1
|
Alexander E, Leong KW. Discovery of nanobodies: a comprehensive review of their applications and potential over the past five years. J Nanobiotechnology 2024; 22:661. [PMID: 39455963 PMCID: PMC11515141 DOI: 10.1186/s12951-024-02900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Nanobodies (Nbs) are antibody fragments derived from heavy-chain-only IgG antibodies found in the Camelidae family as well as cartilaginous fish. Their unique structural and functional properties, such as their small size, the ability to be engineered for high antigen-binding affinity, stability under extreme conditions, and ease of production, have made them promising tools for diagnostics and therapeutics. This potential was realized in 2018 with the approval of caplacizumab, the world's first Nb-based drug. Currently, Nbs are being investigated in clinical trials for a broad range of treatments, including targeted therapies against PDL1 and Epidermal Growth Factor Receptor (EGFR), cardiovascular diseases, inflammatory conditions, and neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. They are also being studied for their potential for detecting and imaging autoimmune conditions and infectious diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A variety of methods are now available to generate target-specific Nbs quickly and efficiently at low costs, increasing their accessibility. This article examines these diverse applications of Nbs and their promising roles. Only the most recent articles published in the last five years have been used to summarize the most advanced developments in the field.
Collapse
Affiliation(s)
- Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| |
Collapse
|
2
|
Desmurget C, Perilleux A, Souquet J, Borth N, Douet J. Molecular biomarkers identification and applications in CHO bioprocessing. J Biotechnol 2024; 392:11-24. [PMID: 38852681 DOI: 10.1016/j.jbiotec.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Biomarkers are valuable tools in clinical research where they allow to predict susceptibility to diseases, or response to specific treatments. Likewise, biomarkers can be extremely useful in the biomanufacturing of therapeutic proteins. Indeed, constraints such as short timelines and the need to find hyper-productive cells could benefit from a data-driven approach during cell line and process development. Many companies still rely on large screening capacities to develop productive cell lines, but as they reach a limit of production, there is a need to go from empirical to rationale procedures. Similarly, during bioprocessing runs, substrate consumption and metabolism wastes are commonly monitored. None of them possess the ability to predict the culture behavior in the bioreactor. Big data driven approaches are being adapted to the study of industrial mammalian cell lines, enabled by the publication of Chinese hamster and CHO genome assemblies which allowed the use of next-generation sequencing with these cells, as well as continuous proteome and metabolome annotation. However, if these different -omics technologies contributed to the characterization of CHO cells, there is a significant effort remaining to apply this knowledge to biomanufacturing methods. The correlation of a complex phenotype such as high productivity or rapid growth to the presence or expression level of a specific biomarker could save time and effort in the screening of manufacturing cell lines or culture conditions. In this review we will first discuss the different biological molecules that can be identified and quantified in cells, their detection techniques, and associated challenges. We will then review how these markers are used during the different steps of cell line and bioprocess development, and the inherent limitations of this strategy.
Collapse
Affiliation(s)
- Caroline Desmurget
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Arnaud Perilleux
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Jonathan Souquet
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julien Douet
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland.
| |
Collapse
|
3
|
Franek M, Koptašíková L, Mikšátko J, Liebl D, Macíčková E, Pospíšil J, Esner M, Dvořáčková M, Fajkus J. In-section Click-iT detection and super-resolution CLEM analysis of nucleolar ultrastructure and replication in plants. Nat Commun 2024; 15:2445. [PMID: 38503728 PMCID: PMC10950858 DOI: 10.1038/s41467-024-46324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Correlative light and electron microscopy (CLEM) is an important tool for the localisation of target molecule(s) and their spatial correlation with the ultrastructural map of subcellular features at the nanometre scale. Adoption of these advanced imaging methods has been limited in plant biology, due to challenges with plant tissue permeability, fluorescence labelling efficiency, indexing of features of interest throughout the complex 3D volume and their re-localization on micrographs of ultrathin cross-sections. Here, we demonstrate an imaging approach based on tissue processing and embedding into methacrylate resin followed by imaging of sections by both, single-molecule localization microscopy and transmission electron microscopy using consecutive CLEM and same-section CLEM correlative workflow. Importantly, we demonstrate that the use of a particular type of embedding resin is not only compatible with single-molecule localization microscopy but shows improvements in the fluorophore blinking behavior relative to the whole-mount approaches. Here, we use a commercially available Click-iT ethynyl-deoxyuridine cell proliferation kit to visualize the DNA replication sites of wild-type Arabidopsis thaliana seedlings, as well as fasciata1 and nucleolin1 plants and apply our in-section CLEM imaging workflow for the analysis of S-phase progression and nucleolar organization in mutant plants with aberrant nucleolar phenotypes.
Collapse
Affiliation(s)
- Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
| | - Lenka Koptašíková
- Charles University, Faculty of Science, Biology Section, Imaging Methods Core Facility at BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
- University of Exeter, Faculty of Health and Life Sciences, Bioimaging Centre, Geoffrey Pope Building, Stocker Road, EX4 4QD, Exeter, UK
| | - Jíří Mikšátko
- Charles University, Faculty of Science, Biology Section, Imaging Methods Core Facility at BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - David Liebl
- Charles University, Faculty of Science, Biology Section, Imaging Methods Core Facility at BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Eliška Macíčková
- Charles University, Faculty of Science, Biology Section, Imaging Methods Core Facility at BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Jakub Pospíšil
- Cellular Imaging Core Facility CELLIM, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology Masaryk University (CEITEC MU), Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Milan Esner
- Cellular Imaging Core Facility CELLIM, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology Masaryk University (CEITEC MU), Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
| | - Jíří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-61137, Brno, Czech Republic
| |
Collapse
|
4
|
Lee YH, Medhi H, Liu X, Ha IH, Nam KT, Ploegh H. Selective Targeting of Nanobody-Modified Gold Nanoparticles to Distinct Cell Types. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59258-59268. [PMID: 38091481 DOI: 10.1021/acsami.3c16829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Nanobody-modified gold nanoparticles were used to explore their ability to achieve selective targeting in vitro and in vivo to distinct cell type(s), based on the specificity of the nanobody that was installed. We developed conjugation methods that exploit click chemistry for octahedral ∼50 nm gold nanoparticles and chiral ∼180 nm gold nanoparticles. We determined that each of these particles could be modified with ∼75 and ∼330 nanobodies, respectively. Particle-bound nanobodies retain their antigen binding capacity. After conjugation of the mouse Class II MHC-specific nanobody VHH7 to chiral gold nanoparticles, selective targeting of Class II MHC-positive cell types was observed in vitro by fluorometric assays and by dark-field microscopy. Upon installation of the positron emission tomography (PET) isotopes 89Zr or 64Cu on nanobody-modified gold nanoparticles and retro-orbital injection of the radiolabeled particles, we observed accumulation predominantly in the liver and to a far lesser extent in the spleen, regardless of the size of the gold nanoparticles and the identity of the attached nanobody. We observed a striking difference in the distribution of radioisotope-labeled gold nanoparticles by changing the route of administration to intraperitoneal delivery. Significantly reduced accumulation in the liver and spleen was observed by intraperitoneal injection of nanoparticles. In the case of nanobody-modified gold nanoparticles injected intraperitoneally, prominent and persistent signals from the parathymic lymph nodes were observed in the PET/computed tomography images.
Collapse
Affiliation(s)
- Yoon Ho Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Himadri Medhi
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xin Liu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - In Han Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hidde Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Neikirk K, Marshall AG, Kula B, Smith N, LeBlanc S, Hinton A. MitoTracker: A useful tool in need of better alternatives. Eur J Cell Biol 2023; 102:151371. [PMID: 37956476 DOI: 10.1016/j.ejcb.2023.151371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The fluorescence viewing of mitochondria is commonly performed by MitoTracker, a lipophilic cationic dye that is taken up by the mitochondria. In this forum, we highlight several issues that may occur with MitoTracker, including staining of other organelles. Our aim is to offer alternative dyes and discuss their advantages and disadvantages. We also offer options for software with alternatives to MitoTracker to expedite future experimental design.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester 14642, USA
| | - Nathan Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester 14642, USA
| | - Sharonda LeBlanc
- Department of Physics, North Carolina State University, Raleigh 27695, NC, USA; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, NC, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
6
|
Lyons AC, Mehta S, Zhang J. Fluorescent biosensors illuminate the spatial regulation of cell signaling across scales. Biochem J 2023; 480:1693-1717. [PMID: 37903110 PMCID: PMC10657186 DOI: 10.1042/bcj20220223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023]
Abstract
As cell signaling research has advanced, it has become clearer that signal transduction has complex spatiotemporal regulation that goes beyond foundational linear transduction models. Several technologies have enabled these discoveries, including fluorescent biosensors designed to report live biochemical signaling events. As genetically encoded and live-cell compatible tools, fluorescent biosensors are well suited to address diverse cell signaling questions across different spatial scales of regulation. In this review, methods of examining spatial signaling regulation and the design of fluorescent biosensors are introduced. Then, recent biosensor developments that illuminate the importance of spatial regulation in cell signaling are highlighted at several scales, including membranes and organelles, molecular assemblies, and cell/tissue heterogeneity. In closing, perspectives on how fluorescent biosensors will continue enhancing cell signaling research are discussed.
Collapse
Affiliation(s)
- Anne C. Lyons
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
7
|
Zeghal M, Matte K, Venes A, Patel S, Laroche G, Sarvan S, Joshi M, Rain JC, Couture JF, Giguère PM. Development of a V5-tag-directed nanobody and its implementation as an intracellular biosensor of GPCR signaling. J Biol Chem 2023; 299:105107. [PMID: 37517699 PMCID: PMC10470007 DOI: 10.1016/j.jbc.2023.105107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
Protein-protein interactions (PPIs) form the foundation of any cell signaling network. Considering that PPIs are highly dynamic processes, cellular assays are often essential for their study because they closely mimic the biological complexities of cellular environments. However, incongruity may be observed across different PPI assays when investigating a protein partner of interest; these discrepancies can be partially attributed to the fusion of different large functional moieties, such as fluorescent proteins or enzymes, which can yield disparate perturbations to the protein's stability, subcellular localization, and interaction partners depending on the given cellular assay. Owing to their smaller size, epitope tags may exhibit a diminished susceptibility to instigate such perturbations. However, while they have been widely used for detecting or manipulating proteins in vitro, epitope tags lack the in vivo traceability and functionality needed for intracellular biosensors. Herein, we develop NbV5, an intracellular nanobody binding the V5-tag, which is suitable for use in cellular assays commonly used to study PPIs such as BRET, NanoBiT, and Tango. The NbV5:V5 tag system has been applied to interrogate G protein-coupled receptor signaling, specifically by replacing larger functional moieties attached to the protein interactors, such as fluorescent or luminescent proteins (∼30 kDa), by the significantly smaller V5-tag peptide (1.4 kDa), and for microscopy imaging which is successfully detected by NbV5-based biosensors. Therefore, the NbV5:V5 tag system presents itself as a versatile tool for live-cell imaging and a befitting adaptation to existing cellular assays dedicated to probing PPIs.
Collapse
Affiliation(s)
- Manel Zeghal
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin Matte
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelica Venes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Shivani Patel
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sabina Sarvan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Monika Joshi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Jean-François Couture
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick M Giguère
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
8
|
Grandi E, Navedo MF, Saucerman JJ, Bers DM, Chiamvimonvat N, Dixon RE, Dobrev D, Gomez AM, Harraz OF, Hegyi B, Jones DK, Krogh-Madsen T, Murfee WL, Nystoriak MA, Posnack NG, Ripplinger CM, Veeraraghavan R, Weinberg S. Diversity of cells and signals in the cardiovascular system. J Physiol 2023; 601:2547-2592. [PMID: 36744541 PMCID: PMC10313794 DOI: 10.1113/jp284011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ana M. Gomez
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, INSERM, Université Paris-Saclay, Orsay, France
| | - Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew A. Nystoriak
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, KY, 40202, USA
| | - Nikki G. Posnack
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | | | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| | - Seth Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
9
|
Westlund E, Bergenstråle A, Pokhrel A, Chan H, Skoglund U, Daley DO, Söderström B. Application of nanotags and nanobodies for live cell single-molecule imaging of the Z-ring in Escherichia coli. Curr Genet 2023; 69:153-163. [PMID: 37022498 PMCID: PMC10163087 DOI: 10.1007/s00294-023-01266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
Understanding where proteins are localized in a bacterial cell is essential for understanding their function and regulation. This is particularly important for proteins that are involved in cell division, which localize at the division septum and assemble into highly regulated complexes. Current knowledge of these complexes has been greatly facilitated by super-resolution imaging using fluorescent protein fusions. Herein, we demonstrate with FtsZ that single-molecule PALM images can be obtained in-vivo using a genetically fused nanotag (ALFA), and a corresponding nanobody fused to mEos3.2. The methodology presented is applicable to other bacterial proteins.
Collapse
Affiliation(s)
- Emma Westlund
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Axel Bergenstråle
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Alaska Pokhrel
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Helena Chan
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Ulf Skoglund
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Daniel O Daley
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden.
| | - Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
10
|
Ma Z, Sun Z, Lv X, Chen H, Geng Y, Geng Z. Sensitivity-enhanced nanoplasmonic biosensor using direct immobilization of two engineered nanobodies for SARS-CoV-2 spike receptor-binding domain detection. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 383:133575. [PMID: 36873859 PMCID: PMC9957344 DOI: 10.1016/j.snb.2023.133575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Sensitive, rapid, and easy-to-implement biosensors are critical in responding to highly contagious and fast-spreading severe acute respiratory syndrome coronavirus (SARS-CoV-2) mutations, enabling early infection screening for appropriate isolation and treatment measures to prevent the spread of the virus. Based on the sensing principle of localized surface plasmon resonance (LSPR) and nanobody immunological techniques, an enhanced sensitivity nanoplasmonic biosensor was developed to quantify the SARS-CoV-2 spike receptor-binding domain (RBD) in serum within 30 min. The lowest concentration in the linear range can be detected down to 0.01 ng/mL by direct immobilization of two engineered nanobodies. Both the sensor fabrication process and immune strategy are facile and inexpensive, with the potential for large-scale application. The designed nanoplasmonic biosensor achieved excellent specificity and sensitivity for SARS-CoV-2 spike RBD, providing a potential option for accurate early screening of the novel coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Zhengtai Ma
- State Key Laboratory for Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Zengchao Sun
- The Chinese Academy of Sciences Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Lv
- State Key Laboratory for Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Hongda Chen
- State Key Laboratory for Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Yong Geng
- The Chinese Academy of Sciences Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhaoxin Geng
- School of Information Engineering, Minzu University of China, Beijing, China
| |
Collapse
|
11
|
Jin BK, Odongo S, Radwanska M, Magez S. NANOBODIES®: A Review of Diagnostic and Therapeutic Applications. Int J Mol Sci 2023; 24:5994. [PMID: 36983063 PMCID: PMC10057852 DOI: 10.3390/ijms24065994] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
NANOBODY® (a registered trademark of Ablynx N.V) molecules (Nbs), also referred to as single domain-based VHHs, are antibody fragments derived from heavy-chain only IgG antibodies found in the Camelidae family. Due to their small size, simple structure, high antigen binding affinity, and remarkable stability in extreme conditions, nanobodies possess the potential to overcome several of the limitations of conventional monoclonal antibodies. For many years, nanobodies have been of great interest in a wide variety of research fields, particularly in the diagnosis and treatment of diseases. This culminated in the approval of the world's first nanobody based drug (Caplacizumab) in 2018 with others following soon thereafter. This review will provide an overview, with examples, of (i) the structure and advantages of nanobodies compared to conventional monoclonal antibodies, (ii) methods used to generate and produce antigen-specific nanobodies, (iii) applications for diagnostics, and (iv) ongoing clinical trials for nanobody therapeutics as well as promising candidates for clinical development.
Collapse
Affiliation(s)
- Bo-kyung Jin
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
| | - Steven Odongo
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda
- Center for Biosecurity and Global Health, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
12
|
Victor-Lovelace TW, Miller LM. The development and use of metal-based probes for X-ray fluorescence microscopy. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6852953. [PMID: 36537552 DOI: 10.1093/mtomcs/mfac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
X-ray fluorescence microscopy (XFM) has become a widely used technique for imaging the concentration and distribution of metal ions in cells and tissues. Recent advances in synchrotron sources, optics, and detectors have improved the spatial resolution of the technique to <10 nm with attogram detection sensitivity. However, to make XFM most beneficial for bioimaging-especially at the nanoscale-the metal ion distribution must be visualized within the subcellular context of the cell. Over the years, a number of approaches have been taken to develop X-ray-sensitive tags that permit the visualization of specific organelles or proteins using XFM. In this review, we examine the types of X-ray fluorophore used, including nanomaterials and metal ions, and the approaches used to incorporate the metal into their target binding site via antibodies, genetically encoded metal-binding peptides, affinity labeling, or cell-specific peptides. We evaluate their advantages and disadvantages, review the scientific findings, and discuss the needs for future development.
Collapse
Affiliation(s)
| | - Lisa M Miller
- N ational Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973,USA.,Department of Chemistry, Stony Brook University, Stony Brook, NY 11794,USA
| |
Collapse
|
13
|
Igreja C, Loschko T, Schäfer A, Sharma R, Quiobe SP, Aloshy E, Witte H, Sommer RJ. Application of ALFA-Tagging in the Nematode Model Organisms Caenorhabditis elegans and Pristionchus pacificus. Cells 2022; 11:3875. [PMID: 36497133 PMCID: PMC9740511 DOI: 10.3390/cells11233875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The detection, manipulation and purification of proteins is key in modern life sciences studies. To achieve this goal, a plethora of epitope tags have been employed in model organisms from bacteria to humans. Recently, the introduction of the rationally designed ALFA-tag resulted in a highly versatile tool with a very broad spectrum of potential applications. ALFA-tagged proteins can be detected by nanobodies, the single-domain antibodies of camelids, allowing for super-resolution microscopy and immunoprecipitation in biochemical applications. Here, we introduce ALFA-tagging into the two nematode model organisms Caenorhabditis elegans and Pristionchus pacificus. We show that the introduction of the DNA sequence, corresponding to the 13 amino acid sequence of the ALFA-tag, can easily be accommodated by CRISPR engineering. We provide examples of high-resolution protein expression in both nematodes. Finally, we use the GW182 ortholog Ppa-ain-1 to show successful pulldowns in P. pacificus. Thus, the ALFA-tag represents a novel epitope tag for nematode research with a broad spectrum of applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
14
|
Aktalay A, Ponsot F, Bossi ML, Belov VN, Hell SW. Cleavable Linker Incorporation into a Synthetic Dye-Nanobody-Fluorescent Protein Assembly: FRET, FLIM and STED Microscopy. Chembiochem 2022; 23:e202200395. [PMID: 35838445 PMCID: PMC9804610 DOI: 10.1002/cbic.202200395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 01/05/2023]
Abstract
A bright and photostable fluorescent dye with a disulfide (S-S) linker and maleimide group (Rho594-S2-mal), as cleavable and reactive sites, was synthesized and conjugated with anti-GFP nanobodies (NB). The binding of EGFP (FRET donor) with anti-GFP NB labeled with one or two Rho594-S2-mal residues was studied in vitro and in cellulo. The linker was cleaved with dithiothreitol recovering the donor (FP) signal. The bioconjugates (FP-NB-dye) were applied in FRET-FLIM assays, confocal imaging, and superresolution STED microscopy.
Collapse
Affiliation(s)
- Ayse Aktalay
- Department of Optical NanoscopyMax Planck Institute for Medical Research (MPI-MR)Jahnstraße 2969120HeidelbergGermany
| | - Flavien Ponsot
- Department of NanoBiophotonicsMax Planck Institute for Multidisciplinary Sciences (MPI-NAT)Am Fassberg 1137077GöttingenGermany
| | - Mariano L. Bossi
- Department of Optical NanoscopyMax Planck Institute for Medical Research (MPI-MR)Jahnstraße 2969120HeidelbergGermany
| | - Vladimir N. Belov
- Department of NanoBiophotonicsMax Planck Institute for Multidisciplinary Sciences (MPI-NAT)Am Fassberg 1137077GöttingenGermany
| | - Stefan W. Hell
- Department of Optical NanoscopyMax Planck Institute for Medical Research (MPI-MR)Jahnstraße 2969120HeidelbergGermany
- Department of NanoBiophotonicsMax Planck Institute for Multidisciplinary Sciences (MPI-NAT)Am Fassberg 1137077GöttingenGermany
| |
Collapse
|
15
|
A versatile fluorescence-quenched substrate for quantitative measurement of glucocerebrosidase activity within live cells. Proc Natl Acad Sci U S A 2022; 119:e2200553119. [PMID: 35858317 PMCID: PMC9304032 DOI: 10.1073/pnas.2200553119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Loss of activity of the lysosomal glycosidase β-glucocerebrosidase (GCase) causes the lysosomal storage disease Gaucher disease (GD) and has emerged as the greatest genetic risk factor for the development of both Parkinson disease (PD) and dementia with Lewy bodies. There is significant interest into how GCase dysfunction contributes to these diseases, however, progress toward a full understanding is complicated by presence of endogenous cellular factors that influence lysosomal GCase activity. Indeed, such factors are thought to contribute to the high degree of variable penetrance of GBA mutations among patients. Robust methods to quantitatively measure GCase activity within lysosomes are therefore needed to advance research in this area, as well as to develop clinical assays to monitor disease progression and assess GCase-directed therapeutics. Here, we report a selective fluorescence-quenched substrate, LysoFQ-GBA, which enables measuring endogenous levels of lysosomal GCase activity within living cells. LysoFQ-GBA is a sensitive tool for studying chemical or genetic perturbations of GCase activity using either fluorescence microscopy or flow cytometry. We validate the quantitative nature of measurements made with LysoFQ-GBA using various cell types and demonstrate that it accurately reports on both target engagement by GCase inhibitors and the GBA allele status of cells. Furthermore, through comparisons of GD, PD, and control patient-derived tissues, we show there is a close correlation in the lysosomal GCase activity within monocytes, neuronal progenitor cells, and neurons. Accordingly, analysis of clinical blood samples using LysoFQ-GBA may provide a surrogate marker of lysosomal GCase activity in neuronal tissue.
Collapse
|
16
|
Cordell P, Carrington G, Curd A, Parker F, Tomlinson D, Peckham M. Affimers and nanobodies as molecular probes and their applications in imaging. J Cell Sci 2022; 135:276020. [PMID: 35848463 PMCID: PMC9450889 DOI: 10.1242/jcs.259168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies are the most widely used, traditional tool for labelling molecules in cells. In the past five to ten years, many new labelling tools have been developed with significant advantages over the traditional antibody. Here, we focus on nanobodies and the non-antibody binding scaffold proteins called Affimers. We explain how they are generated, selected and produced, and we describe how their small size, high binding affinity and specificity provides them with many advantages compared to antibodies. Of particular importance, their small size enables them to better penetrate dense cytoskeletal regions within cells, as well as tissues, providing them with specific advantage for super-resolution imaging, as they place the fluorophore with a few nanometres of the target protein being imaged. We expect these novel tools to be of broad interest to many cell biologists and anticipate them becoming the tools of choice for super-resolution imaging.
Collapse
|
17
|
Hirano M, Ando R, Shimozono S, Sugiyama M, Takeda N, Kurokawa H, Deguchi R, Endo K, Haga K, Takai-Todaka R, Inaura S, Matsumura Y, Hama H, Okada Y, Fujiwara T, Morimoto T, Katayama K, Miyawaki A. A highly photostable and bright green fluorescent protein. Nat Biotechnol 2022; 40:1132-1142. [PMID: 35468954 PMCID: PMC9287174 DOI: 10.1038/s41587-022-01278-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 03/14/2022] [Indexed: 12/20/2022]
Abstract
The low photostability of fluorescent proteins is a limiting factor in many applications of fluorescence microscopy. Here we present StayGold, a green fluorescent protein (GFP) derived from the jellyfish Cytaeis uchidae. StayGold is over one order of magnitude more photostable than any currently available fluorescent protein and has a cellular brightness similar to mNeonGreen. We used StayGold to image the dynamics of the endoplasmic reticulum (ER) with high spatiotemporal resolution over several minutes using structured illumination microscopy (SIM) and observed substantially less photobleaching than with a GFP variant optimized for stability in the ER. Using StayGold fusions and SIM, we also imaged the dynamics of mitochondrial fusion and fission and mapped the viral spike proteins in fixed cells infected with severe acute respiratory syndrome coronavirus 2. As StayGold is a dimer, we created a tandem dimer version that allowed us to observe the dynamics of microtubules and the excitatory post-synaptic density in neurons. StayGold will substantially reduce the limitations imposed by photobleaching, especially in live cell or volumetric imaging.
Collapse
Affiliation(s)
- Masahiko Hirano
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Ryoko Ando
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Satoshi Shimozono
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Mayu Sugiyama
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Noriyo Takeda
- Asamushi Research Center for Marine Biology, Tohoku University, Aomori, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Kurokawa
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Ryusaku Deguchi
- Department of Biology, Miyagi University of Education, Sendai, Japan
| | - Kazuki Endo
- Department of Biology, Miyagi University of Education, Sendai, Japan
- Narita Elementary School, Miyagi, Japan
| | - Kei Haga
- Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Reiko Takai-Todaka
- Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | | | - Yuta Matsumura
- Safety Science Laboratories, Kao Corporation, Tokyo, Japan
| | - Hiroshi Hama
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Cell Biology and Department of Physics, UBI and WPI-IRCN, The University of Tokyo, Tokyo, Japan
| | - Takahiro Fujiwara
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | | | - Kazuhiko Katayama
- Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan.
| | - Atsushi Miyawaki
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan.
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
18
|
Moliner-Morro A, McInerney GM, Hanke L. Nanobodies in the limelight: Multifunctional tools in the fight against viruses. J Gen Virol 2022; 103. [PMID: 35579613 DOI: 10.1099/jgv.0.001731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibodies are natural antivirals generated by the vertebrate immune system in response to viral infection or vaccination. Unsurprisingly, they are also key molecules in the virologist's molecular toolbox. With new developments in methods for protein engineering, protein functionalization and application, smaller antibody-derived fragments are moving in focus. Among these, camelid-derived nanobodies play a prominent role. Nanobodies can replace full-sized antibodies in most applications and enable new possible applications for which conventional antibodies are challenging to use. Here we review the versatile nature of nanobodies, discuss their promise as antiviral therapeutics, for diagnostics, and their suitability as research tools to uncover novel aspects of viral infection and disease.
Collapse
Affiliation(s)
- Ainhoa Moliner-Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
19
|
Hudgins EC, Bonar AM, Nguyen T, Fancher IS. Targeting Lipid—Ion Channel Interactions in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:876634. [PMID: 35600482 PMCID: PMC9120415 DOI: 10.3389/fcvm.2022.876634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
General lipid-lowering strategies exhibit clinical benefit, however, adverse effects and low adherence of relevant pharmacotherapies warrants the investigation into distinct avenues for preventing dyslipidemia-induced cardiovascular disease. Ion channels play an important role in the maintenance of vascular tone, the impairment of which is a critical precursor to disease progression. Recent evidence suggests that the dysregulation of ion channel function in dyslipidemia is one of many contributors to the advancement of cardiovascular disease thus bringing to light a novel yet putative therapeutic avenue for preventing the progression of disease mechanisms. Increasing evidence suggests that lipid regulation of ion channels often occurs through direct binding of the lipid with the ion channel thereby creating a potential therapeutic target wherein preventing specific lipid-ion channel interactions, perhaps in combination with established lipid lowering therapies, may restore ion channel function and the proper control of vascular tone. Here we first detail specific examples of lipid-ion channel interactions that promote vascular dysfunction and highlight the benefits of preventing such interactions. We next discuss the putative therapeutic avenues, such as peptides, monoclonal antibodies, and aspects of nanomedicine that may be utilized to prevent pathological lipid-ion channel interactions. Finally, we discuss the experimental challenges with identifying lipid-ion channel interactions as well as the likely pitfalls with developing the aforementioned putative strategies.
Collapse
|
20
|
Van Fossen EM, Grutzius S, Ruby CE, Mourich DV, Cebra C, Bracha S, Karplus PA, Cooley RB, Mehl RA. Creating a Selective Nanobody Against 3-Nitrotyrosine Containing Proteins. Front Chem 2022; 10:835229. [PMID: 35265586 PMCID: PMC8899190 DOI: 10.3389/fchem.2022.835229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
A critical step in developing therapeutics for oxidative stress-related pathologies is the ability to determine which specific modified protein species are innocuous by-products of pathology and which are causative agents. To achieve this goal, technologies are needed that can identify, characterize and quantify oxidative post translational modifications (oxPTMs). Nanobodies (Nbs) represent exquisite tools for intracellular tracking of molecules due to their small size, stability and engineerability. Here, we demonstrate that it is possible to develop a selective Nb against an oxPTM protein, with the key advance being the use of genetic code expansion (GCE) to provide an efficient source of the large quantities of high-quality, homogenous and site-specific oxPTM-containing protein needed for the Nb selection process. In this proof-of-concept study, we produce a Nb selective for a 3-nitrotyrosine (nitroTyr) modified form of the 14-3-3 signaling protein with a lesser recognition of nitroTyr in other protein contexts. This advance opens the door to the GCE-facilitated development of other anti-PTM Nbs.
Collapse
Affiliation(s)
- Elise M. Van Fossen
- Oregon State University, Department of Biochemistry and Biophysics, Agricultural and Life Sciences, Corvallis, OR, United States
| | - Sonia Grutzius
- Oregon State University, Department of Biochemistry and Biophysics, Agricultural and Life Sciences, Corvallis, OR, United States
| | - Carl E. Ruby
- Oregon State University, Department of Clinical Sciences, College of Veterinary Medicine, Corvallis, OR, United States
| | - Dan V. Mourich
- Oregon State University, Department of Clinical Sciences, College of Veterinary Medicine, Corvallis, OR, United States
| | - Chris Cebra
- Oregon State University, Department of Clinical Sciences, College of Veterinary Medicine, Corvallis, OR, United States
| | - Shay Bracha
- Department of Small Animal Clinical Sciences (VSCS), Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States
| | - P. Andrew Karplus
- Oregon State University, Department of Biochemistry and Biophysics, Agricultural and Life Sciences, Corvallis, OR, United States
| | - Richard B. Cooley
- Oregon State University, Department of Biochemistry and Biophysics, Agricultural and Life Sciences, Corvallis, OR, United States
| | - Ryan A. Mehl
- Oregon State University, Department of Biochemistry and Biophysics, Agricultural and Life Sciences, Corvallis, OR, United States
- *Correspondence: Ryan A. Mehl,
| |
Collapse
|
21
|
Salsman J, Dellaire G. Super-Resolution Radial Fluctuations (SRRF) Microscopy. Methods Mol Biol 2022; 2440:225-251. [PMID: 35218543 DOI: 10.1007/978-1-0716-2051-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Super-resolution Radial Fluctuations (SRRF) imaging is a computational approach to fixed and live-cell super-resolution microscopy that is highly accessible to life science researchers since it uses common microscopes and open-source software plugins for ImageJ. This allows users to generate super-resolution images using the same equipment, fluorophores, fluorescent proteins and methods they routinely employ for their studies without specialized sample preparations or reagents. Here, we discuss a step-by-step workflow for acquiring and analyzing images using the NanoJ-SRRF software developed by the Ricardo Henriques group, with a focus on imaging chromatin. Increased accessibility of affordable super-resolution imaging techniques is an important step in extending the reach of this revolution in cellular imaging to a greater number of laboratories.
Collapse
Affiliation(s)
- Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.
- Department of Biochemistry, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
22
|
Dai Y, Sato Y, Zhu B, Kitaguchi T, Kimura H, Ghadessy FJ, Ueda H. Intra Q-body: an antibody-based fluorogenic probe for intracellular proteins that allows live cell imaging and sorting. Chem Sci 2022; 13:9739-9748. [PMID: 36091915 PMCID: PMC9400599 DOI: 10.1039/d2sc02355e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
Abstract
Although intracellular biomarkers can be imaged with fluorescent dye(s)-labeled antibodies, the use of such probes for precise imaging of intracellular biomarkers in living cells remains challenging due to background noise from unbound probes. Herein, we describe the development of a conditionally active Fab-type Quenchbody (Q-body) probe derived from a monoclonal antibody (DO-1) with the ability to both target and spatiotemporally visualize intracellular p53 in living cells with low background signal. p53 is a key tumor suppressor and validated biomarker for cancer diagnostics and therapeutics. The Q-body displayed up to 27-fold p53 level-dependent fluorescence enhancement in vitro with a limit of detection of 0.72 nM. In fixed and live cells, 8.3- and 8.4-fold enhancement was respectively observed. Furthermore, we demonstrate live-cell sorting based on p53 expression. This study provides the first evidence of the feasibility and applicability of Q-body probes for the live-cell imaging of intrinsically intracellular proteins and opens a novel avenue for research and diagnostic applications on intracellular target-based live-cell sorting. A fluorescent immunosensor that lights up tumor biomarker p53 in living cells was developed based on the Q-body technology. The technology was further applied to the live cell monitoring of p53 levels, and live cell sorting based on p53 expression.![]()
Collapse
Affiliation(s)
- Yancen Dai
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Farid J. Ghadessy
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, A*STAR, Singapore
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
23
|
Gettemans J. Site-Specific Fluorescent Labeling, Single-Step Immunocytochemistry, and Delivery of Nanobodies into Living Cells. Methods Mol Biol 2022; 2446:373-393. [PMID: 35157284 DOI: 10.1007/978-1-0716-2075-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The smallest natural antibody fragments currently available are single-domain antibodies obtained from camelid species and sharks (variable new antigen receptors). These molecules consist of a single amino acid chain of ~120 amino acids that adopts a typical immunoglobulin fold. Single-domain antibodies (nanobodies) are monovalent and can be isolated from immunized animals, from naïve libraries, or from synthetic libraries. Importantly, their complete DNA sequences are readily obtained by default, which greatly facilitates their rapid manipulation for various applications. Here, a PCR-based protocol for inserting a sortase A recognition sequence at the carboxy-terminus of a nanobody is described. Subsequently, a sortase A-catalyzed biochemical reaction results in tagging of the nanobody with a short carboxy-terminal amino acid sequence that carries a non-canonical residue (propargyl glycine). This allows click chemistry to be performed with an azido-derivatized fluorophore, with the ensuing fluorescent nanobody being covalently and site-specifically labeled. The labeled nanobody can be used directly for immunocytochemistry, omitting the classical secondary antibody step. Also described are methods for delivery of fluorescent nanobodies into the cytoplasm of mammalian cells by photoporation, a very low-toxicity approach involving laser light and graphene quantum dots. The combined protocol embodies a novel route for studying protein function in living cells at high resolution.
Collapse
Affiliation(s)
- Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
24
|
Li X, Liu W, Li H, Wang X, Zhao Y. Capture and purification of an untagged nanobody by mixed weak cation chromatography and cation exchange chromatography. Protein Expr Purif 2021; 192:106030. [PMID: 34920133 DOI: 10.1016/j.pep.2021.106030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022]
Abstract
Nanobodies (Nbs) are single-domain antibodies, which have potential application value in tumor-targeted therapy, immunotherapy, diagnostic probe, and molecular imaging. Typically, Nbs are captured by affinity chromatography via the addition of specific fusion tags at their N or C terminus. Nerve growth factor (NGF), which regulates the growth and development of peripheral and central neurons, maintains neuronal survival and plays a key role in both arthritis and acute and chronic pain. In this study, a method for capture and purification of an untagged Nb (anti-NGF Nb) by mixed weak cation chromatography and cation exchange chromatography was established. First, pH 4.0-5.0 was demonstrated to be the optimal loading condition for Capto MMC to capture anti-NGF by the design of experiments (DOE). Furthermore, high purity and yield products can be obtained at laboratory scale and commercial production scale by adjusting the protein pH. Additionally, direct capture of anti-NGF Nb using Capto MMC without adjusting anti-NGF Nb harvest pH was investigated. The anti-NGF Nb captured by Capto MMC was 67.2% yield, 94.5% monomer purity, and host cell protein (HCP) was reduced from 74,931 ppm to 484 ppm. The anti-NGF Nb that were further purified using Capto S ImpAct achieved 84.5% yield and 99.2% purity and 77 ppm of HCP. The scaling-up process was consistent with the results of the optimized process, further demonstrating the feasibility of this method. This outcome provides a highly promising and competitive alternative to affinity chromatography-based processing strategies for Nbs.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Wanhui Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Heshui Li
- Shandong Boan Biotechnology Company Limited, PR China
| | - Xin Wang
- Shandong Boan Biotechnology Company Limited, PR China
| | - Yanyan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
25
|
Groysbeck N, Donzeau M, Stoessel A, Haeberle AM, Ory S, Spehner D, Schultz P, Ersen O, Bahri M, Ihiawakrim D, Zuber G. Gold labelling of a green fluorescent protein (GFP)-tag inside cells using recombinant nanobodies conjugated to 2.4 nm thiolate-coated gold nanoparticles. NANOSCALE ADVANCES 2021; 3:6940-6948. [PMID: 36132366 PMCID: PMC9417625 DOI: 10.1039/d1na00256b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/24/2021] [Indexed: 06/15/2023]
Abstract
Advances in microscopy technology have prompted efforts to improve the reagents required to recognize specific molecules within the intracellular environment. For high-resolution electron microscopy, conjugation of selective binders originating from the immune response arsenal to gold nanoparticles (AuNPs) as contrasting agents is the method of choice to obtain labeling tools. However, conjugation of the minimal sized 15 kDa nanobody (Nb) to AuNPs remains challenging in comparison to the conjugation of 150 kDa IgG to AuNPs. Herein, effective Nb-AuNP assemblies are built using the selective and almost irreversible non-covalent associations between two peptide sequences deriving from a p53 heterotetramer domain variant. The 15 kDa GFP-binding Nb is fused to one dimerizing motif to obtain a recombinant Nb dimer with improved avidity for GFP while the other complementing dimerizing motif is equipped with thiols and grafted to a 2.4 nm substituted thiobenzoate-coordinated AuNP via thiolate exchange. After pegylation, the modified AuNPs are able to non-covalently anchor Nb dimers and the subsequent complexes demonstrate the ability to form immunogold label GFP-protein fusions within various subcellular locations. These tools open an avenue for precise localization of targets at high resolution by electron microscopy.
Collapse
Affiliation(s)
- Nadja Groysbeck
- Université de Strasbourg - CNRS, UMR 7242 Laboratoire de Biotechnologie et Signalisation Cellulaire Boulevard Sébastien Brant 67400 Illkirch France
| | - Mariel Donzeau
- Université de Strasbourg - CNRS, UMR 7242 Laboratoire de Biotechnologie et Signalisation Cellulaire Boulevard Sébastien Brant 67400 Illkirch France
| | - Audrey Stoessel
- Université de Strasbourg - CNRS, UMR 7242 Laboratoire de Biotechnologie et Signalisation Cellulaire Boulevard Sébastien Brant 67400 Illkirch France
| | - Anne-Marie Haeberle
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives F-67000 Strasbourg France
| | - Stéphane Ory
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives F-67000 Strasbourg France
| | - Danièle Spehner
- Université de Strasbourg - Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire 67400 Illkirch France
| | - Patrick Schultz
- Université de Strasbourg - Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire 67400 Illkirch France
| | - Ovidiu Ersen
- Université de Strasbourg - CNRS, UMR 7504, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) 23 rue de Loess 67034 Strasbourg France
| | - Mounib Bahri
- Université de Strasbourg - CNRS, UMR 7504, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) 23 rue de Loess 67034 Strasbourg France
| | - Dris Ihiawakrim
- Université de Strasbourg - CNRS, UMR 7504, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) 23 rue de Loess 67034 Strasbourg France
| | - Guy Zuber
- Université de Strasbourg - CNRS, UMR 7242 Laboratoire de Biotechnologie et Signalisation Cellulaire Boulevard Sébastien Brant 67400 Illkirch France
| |
Collapse
|
26
|
Baker FC, Neiswender H, Veeranan-Karmegam R, Gonsalvez GB. In vivo proximity biotin ligation identifies the interactome of Egalitarian, a Dynein cargo adaptor. Development 2021; 148:dev199935. [PMID: 35020877 PMCID: PMC8645207 DOI: 10.1242/dev.199935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/18/2021] [Indexed: 06/21/2024]
Abstract
Numerous motors of the Kinesin family contribute to plus-end-directed microtubule transport. However, almost all transport towards the minus-end of microtubules involves Dynein. Understanding the mechanism by which Dynein transports this vast diversity of cargo is the focus of intense research. In selected cases, adaptors that link a particular cargo with Dynein have been identified. However, the sheer diversity of cargo suggests that additional adaptors must exist. We used the Drosophila egg chamber as a model to address this issue. Within egg chambers, Egalitarian is required for linking mRNA with Dynein. However, in the absence of Egalitarian, Dynein transport into the oocyte is severely compromised. This suggests that additional cargoes might be linked to Dynein in an Egalitarian-dependent manner. We therefore used proximity biotin ligation to define the interactome of Egalitarian. This approach yielded several novel interacting partners, including P body components and proteins that associate with Dynein in mammalian cells. We also devised and validated a nanobody-based proximity biotinylation strategy that can be used to define the interactome of any GFP-tagged protein.
Collapse
Affiliation(s)
| | | | | | - Graydon B. Gonsalvez
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| |
Collapse
|
27
|
Zentout S, Smith R, Jacquier M, Huet S. New Methodologies to Study DNA Repair Processes in Space and Time Within Living Cells. Front Cell Dev Biol 2021; 9:730998. [PMID: 34589495 PMCID: PMC8473836 DOI: 10.3389/fcell.2021.730998] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
DNA repair requires a coordinated effort from an array of factors that play different roles in the DNA damage response from recognizing and signaling the presence of a break, creating a repair competent environment, and physically repairing the lesion. Due to the rapid nature of many of these events, live-cell microscopy has become an invaluable method to study this process. In this review we outline commonly used tools to induce DNA damage under the microscope and discuss spatio-temporal analysis tools that can bring added information regarding protein dynamics at sites of damage. In particular, we show how to go beyond the classical analysis of protein recruitment curves to be able to assess the dynamic association of the repair factors with the DNA lesions as well as the target-search strategies used to efficiently find these lesions. Finally, we discuss how the use of mathematical models, combined with experimental evidence, can be used to better interpret the complex dynamics of repair proteins at DNA lesions.
Collapse
Affiliation(s)
- Siham Zentout
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Marine Jacquier
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
28
|
Abstract
Nanobodies have emerged as useful tools to study G protein-coupled receptor (GPCR) structure, dynamic, and subcellular localization. Initially, several nanobodies have been developed as chaperones to facilitate GPCR crystallization. To explore their potential as biosensors to monitor receptor activation and dynamics, we here described protocols to characterize nanobody's interaction with GPCRs and their application as probes for protein identification and visualization on the cellular level. We also introduced a chimeric approach to enable a kappa-opioid receptor derived nanobody to bind to other GPCRs, including orphan GPCRs whose endogenous ligand or intracellular transducers are unknown. This approach provides a reporter assay to identify tool molecules to study the function of orphan GPCRs.
Collapse
Affiliation(s)
- Amal El Daibani
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tao Che
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
29
|
Soygur B, Laird DJ. Ovary Development: Insights From a Three-Dimensional Imaging Revolution. Front Cell Dev Biol 2021; 9:698315. [PMID: 34381780 PMCID: PMC8351467 DOI: 10.3389/fcell.2021.698315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
The ovary is an indispensable unit of female reproduction and health. However, the study of ovarian function in mammals is hindered by unique challenges, which include the desynchronized development of oocytes, irregular distribution and vast size discrepancy of follicles, and dynamic tissue remodeling during each hormonal cycle. Overcoming the limitations of traditional histology, recent advances in optical tissue clearing and three-dimensional (3D) visualization offer an advanced platform to explore the architecture of intact organs at a single cell level and reveal new relationships and levels of organization. Here we summarize the development and function of ovarian compartments that have been delineated by conventional two-dimensional (2D) methods and the limits of what can be learned by these approaches. We compare types of optical tissue clearing, 3D analysis technologies, and their application to the mammalian ovary. We discuss how 3D modeling of the ovary has extended our knowledge and propose future directions to unravel ovarian structure toward therapeutic applications for ovarian disease and extending female reproductive lifespan.
Collapse
Affiliation(s)
| | - Diana J. Laird
- Department of Obstetrics, Gynecology & Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
30
|
Chen F, Bai M, Cao X, Xue J, Zhao Y, Wu N, Wang L, Zhang D, Zhao Y. Cellular macromolecules-tethered DNA walking indexing to explore nanoenvironments of chromatin modifications. Nat Commun 2021; 12:1965. [PMID: 33785750 PMCID: PMC8009891 DOI: 10.1038/s41467-021-22284-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Exploring spatial organization and relationship of diverse biomolecules within cellular nanoenvironments is important to elucidate the fundamental processes of life. However, it remains methodologically challenging. Herein, we report a molecular recognition mechanism cellular macromolecules-tethered DNA walking indexing (Cell-TALKING) to probe the nanoenvironments containing diverse chromatin modifications. As an example, we characterize the nanoenvironments of three DNA modifications around one histone posttranslational modification (PTM). These DNA modifications in fixed cells are labeled with respective DNA barcoding probes, and then the PTM site is tethered with a DNA walking probe. Cell-TALKING can continuously produce cleavage records of any barcoding probes nearby the walking probe. New 3'-OH ends are generated on the cleaved barcoding probes to induce DNA amplification for downstream detections. Combining fluorescence imaging, we identify various combinatorial chromatin modifications and investigate their dynamic changes during cell cycles. We also explore the nanoenvironments in different cancer cell lines and clinical specimens. In principle, using high-throughput sequencing instead of fluorescence imaging may allow the detection of complex cellular nanoenvironments containing tens of biomolecules such as transcription factors.
Collapse
Affiliation(s)
- Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Na Wu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Lei Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, PR China
| | - Dexin Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
31
|
Heinrich R, Hussein W, Berlin S. Photo-transformable genetically-encoded optical probes for functional highlighting in vivo. J Neurosci Methods 2021; 355:109129. [PMID: 33711357 DOI: 10.1016/j.jneumeth.2021.109129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Studying the brain requires knowledge about both structure (i.e., connectome) and function of its constituents (neurons and glia alike). This need has prompted the development of novel tools and techniques, in particular optical techniques to examine cells remotely. Early works (1900's) led to the development of novel cell-staining techniques that, when combined with the use of a very simple light microscope, visualized individual neurons and their subcellular compartments in fixed tissues. Today, highlighting of structure and function can be performed on live cells, notably in vivo, owing to discovery of GFP and subsequent development of genetically encoded fluorescent optical tools. In this review, we focus our attention on a subset of optical biosensors, namely probes whose emission can be modified by light. We designate them photo-transformable genetically encoded probes. The family of photo-transformable probes embraces current probes that undergo photoactivation (PA), photoconversion (PC) or photoswitching (PS). We argue that these are particularly suited for studying multiple features of neurons, such as structure, connectivity and function concomitantly, for functional highlighting of neurons in vivo.
Collapse
Affiliation(s)
- Ronit Heinrich
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Wessal Hussein
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shai Berlin
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
32
|
OUP accepted manuscript. Microscopy (Oxf) 2021; 71:i72-i80. [DOI: 10.1093/jmicro/dfab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
|
33
|
Nanobodies as Versatile Tool for Multiscale Imaging Modalities. Biomolecules 2020; 10:biom10121695. [PMID: 33353213 PMCID: PMC7767244 DOI: 10.3390/biom10121695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular imaging is constantly growing in different areas of preclinical biomedical research. Several imaging methods have been developed and are continuously updated for both in vivo and in vitro applications, in order to increase the information about the structure, localization and function of molecules involved in physiology and disease. Along with these progresses, there is a continuous need for improving labeling strategies. In the last decades, the single domain antigen-binding fragments nanobodies (Nbs) emerged as important molecular imaging probes. Indeed, their small size (~15 kDa), high stability, affinity and modularity represent desirable features for imaging applications, providing higher tissue penetration, rapid targeting, increased spatial resolution and fast clearance. Accordingly, several Nb-based probes have been generated and applied to a variety of imaging modalities, ranging from in vivo and in vitro preclinical imaging to super-resolution microscopy. In this review, we will provide an overview of the state-of-the-art regarding the use of Nbs in several imaging modalities, underlining their extreme versatility and their enormous potential in targeting molecules and cells of interest in both preclinical and clinical studies.
Collapse
|