1007/s00213-024-06583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 03/29/2024] [Indexed: 06/15/2024]
Abstract
RATIONAL Patients experience post-stroke cognitive impairment during aging. To date, no specific treatment solution has been reported for this disorder. OBJECTIVE The purpose of this study was to evaluate the effects of exercise training and coenzyme Q10 supplementation on middle cerebral artery occlusion (MCAO) induced behavioral impairment, long-term potentiation inhibition and cerebral infarction size in aging rats. METHODS Fifty aging male rats underwent MCAO surgery and were randomly distributed in to the following groups: 1-Sham, 2- control, 3- Coenzyme Q10, 4- Exercise training and 5- Exercise training with Q10 supplementation (Ex + Q10). Aerobic training groups were allowed to run on a treadmill for 12 weeks. Q10 (50 mg/kg) was administered intragastrically by gavage. Morris water maze, shuttle box and elevated plus maze tests were used to evaluate cognitive function. The population spike (PS) amplitude and slope of excitatory postsynaptic potentials (EPSP) in the dentate gyrus area were recorded as a result of perforant pathway electrical stimulation. RESULTS Our study showed that Q10 and aerobic training alone ameliorate spatial memory in the acquisition phase, but have no effect on spatial memory in the retention phase. Q10 and exercise training synergistically promoted spatial memory in the retention phase. Q10 and exercise training separately and simultaneously mitigated cerebral ischemia-induced passive avoidance memory impairment in acquisition and retention phases. The EPSP did not differ between the groups, but exercise training and Q10 ameliorate the PS amplitude in hippocampal responses to perforant path stimulation. Exercising and Q10 simultaneously reduced the cerebral infarction volume. CONCLUSION Collectively, the findings of the present study imply that 12 weeks of aerobic training and Q10 supplementation alone can simultaneously reverse cerebral ischemia induced neurobehavioral deficits via amelioration of synaptic plasticity and a reduction in cerebral infarction volume in senescent rats.
Collapse
Affiliation(s)
- Kamal Ranjbar
- Department of Physical Education and Sport Science, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran.
| | - Alireza Komaki
- Neurophysiology Research Center, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Bayan Fayazi
- Department of Physical Education and Sport Science, Razi University, Kermanshah, Iran
| | - Ebrahim Zarrinkalam
- Department of Physical Education and Sport Science, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| |
Collapse
|
8
|
Zhang J, Zhao Y, Gong N. Endoplasmic reticulum stress signaling modulates ischemia/reperfusion injury in the aged heart by regulating mitochondrial maintenance. Mol Med 2024; 30:107. [PMID: 39044180 PMCID: PMC11265325 DOI: 10.1186/s10020-024-00869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Aging is associated with an increased risk of myocardial ischemia/reperfusion injury (IRI). With an increasing prevalence of cardiovascular diseases such as coronary arteriosclerosis in older people, there has been increasing interest in understanding the mechanisms of myocardial IRI to develop therapeutics that can attenuate its damaging effects. Previous studies identified that abnormal mitochondria, involved in cellar senescence and oxidative stress, are the master subcellular organelle that induces IRI. In addition, endoplasmic reticulum (ER) stress is also associated with IRI. Cellular adaptation to ER stress is achieved by the activation of ER molecular chaperones and folding enzymes, which provide an important link between ER stress and oxidative stress gene programs. In this review, we outline how these ER stress-related molecules affect myocardial IRI via the crosstalk of ER stress and mitochondrial homeostasis and discuss how these may offer promising novel therapeutic targets and strategies against age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Ji Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, P.R. China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, 230022, P.R. China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, P.R. China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, P.R. China.
| |
Collapse
|
9
|
Sancho-Balsells A, Borràs-Pernas S, Flotta F, Chen W, Del Toro D, Rodríguez MJ, Alberch J, Blivet G, Touchon J, Xifró X, Giralt A. Brain-gut photobiomodulation restores cognitive alterations in chronically stressed mice through the regulation of Sirt1 and neuroinflammation. J Affect Disord 2024; 354:574-588. [PMID: 38490587 DOI: 10.1016/j.jad.2024.03.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Chronic stress is an important risk factor for the development of major depressive disorder (MDD). Recent studies have shown microbiome dysbiosis as one of the pathogenic mechanisms associated with MDD. Thus, it is important to find novel non-pharmacological therapeutic strategies that can modulate gut microbiota and brain activity. One such strategy is photobiomodulation (PBM), which involves the non-invasive use of light. OBJECTIVE/HYPOTHESIS Brain-gut PBM could have a synergistic beneficial effect on the alterations induced by chronic stress. METHODS We employed the chronic unpredictable mild stress (CUMS) protocol to induce a depressive-like state in mice. Subsequently, we administered brain-gut PBM for 6 min per day over a period of 3 weeks. Following PBM treatment, we examined behavioral, structural, molecular, and cellular alterations induced by CUMS. RESULTS We observed that the CUMS protocol induces profound behavioral alterations and an increase of sirtuin1 (Sirt1) levels in the hippocampus. We then combined the stress protocol with PBM and found that tissue-combined PBM was able to rescue cognitive alterations induced by CUMS. This rescue was accompanied by a restoration of hippocampal Sirt1 levels, prevention of spine density loss in the CA1 of the hippocampus, and the modulation of the gut microbiome. PBM was also effective in reducing neuroinflammation and modulating the morphology of Iba1-positive microglia. LIMITATIONS The molecular mechanisms behind the beneficial effects of tissue-combined PBM are not fully understood. CONCLUSIONS Our results suggest that non-invasive photobiomodulation of both the brain and the gut microbiome could be beneficial in the context of stress-induced MDD.
Collapse
Affiliation(s)
- Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain.
| | - Sara Borràs-Pernas
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Francesca Flotta
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Wanqi Chen
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Daniel Del Toro
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Manuel J Rodríguez
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; Production and Validation Centre of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
| | | | | | - Xavier Xifró
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, Universitat de Girona, Girona, Spain.
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain.
| |
Collapse
|
10
|
Ye Z, Liu Y, Jin X, Wu Y, Zhao H, Gao T, Deng Q, Cheng J, Lin J, Tong Z. Aβ-binding with alcohol dehydrogenase drives Alzheimer's disease pathogenesis: A review. Int J Biol Macromol 2024; 264:130580. [PMID: 38432266 DOI: 10.1016/j.ijbiomac.2024.130580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Although Alzheimer's disease (AD) characterized with senile plaques and neurofibrillary tangles has been found for over 100 years, its molecular mechanisms are ambiguous. More worsely, the developed medicines targeting amyloid-beta (Aβ) and/or tau hyperphosphorylation did not approach the clinical expectations in patients with moderate or severe AD until now. This review unveils the role of a vicious cycle between Aβ-derived formaldehyde (FA) and FA-induced Aβ aggregation in the onset course of AD. Document evidence has shown that Aβ can bind with alcohol dehydrogenase (ADH) to form the complex of Aβ/ADH (ABAD) and result in the generation of reactive oxygen species (ROS) and aldehydes including malondialdehyde, hydroxynonenal and FA; in turn, ROS-derived H2O2 and FA promotes Aβ self-aggregation; subsequently, this vicious cycle accelerates neuron death and AD occurrence. Especially, FA can directly induce neuron death by stimulating ROS generation and tau hyper hyperphosphorylation, and impair memory by inhibiting NMDA-receptor. Recently, some new therapeutical methods including inhibition of ABAD activity by small molecules/synthetic polypeptides, degradation of FA by phototherapy or FA scavengers, have been developed and achieved positive effects in AD transgenic models. Thus, breaking the vicious loop may be promising interventions for halting AD progression.
Collapse
Affiliation(s)
- Zuting Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanming Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingjiang Jin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiqing Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hang Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tingting Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiangfeng Deng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianhua Cheng
- Department of neurology, the first affiliated hospital of Wenzhou medical University, Wenzhou 325035. China
| | - Jing Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Farazi N, Salehi-Pourmehr H, Farajdokht F, Mahmoudi J, Sadigh-Eteghad S. Photobiomodulation combination therapy as a new insight in neurological disorders: a comprehensive systematic review. BMC Neurol 2024; 24:101. [PMID: 38504162 PMCID: PMC10949673 DOI: 10.1186/s12883-024-03593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Preclinical and clinical studies have indicated that combining photobiomodulation (PBM) therapy with other therapeutic approaches may influence the treatment process in a variety of disorders. The purpose of this systematic review was to determine whether PBM-combined therapy provides additional benefits over monotherapies in neurologic and neuropsychiatric disorders. In addition, the review describes the most commonly used methods and PBM parameters in these conjunctional approaches.To accomplish this, a systematic search was conducted in Google Scholar, PubMed, and Scopus databases through January 2024. 95 potentially eligible articles on PBM-combined treatment strategies for neurological and neuropsychological disorders were identified, including 29 preclinical studies and 66 clinical trials.According to the findings, seven major categories of studies were identified based on disease type: neuropsychiatric diseases, neurodegenerative diseases, ischemia, nerve injury, pain, paresis, and neuropathy. These studies looked at the effects of laser therapy in combination with other therapies like pharmacotherapies, physical therapies, exercises, stem cells, and experimental materials on neurological disorders in both animal models and humans. The findings suggested that most combination therapies could produce synergistic effects, leading to better outcomes for treating neurologic and psychiatric disorders and relieving symptoms.These findings indicate that the combination of PBM may be a useful adjunct to conventional and experimental treatments for a variety of neurological and psychological disorders.
Collapse
Affiliation(s)
- Narmin Farazi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran.
| |
Collapse
|
12
|
Zhao D, Wu Y, Zhao H, Zhang F, Wang J, Liu Y, Lin J, Huang Y, Pan W, Qi J, Chen N, Yang X, Xu W, Tong Z, Cheng J. Midbrain FA initiates neuroinflammation and depression onset in both acute and chronic LPS-induced depressive model mice. Brain Behav Immun 2024; 117:356-375. [PMID: 38320681 DOI: 10.1016/j.bbi.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024] Open
Abstract
Both exogenous gaseous and liquid forms of formaldehyde (FA) can induce depressive-like behaviors in both animals and humans. Stress and neuronal excitation can elicit brain FA generation. However, whether endogenous FA participates in depression occurrence remains largely unknown. In this study, we report that midbrain FA derived from lipopolysaccharide (LPS) is a direct trigger of depression. Using an acute depressive model in mice, we found that one-week intraperitoneal injection (i.p.) of LPS activated semicarbazide-sensitive amine oxidase (SSAO) leading to FA production from the midbrain vascular endothelium. In both in vitro and in vivo experiments, FA stimulated the production of cytokines such as IL-1β, IL-6, and TNF-α. Strikingly, one-week microinfusion of FA as well as LPS into the midbrain dorsal raphe nucleus (DRN, a 5-HT-nergic nucleus) induced depressive-like behaviors and concurrent neuroinflammation. Conversely, NaHSO3 (a FA scavenger), improved depressive symptoms associated with a reduction in the levels of midbrain FA and cytokines. Moreover, the chronic depressive model of mice injected with four-week i.p. LPS exhibited a marked elevation in the levels of midbrain LPS accompanied by a substantial increase in the levels of FA and cytokines. Notably, four-week i.p. injection of FA as well as LPS elicited cytokine storm in the midbrain and disrupted the blood-brain barrier (BBB) by activating microglia and reducing the expression of claudin 5 (CLDN5, a protein with tight junctions in the BBB). However, the administration of 30 nm nano-packed coenzyme-Q10 (Q10, an endogenous FA scavenger), phototherapy (PT) utilizing 630-nm red light to degrade FA, and the combination of PT and Q10, reduced FA accumulation and neuroinflammation in the midbrain. Moreover, the combined therapy exhibited superior therapeutic efficacy in attenuating depressive symptoms compared to individual treatments. Thus, LPS-derived FA directly initiates depression onset, thereby suggesting that scavenging FA represents a promising strategy for depression treatment.
Collapse
Affiliation(s)
- Danrui Zhao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Yiqing Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Hang Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Fengji Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Junting Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Yiying Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Jing Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Yirui Huang
- Department of Clinical Laboratory, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, China
| | - Wenhao Pan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Jiahui Qi
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Nan Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xu Yang
- Xianning Medical College, Hubei University of Science and Technology 437100, Hubei, China.
| | - Wen Xu
- School of Basic Medicine, Wenzhou Medical University, Wenzhou 325035, China.
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China.
| | - Jianhua Cheng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China.
| |
Collapse
|
13
|
Rajan RK, Kumar RP, Ramanathan M. Piceatannol improved cerebral blood flow and attenuated JNK3 and mitochondrial apoptotic pathway in a global ischemic model to produce neuroprotection. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:479-496. [PMID: 37470802 DOI: 10.1007/s00210-023-02616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Cerebral ischemia is one of the leading causes of death and disability worldwide. The only FDA-approved treatment is recanalization with systemic tissue plasminogen activators like alteplase, although reperfusion caused by recanalization can result in neuroinflammation, which can cause brain cell apoptosis. Therefore, after an ischemic/reperfusion injury, interventions are needed to minimize the neuroinflammatory cascade. In the present study, piceatannol (PCT) was studied for its neuroprotective efficacy in a rat model of global ischemic injury by attenuating c-Jun N-terminal kinase 3 (JNK3) downstream signaling. PCT is a resveratrol analog and a polyphenolic stilbenoid naturally occurring in passion fruit and grapes. The neuroprotective efficacy of PCT (1, 5, 10 mg/kg) in ischemic conditions was assessed through pre- and post-treatment. Cerebral blood flow (CBF) and tests for functional recovery were assessed. Protein and gene expression were done for JNK3 and other inflammatory markers. A docking study was performed to identify the amino acid interaction. The results showed that PCT improved motor and memory function as measured by a functional recovery test believed to be due to an increase in cerebral blood flow. Also, the caspase signaling which promotes apoptosis was found to be down-regulated; however, nitric oxide synthase expression was up-regulated, which could explain the enhanced cerebral blood flow (CBF). According to our findings, PCT impeded c-Jun N-terminal kinase 3 (JNK3) signaling by suppressing phosphorylation and disrupting the mitochondrial apoptotic pathway, which resulted in the neuroprotective effect. Molecular docking analysis was performed to investigate the atomic-level interaction of JNK3 and PCT, which reveals that Met149, Leu206, and Lys93 amino acid residues are critical for the interaction of PCT and JNK3. According to our current research, JNK3 downstream signaling and the mitochondrial apoptosis pathway are both inhibited by PCT, which results in neuroprotection under conditions of global brain ischemia. Piceatannol attenuated JNK3 phosphorylation during the ischemic condition and prevented neuronal apoptosis.
Collapse
Affiliation(s)
- Ravi Kumar Rajan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, 641004, Tamilnadu, India.
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Girijananda Chowdhury University, Dekargaon, Tezpur, 784501, Assam, India.
| | - Ram Pravin Kumar
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, 641004, Tamilnadu, India
| | - M Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, 641004, Tamilnadu, India
| |
Collapse
|
14
|
Ramakrishnan P, Joshi A, Fazil M, Yadav P. A comprehensive review on therapeutic potentials of photobiomodulation for neurodegenerative disorders. Life Sci 2024; 336:122334. [PMID: 38061535 DOI: 10.1016/j.lfs.2023.122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
A series of experimental trials over the past two centuries has put forth Photobiomodulation (PBM) as a treatment modality that utilizes colored lights for various conditions. While in its cradle, PBM was used for treating simple conditions such as burns and wounds, advancements in recent years have extended the use of PBM for treating complex neurodegenerative diseases (NDDs). PBM has exhibited the potential to curb several symptoms and signs associated with NDDs. While several of the currently used therapeutics cause adverse side effects alongside being highly invasive, PBM on the contrary, seems to be broad-acting, less toxic, and non-invasive. Despite being projected as an ideal therapeutic for NDDs, PBM still isn't considered a mainstream treatment modality due to some of the challenges and knowledge gaps associated with it. Here, we review the advantages of PBM summarized above with an emphasis on the common mechanisms that underlie major NDDs and how PBM helps tackle them. We also discuss important questions such as whether PBM should be considered a mainstay treatment modality for these conditions and if PBM's properties can be harnessed to develop prophylactic therapies for high-risk individuals and also highlight important animal studies that underscore the importance of PBM and the challenges associated with it. Overall, this review is intended to bring the major advances made in the field to the spotlight alongside addressing the practicalities and caveats to develop PBM as a major therapeutic for NDDs.
Collapse
Affiliation(s)
- Pooja Ramakrishnan
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Aradhana Joshi
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Mohamed Fazil
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India; School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Pankaj Yadav
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
15
|
Lin H, Li D, Zhu J, Liu S, Li J, Yu T, Tuchin VV, Semyachkina-Glushkovskaya O, Zhu D. Transcranial photobiomodulation for brain diseases: review of animal and human studies including mechanisms and emerging trends. NEUROPHOTONICS 2024; 11:010601. [PMID: 38317779 PMCID: PMC10840571 DOI: 10.1117/1.nph.11.1.010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
The brain diseases account for 30% of all known diseases. Pharmacological treatment is hampered by the blood-brain barrier, limiting drug delivery to the central nervous system (CNS). Transcranial photobiomodulation (tPBM) is a promising technology for treating brain diseases, due to its effectiveness, non-invasiveness, and affordability. tPBM has been widely used in pre-clinical experiments and clinical trials for treating brain diseases, such as stroke and Alzheimer's disease. This review provides a comprehensive overview of tPBM. We summarize emerging trends and new discoveries in tPBM based on over one hundred references published in the past 20 years. We discuss the advantages and disadvantages of tPBM and highlight successful experimental and clinical protocols for treating various brain diseases. A better understanding of tPBM mechanisms, the development of guidelines for clinical practice, and the study of dose-dependent and personal effects hold great promise for progress in treating brain diseases.
Collapse
Affiliation(s)
- Hao Lin
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Dongyu Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
- Huazhong University of Science and Technology, School of Optical Electronic Information, Wuhan, China
| | - Jingtan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Shaojun Liu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Jingting Li
- Huazhong University of Science and Technology, School of Engineering Sciences, Wuhan, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Valery V. Tuchin
- Saratov State University, Science Medical Center, Saratov, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow, Russia
- Tomsk State University, Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Science Medical Center, Saratov, Russia
- Humboldt University, Department of Physics, Berlin, Germany
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| |
Collapse
|
16
|
da Rocha GL, Guimarães DSPSF, da Cruz MV, Mizobuti DS, da Silva HNM, Pereira ECL, Silveira LR, Minatel E. Antioxidant effects of LEDT in dystrophic muscle cells: involvement of PGC-1α and UCP-3 pathways. Photochem Photobiol Sci 2024; 23:107-118. [PMID: 38057632 DOI: 10.1007/s43630-023-00506-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Reactive oxygen species and mitochondrial dysfunction play a crucial role in the pathophysiology of Duchenne muscular dystrophy (DMD). The light-emitting diode therapy (LEDT) showed beneficial effects on the dystrophic muscles. However, the mechanisms of this therapy influence the molecular pathways in the dystrophic muscles, particularly related to antioxidant effects, which still needs to be elucidated. The current study provides muscle cell-specific insights into the effect of LEDT, 48 h post-irradiation, on oxidative stress and mitochondrial parameters in the dystrophic primary muscle cells in culture. METHODS Dystrophic primary muscle cells were submitted to LEDT, at multiple wavelengths (420 nm, 470 nm, 660 nm and 850 nm), 0.5 J dose, and evaluated after 48 h based on oxidative stress markers, antioxidant enzymatic system and biogenesis, and functional mitochondrial parameters. RESULTS The mdx muscle cells treated with LEDT showed a significant reduction of H2O2 production and 4-HNE, catalase, SOD-2, and GR levels. Upregulation of UCP3 was observed with all wavelengths while upregulation of PGC-1α and a slight upregulation of electron transport chain complexes III and V was only observed following 850 nm LEDT. In addition, the mitochondrial membrane potential and mitochondrial mass mostly tended to be increased following LEDT, while parameters like O2·- production tended to be decreased. CONCLUSION The data shown here highlight the potential of LEDT as a therapeutic agent for DMD through its antioxidant action by modulating PGC-1α and UCP3 levels.
Collapse
Affiliation(s)
- Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
| | - Dimitrius Santiago Passos Simões Fróes Guimarães
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Marcos Vinicius da Cruz
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
| | - Heloina Nathalliê Mariano da Silva
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
| | - Elaine Cristina Leite Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
- Faculty of Ceilândia, University of Brasília (UnB), Brasília, Brazil
| | - Leonardo Reis Silveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil.
| |
Collapse
|
17
|
Kazmi S, Farajdokht F, Meynaghizadeh-Zargar R, Sadigh-Eteghad S, Pasokh A, Farzipour M, Farazi N, Hamblin MR, Mahmoudi J. Transcranial photobiomodulation mitigates learning and memory impairments induced by hindlimb unloading in a mouse model of microgravity exposure by suppression of oxidative stress and neuroinflammation signaling pathways. Brain Res 2023; 1821:148583. [PMID: 37717889 DOI: 10.1016/j.brainres.2023.148583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Prolonged microgravity exposure causes cognitive impairment. Evidence shows that oxidative stress and neuroinflammation are involved in the causation. Here, we explore the effectiveness of transcranial near-infrared photobiomodulation (PBM) on cognitive deficits in a mouse model of simulated microgravity. 24 adult male C57BL/6 mice were assigned into three groups (8 in each); control, hindlimb unloading (HU), and HU + PBM groups. After surgery to fit the suspension fixing, the animals were housed either in HU cages or in their normal cage for 14 days. The mice in the HU + PBM group received PBM (810 nm laser, 10 Hz, 8 J/cm2) once per day for 14 days. Spatial learning and memory were assessed in the Lashley III maze and hippocampus tissue samples were collected to assess oxidative stress markers and protein expression of brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2), Sirtuin 1 (Sirt1), and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Behavioral testing showed that the PBM-treated animals had a shorter latency time to find the target and fewer errors than the HU group. PBM decreased hippocampal lipid peroxidation while increasing antioxidant defense systems (glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to HU mice. PBM increased protein expression of Sirt1, Nrf2, and BDNF while decreasing NF-κB compared to HU mice. Our findings suggested that the protective effect of PBM against HU-induced cognitive impairment involved the activation of the Sirt1/Nrf2 signaling pathway, up-regulation of BDNF, and reduction of neuroinflammation and oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Sareh Kazmi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Pasokh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Mohammad Farzipour
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narmin Farazi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
da Silva HNM, Mizobuti DS, Pereira VA, da Rocha GL, da Cruz MV, de Oliveira AG, Silveira LR, Minatel E. LED therapy plus idebenone treatment targeting calcium and mitochondrial signaling pathways in dystrophic muscle cells. Cell Stress Chaperones 2023; 28:773-785. [PMID: 37578579 PMCID: PMC10746663 DOI: 10.1007/s12192-023-01369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Intracellular calcium dysregulation, oxidative stress, and mitochondrial dysfunction are some of the main pathway contributors towards disease progression in Duchenne muscular dystrophy (DMD). This study is aimed at investigating the effects of light emitting diode therapy (LEDT) and idebenone antioxidant treatment, applied alone or together in dystrophic primary muscle cells from mdx mice, the experimental model of DMD. Mdx primary muscle cells were submitted to LEDT and idebenone treatment and evaluated for cytotoxic effects and calcium and mitochondrial signaling pathways. LEDT and idebenone treatment showed no cytotoxic effects on the dystrophic muscle cells. Regarding the calcium pathways, after LEDT and idebenone treatment, a significant reduction in intracellular calcium content, calpain-1, calsequestrin, and sarcolipin levels, was observed. In addition, a significant reduction in oxidative stress level markers, such as H2O2, and 4-HNE levels, was observed. Regarding mitochondrial signaling pathways, a significant increase in oxidative capacity (by OCR and OXPHOS levels) was observed. In addition, the PGC-1α, SIRT-1, and PPARδ levels were significantly higher in the LEDT plus idebenone treated-dystrophic muscle cells. Together, the findings suggest that LEDT and idebenone treatment, alone or in conjunction, can modulate the calcium and mitochondrial signaling pathways, such as SLN, SERCA 1, and PGC-1α, contributing towards the improvement of the dystrophic phenotype in mdx muscle cells. In addition, data from the LEDT plus idebenone treatment showed slightly better results than those of each separate treatment in terms of SLN, OXPHOS, and SIRT-1.
Collapse
Affiliation(s)
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Valéria Andrade Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marcos Vinícius da Cruz
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - André Gustavo de Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Leonardo Reis Silveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
| |
Collapse
|
19
|
Zhang J, Zhao Y, Gong N. XBP1 Modulates the Aging Cardiorenal System by Regulating Oxidative Stress. Antioxidants (Basel) 2023; 12:1933. [PMID: 38001786 PMCID: PMC10669121 DOI: 10.3390/antiox12111933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic-region leucine zipper (bZIP) transcription factor. Over recent years, the powerful biological functions of XBP1 in oxidative stress have been gradually revealed. When the redox balance remains undisturbed, oxidative stress plays a role in physiological adaptations and signal transduction. However, during the aging process, increased cellular senescence and reduced levels of endogenous antioxidants cause an oxidative imbalance in the cardiorenal system. Recent studies from our laboratory and others have indicated that these age-related cardiorenal diseases caused by oxidative stress are guided and controlled by a versatile network composed of diversified XBP1 pathways. In this review, we describe the mechanisms that link XBP1 and oxidative stress in a range of cardiorenal disorders, including mitochondrial instability, inflammation, and alterations in neurohumoral drive. Furthermore, we propose that differing degrees of XBP1 activation may cause beneficial or harmful effects in the cardiorenal system. Gaining a comprehensive understanding of how XBP1 exerts influence on the aging cardiorenal system by regulating oxidative stress will enhance our ability to provide new directions and strategies for cardiovascular and renal safety outcomes.
Collapse
Affiliation(s)
- Ji Zhang
- Anhui Province Key Laboratory of Genitourinary Diseases, Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Hefei 230022, China;
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yuanyuan Zhao
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Nianqiao Gong
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
20
|
Hossein Geranmayeh M, Farokhi-Sisakht F, Sadigh-Eteghad S, Rahbarghazi R, Mahmoudi J, Farhoudi M. Simultaneous Pericytes and M2 Microglia Transplantation Improve Cognitive Function in Mice Model of mPFC Ischemia. Neuroscience 2023; 529:62-72. [PMID: 37591334 DOI: 10.1016/j.neuroscience.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
Cerebral ischemia is one of the major problems threatening global health. Many of the cerebral ischemia survivors would suffer from the physical and cognitive disabilities for their whole lifetime. Cell based-therapies have been introduced as a therapeutic approach for alleviating ischemia-enforced limitations. Photothrombotic stroke model was applied on the left medial prefrontal cortex (mPFC) of adult male BALB/c mice. Then, pericytes isolated from brain microvessels of adult male BALB/c mice, microglia isolated from brain cortices of the neonatal male BALB/c mice, and M2 phenotype shifted microglia by IL-4 treatment were used for transplantation into the injured area after 24 h of ischemia induction. The behavioural outcomes evaluated by social interaction and Barnes tests and the levels of growth associated protein (GAP)-43 and inflammatory cytokine interleukin (IL)-1 protein were assessed by western blotting 7 days after cell transplantation. Animals in both of the microglia + pericytes and microglia M2 + pericytes transplanted groups showed better performance in social memory as well as enhanced spatial learning and memory compared to ischemic controls. Also, improved escape latency was only observed in microglia M2 + pericytes (p < 0.01) group compared to ischemic controls. GAP-43 showed significant protein expression in microglia + pericytes and microglia M2 + pericytes groups compared to the control group. Conversely, IL-1 levels diminished in all of the pericytes microglia + pericytes, and microglia M2 + pericytes groups compared to the ischemic controls. Current study highlights efficiency of M2 microglia and pericytes combinatory transplantation therapeutic role on relieving ischemic stroke outcomes.
Collapse
Affiliation(s)
- Mohammad Hossein Geranmayeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Covatti C, Mizobuti DS, Rocha GLD, da Silva HNM, de Lourenço CC, Pertille A, Pereira ECL, Minatel E. Low-Level Photobiomodulation Therapy Modulates H 2O 2 Production, TRPC-6, and PGC-1α Levels in the Dystrophic Muscle. Photobiomodul Photomed Laser Surg 2023; 41:389-401. [PMID: 37527194 DOI: 10.1089/photob.2022.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Objective: This study evaluated photobiomodulation therapy (PBMT) effects on the factors involved in mitochondrial biogenesis, on the mitochondrial respiratory complexes, and on the transient receptor potential canonical channels (such as TRPC-1 and TRPC-6) in in vitro (mdx muscle cells) and in vivo studies (gastrocnemius muscle) from mdx mice, the dystrophin-deficient model of Duchenne muscular dystrophy (DMD). Background: There is no successful treatment for DMD, therefore demanding search for new therapies that can improve the muscle role, the quality of life, and the survival of dystrophic patients. Methods: The dystrophic primary muscle cells received PBMT at 0.6 J and 5 J, and the dystrophic gastrocnemius muscle received PBMT at 0.6 J. Results: The dystrophic muscle cells treated with PBMT (0.6 J and 5 J) showed no cytotoxicity and significantly lower levels in hydrogen peroxide (H2O2) production. We also demonstrated, for the first time, the capacity of PBMT, at a low dose (0.6 J), in reducing the TRPC-6 content and in raising the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) content in the dystrophic gastrocnemius muscle. Conclusions: PBMT modulates H2O2 production, TRPC-6, and PGC-1α content in the dystrophic muscle. These results suggest that laser therapy could act as an auxiliary therapy in the treatment of dystrophic patients.
Collapse
Affiliation(s)
- Caroline Covatti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniela Sayuri Mizobuti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Luiz da Rocha
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Heloina Nathalliê Mariano da Silva
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Caroline Caramano de Lourenço
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adriana Pertille
- Graduate Program in Science of Human Movement, Universidade Metodista de Piracicaba (UNIMEP), Piracicaba, São Paulo, Brazil
| | - Elaine Cristina Leite Pereira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Universidade de Brasília (UnB), Faculdade de Ceilândia, Brasília, Distrito Federal, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
22
|
Javani G, Babri S, Farajdokht F, Ghaffari-Nasab A, Mohaddes G. Mitotherapy restores hippocampal mitochondrial function and cognitive impairment in aged male rats subjected to chronic mild stress. Biogerontology 2023; 24:257-273. [PMID: 36626036 DOI: 10.1007/s10522-022-10014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023]
Abstract
This study aimed to determine the effects of mitotherapy on learning and memory and hippocampal kynurenine (Kyn) pathway, mitochondria function, and dendritic arborization and spines density in aged rats subjected to chronic mild stress. Twenty-eight male Wistar rats (22 months old( were randomly divided into Aged, Aged + Mit, Aged + Stress, and Aged + Stress + Mit groups. Aged rats in the stress groups were subjected to different stressors for 28 days. The Aged + Mit and Aged + stress + Mit groups were treated with intracerebroventricular injection (10 µl) of fresh mitochondria harvested from the young rats' brains, and other groups received 10 µl mitochondria storage buffer. Spatial and episodic-like memories were assessed via the Barnes maze and novel object recognition tests. Indoleamine 2,3-dioxygenase (IDO) expression and activity, Kyn, Tryptophan (TRY), ATP levels, and mitochondrial membrane potential (MMP) were measured in the hippocampus region. Golgi-Cox staining was also performed to assess the dendritic branching pattern and dendritic spines in the hippocampal CA1 subfield. The results showed that mitotherapy markedly improved both spatial and episodic memories in the Aged + Stress + Mit group compared to the Aged + Stress. Moreover, mitotherapy decreased IDO protein expression and activity and Kyn levels, while it increased ATP levels and improved MMP in the hippocampus of the Aged + Stress + Mit group. Besides, mitotherapy restored dendritic atrophy and loss of spine density in the hippocampal neurons of the stress-exposed aged rats. These findings provide evidence for the therapeutic effect of mitotherapy against stress-induced cognitive deterioration in aged rats by improving hippocampal mitochondrial function and modulation of the Kyn pathway.
Collapse
Affiliation(s)
- Gonja Javani
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Babri
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Gisou Mohaddes
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA.
| |
Collapse
|
23
|
Zhong J, Zhao L, Wu W, Chen J, Yuan S, Zhang X, Wang Z. Transcranial near-infrared laser improves postoperative neurocognitive disorder in aged mice via SIRT3/AMPK/Nrf2 pathway. Front Neurosci 2023; 16:1100915. [PMID: 36760797 PMCID: PMC9904281 DOI: 10.3389/fnins.2022.1100915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Background Postoperative neurocognitive disorder (PND) is a common central nervous system (CNS) complication that might increase the morbidity and mortality of elderly patients after anesthesia/surgery. Neuroinflammation, oxidative stress, and synaptic dysfunction are closely related to cognitive dysfunction, an important clinical feature of PND. Transcranial near-infrared laser (TNIL) is regarded as an effective treatment for cognitive-related diseases by improving mitochondrial function and alleviating neuroinflammation and oxidative stress damage. Materials and methods Aged male C57BL/6 mice underwent a carotid artery exposure procedure under isoflurane anesthesia. We treated PND-aged mice for three consecutive days (4 h post-operation, 1-laser) with 810 nm continuous wave (CW) laser 18 J/cm2 at 120 mW/cm2. The post-treatment evaluation included behavioral tests, RTq-PCR, immunofluorescence, and Western blot. Results The results demonstrated that TNIL improved PND and the levels of synaptic function-associated proteins such as post-synaptic density protein 95 (PSD95), synaptophysin (SYP), and brain-derived neurotrophic factor (BDNF). Besides, neuroinflammatory cytokine levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β as well as microglia activation and oxidative stress damage were attenuated after TNIL treatment in aged mice with PND. Further investigation suggested that TNIL relieved oxidative stress response by activating the SIRT3/AMPK/Nrf2 pathway. Conclusion Transcranial near-infrared laser improved cognitive impairment in aged mice with PND, which may be a promising therapeutic for PND.
Collapse
Affiliation(s)
- Junying Zhong
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Le Zhao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wensi Wu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiawei Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shangyan Yuan
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojun Zhang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,*Correspondence: Xiaojun Zhang,
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Zhi Wang,
| |
Collapse
|
24
|
Tian Z, Wang P, Huang K, Yu J, Zhang M, Liu Y, Zhao H, Zhu B, Huang X, Tong Z. Photobiomodulation for Alzheimer's disease: photoelectric coupling effect on attenuating Aβ neurotoxicity. Lasers Med Sci 2023; 38:39. [PMID: 36633696 PMCID: PMC9837011 DOI: 10.1007/s10103-022-03692-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) and dementia are the most worrying health problems faced by people globally today. Although the pathological features of AD consisting of amyloid-beta (Aβ) plaques in the extracellular space (ECS) and intracellular tau tangles are well established, the developed medicines targeting these two proteins have not obtained the expected clinical effects. Photobiomodulation (PBM) describes the therapeutic use of red light (RL) or near-infrared light (NIR) to serve as a noninvasive neuroprotective strategy for brain diseases. The present review discusses the mechanisms of the photoelectric coupling effect (light energy-induced special electronic transition-related alterations in protein structure) of PBM on reducing Aβ toxicity. On the one hand, RL or NIR can directly disassemble Aβ in vitro and in vivo. On the other hand, formaldehyde (FA)-inhibited catalase (CAT) and H2O2-inactived formaldehyde dehydrogenase (FDH) are formed a vicious circle in AD; however, light energy not only activates FDH to degrade excessive FA (which crosslinks Aβ monomer to form Aβ oligomers and senile plaques) but also sensitizes CAT to reduce hydrogen peroxide levels (H2O2, which can facilitate Aβ aggregation and enhance FA generation). In addition, it also activates mitochondrial cytochrome-c to produce ATP in the neurons. Clinical trials of phototherapeutics or oral coenzyme Q10 have shown positive effects in AD patients. Hence, a promising strategy combined PBM with nanopacked Q10 has been proposed to apply for treating AD.
Collapse
Affiliation(s)
- Zixi Tian
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Panpan Wang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
- Department Neurology, Wenzhou Medical University Affiliated Hospital 3, Wenzhou, 325200, China
| | - Kai Huang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Yu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mange Zhang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yanming Liu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hang Zhao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Beilei Zhu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuerong Huang
- Department Neurology, Wenzhou Medical University Affiliated Hospital 3, Wenzhou, 325200, China.
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
25
|
Zhao Y, Liu Y, Xu Y, Li K, Zhou L, Qiao H, Xu Q, Zhao J. The Role of Ferroptosis in Blood-Brain Barrier Injury. Cell Mol Neurobiol 2023; 43:223-236. [PMID: 35106665 DOI: 10.1007/s10571-022-01197-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
The blood-brain barrier (BBB) is an important barrier that maintains homeostasis within the central nervous system. Brain microvascular endothelial cells are arranged to form vessel walls and express tight junctional complexes that limit the paracellular pathways of the BBB and therefore play a crucial role in ensuring brain function. These vessel walls tightly regulate the movement of ions, molecules, and cells between the blood and the brain, which protect the neural tissue from toxins and pathogens. Primary damage caused by BBB dysfunction can disrupt the expression of tight junctions, transport proteins and leukocyte adhesion molecules, leading to brain edema, disturbances in ion homeostasis, altered signaling and immune infiltration, which can lead to neuronal cell death. Various neurological diseases are known to cause BBB dysfunction, but the mechanism that causes this disorder is not clear. Recently, ferroptosis has been found to play an important role in BBB dysfunction. Ferroptosis is a new form of regulatory cell death, which is caused by the excessive accumulation of lipid peroxides and iron-dependent reactive oxygen species. This review summarizes the role of ferroptosis in BBB dysfunction and the latest progress of ferroptosis mechanism, and further discusses the influence of various factors of ferroptosis on the severity and prognosis of BBB dysfunction, which may provide better therapeutic targets for BBB dysfunction.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China. .,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China. .,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China.
| | - Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Kexin Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Lin Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Haoduo Qiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
26
|
Gu Z, Chen H, Zhao H, Yang W, Song Y, Li X, Wang Y, Du D, Liao H, Pan W, Li X, Gao Y, Han H, Tong Z. New insight into brain disease therapy: nanomedicines-crossing blood-brain barrier and extracellular space for drug delivery. Expert Opin Drug Deliv 2022; 19:1618-1635. [PMID: 36285632 DOI: 10.1080/17425247.2022.2139369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Brain diseases including brain tumor, Alzheimer's disease, Parkinson's disease, etc. are difficult to treat. The blood-brain barrier (BBB) is a major obstacle for drug delivery into the brain. Although nano-package and receptor-mediated delivery of nanomedicine markedly increases BBB penetration, it yet did not extensively improve clinical cure rate. Recently, brain extracellular space (ECS) and interstitial fluid (ISF) drainage in ECS have been found to determine whether a drug dissolved in ISF can reach its target cells. Notably, an increase in tortuosity of ECS associated with slower ISF drainage induced by the accumulated harmful substances, such as: amyloid-beta (Aβ), α-synuclein, and metabolic wastes, causes drug delivery failure. AREAS COVERED The methods of nano-package and receptor-mediated drug delivery and the penetration efficacy of nanomedicines across BBB and ECS are assessed. EXPERT OPINION Invasive delivering drug via ECS and noninvasive near-infrared photo-sensitive nanomedicines may provide a promising benefit to patients with brain disease.
Collapse
Affiliation(s)
- Ziqi Gu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Haishu Chen
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Han Zhao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wanting Yang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yilan Song
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xiang Li
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Dan Du
- Department of Radiology, Peking University Third Hospital, Beijing, China.,Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China
| | - Haikang Liao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wenhao Pan
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China.,NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China.,Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Hosseini L, Karimipour M, Seyedaghamiri F, Abolhasanpour N, Sadigh-Eteghad S, Mahmoudi J, Farhoudi M. Intranasal administration of mitochondria alleviated cognitive impairments and mitochondrial dysfunction in the photothrombotic model of mPFC stroke in mice. J Stroke Cerebrovasc Dis 2022; 31:106801. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
|
28
|
Tang Y, Xie J, Chen X, Sun L, Xu L, Chen X. A novel link between silent information regulator 1 and autophagy in cerebral ischemia-reperfusion. Front Neurosci 2022; 16:1040182. [PMID: 36507335 PMCID: PMC9726917 DOI: 10.3389/fnins.2022.1040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cerebral ischemia is one of the leading causes of death and disability worldwide. Although revascularization via reperfusion combined with advanced anticoagulant therapy is currently a gold standard treatment for patients, the reperfusion itself also results in a serious dysfunction termed cerebral ischemia-reperfusion (I/R) injury. Silent information regulator 1 (sirtuin 1, SIRT1), is a classic NAD+-dependent deacetylase, which has been proposed as an important mediator in the alleviation of cerebral ischemia through modulating multiple physiological processes, including apoptosis, inflammation, DNA repair, oxidative stress, and autophagy. Recent growing evidence suggests that SIRT1-mediated autophagy plays a key role in the pathophysiological process of cerebral I/R injury. SIRT1 could both activate and inhibit the autophagy process by mediating different autophagy pathways, such as the SIRT1-FOXOs pathway, SIRT1-AMPK pathway, and SIRT1-p53 pathway. However, the autophagic roles of SIRT1 in cerebral I/R injury have not been systematically summarized. Here, in this review, we will first introduce the molecular mechanisms and effects of SIRT1 in cerebral ischemia and I/R injury. Next, we will discuss the involvement of autophagy in the pathogenesis of cerebral I/R injury. Finally, we will summarize the latest advances in the interaction between SIRT1 and autophagy in cerebral I/R injury. A good understanding of these relationships would serve to consolidate a framework of mechanisms underlying SIRT1's neuroprotective effects and provides evidence for the development of drugs targeting SIRT1.
Collapse
|
29
|
Cardoso FDS, Salehpour F, Coimbra NC, Gonzalez-Lima F, Gomes da Silva S. Photobiomodulation for the treatment of neuroinflammation: A systematic review of controlled laboratory animal studies. Front Neurosci 2022; 16:1006031. [PMID: 36203812 PMCID: PMC9531128 DOI: 10.3389/fnins.2022.1006031] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuroinflammation is a response that involves different cell lineages of the central nervous system, such as neurons and glial cells. Among the non-pharmacological interventions for neuroinflammation, photobiomodulation (PBM) is gaining prominence because of its beneficial effects found in experimental brain research. We systematically reviewed the effects of PBM on laboratory animal models, specially to investigate potential benefits of PBM as an efficient anti-inflammatory therapy. Methods We conducted a systematic search on the bibliographic databases (PubMed and ScienceDirect) with the keywords based on MeSH terms: photobiomodulation, low-level laser therapy, brain, neuroinflammation, inflammation, cytokine, and microglia. Data search was limited from 2009 to June 2022. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. The initial systematic search identified 140 articles. Among them, 54 articles were removed for duplication and 59 articles by screening. Therefore, 27 studies met the inclusion criteria. Results The studies showed that PBM has anti-inflammatory properties in several conditions, such as traumatic brain injury, edema formation and hyperalgesia, ischemia, neurodegenerative conditions, aging, epilepsy, depression, and spinal cord injury. Conclusion Taken together, these results indicate that transcranial PBM therapy is a promising strategy to treat brain pathological conditions induced by neuroinflammation.
Collapse
Affiliation(s)
- Fabrízio dos Santos Cardoso
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
- *Correspondence: Fabrízio dos Santos Cardoso
| | - Farzad Salehpour
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Norberto Cysne Coimbra
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Sérgio Gomes da Silva
- Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, MG, Brazil
- Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil
| |
Collapse
|
30
|
Near-infrared light reduces glia activation and modulates neuroinflammation in the brains of diet-induced obese mice. Sci Rep 2022; 12:10848. [PMID: 35761012 PMCID: PMC9237037 DOI: 10.1038/s41598-022-14812-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/13/2022] [Indexed: 12/06/2022] Open
Abstract
Neuroinflammation is a key event in neurodegenerative conditions such as Alzheimer's disease (AD) and characterizes metabolic pathologies like obesity and type 2 diabetes (T2D). Growing evidence in humans shows that obesity increases the risk of developing AD by threefold. Hippocampal neuroinflammation in rodents correlates with poor memory performance, suggesting that it contributes to cognitive decline. Here we propose that reducing obesity/T2D-driven neuroinflammation may prevent the progression of cognitive decline associated with AD-like neurodegenerative states. Near-infrared light (NIR) has attracted increasing attention as it was shown to improve learning and memory in both humans and animal models. We previously reported that transcranial NIR delivery reduced amyloid beta and Tau pathology and improved memory function in mouse models of AD. Here, we report the effects of NIR in preventing obesity-induced neuroinflammation in a diet-induced obese mouse model. Five-week-old wild-type mice were fed a high-fat diet (HFD) for 13 weeks to induce obesity prior to transcranial delivery of NIR for 4 weeks during 90-s sessions given 5 days a week. After sacrifice, brain slices were subjected to free-floating immunofluorescence for microglia and astrocyte markers to evaluate glial activation and quantitative real-time polymerase chain reaction (PCR) to evaluate expression levels of inflammatory cytokines and brain-derived neurotrophic factor (BDNF). The hippocampal and cortical regions of the HFD group had increased expression of the activated microglial marker CD68 and the astrocytic marker glial fibrillary acidic protein. NIR-treated HFD groups showed decreased levels of these markers. PCR revealed that hippocampal tissue from the HFD group had increased levels of pro-inflammatory interleukin (IL)-1β and tumor necrosis factor-α. Interestingly, the same samples showed increased levels of the anti-inflammatory IL-10. All these changes were attenuated by NIR treatment. Lastly, hippocampal levels of the neurotrophic factor BDNF were increased in NIR-treated HFD mice, compared to untreated HFD mice. The marked reductions in glial activation and pro-inflammatory cytokines along with elevated BDNF provide insights into how NIR could reduce neuroinflammation. These results support the use of NIR as a potential non-invasive and preventive therapeutic approach against chronic obesity-induced deficits that are known to occur with AD neuropathology.
Collapse
|
31
|
Wang L, Liu Y, Zhang X, Ye Y, Xiong X, Zhang S, Gu L, Jian Z, Wang H. Endoplasmic Reticulum Stress and the Unfolded Protein Response in Cerebral Ischemia/Reperfusion Injury. Front Cell Neurosci 2022; 16:864426. [PMID: 35602556 PMCID: PMC9114642 DOI: 10.3389/fncel.2022.864426] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is an acute cerebrovascular disease characterized by sudden interruption of blood flow in a certain part of the brain, leading to serious disability and death. At present, treatment methods for ischemic stroke are limited to thrombolysis or thrombus removal, but the treatment window is very narrow. However, recovery of cerebral blood circulation further causes cerebral ischemia/reperfusion injury (CIRI). The endoplasmic reticulum (ER) plays an important role in protein secretion, membrane protein folding, transportation, and maintenance of intracellular calcium homeostasis. Endoplasmic reticulum stress (ERS) plays a crucial role in cerebral ischemia pathophysiology. Mild ERS helps improve cell tolerance and restore cell homeostasis; however, excessive or long-term ERS causes apoptotic pathway activation. Specifically, the protein kinase R-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1) pathways are significantly activated following initiation of the unfolded protein response (UPR). CIRI-induced apoptosis leads to nerve cell death, which ultimately aggravates neurological deficits in patients. Therefore, it is necessary and important to comprehensively explore the mechanism of ERS in CIRI to identify methods for preserving brain cells and neuronal function after ischemia.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shudi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Zhihong Jian,
| | - Hongfa Wang
- Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Hongfa Wang,
| |
Collapse
|
32
|
Mitochondrial transplantation improves anxiety- and depression-like behaviors in aged stress-exposed rats. Mech Ageing Dev 2022; 202:111632. [PMID: 35065970 DOI: 10.1016/j.mad.2022.111632] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Impaired mitochondrial function and abnormalities in the tryptophan (Trp)-kynurenine (Kyn) pathway are linked to age-related mood disorders. This study investigated the effect of intracerebroventricular (ICV) injection of the mitochondria isolated from young rat brain on depression-like behaviors of aged rats subjected to chronic mild stress (CMS). Aged (22 months old) male rats were randomly assigned into four groups: Aged, Aged + Mit, Aged + CMS, and Aged + CMS + Mit. Anxiety- and depression-like behaviors were assessed using elevated plus maze (EPM), open field test (OFT), forced swimming test (FST), and sucrose preference test (SPT). Mitochondrial membrane potential (MMP), ATP levels, indoleamine 2, 3-dioxygenase (IDO) levels, and Kyn metabolites were measured in the prefrontal cortex (PFC). Golgi Cox staining was used to investigate the neuronal morphology. Mitotherapy decreased immobility time and anhedonia in the FST; increased open arm time and entries in the EPM; decreased grooming and increased rearing, center time, and the entrance in the OFT. Mitotherapy also reduced IDO and Kyn metabolites, restored MMP and ATP production, and enhanced dendritic length and spine density in the PFC. Overall, mitotherapy improved anxiety-and depression-like behaviors in aged rats and it could be considered as a new therapeutic strategy for age-related depressive disorders.
Collapse
|
33
|
Kou Y, Zhao H, Cui D, Han H, Tong Z. Formaldehyde toxicity in age-related neurological dementia. Ageing Res Rev 2022; 73:101512. [PMID: 34798299 DOI: 10.1016/j.arr.2021.101512] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/02/2023]
Abstract
The primordial small gaseous molecules, such as: NO, CO, H2S and formaldehyde (FA) are present in the brains. Whether FA as well as the other molecules participates in brain functions is unclear. Recently, its pathophysiological functions have been investigated. Notably, under physiological conditions, learning activity induces a transient generation of hippocampal FA, which promotes memory formation by enhancing N-methyl-D-aspartate (NMDA)-currents. However, ageing leads to FA accumulation in brain for the dysregulation of FA metabolism; and excessive FA directly impairs memory by inhibiting NMDA-receptor. Especially, in Alzheimer's disease (AD), amyloid-beta (Aβ) accelerates FA accumulation by inactivating alcohol dehydrogenase-5; in turn, FA promotes Aβ oligomerization, fibrillation and tau hyperphosphorylation. Hence, there is a vicious circle encompassing Aβ assembly and FA generation. Even worse, FA induces Aβ deposition in the extracellular space (ECS), which blocks the medicines (dissolved in the interstitial fluid) flowing into the damaged neurons in the deep cortex. However, phototherapy destroys Aβ deposits in the ECS and restores ISF flow. Coenzyme Q10, which scavenges FA, was shown to ameliorate Aβ-induced AD pathological phenotypes, thus suggesting a causative relation between FA toxicity and AD. These findings suggest that the combination of these two methods is a promising strategy for treating AD.
Collapse
|
34
|
Fatemi I, Saeed Askari P, Hakimizadeh E, Kaeidi A, Esmaeil Moghaddam S, Pak-Hashemi M, Allahtavakoli M. Chronic treatment with coenzyme Q10 mitigates the behavioral dysfunction of global cerebral ischemia/reperfusion injury in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:39-45. [PMID: 35656440 PMCID: PMC9118282 DOI: 10.22038/ijbms.2022.57630.12865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/27/2021] [Indexed: 11/06/2022]
Abstract
Objectives The Ischemia/reperfusion (I/R) phenomenon has a critical role in brain injuries induced by some kinds of stroke. The current study investigates the effects of Coenzyme Q10 (Q10) on global cerebral I/R in rats. Materials and Methods Fifty male Wistar rats were used in this study. The global cerebral I/R was induced by obstructing both common carotid arteries for 20 min and the animals were treated with Q10 (200 mg/kg; PO.) for 6 weeks. Depressive and anxiety-like behaviors were assessed using the elevated plus-maze and forced swimming test, respectively. Working and spatial learning and memory were assessed by the Y-maze continuous alternation task and Morris water maze. The brain tissues were evaluated for brain edema, brain-derived neurotrophic factor (BDNF) levels, and superoxide dismutase (SOD) activities. Results Our results indicated that global cerebral I/R increased anxiety and depression-like behavior as well as reduced cognitive performance. Moreover, the levels of BDNF and activities of SOD are reduced in stroke animals. Chronic post-stroke treatment with Q10 decreased brain edema. Furthermore, Q10 administration reduced anxiety and depressive-like behavior as well as cognitive impairments in stroke animals. Q10 also increased the SOD activities and BDNF levels in the brain tissues of stroke animals. Conclusion Finally, we can conclude that using Q10 supplementation may be beneficial against the global cerebral I/R complications.
Collapse
Affiliation(s)
- Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Pooya Saeed Askari
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Mohammad Pak-Hashemi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Allahtavakoli
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran,Corresponding author: Mohammad Allahtavakoli. Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
Tel: +98-34-31315091; Fax: +98-34-31315003; and
| |
Collapse
|
35
|
Wang X, Li X, Zuo X, Liang Z, Ding T, Li K, Ma Y, Li P, Zhu Z, Ju C, Zhang Z, Song Z, Quan H, Zhang J, Hu X, Wang Z. Photobiomodulation inhibits the activation of neurotoxic microglia and astrocytes by inhibiting Lcn2/JAK2-STAT3 crosstalk after spinal cord injury in male rats. J Neuroinflammation 2021; 18:256. [PMID: 34740378 PMCID: PMC8571847 DOI: 10.1186/s12974-021-02312-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neurotoxic microglia and astrocytes begin to activate and participate in pathological processes after spinal cord injury (SCI), subsequently causing severe secondary damage and affecting tissue repair. We have previously reported that photobiomodulation (PBM) can promote functional recovery by reducing neuroinflammation after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM ameliorates neuroinflammation by modulating the activation of microglia and astrocytes after SCI. METHODS Male Sprague-Dawley rats were randomly divided into three groups: a sham control group, an SCI + vehicle group and an SCI + PBM group. PBM was performed for two consecutive weeks after clip-compression SCI models were established. The activation of neurotoxic microglia and astrocytes, the level of tissue apoptosis, the number of motor neurons and the recovery of motor function were evaluated at different days post-injury (1, 3, 7, 14, and 28 days post-injury, dpi). Lipocalin 2 (Lcn2) and Janus kinase-2 (JAK2)-signal transducer and activator of transcription-3 (STAT3) signaling were regarded as potential targets by which PBM affected neurotoxic microglia and astrocytes. In in vitro experiments, primary microglia and astrocytes were irradiated with PBM and cotreated with cucurbitacin I (a JAK2-STAT3 pathway inhibitor), an adenovirus (shRNA-Lcn2) and recombinant Lcn2 protein. RESULTS PBM promoted the recovery of motor function, inhibited the activation of neurotoxic microglia and astrocytes, alleviated neuroinflammation and tissue apoptosis, and increased the number of neurons retained after SCI. The upregulation of Lcn2 and the activation of the JAK2-STAT3 pathway after SCI were suppressed by PBM. In vitro experiments also showed that Lcn2 and JAK2-STAT3 were mutually promoted and that PBM interfered with this interaction, inhibiting the activation of microglia and astrocytes. CONCLUSION Lcn2/JAK2-STAT3 crosstalk is involved in the activation of neurotoxic microglia and astrocytes after SCI, and this process can be suppressed by PBM.
Collapse
Affiliation(s)
- Xuankang Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xin Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,967 Hospital of People's Liberation Army Joint Logistic Support Force, Dalian, 116044, Liaoning, China
| | - Xiaoshuang Zuo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhuowen Liang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Tan Ding
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kun Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yangguang Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Penghui Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhijie Zhu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhihao Zhang
- 967 Hospital of People's Liberation Army Joint Logistic Support Force, Dalian, 116044, Liaoning, China
| | - Zhiwen Song
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Huilin Quan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiawei Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
36
|
Hosseini L, Farazi N, Erfani M, Mahmoudi J, Akbari M, Hosseini SH, Sadigh-Eteghad S. Effect of transcranial near-infrared photobiomodulation on cognitive outcomes in D-galactose/AlCl 3 induced brain aging in BALB/c mice. Lasers Med Sci 2021; 37:1787-1798. [PMID: 34596786 DOI: 10.1007/s10103-021-03433-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023]
Abstract
Brain photobiomodulation (PBM) therapy (PBMT) modulates various biological and cognitive processes in senescence rodent models. This study was designed to investigate the effects of transcranial near-infrared (NIR) laser treatment on D-galactose (D-gal)/aluminum chloride (AlCl3) induced inflammation, synaptic dysfunction, and cognitive impairment in mice. The aged mouse model was induced by subcutaneously injecting D-gal (60 mg/kg/day) followed by intragastrically administering AlCl3 (200 mg/kg/day) for 2 months. NIR PBM (810 nm laser, 32, 16, and 8 J/cm2) was administered transcranially every other day (3 days/week) for 2 months. Social, contextual, and spatial memories were assessed by social interaction test, passive avoidance test, and Lashley III maze, respectively. Then, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and synaptic markers including growth-associated protein 43 (GAP-43), post-synaptic density-95 (PSD-95), and synaptophysin (SYN) levels were measured in the hippocampus using western blot method. Behavioral results revealed that NIR PBM at fluencies of 16 and 8 J/cm2 could reduce D-gal/AlCl3 impaired social and spatial memories. Treatment with NIR attenuated neuroinflammation through down-regulation of TNF-α and IL-6. Additionally, NIR significantly inhibited the down-regulation of GAP-43 and SYN. The results indicate that transcranial PBM at the fluencies 16 and 8 J/cm2 effectively prevents cognitive impairment in mice model of aging by inhibiting the production of the inflammatory cytokines and enhancing synaptic markers.
Collapse
Affiliation(s)
- Leila Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Narmin Farazi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Marjan Erfani
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hojjat Hosseini
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Metabolic Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.
| |
Collapse
|
37
|
Mahmoudi J, Hosseini L, Sadigh-Eteghad S, Farajdokht F, Vatandoust SM, Ziaee M. Sericin Alleviates Thermal Stress Induced Anxiety-Like Behavior and Cognitive Impairment Through Regulation of Oxidative Stress, Apoptosis, and Heat-Shock Protein-70 in the Hippocampus. Neurochem Res 2021; 46:2307-2316. [PMID: 34089443 DOI: 10.1007/s11064-021-03370-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
Exposure to heat stress (HS) has adverse effects on brain function, leading to anxiety-like behavior and memory impairment. Sericin is a silk derived protein with various neurobiological activities. The present study has investigated the effects of sericin on anxiety and cognitive impairments, in HS-received mice. The adult male mice were exposed to HS (43 ºC, 15 min once a day for 14 days) and simultaneously treated with 100, 150, and 200 mg/kg/day of sericin through oral gavage. Elevated plus-maze and Lashley III Maze tests were used to evaluate anxiety and learning and memory, respectively. The hippocampal BAX, BCL-2, caspase3, caspase9 and heat-shock protein-70 (HSP-70) were evaluated by western blotting and oxidative stress markers including malondialdehyde (MDA), total antioxidant capacity (TAC), super oxide dismutase (SOD) as well as glutathione peroxidase (GPx) were evaluated by spectroscopy method. The serum was collected for the analysis of the corticosterone levels. Treatment with sericin in higher doses reversed anxiety-like behavior and cognitive deficit induced by HS. Moreover, heat exposure increased serum corticosterone, hippocampal MDA, apoptotic proteins and HSP-70 levels. Sericin administration decreased serum corticosterone and enhanced hippocampal antioxidant defense and attenuated apoptosis and HSP-70 levels. The results show that the protective effects of sericin against HS-mediated cognitive dysfunction and anxiety-like behavior is possibly through suppressing HSP-70, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Mehdi Vatandoust
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Ziaee
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran.
- Department of Pharmacology, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
38
|
Superpulsed 904 nm laser photobiomodulation combined with coenzyme Q10 synergistically augment burn wound healing. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
39
|
Gerace E, Cialdai F, Sereni E, Lana D, Nosi D, Giovannini MG, Monici M, Mannaioni G. NIR Laser Photobiomodulation Induces Neuroprotection in an In Vitro Model of Cerebral Hypoxia/Ischemia. Mol Neurobiol 2021; 58:5383-5395. [PMID: 34319540 PMCID: PMC8497317 DOI: 10.1007/s12035-021-02496-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022]
Abstract
Brain photobiomodulation (PBM) is an innovative treatment for a variety of neurological conditions, including cerebral ischemia. However, the capability of PBM for ischemic stroke needs to be further explored and its mechanisms of action remain currently unclear. The aim of the present research was to identify a treatment protocol capable of inducing neuroprotection and to investigate the molecular mechanisms activated by a dual-wavelength near infrared (NIR) laser source in an organotypic hippocampal slice model of hypoxia/ischemia. Hippocampal slices were exposed to oxygen and glucose deprivation (OGD) for 30 min followed by NIR laser light (fluence 3.71, 7.42, or 14.84 J/cm2; wavelengths 808 nm and 905 nm) delivered immediately or 30 min or 60 min after OGD, in order to establish a therapeutic window. Neuronal injury was assessed by propidium iodide fluorescence 24 h later. Our results show that NIR laser irradiation attenuates OGD neurotoxicity once applied immediately or 30 min after OGD. Western blot analysis of proteins involved in neuroinflammation (iNOS, COX-2, NFkB subunit p65, and Bcl-2) and in glutamatergic-mediated synaptic activity (vGluT1, EAAT2, GluN1, and PSD95) showed that the protein modifications induced by OGD were reverted by NIR laser application. Moreover, CA1 confocal microscopy revealed that the profound morphological changes induced by OGD were reverted by NIR laser radiation. In conclusion, NIR laser radiation attenuates OGD neurotoxicity in organotypic hippocampal slices through attenuation of inflammatory mechanisms. These findings shed light on molecular definition of NIR neuroprotective mechanisms, thus underlining the potential benefit of this technique for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy.
| | - Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Res. Div. - Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elettra Sereni
- ASAcampus Joint Laboratory, ASA Res. Div. - Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div. - Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
40
|
Sericin protects against acute sleep deprivation-induced memory impairment via enhancement of hippocampal synaptic protein levels and inhibition of oxidative stress and neuroinflammation in mice. Brain Res Bull 2021; 174:203-211. [PMID: 34153383 DOI: 10.1016/j.brainresbull.2021.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 01/07/2023]
Abstract
Sleep deprivation (SD) induces learning and memory deficits via inflammatory responses and oxidative stress. On the other hand, sericin (Ser) possesses potent antioxidant and neuroprotective effects. We investigated the effect of different doses of Ser on the SD-induced cognitive impairment. Ser (100, 200, and 300 mg/kg) was administered to animals via oral gavage for 8 days, 5 days before to SD, and during SD. SD was induced in mice using a modified multiple platform model, starting on the 6th day for 72 h. Spatial learning and memory were assessed using the Lashley III maze. Serum corticosterone level, and hippocampal malondialdehyde (MDA), total antioxidant capacity (TAC), and the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymes were evaluated. The expression of growth-associated protein 43 (GAP-43), post-synaptic density-95 (PSD-95), synapsin 1 (SYN-1), and synaptophysin (SYP), and inflammation markers were detected by western blotting. SD caused cognitive impairment, while Ser pretreatment prevented such an effect. Serum corticosterone also increased with SD, but its levels were suppressed in SD mice receiving Ser. Furthermore, Ser normalized SD-induced reduction in the hippocampus activity of SOD and GPx, increased TAC, and decreased MDA levels. Besides, Ser pretreatment increased GAP-34, SYP, SYN-I, and PSD-95 and reduced IL1-β and TNF-α in the hippocampus. SD induced memory impairment and pretreatment with Ser improved memory via its antioxidant, anti-inflammation, and up-regulation of synaptic proteins in the hippocampus.
Collapse
|
41
|
Abolhasanpour N, Alihosseini S, Golipourkhalili S, Badalzadeh R, Mahmoudi J, Hosseini L. Insight into the effects of melatonin on endoplasmic reticulum, mitochondrial function, and their cross-talk in the stroke. Arch Med Res 2021; 52:673-682. [PMID: 33926763 DOI: 10.1016/j.arcmed.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/13/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
Ischemic stroke has remained a principal cause of mortality and neurological disabilities worldwide. Blood flow resumption, reperfusion, in the cerebral ischemia prompts a cascade in the brain characterized by various cellular mechanisms like mitochondrial dysfunction, oxidative stresses, endoplasmic reticulum (ER) stress, and excitotoxicity, finally resulting in programmed cell death. Any changes in the ER-mitochondria axis are probably responsible for both the onset and progression of central nervous system diseases. Melatonin, a neurohormone secreted by the pineal gland, has antioxidative, anti-inflammatory, and anti-apoptotic properties. Most studies have shown that it exerts neuroprotective effects against ischemic stroke. It was observed that melatonin therapy after the stroke not only leads to reduce mitochondrial dysfunction but also cause to alleviate ER stress and inflammation. This review discusses the impact of melatonin on mitochondrial, ER function, and on the crosstalk between two organelles as a therapeutic target for stroke. Given that the influences of melatonin on each organelle separately, its effects on mechanisms of crosstalk between ER and mitochondria are discussed.
Collapse
Affiliation(s)
- Nasrin Abolhasanpour
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences
| | - Samin Alihosseini
- Student research center, Tabriz university of medical sciences, Tabriz, Iran
| | - Sevda Golipourkhalili
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR Iran; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Improved Spatial Memory And Neuroinflammatory Profile Changes in Aged Rats Submitted to Photobiomodulation Therapy. Cell Mol Neurobiol 2021; 42:1875-1886. [PMID: 33704604 DOI: 10.1007/s10571-021-01069-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/23/2021] [Indexed: 01/11/2023]
Abstract
Recent evidences have shown the therapeutic potential of transcranial photobiomodulation on traumatic brain injury and Alzheimer's disease. Despite the promising benefits in the brain, little is known about the laser's effects in the absence of pathological conditions. We submitted young (4 months old) and aged (20 months old) rats to transcranial low-level laser and evaluated their exploratory activity and habituation in open field, anxiety in elevated plus maze, spatial memory in Barnes maze, and aversive memory in a step-down inhibitory avoidance task. Additionally, the levels of a panel of inflammatory cytokines and chemokines were quantified in two different brain regions: the cerebral cortex and the hippocampus. Young and aged rats submitted to transcranial laser exhibited better cognitive performance in Barnes maze than did control rats. Transcranial laser therapy decreased cortical levels of GM-CSF, IL-10, MCP-1, LIX, and TNFα in young rats and IL-5 in aged rats. High levels of IL-6, IL-10, and TNF-alpha were found in the cerebral cortex of aged rats submitted to transcranial laser. In the hippocampus, a decrease in IP-10 and fractalkine levels was observed in the aged rats from the laser group when compared to the aged rats from the control group. Our data indicate that transcranial photobiomodulation improves spatial learning and memory and alters the neuroinflammatory profile of young and aged rats' brains.
Collapse
|
43
|
Ramezani F, Neshasteh-Riz A, Ghadaksaz A, Fazeli SM, Janzadeh A, Hamblin MR. Mechanistic aspects of photobiomodulation therapy in the nervous system. Lasers Med Sci 2021; 37:11-18. [PMID: 33624187 DOI: 10.1007/s10103-021-03277-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Photobiomodulation therapy (PBMT) previously known as low-level laser therapy (LLLT) has been used for over 30 years, to treat neurological diseases. Low-powered lasers are commonly used for clinical applications, although recently LEDs have become popular. Due to the growing application of this type of laser in brain and neural-related diseases, this review focuses on the mechanisms of laser action. The most important points to consider include the photon absorption by intracellular structures; the effect on the oxidative state of cells; and the effect on the expression of proteins involved in oxidative stress, inflammation, pain, and neuronal growth.
Collapse
Affiliation(s)
- Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Ali Neshasteh-Riz
- Radiation Biology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Alireza Ghadaksaz
- Department of Biophysics, Medical School, University of Pécs, Pécs, 7622, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, 7622, Hungary
| | - Seyedalireza Moghadas Fazeli
- Occupational Medicine Research Center (OMRC), Iran University of Medical Sciences, Tehran, Iran.,International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Science, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
44
|
Heydari H, Ghiasi R, Hamidian G, Ghaderpour S, Keyhanmanesh R. Voluntary exercise improves sperm parameters in high fat diet receiving rats through alteration in testicular oxidative stress, mir-34a/SIRT1/p53 and apoptosis. Horm Mol Biol Clin Investig 2021; 42:253-263. [PMID: 33638320 DOI: 10.1515/hmbci-2020-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVES High fat diet can lead to testicular structural and functional disturbances, spermatogenesis disorders as well as infertility. So, the present investigation was proposed to clarify whether voluntary exercise could prevent high fat diet induced reproductive complications in rats through testicular stress oxidative and apoptosis. METHODS Forty male Wistar rats were randomly divided into four groups; control (C), voluntary exercise (VE), high fat diet (HFD) and high fat diet and voluntary exercise (VE + HFD) groups. The rats in the VE and VE + HFD groups were accommodated in apart cages that had running wheels and the running distance was assessed daily for 10 weeks. In VE + HFD group, animals were fed with HFD for five weeks before commencing exercise. The sperm parameters, the expressions of testicular miR-34a gene, and P53 and SIRT1 proteins as well as testicular apoptosis were analyzed in all groups. RESULTS The results indicated that voluntary exercise in VE + HFD group led to significantly increased GPX and SOD activities, SIRT1 protein expression, sperm parameters, and decreased the expression of miR34a gene and Acp53 protein, and cellular apoptosis index compared to HFD group (p<0.001 to p<0.05). The SOD and catalase activities, SIRT1 protein expression, sperm parameters in VE + HFD group were lower than of those of VE group, however, MDA content, expression of Acp53 protein, apoptosis indexes in VE + HFD group was higher than that of VE group (p<0.001 to p<0.05). CONCLUSION This study revealed that voluntary exercise improved spermatogenesis, in part by decreasing the testicular oxidative stress status, apoptosis through alteration in miR-34a/SIRT1/p53 pathway.
Collapse
Affiliation(s)
- Hamed Heydari
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafighe Ghiasi
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saber Ghaderpour
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Ghasemloo E, Oryan S, Bigdeli MR, Mostafavi H, Eskandari M. The neuroprotective effect of MicroRNA-149-5p and coenzymeQ10 by reducing levels of inflammatory cytokines and metalloproteinases following focal brain ischemia in rats. Brain Res Bull 2021; 169:205-213. [PMID: 33508402 DOI: 10.1016/j.brainresbull.2021.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/28/2023]
Abstract
The increase in some factors following cerebral ischemia, especially Matrix metalloproteinase (MMPs) and inflammatory factors lead to blood-brain barrier (BBB) damages, edema and neuronal death. Previous studies have shown that these molecules are miRNA-149-5p (miR-149) and Coenzyme (Co) Q10 targets. Therefore, in this study, the effect of mimic of miRNA-149-5p (mimic miR) and CoQ10 on the expression of metalloproteinase 1 and 2 and inflammatory cytokines following injury caused by cerebral ischemia is investigated. Cerebral ischemia was modeled by Middle Cerebral Artery Occlusion (MCAO). Male Wistar rats were randomly divided into 6 groups: sham (without surgery and treatment), control (MCAO), negative control (NC): MCAO + scrambled miR, vehicle: MCAO + Ethanole, first treatment: MCAO + mimic miR, second treatment: MCAO + Q10. Each group was divided into 6 subgroups to evaluate neurological defects, the volume of tissue damage using 2,3,5-triphenyl tetrazolium chloride (TTC) staining, blood-brain barrier permeability using cerebral Evans Blue (EB) staining, edema by measuring the percentage of brain water, MMP-2,9 mRNA and miR-149-5p levels using Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and the levels of IL-6 and TNF-α proteins using ELISA. The data obtained from this study showed that the use of mimic miR and Q10 increased the level of miR-149, decreased the extent of neurological defects and tissue damage, increased BBB integrity, decreased brain water percentage and also decreased the level of inflammatory cytokines and MMPs. It seems that the use mimic of miRNA-149-5p and Q10 can have a protective effect on the brain by reducing MMPs and inflammatory factors following cerebral ischemia and this could lead to a new treatment strategy to reduce the complications of cerebral ischemia.
Collapse
Affiliation(s)
- Elham Ghasemloo
- Faculty of Life Sciences, Kharazmi University, Tehran, Iran.
| | | | - Mohammad Reza Bigdeli
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hossein Mostafavi
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Eskandari
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
46
|
You J, Bragin A, Liu H, Li L. Preclinical studies of transcranial photobiomodulation in the neurological diseases. TRANSLATIONAL BIOPHOTONICS 2021. [DOI: 10.1002/tbio.202000024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Jing You
- Department of Biomedical Engineering University of North Texas Denton Texas USA
| | - Anatol Bragin
- Department of Neurology University of California Los Angeles Los Angeles California USA
- Brain Research Institute University of California Los Angeles Los Angeles California USA
| | - Hanli Liu
- Department of Bioengineering University of Texas at Arlington Arlington Texas USA
| | - Lin Li
- Department of Biomedical Engineering University of North Texas Denton Texas USA
- Department of Neurology University of California Los Angeles Los Angeles California USA
| |
Collapse
|
47
|
Xie T, Wang C, Jin Y, Meng Q, Liu Q, Wu J, Sun H. CoenzymeQ10-Induced Activation of AMPK-YAP-OPA1 Pathway Alleviates Atherosclerosis by Improving Mitochondrial Function, Inhibiting Oxidative Stress and Promoting Energy Metabolism. Front Pharmacol 2020; 11:1034. [PMID: 32792941 PMCID: PMC7387644 DOI: 10.3389/fphar.2020.01034] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis (AS) is an excessive chronic inflammatory hyperplasia caused by the damage of vascular endothelial cell morphology and function. Changes in mitochondrial internal conformation and increase of reactive oxygen species (ROS) can lead to energy metabolism disorders in mitochondria, which further affects the occurrence of atherosclerosis by impairing vascular endothelial function. Coenzyme Q10 (CoQ10) is one of the components of mitochondrial respiratory chain, which has the functions of electron transfer, reducing oxidative stress damage, improving mitochondrial function and promoting energy metabolism. The main purpose of this study is to investigate the protective effects of CoQ10 against AS by improving mitochondrial energy metabolism. Both in high fat diet (HFD) fed APOE -/- mice and in ox-LDL-treated HAECs, CoQ10 significantly decreased the levels of TG, TC and LDL-C and increased the levels of HDL-C, thus playing a role in regulating lipid homeostasis. Meanwhile, CoQ10 decreased the levels of LDH and MDA and increased the levels of SOD and GSH, thus playing a role in regulating oxidation level. CoQ10 also inhibited the over-release of ROS and increased ATP content to improve mitochondrial function. CoQ10 also decreased the levels of related inflammatory factors (ICAM-1, VCAM-1, IL-6, TNF-α and NLRP3). In order to study the mechanism of the experiment, AMPK and YAP were silenced in vitro. The further study suggested AMPK small interfering RNA (siRNA) and YAP small interfering RNA (siRNA) affected the expression of OPA1, a crucial protein regulating the balance of mitochondrial fusion and division and decreased the therapeutic effects of CoQ10. These results indicated that CoQ10 improved mitochondrial function, inhibited ROS production, promoted energy metabolism and attenuated AS by activating AMPK-YAP-OPA1 pathway. This study provides a possible new mechanism for CoQ10 in the treatment of AS and may bring a new hope for the prevention and treatment of AS in the future.
Collapse
Affiliation(s)
- Tianqi Xie
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
48
|
Fatemi I, Saeed-Askari P, Hakimizadeh E, Kaeidi A, Esmaeil-Moghaddam S, Pak-Hashemi M, Allahtavakoli M. Long-term metformin therapy improves neurobehavioral functions and antioxidative activity after cerebral ischemia/reperfusion injury in rats. Brain Res Bull 2020; 163:65-71. [PMID: 32693150 DOI: 10.1016/j.brainresbull.2020.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Metformin (MET),an antidiabetic drug, has shown antioxidative and neuroprotective effects. In the present investigation, we aimed to study the probable effects of MET on cerebral ischemia/reperfusion in rats. Rats underwent cerebral ischemia/reperfusion and MET was administered orally at doses of 100 and 200 mg/kg for 56 days. Anxiety- and depressive-like behaviors were evaluated by elevated plus-maze or forced swimming tests, respectively. was assessed by. Cognitive functions were assessed by Y-maze continuous alternation task and morris water maze. The activity of SOD and the level of BDNF were measured in brains samples. Our results showed that administration of 200 mg/kg MET reduced the percent of brain edema (84.00 ± 2.13) in comparison with the ischemic animals (91.25 ± 2.25) (p < 0.05). Administration of 200 mg/kg MET in ischemic animals improved anxiety-like behavior by increasing the percentage of the open arms entries (46.51 ± 3.13) and the percentage of the open arms time (32.70 ± 2.49) in comparison with the cerebral ischemia group (26.35 ± 7.02 and 15.32 ± 5.78, respectively) (all p < 0.001). MET treatment (200 mg/kg) increased the cognition index of correct alternations (90.20 ± 4.95) in comparison with the cerebral ischemia group (59.50 ± 8.01) (p < 0.05). MET at the both doses reduced escape latency compared to the cerebral ischemia animals (all p < 0.05). In addition, 200 mg/kg MET increased the time spent in the target quadrant (16.06 ± 0.58) in comparison with the ischemic animals (9.84 ± 0.92) (p < 0.001) and the both doses of the drug increased the number of crossing (5.42 ± 0.36 and 6.5 ± 0.42, respectively) compared to the cerebral ischemia group (3.75 ± 0.31) (p < 0.05 and p < 0.001, respectively). Moreover, 200 mg/kg MET reduced the immobility time (47.50 ± 9.00) in comparison with the cerebral ischemia group (93.43 ± 8.28) (p < 0.001). Furthermore, the both doses of MET increased the BDNF levels (4590 ± 197.6 and 4767 ± 44.10, respectively) in comparison with the ischemic animals (3807 ± 42.56) (p < 0.01 and p < 0.001, respectively). Also, the both doses of the drug increased the SOD activity of brain (52.67 ± 0.33 and 55.00 ± 0.57, respectively) compared to the ischemic animals (49.33 ± 0.33) (p < 0.01 and p < 0.001, respectively). Based on our data, long-term MET therapy may improve behavioral disorders following cerebral ischemia/reperfusion and can be considered as a novel therapeutic approach for the treatment of brain ischemic conditions.
Collapse
Affiliation(s)
- Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Pooya Saeed-Askari
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Mohammad Pak-Hashemi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Allahtavakoli
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
49
|
Liu J, Zhang T, Wang Y, Si C, Wang X, Wang RT, Lv Z. Baicalin ameliorates neuropathology in repeated cerebral ischemia-reperfusion injury model mice by remodeling the gut microbiota. Aging (Albany NY) 2020; 12:3791-3806. [PMID: 32084011 PMCID: PMC7066900 DOI: 10.18632/aging.102846] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/04/2020] [Indexed: 04/14/2023]
Abstract
We investigated the neuroprotective effects of baicalin and the role of gut microbiota in a mouse model of cerebral ischemia-reperfusion injury. Repeated cerebral ischemia-reperfusion significantly increased plasma levels of trimethylamine (TMA), trimethylamine-N-oxide (TMAO), and clusterin (a neuroinflammation biomarker). These changes correlated with cognitive decline; short-term memory deficits; abnormal long term potentiation (LTP); decreased functional connectivity (FC) between various brain regions; reduced plasticity and dendritic spine density in the hippocampus; increased levels of the pro-inflammatory cytokines IL-1β, IL-6, and TNFα; and altered the gut microbial composition. Treatment with 50-100 mg/Kg baicalin for 7 days after cerebral ischemia-reperfusion significantly restored normal plasma levels of TMA, TMAO, and clusterin. Baicalin treatment also suppressed neuroinflammation, remodeled the gut microbial composition back to normal, and improved cognition, memory, LTP, cerebral FC, and hippocampal neuronal plasticity. The neuroprotective effects of baicalin were diminished when mice undergoing repeated cerebral ischemia-reperfusion were pretreated with broad-spectrum antibiotics to deplete gut microbial populations. This suggests the neuroprotective effects of baicalin in cerebral ischemia-reperfusion injury are mediated by the gut microbiota. It thus appears that baicalin ameliorates neuropathology in a repeated cerebral ischemia-reperfusion model mice by remodeling the gut microbiota.
Collapse
Affiliation(s)
- Jianfeng Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Tianhua Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yingying Wang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
| | - Chengqing Si
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xudong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Rui-Tao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, China
| | - Zhonghua Lv
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
50
|
Fei X, Yu Y, Di Y, Ai L, Yao D, Bai S, Zhao S, Lyu J, Cai X, He R, Tong Z. A rapid and non-invasive fluorescence method for quantifying coenzyme Q10 in blood and urine in clinical analysis. J Clin Lab Anal 2019; 34:e23130. [PMID: 31876061 PMCID: PMC7171321 DOI: 10.1002/jcla.23130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022] Open
Abstract
Background Coenzyme Q10 (CoQ10) supplementation can improve cognition in patients with Alzheimer's disease (AD) and AD transgenic model mice. To ameliorate the discomfort that patients with AD suffer after several blood extractions, a non‐invasive method for detecting urine CoQ10 levels needs to be established. Methods Here, we developed a new technique of fluorescence spectrophotometry with ethyl cyanoacetate (FS‐ECA), on the basis of the principle that the chemical derivative obtained from the interaction between CoQ10 and ECA was detected by a fluorescence detector at λex/em = 450/515 nm. As a standard reference method, the same batches of the clinical samples were analyzed by high‐performance liquid chromatography with an ultraviolet detector (HPLC‐UV) at 275 nm. Results The limits of detection (LOD) and limits of quantization (LOQ) (serum: 0.021 and 0.043 mg/L; urine: 0.012 and 0.025 mg/L) determined by the FS‐ECA method were similar to that obtained through HPLC‐UV (serum: 0.017 and 0.035 mg/L; urine: 0.012 and 0.025 mg/L). More importantly, this new FS‐ECA technique as well as the conventional HPLC‐UV method could detect a marked difference in urine CoQ10 levels between AD and controls. Conclusion Our findings suggest that this non‐invasive method for quantifying urine CoQ10 potentially replaces HPLC to detect blood CoQ10.
Collapse
Affiliation(s)
- Xuechao Fei
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Yan Yu
- Chinese institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yalan Di
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Li Ai
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Dandan Yao
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China.,Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Shangying Bai
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China.,The Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Shengjie Zhao
- Chinese institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jihui Lyu
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Xiang Cai
- The Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Rongqiao He
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China.,State Key Laboratory of Brain & Cognitive Science, Institute of Biophysics, CAS Key Laboratory of Mental Health, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Zhiqian Tong
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| |
Collapse
|