1
|
Vahid ZF, Eskandani M, Dadashi H, Vandghanooni S, Rashidi MR. Recent advances in potential enzymes and their therapeutic inhibitors for the treatment of Alzheimer's disease. Heliyon 2024; 10:e40756. [PMID: 39717593 PMCID: PMC11664286 DOI: 10.1016/j.heliyon.2024.e40756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Alzheimer's disease (AD), a chronic neurodegenerative disease, is clinically characterized by loss of memory and learning ability among other neurological deficits. Amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles involve in AD etiology. Meanwhile, enzymes and their inhibitors have become the focus of research in AD treatment. In this review, the molecular mechanisms involved in the pathogenesis of AD were overviewed and various enzymes such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase, γ-secretase, monoamine oxidase (MAO), and receptor of advanced glycation end products (RAGE) were highlighted as potential targets for AD treatment. Several hybrid molecules with essential substructures derived from various chemotypes have demonstrated desired pharmacological activity. It is envisioned that the development of new drugs that inhibit enzymes involved in AD is a future trend in the management of the disease.
Collapse
Affiliation(s)
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Dadashi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Medicinal Chemistry Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Haessler A, Candlish M, Hefendehl JK, Jung N, Windbergs M. Mapping cellular stress and lipid dysregulation in Alzheimer-related progressive neurodegeneration using label-free Raman microscopy. Commun Biol 2024; 7:1514. [PMID: 39548189 PMCID: PMC11568221 DOI: 10.1038/s42003-024-07182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Aβ plaques are a main feature of Alzheimer's disease, and pathological alterations especially in their microenvironment have recently come into focus. However, a holistic imaging approach unveiling these changes and their biochemical nature is still lacking. In this context, we leverage confocal Raman microscopy as unbiased tool for non-destructive, label-free differentiation of progressive biomolecular changes in the Aβ plaque microenvironment in brain tissue of a murine model of cerebral amyloidosis. By developing a detailed approach, overcoming many challenges of chemical imaging, we identify spatially-resolved molecular signatures of disease-associated structures. Specifically, our study reveals nuclear condensation, indicating cellular degeneration, and increased levels of cytochrome c, showing mitochondrial dysfunction, in the vicinity of Aβ plaques. Further, we observe severe accumulation of especially unsaturated lipids. Thus, our study contributes to a comprehensive understanding of disease progression in the Aβ plaque microenvironment, underscoring the prospective of Raman imaging in neurodegenerative disorder research.
Collapse
Affiliation(s)
- Annika Haessler
- Institute of Pharmaceutical Technology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Michael Candlish
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt am Main and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Jasmin K Hefendehl
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt am Main and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Nathalie Jung
- Institute of Pharmaceutical Technology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Merino-Serrais P, Soria JM, Arrabal CA, Ortigado-López A, Esparza MÁG, Muñoz A, Hernández F, Ávila J, DeFelipe J, León-Espinosa G. Protein tau phosphorylation in the proline rich region and its implication in the progression of Alzheimer's disease. Exp Neurol 2024; 383:115049. [PMID: 39522802 DOI: 10.1016/j.expneurol.2024.115049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Tau has a wide variety of essential functions in the brain, but this protein also plays a determining role in the development of Alzheimer's disease (AD) and other neurodegenerative diseases called tauopathies. This is due to its abnormal aggregation and the subsequent formation of neurofibrillary tangles. Tau hyperphosphorylation appears to be a critical step in its transformation into an aggregated protein. However, the exact process, including the cellular events that trigger it, remains unclear. In this study, we employed immunocytochemistry assays on hippocampal sections from AD cases and from tauopathy cases (Braak stage III) with no evidence of cognitive decline, and the P301S mouse model to investigate the colocalization patterns of Tau phosphorylated (p) at specific residues (S202-T205, S214, and T231) within the proline-rich region. Our results show pyramidal neurons in the hippocampus of P301S mice in which Tau is intensely phosphorylated at residues S202 and T205 (recognized by the AT8 antibody), but with no detectable phosphorylation at S214 or T231. These non-colocalizing neurons displayed intensely labeled aggregated pTau deposits distributed through the soma and dendritic processes. However, most of the hippocampal pyramidal neurons are labeled with pTauS214 or pTauT231 antibodies and typically showed a homogeneous and diffuse pTau distribution (not aggregated). This different labeling likely reflects a Tau conformational step, potentially related to the transition from a diffuse tau phosphorylation phenotype (Type 2) into an NFT-like or Type 1 phenotype. We further observed that dendrites of CA3 pyramidal cells are intensely labeled with pTau214 in the stratum lucidum, but not with AT8 or pTauT231. By contrast, analysis of tissue from AD patients or other human tauopathy cases (Braak stage III) with no evidence of cognitive decline revealed extensive colocalization with both antibody combinations in CA1. The complete or mature tangle development may follow a different mechanism in the P301S mouse model or may require more time to achieve the maturity state found in AD cases. Further studies would be necessary to address this question.
Collapse
Affiliation(s)
- Paula Merino-Serrais
- Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcón, 28223 Madrid, Spain; CIBER de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - José Miguel Soria
- Department of Biomedical Sciences, Cardenal Herrera University-CEU Universities, 46001, Valencia, Spain
| | - Cristina Aguirre Arrabal
- Departamento de Matemática Aplicada y Estadística, Universidad San Pablo-CEU, CEU Universities, Julian Romea 22, 28003 Madrid, Spain
| | - Alfonso Ortigado-López
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | | | - Alberto Muñoz
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcón, 28223 Madrid, Spain; Department of Cell Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Jesús Ávila
- CIBER de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain; Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Javier DeFelipe
- Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcón, 28223 Madrid, Spain; CIBER de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Gonzalo León-Espinosa
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcón, 28223 Madrid, Spain; Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
4
|
Lee HJ, Hwang JW, Kim J, Jo AR, Park JH, Jeong YJ, Jang JY, Kim SJ, Song JH, Hoe HS. Erlotinib regulates short-term memory, tau/Aβ pathology, and astrogliosis in mouse models of AD. Front Immunol 2024; 15:1421455. [PMID: 39434878 PMCID: PMC11491340 DOI: 10.3389/fimmu.2024.1421455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Erlotinib is an epidermal growth factor receptor (EGFR) inhibitor that is approved by the FDA to treat non-small cell lung cancer (NSCLC). Several membrane receptors, including EGFR, interact with amyloid β (Aβ), raising the possibility that erlotinib could have therapeutic effects on Alzheimer's disease (AD). However, the effects of erlotinib on Aβ/tau-related pathology and cognitive function in mouse models of AD and its mechanisms of action have not been examined in detail. Methods To investigate the effects of erlotinib on cognitive function and AD pathology, 3 to 6-month-old PS19 mice and 3 to 3.5-month-old 5xFAD mice and WT mice were injected with vehicle (5% DMSO + 10% PEG + 20% Tween80 + 65% D.W.) or erlotinib (20 mg/kg, i.p.) daily for 14 or 21 days. Then, behavioral tests, Golgi staining, immunofluorescence staining, western blotting ELISA, and real-time PCR were conducted. Results and discussion We found that erlotinib significantly enhanced short-term spatial memory and dendritic spine formation in 6-month-old P301S tau transgenic (PS19) mice. Importantly, erlotinib administration reduced tau phosphorylation at Ser202/Thr205 (AT8) and Thr231 (AT180) and further aggregation of tau into paired helical fragments (PHFs) and neurofibrillary tangles (NFTs) in 3-month-old and/or 6-month-old PS19 mice by suppressing the expression of the tau kinase DYRK1A. Moreover, erlotinib treatment decreased astrogliosis in 6-month-old PS19 mice and reduced proinflammatory responses in primary astrocytes (PACs) from PS19 mice. In 3- to 3.5-month-old 5xFAD mice, erlotinib treatment improved short-term spatial memory and hippocampal dendritic spine number and diminished Aβ plaque deposition and tau hyperphosphorylation. Furthermore, erlotinib-treated 5xFAD mice exhibited significant downregulation of astrocyte activation, and treating PACs from 5xFAD mice with erlotinib markedly reduced cxcl10 (reactive astrocyte marker) and gbp2 (A1 astrocyte marker) mRNA levels and proinflammatory cytokine mRNA and protein levels. Taken together, our results suggest that erlotinib regulates tau/Aβ-induced AD pathology, cognitive function, and Aβ/tau-evoked astrogliosis and therefore could be a potent therapeutic drug for ameliorating AD symptoms.
Collapse
Affiliation(s)
- Hyun-ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Artificial Intelligence (AI)-based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jeong-Woo Hwang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Artificial Intelligence (AI)-based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - A-Ran Jo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Artificial Intelligence (AI)-based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Yoo Joo Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Artificial Intelligence (AI)-based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Ji-Yeong Jang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Artificial Intelligence (AI)-based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Su-Jeong Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jeong-Heon Song
- Artificial Intelligence (AI)-based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Artificial Intelligence (AI)-based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| |
Collapse
|
5
|
Sheng L, Bhalla R. Biomarkers and Target-Specific Small-Molecule Drugs in Alzheimer's Diagnostic and Therapeutic Research: From Amyloidosis to Tauopathy. Neurochem Res 2024; 49:2273-2302. [PMID: 38844706 PMCID: PMC11310295 DOI: 10.1007/s11064-024-04178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 08/09/2024]
Abstract
Alzheimer's disease (AD) is the most common type of human dementia and is responsible for over 60% of diagnosed dementia cases worldwide. Abnormal deposition of β-amyloid and the accumulation of neurofibrillary tangles have been recognised as the two pathological hallmarks targeted by AD diagnostic imaging as well as therapeutics. With the progression of pathological studies, the two hallmarks and their related pathways have remained the focus of researchers who seek for AD diagnostic and therapeutic strategies in the past decades. In this work, we reviewed the development of the AD biomarkers and their corresponding target-specific small molecule drugs for both diagnostic and therapeutic applications, underlining their success, failure, and future possibilities.
Collapse
Affiliation(s)
- Li Sheng
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Rajiv Bhalla
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
6
|
Kim HJ, Kim BH, Kim DK, Kim H, Choi SH, Kim DH, Choi M, Mook-Jung I, Jeong YT, Kwon O. Phosphorylated Tau in the Taste Buds of Alzheimer's Disease Mouse Models. Exp Neurobiol 2024; 33:202-214. [PMID: 39266476 PMCID: PMC11411091 DOI: 10.5607/en24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/05/2024] [Accepted: 08/08/2024] [Indexed: 09/14/2024] Open
Abstract
Numerous systemic diseases manifest with oral symptoms and signs. The molecular diagnosis of Alzheimer's disease (AD), the most prevalent neurodegenerative disease worldwide, currently relies on invasive or expensive methods, emphasizing the imperative for easily accessible biomarkers. In this study, we explored the expression patterns of key proteins implicated in AD pathophysiology within the taste buds of mice. We detected the expression of amyloid precursor protein (APP) and tau protein in the taste buds of normal C57BL/6 mice. Phosphorylated tau was predominantly found in type II and III taste cells, while APP was located in type I taste cells. Remarkably, we observed significantly stronger immunoreactivity to phosphorylated tau in the taste buds of aged AD mouse models compared to age-matched controls. These findings underscore the oral expression of biomarkers associated with AD, highlighting the diagnostic potential of the oral cavity for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun Ji Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Bo Hye Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dong Kyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Hanbin Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang-Hyun Choi
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Dong-Hoon Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yong Taek Jeong
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Obin Kwon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
7
|
Chu D, Yang X, Wang J, Zhou Y, Gu JH, Miao J, Wu F, Liu F. Tau truncation in the pathogenesis of Alzheimer's disease: a narrative review. Neural Regen Res 2024; 19:1221-1232. [PMID: 37905868 PMCID: PMC11467920 DOI: 10.4103/1673-5374.385853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 07/25/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Alzheimer's disease is characterized by two major neuropathological hallmarks-the extracellular β-amyloid plaques and intracellular neurofibrillary tangles consisting of aggregated and hyperphosphorylated Tau protein. Recent studies suggest that dysregulation of the microtubule-associated protein Tau, especially specific proteolysis, could be a driving force for Alzheimer's disease neurodegeneration. Tau physiologically promotes the assembly and stabilization of microtubules, whereas specific truncated fragments are sufficient to induce abnormal hyperphosphorylation and aggregate into toxic oligomers, resulting in them gaining prion-like characteristics. In addition, Tau truncations cause extensive impairments to neural and glial cell functions and animal cognition and behavior in a fragment-dependent manner. This review summarizes over 60 proteolytic cleavage sites and their corresponding truncated fragments, investigates the role of specific truncations in physiological and pathological states of Alzheimer's disease, and summarizes the latest applications of strategies targeting Tau fragments in the diagnosis and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xingyue Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province, China
| | - Jin Miao
- Laboratory of Animal Center, Nantong University, Nantong, Jiangsu Province, China
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
8
|
Shi H, Zhao Y. Modulation of Tau Pathology in Alzheimer's Disease by Dietary Bioactive Compounds. Int J Mol Sci 2024; 25:831. [PMID: 38255905 PMCID: PMC10815728 DOI: 10.3390/ijms25020831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tau is a microtubule-associated protein essential for microtubule assembly and stability in neurons. The abnormal intracellular accumulation of tau aggregates is a major characteristic of brains from patients with Alzheimer's disease (AD) and other tauopathies. In AD, the presence of neurofibrillary tangles (NFTs), which is composed of hyperphosphorylated tau protein, is positively correlated with the severity of the cognitive decline. Evidence suggests that the accumulation and aggregation of tau cause synaptic dysfunction and neuronal degeneration. Thus, the prevention of abnormal tau phosphorylation and elimination of tau aggregates have been proposed as therapeutic strategies for AD. However, currently tau-targeting therapies for AD and other tauopathies are limited. A number of dietary bioactive compounds have been found to modulate the posttranslational modifications of tau, including phosphorylation, small ubiquitin-like modifier (SUMO) mediated modification (SUMOylation) and acetylation, as well as inhibit tau aggregation and/or promote tau degradation. The advantages of using these dietary components over synthetic substances in AD prevention and intervention are their safety and accessibility. This review summarizes the mechanisms leading to tau pathology in AD and highlights the effects of bioactive compounds on the hyperphosphorylation, aggregation and clearance of tau protein. The potential of using these bioactive compounds for AD prevention and intervention is also discussed.
Collapse
Affiliation(s)
- Huahua Shi
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
9
|
Wang J, Lin Y, Xu X, Wang Y, Xie Q. Identification of tau-tubulin kinase 1 inhibitors by microfluidics-based mobility shift assay from a kinase inhibitor library. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:385-393. [PMID: 37399991 DOI: 10.1016/j.slasd.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Tau tubulin kinase 1 (TTBK1) is a serine/threonine/tyrosine kinase that phosphorylates multiple residues in tau protein. Hyperphosphorylated tau is the main cause of tauopathy, such as Alzheimer's disease (AD). Therefore, preventing tau phosphorylation by inhibiting TTBK1 has been proposed as a therapeutic strategy for AD. However, few substrates of TTBK1 are reported for a biochemical assay and few inhibitors targeting TTBK1 have been reported so far. In this study, we identified a fluorescein amidite (FAM)-labeled peptide 15 from a small peptide library as the optimal peptide substrate for human TTBK1 (hTTBK1). We then developed and validated a microfluidics-based mobility shift assay (MMSA) with peptide 15. We further confirmed that peptide 15 could also be used in the ADP-Glo kinase assay. The established MMSA was applied for screening of a 427-compound kinase inhibitor library, yielding five compounds with IC50s of several micro molars against hTTBK1. Among them, three compounds, AZD5363, A-674,563 and GSK690693 inhibited hTTBK1 in an ATP competitive manner and molecular docking simulations revealed that they enter the ATP pocket and form one or two hydrogen bonds to the hinge region with hTTBK1. Another hit compound, piceatannol, showed non-ATP competitive inhibitory effect on hTTBK1 and may serve as a starting point to develop highly selective hTTBK1 inhibitors. Altogether, this study provided a new in vitro platform for the development of novel hTTBK1 inhibitors that might have potential applications in AD prevention.
Collapse
Affiliation(s)
- Jinlei Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China; Shanghai ChemPartner Co. Ltd., 2727/2728 Jinke Road, Shanghai 201203, PR China
| | - Ying Lin
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Xiaoyu Xu
- Shanghai ChemPartner Co. Ltd., 2727/2728 Jinke Road, Shanghai 201203, PR China
| | - Yonghui Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China.
| | - Qiong Xie
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China.
| |
Collapse
|
10
|
Brandimarti R, Irollo E, Meucci O. The US9-Derived Protein gPTB9TM Modulates APP Processing Without Targeting Secretase Activities. Mol Neurobiol 2023; 60:1811-1825. [PMID: 36576708 PMCID: PMC9984340 DOI: 10.1007/s12035-022-03153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022]
Abstract
Alteration of neuronal protein processing is often associated with neurological disorders and is highly dependent on cellular protein trafficking. A prime example is the amyloidogenic processing of amyloid precursor protein (APP) in intracellular vesicles, which plays a key role in age-related cognitive impairment. Most approaches to correct this altered processing aim to limit enzymatic activities that lead to toxic products, such as protein cleavage by β-secretase and the resulting amyloid β production. A viable alternative is to direct APP to cellular compartments where non-amyloidogenic mechanisms are favored. To this end, we exploited the molecular properties of the herpes simplex virus 1 (HSV-1) transport protein US9 to guide APP interaction with preferred endogenous targets. Specifically, we generated a US9 chimeric construct that facilitates APP processing through the non-amyloidogenic pathway and tested it in primary cortical neurons. In addition to reducing amyloid β production, our approach controls other APP-dependent biochemical steps that lead to neuronal deficits, including phosphorylation of APP and tau proteins. Notably, it also promotes the release of neuroprotective soluble αAPP. In contrast to other neuroprotective strategies, these US9-driven effects rely on the activity of endogenous neuronal proteins, which lends itself well to the study of fundamental mechanisms of APP processing/trafficking. Overall, this work introduces a new method to limit APP misprocessing and its cellular consequences without directly targeting secretase activity, offering a novel tool to reduce cognitive decline in pathologies such as Alzheimer's disease and HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Renato Brandimarti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA.,Center for Neuroimmunology and CNS Therapeutics, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA.,Department of Pharmacy and Biotechnology, University of Bologna, Via San Giacomo,14, 40126, Bologna, Italy
| | - Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA.,Center for Neuroimmunology and CNS Therapeutics, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA. .,Center for Neuroimmunology and CNS Therapeutics, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA. .,Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
11
|
Zhang L, Cao K, Su Y, Hu S, Liang X, Luo Q, Luo H. Colorimetric and surface-enhanced Raman scattering dual-mode magnetic immunosensor for ultrasensitive detection of blood phosphorylated tau in Alzheimer's disease. Biosens Bioelectron 2023; 222:114935. [PMID: 36463652 DOI: 10.1016/j.bios.2022.114935] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Phosphorylation of tau at Ser 396, 404 (p-tau396,404) is the earliest phosphorylation event and a promising biomarker for the early diagnosis of Alzheimer's disease (AD). However, the detection of blood p-tau is challenging because of its low abundance, easy degradation, and complex formation with various blood proteins or cells, often leading to the underestimation of p-tau levels in conventional plasma-based assays. Herein, we developed a colorimetric and surface-enhanced Raman scattering (SERS) dual-mode magnetic immunosensor for highly sensitive, specific, and robust detection of p-tau396,404 in whole blood samples. The detection assay was based on an immunoreaction between p-tau396,404 proteins, wherein antibody-modified superparamagnetic iron oxide nanoparticles act as recognition elements to capture p-tau396,404 in blood, and then horseradish peroxidase- and Raman tags label the corresponding paired antibody as a reporter to provide high signal-to-noise ratios for the immunosensor. This dual-mode immunosensor achieved identified as low as 1.5 pg/mL of p-tau396,404 in the blood in SERS mode and 24 pg/mL in colorimetric mode by the naked eye. More importantly, this immunosensor rapidly and accurately distinguished AD patients from healthy individuals based on blood p-tau396,404 levels, and also had the potential to distinguish AD patients of different severities. Therefore, the dual-mode immunosensor is promising for rapid clinical diagnosis of AD, especially in large-scale AD screening.
Collapse
Affiliation(s)
- Liding Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Kai Cao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Shun Hu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Qingming Luo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China; Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, China; Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.
| |
Collapse
|
12
|
Lipoprotein Metabolism, Protein Aggregation, and Alzheimer's Disease: A Literature Review. Int J Mol Sci 2023; 24:ijms24032944. [PMID: 36769268 PMCID: PMC9918279 DOI: 10.3390/ijms24032944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. The physiopathology of AD is well described by the presence of two neuropathological features: amyloid plaques and tau neurofibrillary tangles. In the last decade, neuroinflammation and cellular stress have gained importance as key factors in the development and pathology of AD. Chronic cellular stress occurs in degenerating neurons. Stress Granules (SGs) are nonmembranous organelles formed as a response to stress, with a protective role; however, SGs have been noted to turn into pathological and neurotoxic features when stress is chronic, and they are related to an increased tau aggregation. On the other hand, correct lipid metabolism is essential to good function of the brain; apolipoproteins are highly associated with risk of AD, and impaired cholesterol efflux and lipid transport are associated with an increased risk of AD. In this review, we provide an insight into the relationship between cellular stress, SGs, protein aggregation, and lipid metabolism in AD.
Collapse
|
13
|
Green R, Mayilsamy K, McGill AR, Martinez TE, Chandran B, Blair LJ, Bickford PC, Mohapatra SS, Mohapatra S. SARS-CoV-2 infection increases the gene expression profile for Alzheimer's disease risk. Mol Ther Methods Clin Dev 2022; 27:217-229. [PMID: 36187720 PMCID: PMC9508696 DOI: 10.1016/j.omtm.2022.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 02/02/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused over 600,000,000 infections globally thus far. Up to 30% of individuals with mild to severe disease develop long COVID, exhibiting diverse neurologic symptoms including dementias. However, there is a paucity of knowledge of molecular brain markers and whether these can precipitate the onset of Alzheimer's disease (AD). Herein, we report the brain gene expression profiles of severe COVID-19 patients showing increased expression of innate immune response genes and genes implicated in AD pathogenesis. The use of a mouse-adapted strain of SARS-CoV-2 (MA10) in an aged mouse model shows evidence of viral neurotropism, prolonged viral infection, increased expression of tau aggregator FKBP51, interferon-inducible gene Ifi204, and complement genes C4 and C5AR1. Brain histopathology shows AD signatures including increased tau-phosphorylation, tau-oligomerization, and α-synuclein expression in aged MA10 infected mice. The results of gene expression profiling of SARS-CoV-2-infected and AD brains and studies in the MA10 aged mouse model taken together, for the first time provide evidence suggesting that SARS-CoV-2 infection alters expression of genes in the brain associated with the development of AD. Future studies of common molecular markers in SARS-CoV-2 infection and AD could be useful for developing novel therapies targeting AD.
Collapse
Affiliation(s)
- Ryan Green
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Karthick Mayilsamy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Andrew R. McGill
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Taylor E. Martinez
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Bala Chandran
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Laura J. Blair
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Byrd Alzheimer’s Research Institute, University of South Florida, Tampa, FL 33613, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Paula C. Bickford
- Center of Excellence for Aging and Brain Repair, Departments of Neurosurgery and Brain Repair, and Molecular Pharmacology and Physiology, Morsani College of Medicine, Tampa, FL 33613, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Shyam S. Mohapatra
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| |
Collapse
|
14
|
Karimi N, Bayram Çatak F, Arslan E, Saghazadeh A, Rezaei N. Tau immunotherapy in Alzheimer’s disease and progressive supranuclear palsy. Int Immunopharmacol 2022; 113:109445. [DOI: 10.1016/j.intimp.2022.109445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
|
15
|
Interpretable Classification of Tauopathies with a Convolutional Neural Network Pipeline Using Transfer Learning and Validation against Post-Mortem Clinical Cases of Alzheimer's Disease and Progressive Supranuclear Palsy. Curr Issues Mol Biol 2022; 44:5963-5985. [PMID: 36547067 PMCID: PMC9776567 DOI: 10.3390/cimb44120406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Neurodegenerative diseases, tauopathies, constitute a serious global health problem. The etiology of these diseases is unclear and an increase in their incidence has been projected in the next 30 years. Therefore, the study of the molecular mechanisms that might stop these neurodegenerative processes is very relevant. Classification of neurodegenerative diseases using Machine and Deep Learning algorithms has been widely studied for medical imaging such as Magnetic Resonance Imaging. However, post-mortem immunofluorescence imaging studies of the brains of patients have not yet been used for this purpose. These studies may represent a valuable tool for monitoring aberrant chemical changes or pathological post-translational modifications of the Tau polypeptide. We propose a Convolutional Neural Network pipeline for the classification of Tau pathology of Alzheimer's disease and Progressive Supranuclear Palsy by analyzing post-mortem immunofluorescence images with different Tau biomarkers performed with models generated with the architecture ResNet-IFT using Transfer Learning. These models' outputs were interpreted with interpretability algorithms such as Guided Grad-CAM and Occlusion Analysis. To determine the best classifier, four different architectures were tested. We demonstrated that our design was able to classify diseases with an accuracy of 98.41% on average whilst providing an interpretation concerning the proper classification involving different structural patterns in the immunoreactivity of the Tau protein in NFTs present in the brains of patients with Progressive Supranuclear Palsy and Alzheimer's disease.
Collapse
|
16
|
Aβ and Tau Interact with Metal Ions, Lipid Membranes and Peptide-Based Amyloid Inhibitors: Are These Common Features Relevant in Alzheimer’s Disease? Molecules 2022; 27:molecules27165066. [PMID: 36014310 PMCID: PMC9414153 DOI: 10.3390/molecules27165066] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, the amyloid hypothesis, i.e., the abnormal accumulation of toxic Aβ assemblies in the brain, has been considered the mainstream concept sustaining research in Alzheimer’s Disease (AD). However, the course of cognitive decline and AD development better correlates with tau accumulation rather than amyloid peptide deposition. Moreover, all clinical trials of amyloid-targeting drug candidates have been unsuccessful, implicitly suggesting that the amyloid hypothesis needs significant amendments. Accumulating evidence supports the existence of a series of potentially dangerous relationships between Aβ oligomeric species and tau protein in AD. However, the molecular determinants underlying pathogenic Aβ/tau cross interactions are not fully understood. Here, we discuss the common features of Aβ and tau molecules, with special emphasis on: (i) the critical role played by metal dyshomeostasis in promoting both Aβ and tau aggregation and oxidative stress, in AD; (ii) the effects of lipid membranes on Aβ and tau (co)-aggregation at the membrane interface; (iii) the potential of small peptide-based inhibitors of Aβ and tau misfolding as therapeutic tools in AD. Although the molecular mechanism underlying the direct Aβ/tau interaction remains largely unknown, the arguments discussed in this review may help reinforcing the current view of a synergistic Aβ/tau molecular crosstalk in AD and stimulate further research to mechanism elucidation and next-generation AD therapeutics.
Collapse
|
17
|
Alipour M, Motavaf M, Abdolmaleki P, Zali A, Ashrafi F, Safari S, Hajipour-Verdom B. Structural Analysis and Conformational Dynamics of Short Helical Hyperphosphorylated Segments of Tau Protein (Sequence 254–290) in Alzheimer’s Disease: A Molecular Dynamics Simulation Study. Front Mol Biosci 2022; 9:884705. [PMID: 36003083 PMCID: PMC9393928 DOI: 10.3389/fmolb.2022.884705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder whose early diagnosis leads to a chance for successful treatment and decreases the side effects. Hyperphosphorylation of tau proteins is a pathological hallmark of AD that causes it to lose its attachment ability to the microtubules. Alteration of tau structure due to its hyperphosphorylation is an exciting challenge regarding AD treatments. Here, we aimed to examine the structural alterations of short helical segments of tau protein with one to three phosphorylated sites by molecular dynamics simulation. Results indicated that the interaction of two similar segments with three phosphorylated sites (P-Ser262, 285, and 289) formed a compact and more stable structure than the one phosphorylated site complex (P-Ser262). Moreover, due to the high dynamics of the P-Ser262 complex, several structures were made with different conformational dynamics, but there was only one stable cluster of the P-Ser262, 285, and 289 complex during simulation. It seems that the P-Ser262, 285, and 289 complex plays an important role in the formation of paired helical filaments (PHFs) by forming a stable dimer. Generally, it is important to identify how structural features of segments in tau protein change when the phosphorylated sites increase from one to three sites and their effects on the formation of PHFs for drug design and diagnostic biomarkers.
Collapse
Affiliation(s)
- Mozhgan Alipour
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Motavaf
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Ashrafi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Saeid Safari, ; Behnam Hajipour-Verdom,
| | - Behnam Hajipour-Verdom
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Saeid Safari, ; Behnam Hajipour-Verdom,
| |
Collapse
|
18
|
Alzheimer’s Disease and Tau Self-Assembly: In the Search of the Missing Link. Int J Mol Sci 2022; 23:ijms23084192. [PMID: 35457009 PMCID: PMC9032712 DOI: 10.3390/ijms23084192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease characterized by progressive cognitive impairment, apathy, and neuropsychiatric disorders. Two main pathological hallmarks have been described: neurofibrillary tangles, consisting of tau oligomers (hyperphosphorylated tau) and Aβ plaques. The influence of protein kinases and phosphatases on the hyperphosphorylation of tau is already known. Hyperphosphorylated tau undergoes conformational changes that promote its self-assembly. However, the process involving these mechanisms is yet to be elucidated. In vitro recombinant tau can be aggregated by the action of polyanions, such as heparin, arachidonic acid, and more recently, the action of polyphosphates. However, how that process occurs in vivo is yet to be understood. In this review, searching the most accurate and updated literature on the matter, we focus on the precise molecular events linking tau modifications, its misfolding and the initiation of its pathological self-assembly. Among these, we can identify challenges regarding tau phosphorylation, the link between tau heteroarylations and the onset of its self-assembly, as well as the possible metabolic pathways involving natural polyphosphates, that may play a role in tau self-assembly.
Collapse
|
19
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
20
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
21
|
Giovannini J, Smeralda W, Jouanne M, Sopkova-de Oliveira Santos J, Catto M, Sophie Voisin-Chiret A. Tau protein aggregation: key features to improve drug discovery screening. Drug Discov Today 2022; 27:1284-1297. [DOI: 10.1016/j.drudis.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
|
22
|
An Overview of the Nrf2/ARE Pathway and Its Role in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22179592. [PMID: 34502501 PMCID: PMC8431732 DOI: 10.3390/ijms22179592] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Nrf2 is a basic region leucine-zipper transcription factor that plays a pivotal role in the coordinated gene expression of antioxidant and detoxifying enzymes, promoting cell survival in adverse environmental or defective metabolic conditions. After synthesis, Nrf2 is arrested in the cytoplasm by the Kelch-like ECH-associated protein 1 suppressor (Keap1) leading Nrf2 to ubiquitin-dependent degradation. One Nrf2 activation mechanism relies on disconnection from the Keap1 homodimer through the oxidation of cysteine at specific sites of Keap1. Free Nrf2 enters the nucleus, dimerizes with small musculoaponeurotic fibrosarcoma proteins (sMafs), and binds to the antioxidant response element (ARE) sequence of the target genes. Since oxidative stress, next to neuroinflammation and mitochondrial dysfunction, is one of the hallmarks of neurodegenerative pathologies, a molecular intervention into Nrf2/ARE signaling and the enhancement of the transcriptional activity of particular genes are targets for prevention or delaying the onset of age-related and inherited neurogenerative diseases. In this study, we review evidence for the Nrf2/ARE-driven pathway dysfunctions leading to various neurological pathologies, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, as well as amyotrophic lateral sclerosis, and the beneficial role of natural and synthetic molecules that are able to interact with Nrf2 to enhance its protective efficacy.
Collapse
|
23
|
Bonomi CG, De Lucia V, Mascolo AP, Assogna M, Motta C, Scaricamazza E, Sallustio F, Mercuri NB, Koch G, Martorana A. Brain energy metabolism and neurodegeneration: hints from CSF lactate levels in dementias. Neurobiol Aging 2021; 105:333-339. [PMID: 34171631 DOI: 10.1016/j.neurobiolaging.2021.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 01/13/2023]
Abstract
Mitochondrial dysfunction is pivotal in the development of neurodegenerative dementias, causing cellular death alongside disease-specific pathogenic cascades. Holding cerebrospinal fluid (CSF) lactates as an indirect measure of brain metabolic activity, we first compared CSF lactate levels from patients with Alzheimer's disease (AD)-stratified according to the ATN system and epsilon genotype-frontotemporal dementia (FTD) and dementia with Lewy body (DLB) to findings from healthy controls. With respect to controls, we detected lower CSF lactates in patients with AD and FTD but comparable levels in patients with DLB. Second, a correlation analysis between CSF lactates and biomarkers of neurodegeneration identified an inverse correlation between lactates and levels of t-tau and p-tau only in the Alzheimer's continuum. The reduction of CSF lactate correlates to the advent of tauopathy and cellular death in AD, implying that Aβ pathology alone is not sufficient to induce neuronal metabolic impairment. The metabolic impairment in FTD patients has a similar explanation, as it is likely due to fast neuronal degeneration in the disease. The absence of CSF lactate reduction in patients with DLB may be related to the prevalent subcortical localization of the pathology.
Collapse
Affiliation(s)
| | - Vincenzo De Lucia
- Memory Clinic, Policlinico Tor Vergata, University of Rome, Rome, Italy
| | | | - Martina Assogna
- Memory Clinic, Policlinico Tor Vergata, University of Rome, Rome, Italy; Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia, Rome, Italy
| | - Caterina Motta
- Memory Clinic, Policlinico Tor Vergata, University of Rome, Rome, Italy; Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia, Rome, Italy
| | | | | | | | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia, Rome, Italy; Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
24
|
Pacheco-Herrero M, Soto-Rojas LO, Reyes-Sabater H, Garcés-Ramirez L, de la Cruz López F, Villanueva-Fierro I, Luna-Muñoz J. Current Status and Challenges of Stem Cell Treatment for Alzheimer's Disease. J Alzheimers Dis 2021; 84:917-935. [PMID: 34633316 PMCID: PMC8673502 DOI: 10.3233/jad-200863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases called tauopathies, such as Alzheimer's disease (AD), frontotemporal dementia, progressive supranuclear palsy, and Parkinson's disease, among others, are characterized by the pathological processing and accumulation of tau protein. AD is the most prevalent neurodegenerative disease and is characterized by two lesions: neurofibrillary tangles (NFTs) and neuritic plaques. The presence of NFTs in the hippocampus and neocortex in early and advanced stages, respectively, correlates with the patient's cognitive deterioration. So far, no drugs can prevent, decrease, or limit neuronal death due to abnormal pathological tau accumulation. Among potential non-pharmacological treatments, physical exercise has been shown to stimulate the development of stem cells (SCs) and may be useful in early stages. However, this does not prevent neuronal death from the massive accumulation of NFTs. In recent years, SCs therapies have emerged as a promising tool to repopulate areas involved in cognition in neurodegenerative diseases. Unfortunately, protocols for SCs therapy are still being developed and the mechanism of action of such therapy remains unclear. In this review, we show the advances and limitations of SCs therapy. Finally, we provide a critical analysis of its clinical use for AD.
Collapse
Affiliation(s)
- Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Dominican Republic
| | - Luis O. Soto-Rojas
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, State of Mexico, Mexico
| | - Heidy Reyes-Sabater
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Dominican Republic
| | - Linda Garcés-Ramirez
- Escuela Nacional de Ciencias Biológicas, Depto de Fisiología, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Fidel de la Cruz López
- Escuela Nacional de Ciencias Biológicas, Depto de Fisiología, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, UNAM, State of Mexico, Mexico
- Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Dominican Republic
| |
Collapse
|
25
|
Martínez-Maldonado A, Ontiveros-Torres MÁ, Harrington CR, Montiel-Sosa JF, Prandiz RGT, Bocanegra-López P, Sorsby-Vargas AM, Bravo-Muñoz M, Florán-Garduño B, Villanueva-Fierro I, Perry G, Garcés-Ramírez L, de la Cruz F, Martínez-Robles S, Pacheco-Herrero M, Luna-Muñoz J. Molecular Processing of Tau Protein in Progressive Supranuclear Palsy: Neuronal and Glial Degeneration. J Alzheimers Dis 2021; 79:1517-1531. [PMID: 33459640 PMCID: PMC7990452 DOI: 10.3233/jad-201139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) and progressive supranuclear palsy (PSP) are examples of neurodegenerative diseases, characterized by abnormal tau inclusions, that are called tauopathies. AD is characterized by highly insoluble paired helical filaments (PHFs) composed of tau with abnormal post-translational modifications. PSP is a neurodegenerative disease with pathological and clinical heterogeneity. There are six tau isoforms expressed in the adult human brain, with repeated microtubule-binding domains of three (3R) or four (4R) repeats. In AD, the 4R:3R ratio is 1:1. In PSP, the 4R isoform predominates. The lesions in PSP brains contain phosphorylated tau aggregates in both neurons and glial cells. OBJECTIVE Our objective was to evaluate and compare the processing of pathological tau in PSP and AD. METHODS Double and triple immunofluorescent labeling with antibodies to specific post-translational tau modifications (phosphorylation, truncation, and conformational changes) and thiazin red (TR) staining were carried out and analyzed by confocal microscopy. RESULTS Our results showed that PSP was characterized by phosphorylated tau in neurofibrillary tangles (NFTs) and glial cells. Tau truncated at either Glu391 or Asp421 was not observed. Extracellular NFTs (eNFTs) and glial cells in PSP exhibited a strong affinity for TR in the absence of intact or phosphorylated tau. CONCLUSION Phosphorylated tau was as abundant in PSP as in AD. The development of eNFTs from both glial cells and neuronal bodies suggests that truncated tau species, different from those observed in AD, could be present in PSP. Additional studies on truncated tau within PSP lesions could improve our understanding of the pathological processing of tau and help identify a discriminatory biomarker for AD and PSP.
Collapse
Affiliation(s)
- Alejandra Martínez-Maldonado
- Departamento de Fisiología Biofísica y Neurociencias, CINVESTAV, México City, México
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, México
| | | | - Charles R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - José Francisco Montiel-Sosa
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | | | | | | | - Marely Bravo-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | | | | | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Linda Garcés-Ramírez
- Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, México
| | - Fidel de la Cruz
- Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, México
| | - Sandra Martínez-Robles
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Catolica Madre y Maestra, Santiago de los Caballeros, República Dominicana
| | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
- Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, República Dominicana
| |
Collapse
|