1
|
de Siqueira Patriota LL, de Lima BRF, de Oliveira Marinho A, da Costa JA, de Lucena ALA, Paiva PMG, Napoleão DC, Cavalcanti JVFL, Pereira MC, Napoleão TH, da Rosa MM. Moringa oleifera Lam. seed lectin (WSMoL) reduces chronic stress-induced anxiety and depression in mice by lessening inflammation and balancing brain chemicals. Behav Brain Res 2025; 477:115318. [PMID: 39481762 DOI: 10.1016/j.bbr.2024.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/09/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Phyto-based treatments for anxiety and depression are gaining attention. The efficacy of the water-soluble Moringa oleifera seed lectin (WSMoL) in reducing acute anxiolytic and depressive-like behaviors in mice has been previously demonstrated. In the present study, it was evaluated the effects of WSMoL on reducing anxiety and depressive-like symptoms in a mouse model of unpredictable chronic mild stress (UCMS). The animals were divided into groups and exposed to a four-week UCMS regimen. Following this, the mice received daily intraperitoneal injections of vehicle (non-stressed and UCMS control groups), WSMoL (2 or 4 mg/kg), or fluoxetine (10 mg/kg) for 21 days. Neurobehavioral tests included the open field test and elevated plus maze test to assess anxiety-like behavior, and the tail suspension test and sucrose preference test to evaluate depression-like behavior. Biochemical analyses measured serum corticosterone and cytokines as well brain levels of cytokines and monoamines. All tests indicated that WSMoL significantly (p < 0.05) reversed the anxiety and depression-like behaviors induced by UCMS. The stress protocol increased serum corticosterone levels and WSMoL treatment was not able to normalize corticosterone secretion. WSMoL treatment reduced serum and brain levels of IL-2, IL-6, and TNF-α, indicating reduced neuroinflammation, and increased brain levels of dopamine, serotonin, and noradrenaline. In summary, WSMoL mitigated UCMS-induced anxiety and depression-like behaviors by reducing neuroinflammation and modulating brain monoamine levels.
Collapse
Affiliation(s)
| | | | | | - Jainaldo Alves da Costa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Alex Leandro Andrade de Lucena
- Departamento de Engenharia Química, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Daniella Carla Napoleão
- Departamento de Engenharia Química, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Michelly Cristiny Pereira
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil; Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (NUPIT), Universidade Federal de Pernambuco, Recife, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Michelle Melgarejo da Rosa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil; Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (NUPIT), Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
2
|
Bishop CL, Lean RE, Smyser TA, Smyser CD, Rogers CE. Adverse Childhood Experiences and Socioemotional Outcomes of Children Born Very Preterm. J Pediatr 2025; 276:114377. [PMID: 39442792 DOI: 10.1016/j.jpeds.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE To examine whether adverse childhood experiences (ACEs) confer risk for socioemotional problems in children born very preterm (VPT). STUDY DESIGN As part of a longitudinal study, 96 infants born VPT at 23-30 weeks of gestation were recruited from a level III neonatal intensive care unit and underwent follow-up at ages 2 and 5 years. Eighty-three full-term (FT) (37-41 weeks gestation) children were recruited from an adjoining obstetric service and the local community. ACEs were assessed with the Child Life Events Scale at age 2 and Preschool Age Psychiatric Assessment at age 5. At age 5, internalizing, externalizing, and attention deficit hyperactivity disorder (ADHD) symptoms were assessed with the Child Behavior Checklist and Conner's Rating Scale-Revised, respectively. Covariates including socioeconomic disadvantage, maternal distress, and parent ADHD symptoms were assessed at the 2- and/or 5-year follow-up. Mediation and moderation analysis, accounting for family clustering, examined associations between birth group, ACEs, and socioemotional outcomes. RESULTS After covariate adjustment, children born VPT experienced more ACEs (P < .001), particularly medical ACEs (P < .01), and had worse ADHD and internalizing outcomes (P < .05) than full-term children. ACEs mediated the association between birth group and ADHD outcomes (95% CI, 0.11-4.08). There was no evidence of mediation for internalizing outcomes. Higher parent ADHD symptoms (P < .001) and maternal distress (P < .05) were associated with poorer internalizing outcomes. CONCLUSIONS Screening for childhood ACEs should be embedded in the follow-up care of children born VPT and their families. Strategies to screen for and address parent psychosocial functioning may be important to support children's socioemotional development.
Collapse
Affiliation(s)
- Callie L Bishop
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Rachel E Lean
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO.
| | - Tara A Smyser
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Christopher D Smyser
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO; Department of Radiology, Washington University School of Medicine, St. Louis, MO; Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Wu Z, Yin Y, Liu R, Li X, Sun Y, Yau SY, Wu L, Liu Y, Adzic M, Zhang H, Chen G. A refined formula derived from Jiawei-Xiaoyao pill exerts rapid antidepressant-like effects in LPS-induced depression by reducing neuroinflammation and restoring neuroplasticity signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118647. [PMID: 39094756 DOI: 10.1016/j.jep.2024.118647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei-Xiaoyao Pill (JWX), a classic formula in traditional Chinese medicine, is derived from Xiaoyao Pill by adding significant amounts of Gardeniae Fructus (GF) and Moutan Cortex (MC). It is frequently used for the treatment of depression. JWX has been demonstrated to uniquely elicit rapid antidepressant-like effects within the prescribed dosage range. To date, GF has been shown to have rapid antidepressant-like effects, but a much higher dose is required than its proportion in JWX. It is assumed that the synergism of GF with a minimum number of other herbs in JWX serves as a refined formula that exerts these rapid antidepressant-like effects. Identification of a refined formula is important for prioritizing the herbs and ingredients to optimize the quality control of JWX. However, such a refined formula for JWX has not been identified yet. AIM OF THE STUDY Here we aimed to identify a refined formula derived from JWX for optimized rapid antidepressant-like effects. Since the neuroinflammation mechanism involving in depression treatment has not been previously investigated for JWX, we tested the mechanism for both JWX and the refined formula. MATERIALS AND METHODS Individual herbs (MC; ASR, Angelica Sinensis Radix; Bupleuri Radix; Paeonia Radix Alba) that show antidepressant-like responses were mixed with GF at the proportional dosage in JWX to identify the refined formula. Rapid antidepressant-like effects were assessed by using NSF (Novelty Suppressed Feeding Test) and other behavioral tests following a single administration. The identified formula was further tested in a lipopolysaccharide (LPS)-induced depressive model, and the molecular signaling mechanisms were investigated using Western blot analysis, immunofluorescence, and pharmacological inhibition of mTOR signaling. Scopolamine (Scop) was used as a positive control for induction of rapid antidepressant effects. RESULTS A combination of GF, MC and ASR (GMA) at their dosages proportional to JWX induced behavioral signs of rapid antidepressant-like responses in both normal and LPS-treated mice, with the antidepressant-like effects sustained for 5 d. Similar to JWX or Scop, GMA rapidly reduced the neuroinflammation signaling of Iba-1-NF-кB, enhanced neuroplasticity signaling of CaMKII-mTOR-BDNF, and attenuated the upregulated expressions of the NMDAR sub-units GluN1 and GluN2B in the hippocampus of LPS-treated mice. GMA, JWX and Scop rapidly restored the number of BDNF-positive cells reduced by LPS treatment in the CA3 region of the hippocampus. Furthermore, rapamycin, a selective inhibitor of mTOR, blunted the rapid antidepressant-like effects and hippocampal BDNF signaling upregulation by GMA. CONCLUSION GMA may serve as a refined formula from JWX, capable of inducing rapid antidepressant-like effects. In the LPS-induced depression model, the effects of GMA were mediated via rapidly alleviating neuroinflammation and enhancing neuroplasticity.
Collapse
Affiliation(s)
- Zhangjie Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Ying Yin
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Ruiyi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Xianhui Li
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, PR China
| | - Lei Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, PR China
| | - Yan Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China
| | - Miroslav Adzic
- "Vinča Institute" of Nuclear Sciences, Laboratory of Molecular Biology and Endocrinology 090, University of Belgrade, 11001 Belgrade, Serbia
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China.
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
4
|
Zhao J, Sun Y, Feng Y, Rong J. Brain Specific RagA Overexpression Triggers Depressive-Like Behaviors in Mice via Activating ADORA2A Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404188. [PMID: 39373701 PMCID: PMC11615787 DOI: 10.1002/advs.202404188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
Neuroinflammation hallmarks the pathology of depression although the etiological complexity has not yet been resolved. Previous studies demonstrate that bacterial lipopolysaccharide induces depressive-like behaviors by activating RagA-mTOR-p70S6K signaling pathway. The current project aims to investigate whether and how brain-specific RagA overexpression triggers depressive-like behaviors in mice. Full-length RagA cDNA is cloned into the mammalian expression vector under the control of brain specific promoter, and subsequently overexpressed in the brain of mouse embryos. Indeed, RagA transgenic mice exhibit depressive-like behaviors and memory impairments. RNA-seq profiling of the prefrontal cortex (PFC) transcriptome highlights adenosine A2a receptor (ADORA2A) as a key differentially expressed gene (DEG). Western blotting confirms that ADORA2A and phospho-p70S6K are markedly elevated in RagA transgenic mice. Behavioral assessments demonstrate that ADORA2A inhibitor istradefylline markedly attenuates depressive-like behaviors. Further metabolomics reveals that N-acetylserotonin and several depression-related metabolites are downregulated while proteomic profiling showed that OLIG1 and other proteins are significantly regulated in RagA transgenic mice. Collectively, RagA overexpression alters the expression patterns of signaling proteins and the metabolism of depression-associated metabolites. RagA may cause depressive-like behaviors in mice via activating p70S6K/ADORA2A signaling pathway. Thus, RagA-p70S6K-ADORA2A signaling pathway may be a target for the development of new antidepressant therapies.
Collapse
Affiliation(s)
- Jia Zhao
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong Kong3 Sassoon Road, PokfulamHong Kong999077P. R. China
- Department of Chinese MedicineThe University of Hong Kong Shenzhen HospitalShenzhen518053P. R. China
| | - Yilu Sun
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong Kong3 Sassoon Road, PokfulamHong Kong999077P. R. China
- Department of Chinese MedicineThe University of Hong Kong Shenzhen HospitalShenzhen518053P. R. China
| | - Yibin Feng
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong Kong3 Sassoon Road, PokfulamHong Kong999077P. R. China
| | - Jianhui Rong
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong Kong3 Sassoon Road, PokfulamHong Kong999077P. R. China
| |
Collapse
|
5
|
Milasauskiene E, Burkauskas J, Jesmanas S, Gleizniene R, Borutaite V, Skemiene K, Vaitkiene P, Adomaitiene V, Lukosevicius S, Gradauskiene B, Brown G, Steibliene V. The links between neuroinflammation, brain structure and depressive disorder: A cross-sectional study protocol. PLoS One 2024; 19:e0311218. [PMID: 39565757 PMCID: PMC11578540 DOI: 10.1371/journal.pone.0311218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/12/2024] [Indexed: 11/22/2024] Open
Abstract
INTRODUCTION It is known that symptoms of major depressive disorder (MDD) are associated with neurodegeneration, that lipopolysaccharide (LPS) can induce symptoms of MDD, and that blood LPS levels are elevated in neurodegeneration. However, it is not known whether blood LPS and cytokine levels correlate with MDD, cognition and brain structure, and this is tested in this study. METHODS AND ANALYSIS This cross-sectional study includes individuals with MDD (n = 100) and a control group of individuals with no one-year history of a mental disorder (n = 50). A comprehensive evaluation is performed, including the collection of basic sociodemographic information, data on smoking status, body mass index, course of MDD, past treatment, comorbid diseases, and current use of medications. Diagnosis of MDD is performed according to the WHO's [2019] International Classification of Diseases and related health problems by psychiatrist and severity of MDD is evaluated using the Montgomery-Åsberg Depression Scale. The Cambridge Neuropsychological Test Automated Battery is used to evaluate cognitive functioning. Venous blood samples are taken to measure genetic and inflammatory markers, and multiparametric brain magnetic resonance imaging is performed to evaluate for blood-brain barrier permeability, structural and neurometabolic brain changes. Descriptive and inferential statistics, including linear and logistic regression, will be used to analyse relationships between blood plasma LPS and inflammatory cytokine concentrations in MDD patients and controls. The proposed sample sizes are suitable for identifying significant differences between the groups, according to a power analysis. ADMINISTRATIVE INFORMATION Trial registration: Clinicaltrials.gov NCT06203015.
Collapse
Affiliation(s)
- Egle Milasauskiene
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Julius Burkauskas
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Simonas Jesmanas
- Department of Radiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rymante Gleizniene
- Department of Radiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vilmante Borutaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kristina Skemiene
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Paulina Vaitkiene
- Laboratory of Molecular Neurobiology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Saulius Lukosevicius
- Department of Radiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Brigita Gradauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Guy Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Vesta Steibliene
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Psychiatry Clinic, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
6
|
Alexander SN, Reed OA, Burton MD. Spinal cord microglia drive sex differences in ethanol-mediated PGE2-induced allodynia. Brain Behav Immun 2024; 122:399-421. [PMID: 39147173 DOI: 10.1016/j.bbi.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024] Open
Abstract
The mechanisms of how long-term alcohol use can lead to persistent pain pathology are unclear. Understanding how earlier events of short-term alcohol use can lower the threshold of non-painful stimuli, described as allodynia could prove prudent to understand important initiating mechanisms. Previously, we observed that short-term low-dose alcohol intake induced female-specific allodynia and increased microglial activation in the spinal cord dorsal horn. Other literature describes how chronic ethanol exposure activates Toll-like receptor 4 (TLR4) to initiate inflammatory responses. TLR4 is expressed on many cell types, and we aimed to investigate whether TLR4 on microglia is sufficient to potentiate allodynia during a short-term/low-dose alcohol paradigm. Our study used a novel genetic model where TLR4 expression is removed from the entire body by introducing a floxed transcriptional blocker (TLR4-null background (TLR4LoxTB)), then restricted to microglia by breeding TLR4LoxTB animals with Cx3CR1:CreERT2 animals. As previously reported, after 14 days of ethanol administration alone, we observed no increased pain behavior. However, we observed significant priming effects 3 hrs post intraplantar injection of a subthreshold dose of prostaglandin E2 (PGE2) in wild-type and microglia-TLR4 restricted female mice. We also observed a significant female-specific shift to pro-inflammatory phenotype and morphological changes in microglia of the lumbar dorsal horn. Investigations in pain priming-associated neuronal subtypes showed an increase of c-Fos and FosB activity in PKCγ interneurons in the dorsal horn of female mice directly corresponding to increased microglial activity. This study uncovers cell- and female-specific roles of TLR4 in sexual dimorphisms in pain induction among non-pathological drinkers.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Lab (NIB), Department of Neuroscience, School of Behavioral and Brain Science, Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX, USA
| | - Olivia A Reed
- Neuroimmunology and Behavior Lab (NIB), Department of Neuroscience, School of Behavioral and Brain Science, Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Lab (NIB), Department of Neuroscience, School of Behavioral and Brain Science, Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
7
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
8
|
Mohamed SS, Rasheed NOA, Ibrahim WW, Shiha NA. Targeting Toll-like Receptor 4/Nuclear Factor-κB and Nrf2/Heme Oxygenase-1 Crosstalk via Trimetazidine Alleviates Lipopolysaccharide-Induced Depressive-like Behaviors in Mice. J Neuroimmune Pharmacol 2024; 19:50. [PMID: 39312021 PMCID: PMC11420337 DOI: 10.1007/s11481-024-10149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024]
Abstract
Depression is a global psychiatric illness that imposes a substantial economic burden. Unfortunately, traditional antidepressants induce many side effects which limit patient compliance thus, exploring alternative therapies with fewer adverse effects became urgent. This study aimed to investigate the effect of trimetazidine (TMZ); a well-known anti-ischemic drug in lipopolysaccharide (LPS) mouse model of depression focusing on its ability to regulate toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) as well as nuclear factor erythroid 2 related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) signaling pathways. Male Swiss albino mice were injected with LPS (500 µg/kg, i.p) every other day alone or parallel with oral doses of either escitalopram (Esc) (10 mg/kg/day) or TMZ (20 mg/kg/day) for 14 days. Treatment with TMZ attenuated LPS-induced animals' despair with reduced immobility time inforced swimming test. TMZ also diminished LPS- induced neuro-inflammation via inhibition of TLR4/NF-κB pathway contrary to Nrf2/HO-1 cascade activation with consequent increase in reduced glutathione (GSH) and HO-1 levels whereas the pro-inflammatory cytokines; tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β were evidently reduced. Besides, TMZ replenished brain serotonin levels via serotonin transporter (SERT) inhibition. Thus, TMZ hindered LPS-induced neuro-inflammation, oxidative stress, serotonin deficiency besides its anti-apoptotic effect which was reflected by decreased caspase-3 level. Neuroprotective effects of TMZ were confirmed by the histological photomicrographs which showed prominent neuronal survival. Here we showed that TMZ is an affluent nominee for depression management via targeting TLR4/NF-κB and Nrf2/HO-1 pathways. Future research addressing TMZ-antidepressant activity in humans is mandatory to enroll it as a novel therapeutic strategy for depression.
Collapse
Affiliation(s)
- Sarah S Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, Egypt.
| | - Nora O Abdel Rasheed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, Egypt
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, Egypt
| | - Nesma A Shiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, Egypt
| |
Collapse
|
9
|
Kwon D, Kim Y, Cho SH. Antidepressant Effects of Ginsenoside Rc on L-Alpha-Aminoadipic Acid-Induced Astrocytic Ablation and Neuroinflammation in Mice. Int J Mol Sci 2024; 25:9673. [PMID: 39273621 PMCID: PMC11396248 DOI: 10.3390/ijms25179673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Depression is a prevalent and debilitating mental disorder that affects millions worldwide. Current treatments, such as antidepressants targeting the serotonergic system, have limitations, including delayed onset of action and high rates of treatment resistance, necessitating novel therapeutic strategies. Ginsenoside Rc (G-Rc) has shown potential anti-inflammatory and neuroprotective effects, but its antidepressant properties remain unexplored. This study investigated the antidepressant effects of G-Rc in an L-alpha-aminoadipic acid (L-AAA)-induced mouse model of depression, which mimics the astrocytic pathology and neuroinflammation observed in major depressive disorder. Mice were administered G-Rc, vehicle, or imipramine orally after L-AAA injection into the prefrontal cortex. G-Rc significantly reduced the immobility time in forced swimming and tail suspension tests compared to vehicle treatment, with more pronounced effects than imipramine. It also attenuated the expression of pro-inflammatory cytokines (TNF-α, IL-6, TGF-β, lipocalin-2) and alleviated astrocytic degeneration, as indicated by increased GFAP and decreased IBA-1 levels. Additionally, G-Rc modulated apoptosis-related proteins, decreasing caspase-3 and increasing Bcl-2 levels compared to the L-AAA-treated group. These findings suggest that G-Rc exerts antidepressant effects by regulating neuroinflammation, astrocyte-microglia crosstalk, and apoptotic pathways in the prefrontal cortex, highlighting its potential as a novel therapeutic agent for depression.
Collapse
Affiliation(s)
- Dohyung Kwon
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunna Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Neuropsychiatry of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Hun Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Neuropsychiatry of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Charoensaensuk V, Yeh WL, Huang BR, Hsu TC, Xie SY, Chen CW, Wang YW, Yang LY, Tsai CF, Lu DY. Repetitive Administration of Low-Dose Lipopolysaccharide Improves Repeated Social Defeat Stress-Induced Behavioral Abnormalities and Aberrant Immune Response. J Neuroimmune Pharmacol 2024; 19:38. [PMID: 39066908 DOI: 10.1007/s11481-024-10141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Repetitive exposure of innate immune cells to a subthreshold dosage of endotoxin components may modulate inflammatory responses. However, the regulatory mechanisms in the interactions between the central nervous system (CNS) and the immune system remain unclear. This study aimed to investigate the effects of lipopolysaccharide (LPS) preconditioning in repeated social defeat stress (RSDS)-induced abnormal immune responses and behavioral impairments. This study aimed to elucidate the mechanisms that underlie the protective effects of repeated administration of a subthreshold dose LPS on behavioral impairments using the RSDS paradigm. LPS preconditioning improved abnormal behaviors in RSDS-defeated mice, accompanied by decreased monoamine oxidases and increased glucocorticoid receptor expression in the hippocampus. In addition, pre-treated with LPS significantly decreased the recruited peripheral myeloid cells (CD11b+CD45hi), mainly circulating inflammatory monocytes (CD11b+CD45hiLy6ChiCCR2+) into the brain in response to RSDS challenge. Importantly, we found that LPS preconditioning exerts its protective properties by regulating lipocalin-2 (LCN2) expression in microglia, which subsequently induces expressions of chemokine CCL2 and pro-inflammatory cytokine. Subsequently, LPS-preconditioning lessened the resident microglia population (CD11b+CD45intCCL2+) in the brains of the RSDS-defeated mice. Moreover, RSDS-associated expressions of leukocytes (CD11b+CD45+CCR2+) and neutrophils (CD11b+CD45+Ly6G+) in the bone marrow, spleen, and blood were also attenuated by LPS-preconditioning. In particular, LPS preconditioning also promoted the expression of endogenous antioxidants and anti-inflammatory proteins in the hippocampus. Our results demonstrate that LPS preconditioning ameliorates lipocalin 2-associated microglial activation and aberrant immune response and promotes the expression of endogenous antioxidants and anti-inflammatory protein, thereby maintaining the homeostasis of pro-inflammation/anti-inflammation in both the brain and immune system, ultimately protecting the mice from RSDS-induced aberrant immune response and behavioral changes.
Collapse
Affiliation(s)
- Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Che Hsu
- School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Sheng-Yun Xie
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chao-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Yu-Wen Wang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, 404328, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
11
|
Maldonado-García JL, García-Mena LH, Mendieta-Cabrera D, Pérez-Sánchez G, Becerril-Villanueva E, Alvarez-Herrera S, Homberg T, Vallejo-Castillo L, Pérez-Tapia SM, Moreno-Lafont MC, Ortuño-Sahagún D, Pavón L. Use of Extracellular Monomeric Ubiquitin as a Therapeutic Option for Major Depressive Disorder. Pharmaceuticals (Basel) 2024; 17:841. [PMID: 39065692 PMCID: PMC11279398 DOI: 10.3390/ph17070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Major depressive disorder (MDD) is a mood disorder that has become a global health emergency according to the World Health Organization (WHO). It affects 280 million people worldwide and is a leading cause of disability and financial loss. Patients with MDD present immunoendocrine alterations like cortisol resistance and inflammation, which are associated with alterations in neurotransmitter metabolism. There are currently numerous therapeutic options for patients with MDD; however, some studies suggest a high rate of therapeutic failure. There are multiple hypotheses explaining the pathophysiological mechanisms of MDD, in which several systems are involved, including the neuroendocrine and immune systems. In recent years, inflammation has become an important target for the development of new therapeutic options. Extracellular monomeric ubiquitin (emUb) is a molecule that has been shown to have immunomodulatory properties through several mechanisms including cholinergic modulation and the generation of regulatory T cells. In this perspective article, we highlight the influence of the inflammatory response in MDD. In addition, we review and discuss the evidence for the use of emUb contained in Transferon as a concomitant treatment with selective serotonin reuptake inhibitors (SSRIs).
Collapse
Affiliation(s)
- José Luis Maldonado-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.M.-G.); (S.M.P.-T.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (G.P.-S.); (E.B.-V.); (S.A.-H.)
| | - Lissette Haydee García-Mena
- Departamento de Salud Digital, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico;
| | - Danelia Mendieta-Cabrera
- Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico;
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (G.P.-S.); (E.B.-V.); (S.A.-H.)
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (G.P.-S.); (E.B.-V.); (S.A.-H.)
| | - Samantha Alvarez-Herrera
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (G.P.-S.); (E.B.-V.); (S.A.-H.)
| | - Toni Homberg
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (T.H.); (L.V.-C.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (T.H.); (L.V.-C.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
| | - Sonia Mayra Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.M.-G.); (S.M.P.-T.)
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (T.H.); (L.V.-C.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
| | - Martha C. Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.M.-G.); (S.M.P.-T.)
| | - Daniel Ortuño-Sahagún
- Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Jalisco 44340, Mexico;
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (G.P.-S.); (E.B.-V.); (S.A.-H.)
| |
Collapse
|
12
|
Menon NJ, Sun C, Chhina J, Halvorson BD, Frisbee JC, Frisbee SJ. Cerebrovascular dysfunction and depressive symptoms in preclinical models: insights from a scoping review. J Appl Physiol (1985) 2024; 136:1352-1363. [PMID: 38601994 DOI: 10.1152/japplphysiol.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Although existing literature supports associations between cerebrovascular dysfunction and the emergence of depression and depressive symptoms, relatively little is known about underlying mechanistic pathways that may explain potential relationships. As such, an integrated understanding of these relationships in preclinical models could provide insight into the nature of the relationship, basic mechanistic linkages, and areas in which additional investment should be targeted. This scoping review was conducted in MEDLINE, EMBASE, and Scopus to outline the relationship between depressive symptoms and cerebrovascular dysfunction in preclinical animal models with an additional focus on the areas above. From 3,438 articles initially identified, 15 studies met the inclusion criteria and were included in the review. All studies reported a positive association between the severity of markers for cerebrovascular dysfunction and that for depressive symptoms in rodent models and this spanned all models for either pathology. Specific mechanistic links between the two such as chronic inflammation, elevated vascular oxidant stress, and altered serotonergic signaling were highlighted. Notably, almost all studies addressed outcomes in male animals, with a near complete lack of data from females, and there was little consistency in terms of how cerebrovascular dysfunction was assessed. Across nearly all studies was a lack of clarity for any "cause and effect" relationship between depressive symptoms and cerebrovascular dysfunction. At this time, it is reasonable to conclude that a correlative relationship clearly exists between the two, and future investigation will be required to parse out more specific aspects of this relationship.NEW & NOTEWORTHY This scoping review presents a structured evaluation of all relevant existing literature linking cerebral vasculopathy to depressive symptom emergence in preclinical models. Results support a definite connection between vascular dysfunction and depressive symptoms, highlighting the importance of chronic elevations in inflammation and oxidant stress, and impaired serotonergic signaling. The review also identified significant knowledge gaps addressing male versus female differences and limited clear mechanistic links between cerebral vasculopathy and depressive symptoms.
Collapse
Affiliation(s)
- Nithin J Menon
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Clara Sun
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Jashnoor Chhina
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Brayden D Halvorson
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Stephanie J Frisbee
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
- Department of Epidemiology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
13
|
Lin K, Sunko D, Wang J, Yang J, Parsey RV, DeLorenzo C. Investigating the relationship between hippocampus/dentate gyrus volume and hypothalamus metabolism in participants with major depressive disorder. Sci Rep 2024; 14:10622. [PMID: 38724691 PMCID: PMC11082185 DOI: 10.1038/s41598-024-61519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
Reduced hippocampal volume occurs in major depressive disorder (MDD), potentially due to elevated glucocorticoids from an overactivated hypothalamus-pituitary-adrenal (HPA) axis. To examine this in humans, hippocampal volume and hypothalamus (HPA axis) metabolism was quantified in participants with MDD before and after antidepressant treatment. 65 participants (n = 24 males, n = 41 females) with MDD were treated in a double-blind, randomized clinical trial of escitalopram. Participants received simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) before and after treatment. Linear mixed models examined the relationship between hippocampus/dentate gyrus volume and hypothalamus metabolism. Chi-squared tests and multivariable logistic regression examined the association between hippocampus/dentate gyrus volume change direction and hypothalamus activity change direction with treatment. Multiple linear regression compared these changes between remitter and non-remitter groups. Covariates included age, sex, and treatment type. No significant linear association was found between hippocampus/dentate gyrus volume and hypothalamus metabolism. 62% (38 of 61) of participants experienced a decrease in hypothalamus metabolism, 43% (27 of 63) of participants demonstrated an increase in hippocampus size (51% [32 of 63] for the dentate gyrus) following treatment. No significant association was found between change in hypothalamus activity and change in hippocampus/dentate gyrus volume, and this association did not vary by sex, medication, or remission status. As this multimodal study, in a cohort of participants on standardized treatment, did not find an association between hypothalamus metabolism and hippocampal volume, it supports a more complex pathway between hippocampus neurogenesis and hypothalamus metabolism changes in response to treatment.
Collapse
Affiliation(s)
| | | | - Junying Wang
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, NY, USA
| | - Jie Yang
- Department of Family, Population & Preventive Medicine, Stony Brook University, New York, NY, USA
| | - Ramin V Parsey
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA.
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
14
|
Manelis A, Hu H, Miceli R, Satz S, Lau R, Iyengar S, Swartz HA. The relationship between the size and asymmetry of the lateral ventricles and cortical myelin content in individuals with mood disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.30.24306621. [PMID: 38746112 PMCID: PMC11092679 DOI: 10.1101/2024.04.30.24306621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Although enlargement of the lateral ventricles was previously observed in individuals with mood disorders, the link between ventricular size and asymmetry with other indices of brain structure remains underexplored. In this study, we examined the association of lateral ventricular size and asymmetry with cortical myelin content in individuals with bipolar (BD) and depressive (DD) disorders compared to healthy controls (HC). Methods Magnetic resonance imaging (MRI) was used to obtain T1w and T2w images from 149 individuals (age=27.7 (SD=6.1) years, 78% female, BD=38, DD=57, HC=54). Cortical myelin content was calculated using the T1w/T2w ratio. Elastic net regularized regression identified brain regions whose myelin content was associated with ventricular size and asymmetry. A post-hoc linear regression examined how participants' diagnosis, illness duration, and current level of depression moderated the relationship between the size and asymmetry of the lateral ventricles and levels of cortical myelin in the selected brain regions. Results Individuals with mood disorders had larger lateral ventricles than HC. Larger ventricles and lower asymmetry were observed in individuals with BD who had longer lifetime illness duration and more severe current depressive symptoms. A greater left asymmetry was observed in participants with DD than in those with BD (p<0.01). Elastic net revealed that both ventricular enlargement and asymmetry were associated with altered myelin content in cingulate, frontal, and sensorimotor cortices. In BD, but not other groups, ventricular enlargement was related to altered myelin content in the right insular regions. Conclusions Lateral ventricular enlargement and asymmetry are linked to myelin content imbalance, thus, potentially leading to emotional and cognitive dysfunction in mood disorders.
Collapse
|
15
|
Li G, Hu L, Gu X, Zhu W, Zhen X, Sun X. Targeting Large-Conductance Calcium-Activated Potassium Channels to Ameliorate Lipopolysaccharide-Induced Depressive-Like Behavior in Mice. Neurochem Res 2024; 49:1239-1253. [PMID: 38383879 DOI: 10.1007/s11064-024-04111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
Neuroinflammation plays crucial role in the development and progression of depression. Large conductance calcium- and voltage-dependent potassium (BK) channels mediate the activation of microglia. Herein, we investigated whether BK channels could serve as a target for the treatment of inflammation-associated depression. Lipopolysaccharide (LPS, 0.83 mg/kg) was injected intraperitoneally (i.p.) to induce neuroinflammation and depressive-like behavior in 6-8 week ICR mice. Adeno-associated virus (AAV) constructs (AAV9-Iba1p-BK shRNA-EGFP (BK shRNA-AAV) or AAV9-Iba1p-NC shRNA-EGFP (NC shRNA-AAV)) were unilaterally injected intracerebroventricularly to selectively knock down BK channels in microglia. The tail suspension test (TST) and forced-swim test (FST) were used to evaluate depressive-like behavior in mice 24 h after LPS challenge. The morphology of microglia, expression of BK channels, levels of cytokines, and expression and activity of indoleamine 2,3-dioxygenase (IDO) were measured by immunohistochemistry, western blot, quantitative real time PCR, and enzyme-linked immunosorbent assay (ELISA), respectively. Either paxilline (i.p.), a specific BK channel blocker, or BK shRNA-AAV effectively inhibited the activation of microglia, reduced the production of IL-1β in the hippocampus and suppressed the expression and activity of IDO in the hippocampus and prefrontal cortex, resulting in the amelioration of depressive-like behavior in mice. These data suggest for the first time that BK channels are involved in LPS-induced depressive-like behaviors. Thus, microglia BK channels may be a potential drug target for the depression treatment.
Collapse
Affiliation(s)
- Gangjing Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Li Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiangcheng Gu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Weijun Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiaohui Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
16
|
Zapata-Acevedo JF, Mantilla-Galindo A, Vargas-Sánchez K, González-Reyes RE. Blood-brain barrier biomarkers. Adv Clin Chem 2024; 121:1-88. [PMID: 38797540 DOI: 10.1016/bs.acc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The blood-brain barrier (BBB) is a dynamic interface that regulates the exchange of molecules and cells between the brain parenchyma and the peripheral blood. The BBB is mainly composed of endothelial cells, astrocytes and pericytes. The integrity of this structure is essential for maintaining brain and spinal cord homeostasis and protection from injury or disease. However, in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, and multiple sclerosis, the BBB can become compromised thus allowing passage of molecules and cells in and out of the central nervous system parenchyma. These agents, however, can serve as biomarkers of BBB permeability and neuronal damage, and provide valuable information for diagnosis, prognosis and treatment. Herein, we provide an overview of the BBB and changes due to aging, and summarize current knowledge on biomarkers of BBB disruption and neurodegeneration, including permeability, cellular, molecular and imaging biomarkers. We also discuss the challenges and opportunities for developing a biomarker toolkit that can reliably assess the BBB in physiologic and pathophysiologic states.
Collapse
Affiliation(s)
- Juan F Zapata-Acevedo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra Mantilla-Galindo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- Laboratorio de Neurofisiología Celular, Grupo de Neurociencia Traslacional, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
17
|
Shukla R. Two Distinct Biotypes in Major Depression Unveiled. Biol Psychiatry 2024; 95:382-384. [PMID: 38325914 DOI: 10.1016/j.biopsych.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 02/09/2024]
Affiliation(s)
- Rammohan Shukla
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming.
| |
Collapse
|
18
|
Saljic A, Heijman J. P2X7 receptors: central drivers of the neurocardiac link between atrial fibrillation and depression? Europace 2024; 26:euae023. [PMID: 38261750 PMCID: PMC10873697 DOI: 10.1093/europace/euae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Affiliation(s)
- Arnela Saljic
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, BDK-2200 Copenhagen, Denmark
| | - Jordi Heijman
- Gottfried Schatz Research Center, Division of Medical Physics & Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
19
|
Mamelak M. Depression and the Glutamate/GABA-Glutamine Cycle. Curr Neuropharmacol 2024; 23:75-84. [PMID: 39150032 PMCID: PMC11519819 DOI: 10.2174/1570159x22666240815120244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 08/17/2024] Open
Abstract
Many features of major depressive disorder are mirrored in rodent models of psychological stress. These models have been used to examine the relationship between the activation of the hypothalamic- pituitary axis in response to stress, the development of oxidative stress and neuroinflammation, the dominance of cholinergic neurotransmission and the associated increase in REM sleep pressure. Rodent models have also provided valuable insights into the impairment of glycolysis and brain glucose utilization by the brain under stress, the resulting decrease in brain energy production and the reduction in glutamate/GABA-glutamine cycling. The rapidly acting antidepressants, scopolamine, ketamine and ECT, all raise extracellular glutamate and scopolamine and ketamine have specifically been shown to increase glutamate/GABA-glutamine cycling in men and rodents with corresponding short-term relief of depression. The nightly use of gammahydroxybutyrate (GHB) may achieve more permanent results and may even act prophylactically to prevent the development or recurrence of depression. GHB is a GABAB agonist and restores the normal balance between cholinergic and monoaminergic neurotransmission by inhibiting cholinergic neurotransmission. It relieves REM sleep pressure. GHB's metabolism generates NADPH, a key antioxidant cofactor. Its metabolism also generates succinate, the tricarboxylic acid cycle intermediate, to provide energy to the cell and to synthesize glutamate. In both animals and man, GHB increases the level of brain glutamate.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Jitte S, Keluth S, Bisht P, Wal P, Singh S, Murti K, Kumar N. Obesity and Depression: Common Link and Possible Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1425-1449. [PMID: 38747226 DOI: 10.2174/0118715273291985240430074053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 10/22/2024]
Abstract
Depression is among the main causes of disability, and its protracted manifestations could make it even harder to treat metabolic diseases. Obesity is linked to episodes of depression, which is closely correlated to abdominal adiposity and impaired food quality. The present review is aimed at studying possible links between obesity and depression along with targets to disrupt it. Research output in Pubmed and Scopus were referred for writing this manuscript. Obesity and depression are related, with the greater propensity of depressed people to gain weight, resulting in poor dietary decisions and a sedentary lifestyle. Adipokines, which include adiponectin, resistin, and leptin are secretory products of the adipose tissue. These adipokines are now being studied to learn more about the connection underlying obesity and depression. Ghrelin, a gut hormone, controls both obesity and depression. Additionally, elevated ghrelin levels result in anxiolytic and antidepressant-like effects. The gut microbiota influences the metabolic functionalities of a person, like caloric processing from indigestible nutritional compounds and storage in fatty tissue, that exposes an individual to obesity, and gut microorganisms might connect to the CNS through interconnecting pathways, including neurological, endocrine, and immunological signalling systems. The alteration of brain activity caused by gut bacteria has been related to depressive episodes. Monoamines, including dopamine, serotonin, and norepinephrine, have been widely believed to have a function in emotions and appetite control. Emotional signals stimulate arcuate neurons in the hypothalamus that are directly implicated in mood regulation and eating. The peptide hormone GLP-1(glucagon-like peptide- 1) seems to have a beneficial role as a medical regulator of defective neuroinflammation, neurogenesis, synaptic dysfunction, and neurotransmitter secretion discrepancy in the depressive brain. The gut microbiota might have its action in mood and cognition regulation, in addition to its traditional involvement in GI function regulation. This review addressed the concept that obesity-related low-grade mild inflammation in the brain contributes to chronic depression and cognitive impairments.
Collapse
Affiliation(s)
- Srikanth Jitte
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Saritha Keluth
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy, Kanpur 209305, Uttar Pradesh, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| |
Collapse
|
21
|
Luo Y, Ali T, Liu Z, Gao R, Li A, Yang C, Ling L, He L, Li S. EPO prevents neuroinflammation and relieves depression via JAK/STAT signaling. Life Sci 2023; 333:122102. [PMID: 37769806 DOI: 10.1016/j.lfs.2023.122102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
AIMS Erythropoietin (EPO) is a glycoprotein cytokine that exerts therapeutic potential on neurological disorders by promoting neurogenesis and angiogenesis. However, its role as an antidepressant via anti-inflammatory axes is poorly explored. Furthermore, chronic inflammation can induce neuroinflammation, concurrent with depressive-like behaviors that anti-inflammatory and antidepressant agents could avert. Here, we aimed to elucidate the antidepressant potential of Erythropoietin (EPO) in the LPS-induced depression model. MAIN METHODS For in vivo analysis, mice were treated with LPS (2 mg/kg BW), Erythropoietin (EPO) (5000 U/kg/day), (Ruxolitinib,15 mg/kg), and K252a (25 μg/kg). Depressive-like behaviors were confirmed via behavior tests, including OFT, FST, SPT, and TST. Cytokines were measured via ELISA, while IBA-1/GFAP expression was determined by immunofluorescence. Further, the desired gene expression was measured by immunoblotting. For in vitro analysis, BV2 and N2a cell lines were cultured, treated with LPS, EPO, Ruxolitinib, and K252a, collected, and analyzed. KEY FINDINGS LPS treatment significantly induced neuroinflammation accompanied by depression-like behaviors in mice. However, EPO treatment rescued LPS-induced changes by averting cytokine production, secretion, and glial cell activation and reducing depressive-like behaviors in mice. Surprisingly, EPO treatment ameliorated LPS-induced JAK2/STAT5 signaling impairment, as validated by JAK2-antagonism. Furthermore, synaptic and dendritic spine defects and BNDF/TrkB signaling upon LPS administration could be prevented by EPO treatment. SIGNIFICANCE EPO could act as an antidepressant via its anti-inflammatory potential by regulating JAK2/STAT5 signaling.
Collapse
Affiliation(s)
- Yanhua Luo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tahir Ali
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Zizhen Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Ruyan Gao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Axiang Li
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China.
| | - Canyu Yang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China.
| | - Li Ling
- Department of Endocrinology, The 6th Affiliated Hospital of Shenzhen University Medical School and Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.
| | - Liufang He
- Pediatrics Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China.
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Altomonte S, Pike VW. Candidate Tracers for Imaging Colony-Stimulating Factor 1 Receptor in Neuroinflammation with Positron Emission Tomography: Issues and Progress. ACS Pharmacol Transl Sci 2023; 6:1632-1650. [PMID: 37974622 PMCID: PMC10644394 DOI: 10.1021/acsptsci.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 11/19/2023]
Abstract
The tyrosine kinase, colony-stimulating factor 1 receptor (CSF1R), has attracted attention as a potential biomarker of neuroinflammation for imaging studies with positron emission tomography (PET), especially because of its location on microglia and its role in microglia proliferation. The development of an effective radiotracer for specifically imaging and quantifying brain CSF1R is highly challenging. Here we review the progress that has been made on PET tracer development and discuss issues that have arisen and which remain to be addressed and resolved.
Collapse
Affiliation(s)
- Stefano Altomonte
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes
of Health, Building 10,
B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes
of Health, Building 10,
B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| |
Collapse
|
23
|
Bruno F, Abondio P, Bruno R, Ceraudo L, Paparazzo E, Citrigno L, Luiselli D, Bruni AC, Passarino G, Colao R, Maletta R, Montesanto A. Alzheimer's disease as a viral disease: Revisiting the infectious hypothesis. Ageing Res Rev 2023; 91:102068. [PMID: 37704050 DOI: 10.1016/j.arr.2023.102068] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. Two major forms of the disease exist: sporadic - the causes of which have not yet been fully understood - and familial - inherited within families from generation to generation, with a clear autosomal dominant transmission of mutations in Presenilin 1 (PSEN1), 2 (PSEN2) or Amyloid Precursors Protein (APP) genes. The main hallmark of AD consists of extracellular deposits of amyloid-beta (Aβ) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein. An ever-growing body of research supports the viral infectious hypothesis of sporadic forms of AD. In particular, it has been shown that several herpes viruses (i.e., HHV-1, HHV-2, HHV-3 or varicella zoster virus, HHV-4 or Epstein Barr virus, HHV-5 or cytomegalovirus, HHV-6A and B, HHV-7), flaviviruses (i.e., Zika virus, Dengue fever virus, Japanese encephalitis virus) as well as Human Immunodeficiency Virus (HIV), hepatitis viruses (HAV, HBV, HCV, HDV, HEV), SARS-CoV2, Ljungan virus (LV), Influenza A virus and Borna disease virus, could increase the risk of AD. Here, we summarized and discussed these results. Based on these findings, significant issues for future studies are also put forward.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy.
| | - Rossella Bruno
- Sudent at the Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88050 Catanzaro, Italy
| | - Leognano Ceraudo
- Sudent at the Department of Medical and Surgical Sciences, University of Parma, 43121 Parma, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Luigi Citrigno
- National Research Council (CNR) - Institute for Biomedical Research and Innovation - (IRIB), 87050 Mangone, Cosenza, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Rosanna Colao
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy.
| |
Collapse
|
24
|
Radkowski M, Kryczka T, Szymańska-Kotwica B, Berak H, Horban A, Pawłowski T, Perlejewski K, Laskus T. Depression and Cognitive Dysfunction in Patients with Chronic Hepatitis C: Correlation with Viral Replication in the Peripheral Blood Mononuclear Cells and Cytokines in Serum. Int J Mol Sci 2023; 24:15351. [PMID: 37895030 PMCID: PMC10607636 DOI: 10.3390/ijms242015351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is commonly associated with depression and cognitive dysfunction, the cause of which could be related to the HCV neuroinvasion and/or state of chronic inflammation. Viral sequences and proteins were previously detected in the brain and since blood leukocytes can cross the blood-brain barrier, they could provide viral access to the CNS. Eighty chronic hepatitis C patients were tested for viral replication in PBMCs (detection of the HCV RNA-negative strand) and serum cytokines. Depression was assessed by the Beck Depression Inventory (BDI), neuroticism by the Eysenck Personality Inventory (N/EPO-R), and anxiety by the State-Trait Anxiety Inventory (STAI) while neurocognitive testing included the Wisconsin Card Sorting Test (WCST), Ruff Figural Fluency Test (RFFT), California Verbal Learning Test (CVLT), and Grooved Pegboard Test (GPT). The HCV RNA-negative strand was detected in PBMCs from 24 (30%) patients and these patients had significantly higher BDI scores (median 12.5 [IQR] 6.3-20.5 vs. median 8.00 [IQR] 3-12; p = 0.013). Both depression and anxiety correlated positively with IL-8 while cognitive flexibility, executive function, problem-solving skills, memory, and motor functioning correlated negatively with some proinflammatory cytokines. Our findings suggest that due to chronic HCV infection, the brain function is negatively affected by both viral replication in PBMCs and by the immune activation state.
Collapse
Affiliation(s)
- Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (K.P.)
| | - Tomasz Kryczka
- Department of Development of Nursing and Social and Medical Sciences, Medical University of Warsaw, 01-445 Warsaw, Poland;
| | - Bogna Szymańska-Kotwica
- Outpatient Clinic, Warsaw Hospital for Infectious Diseases, 01-201 Warsaw, Poland; (B.S.-K.); (H.B.)
| | - Hanna Berak
- Outpatient Clinic, Warsaw Hospital for Infectious Diseases, 01-201 Warsaw, Poland; (B.S.-K.); (H.B.)
| | - Andrzej Horban
- Department of Adult Infectious Diseases, Medical University of Warsaw, 01-201 Warsaw, Poland
| | - Tomasz Pawłowski
- Department of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (K.P.)
| | - Tomasz Laskus
- Department of Adult Infectious Diseases, Medical University of Warsaw, 01-201 Warsaw, Poland
| |
Collapse
|
25
|
Yang EJ, Rahim MA, Griggs E, Iban-Arias R, Pasinetti GM. Transient anxiety-and depression-like behaviors are linked to the depletion of Foxp3-expressing cells via inflammasome in the brain. PNAS NEXUS 2023; 2:pgad251. [PMID: 37614669 PMCID: PMC10443660 DOI: 10.1093/pnasnexus/pgad251] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
Forkhead box P3 (Foxp3) is a transcription factor that influences functioning of regulatory T cells (Tregs) that modulate peripheral immune response. Treg-mediated innate immunity and Treg-mediated adaptive immunity are receiving considerable attention for their implication in mechanisms associated with anxiety and depression. Here, we demonstrated that depletion of Foxp3-expressing cells causally promotes transient anxiety- and depression-like behaviors associated with inflammasome activation in "depletion of regulatory T cell" (DEREG) mice. We found that restoration of Foxp3-expressing cells causally reverses neurobehavioral changes through alteration of innate immune responses as assessed by caspase-1 activity and interleukin-1β (IL-1β) release in the hippocampal formation of DEREG mice. Moreover, we found that depletion of Foxp3-expressing cells induces a significant elevation of granulocytes, monocytes, and macrophages in the blood, which are associated with transient expression of the matrix metalloprotease-9. Similarly, we found that depletion of Foxp3-expressing cells in 5xFAD, a mouse model of Alzheimer's disease (AD), exhibits elevated activated caspase-1 and promotion of IL-1β secretion and increased the level of amyloid-beta (Aβ)1-42 and Aβ plaque burden in the hippocampal formation that coincided with an acceleration of cognitive decline at a presymptomatic age in the 5xFAD mice. Thus, our study provides evidence supporting the idea that Foxp3 may have a causal influence on peripheral immune responses. This, in turn, can promote an innate immune response within the brain, potentially leading to anxiety- and depression-like behaviors or cognitive decline.
Collapse
Affiliation(s)
- Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Md Al Rahim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elizabeth Griggs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
| |
Collapse
|
26
|
Afridi R, Suk K. Microglial Responses to Stress-Induced Depression: Causes and Consequences. Cells 2023; 12:1521. [PMID: 37296642 PMCID: PMC10252665 DOI: 10.3390/cells12111521] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic stress is a major risk factor for various psychiatric diseases, including depression; it triggers various cellular and structural changes, resulting in the alteration of neurocircuitry and subsequent development of depression. Accumulating evidence suggests that microglial cells orchestrate stress-induced depression. Preclinical studies of stress-induced depression revealed microglial inflammatory activation in regions of the brain that regulate mood. Although studies have identified several molecules that trigger inflammatory responses in microglia, the pathways that regulate stress-induced microglial activation remain unclear. Understanding the exact triggers that induce microglial inflammatory activation can help find therapeutic targets in order to treat depression. In the current review, we summarize the recent literature on possible sources of microglial inflammatory activation in animal models of chronic stress-induced depression. In addition, we describe how microglial inflammatory signaling affects neuronal health and causes depressive-like behavior in animal models. Finally, we propose ways to target the microglial inflammatory cascade to treat depressive disorders.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
27
|
Hassamal S. Chronic stress, neuroinflammation, and depression: an overview of pathophysiological mechanisms and emerging anti-inflammatories. Front Psychiatry 2023; 14:1130989. [PMID: 37252156 PMCID: PMC10213648 DOI: 10.3389/fpsyt.2023.1130989] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
In a subset of patients, chronic exposure to stress is an etiological risk factor for neuroinflammation and depression. Neuroinflammation affects up to 27% of patients with MDD and is associated with a more severe, chronic, and treatment-resistant trajectory. Inflammation is not unique to depression and has transdiagnostic effects suggesting a shared etiological risk factor underlying psychopathologies and metabolic disorders. Research supports an association but not necessarily a causation with depression. Putative mechanisms link chronic stress to dysregulation of the HPA axis and immune cell glucocorticoid resistance resulting in hyperactivation of the peripheral immune system. The chronic extracellular release of DAMPs and immune cell DAMP-PRR signaling creates a feed forward loop that accelerates peripheral and central inflammation. Higher plasma levels of inflammatory cytokines, most consistently interleukin IL-1β, IL-6, and TNF-α, are correlated with greater depressive symptomatology. Cytokines sensitize the HPA axis, disrupt the negative feedback loop, and further propagate inflammatory reactions. Peripheral inflammation exacerbates central inflammation (neuroinflammation) through several mechanisms including disruption of the blood-brain barrier, immune cellular trafficking, and activation of glial cells. Activated glial cells release cytokines, chemokines, and reactive oxygen and nitrogen species into the extra-synaptic space dysregulating neurotransmitter systems, imbalancing the excitatory to inhibitory ratio, and disrupting neural circuitry plasticity and adaptation. In particular, microglial activation and toxicity plays a central role in the pathophysiology of neuroinflammation. Magnetic resonance imaging (MRI) studies most consistently show reduced hippocampal volumes. Neural circuitry dysfunction such as hypoactivation between the ventral striatum and the ventromedial prefrontal cortex underlies the melancholic phenotype of depression. Chronic administration of monoamine-based antidepressants counters the inflammatory response, but with a delayed therapeutic onset. Therapeutics targeting cell mediated immunity, generalized and specific inflammatory signaling pathways, and nitro-oxidative stress have enormous potential to advance the treatment landscape. Future clinical trials will need to include immune system perturbations as biomarker outcome measures to facilitate novel antidepressant development. In this overview, we explore the inflammatory correlates of depression and elucidate pathomechanisms to facilitate the development of novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Sameer Hassamal
- California University of Sciences and Medicine, Colton, CA, United States
- Clinicaltriallink, Los Angeles, CA, United States
- California Neuropsychiatric Institute, Ontario, CA, United States
| |
Collapse
|
28
|
Cao H, Yang D, Nie K, Lin R, Peng L, Zhou X, Zhang M, Zeng Y, Liu L, Huang W. Hesperidin may improve depressive symptoms by binding NLRP3 and influencing the pyroptosis pathway in a rat model. Eur J Pharmacol 2023:175670. [PMID: 37169143 DOI: 10.1016/j.ejphar.2023.175670] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVE Major depressive disorder (MDD) is a debilitating psychiatric disorder which is common and endangers human physical and mental health. Studies have shown that hesperidin could improve the symptoms of depression with unclear mechanisms. METHOD In this study, hesperidin was administered to chronic unpredictable mild stress (CUMS) depressed mice before behavioral test, network pharmacology analysis, RNA expression microarray analysis, pathway validation and molecular docking experiments. RESULTS we found that hesperidin intervention could significantly improve the depressive symptoms and downregulate the expression level of pyroptosis pathway including caspase 1 (Casp1), interleukin 18 (IL18), interleukin-1β (IL-1β) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3). In addition, we found that hesperidin could possibly bind to NLRP3. CONCLUSIONS Our study demonstrated that hesperidin had huge potential as anti-depressive neuroprotectant, and may play a role in treating MDD by regulating NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Hui Cao
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Dong Yang
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Internal Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruoheng Lin
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Luqi Peng
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xuhui Zhou
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Mei Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zeng
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lini Liu
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
29
|
Jazvinšćak Jembrek M, Oršolić N, Karlović D, Peitl V. Flavonols in Action: Targeting Oxidative Stress and Neuroinflammation in Major Depressive Disorder. Int J Mol Sci 2023; 24:ijms24086888. [PMID: 37108052 PMCID: PMC10138550 DOI: 10.3390/ijms24086888] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Major depressive disorder is one of the most common mental illnesses that highly impairs quality of life. Pharmacological interventions are mainly focused on altered monoamine neurotransmission, which is considered the primary event underlying the disease's etiology. However, many other neuropathological mechanisms that contribute to the disease's progression and clinical symptoms have been identified. These include oxidative stress, neuroinflammation, hippocampal atrophy, reduced synaptic plasticity and neurogenesis, the depletion of neurotrophic factors, and the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. Current therapeutic options are often unsatisfactory and associated with adverse effects. This review highlights the most relevant findings concerning the role of flavonols, a ubiquitous class of flavonoids in the human diet, as potential antidepressant agents. In general, flavonols are considered to be both an effective and safe therapeutic option in the management of depression, which is largely based on their prominent antioxidative and anti-inflammatory effects. Moreover, preclinical studies have provided evidence that they are capable of restoring the neuroendocrine control of the HPA axis, promoting neurogenesis, and alleviating depressive-like behavior. Although these findings are promising, they are still far from being implemented in clinical practice. Hence, further studies are needed to more comprehensively evaluate the potential of flavonols with respect to the improvement of clinical signs of depression.
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Dalibor Karlović
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Vjekoslav Peitl
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| |
Collapse
|
30
|
VanderZwaag J, Halvorson T, Dolhan K, Šimončičová E, Ben-Azu B, Tremblay MÈ. The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochem Res 2023; 48:1129-1166. [PMID: 36327017 DOI: 10.1007/s11064-022-03772-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics - psychedelic, anesthetic, and dissociative agents - as they have demonstrated surprising efficacy in treating central nervous system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide such profound psychological benefits are still to be fully elucidated. Microglia, the CNS's resident innate immune cells, are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharmacological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mechanism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacology and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.
Collapse
Affiliation(s)
- Jared VanderZwaag
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Vancouver, BC, Canada
- Department of Biology, University of Victoria, Vancouver, BC, Canada
| | - Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
31
|
18β-Glycyrrhetinic Acid Ameliorates Neuroinflammation Linked Depressive Behavior Instigated by Chronic Unpredictable Mild Stress via Triggering BDNF/TrkB Signaling Pathway in Rats. Neurochem Res 2023; 48:551-569. [PMID: 36307572 PMCID: PMC9616426 DOI: 10.1007/s11064-022-03779-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 02/04/2023]
Abstract
Evidence shows that inflammatory responses may encompass the onset of severe depressive illness. Traditionally used licorice contains 18β-glycyrrhetinic acid (18βGA), which has been demonstrated to reduce inflammation and oxidative stress. This study investigates the antidepressant effects of 18βGA and the underlying mechanism in rats exposed to chronic unpredictable mild stress (CUMS). Wistar rats were exposed to CUMS for 36 consecutive days to establish depression. 18βGA (10, 20, and 50 mg/kg) or fluoxetine was given once daily (from day 30 to day 36). Thereafter, behavior parameters (sucrose preference test, forced-swimming test, open-field test, body weight), pro-inflammatory cytokines, neurotransmitters, adrenocorticotropic hormone (ACTH), corticosterone (CORT), and liver biomarkers were studied. Immunohistochemistry and western blot analyses were conducted to investigate the protein's expression. 18βGA (20 and 50 mg/kg) treatment increased sucrose intake, locomotion in the open-field test, decreased immobility time in the forced swim test, and improved body weight in CUMS-exposed rats. The therapy of 18βGA dramatically declined cytokines, ACTH and CORT and improved 5HT and norepinephrine in CUMS rats. Furthermore, BDNF and TrkB proteins were down-regulated in CUMS group, which was increased to varying degrees by 18βGA at doses of 20 and 50 mg/kg. Therefore, 18βGA ameliorates depressive-like behavior persuaded by chronic unpredictable mild stress, decreases neuroinflammation, liver biomarkers, stress hormones, and improves body weight, brain neurotransmitter concentration via activating on BDNF/TrkB signaling pathway in both PFC and hippocampus in rats.
Collapse
|
32
|
Rossetti AC, Paladini MS, Brüning CA, Spero V, Cattaneo MG, Racagni G, Papp M, Riva MA, Molteni R. Involvement of the IL-6 Signaling Pathway in the Anti-Anhedonic Effect of the Antidepressant Agomelatine in the Chronic Mild Stress Model of Depression. Int J Mol Sci 2022; 23:ijms232012453. [PMID: 36293308 PMCID: PMC9604470 DOI: 10.3390/ijms232012453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation has emerged as an important factor in the molecular underpinnings of major depressive disorder (MDD) pathophysiology and in the mechanism of action of antidepressants. Among the inflammatory mediators dysregulated in depressed patients, interleukin (IL)-6 has recently been proposed to play a crucial role. IL-6 activates a signaling pathway comprising the JAK/STAT proteins and characterized by a specific negative feedback loop exerted by the cytoplasmic protein suppressor of cytokine signalling-3 (SOCS3). On these bases, here, we explored the potential involvement of IL-6 signaling in the ability of the antidepressant drug agomelatine to normalize the anhedonic-like phenotype induced in the rat by chronic stress exposure. To this aim, adult male Wistar rats were subjected to the chronic mild stress (CMS) paradigm and chronically treated with vehicle or agomelatine. The behavioral evaluation was assessed by the sucrose consumption test, whereas molecular analyses were performed in the prefrontal cortex. We found that CMS was able to stimulate IL-6 production and signaling, including SOCS3 gene and protein expression, but the SOCS3-mediated feedback-loop inhibition failed to suppress the IL-6 cascade in stressed animals. Conversely, agomelatine treatment normalized the stress-induced decrease in sucrose consumption and restored the negative modulation of the IL-6 signaling via SOCS3 expression and activity. Our results provide additional information about the pleiotropic mechanisms that contribute to agomelatine’s therapeutic effects.
Collapse
Affiliation(s)
- Andrea C. Rossetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Cesar Augusto Brüning
- Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas, Pelotas 96010-900, RS, Brazil
| | - Vittoria Spero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Maria Grazia Cattaneo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
- Correspondence:
| |
Collapse
|
33
|
Polydatin Prevents Neuroinflammation and Relieves Depression via Regulating Sirt1/HMGB1/NF-κB Signaling in Mice. Neurotox Res 2022; 40:1393-1404. [PMID: 35986876 DOI: 10.1007/s12640-022-00553-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 12/21/2022]
|
34
|
Gu X, Zhang G, Wang Q, Song J, Li Y, Xia C, Zhang T, Yang L, Sun J, Zhou M. Integrated network pharmacology and hepatic metabolomics to reveal the mechanism of Acanthopanax senticosus against major depressive disorder. Front Cell Dev Biol 2022; 10:900637. [PMID: 35990602 PMCID: PMC9389016 DOI: 10.3389/fcell.2022.900637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Objective:Acanthopanax senticosus (Rupr. et Maxim.) Harms (ASH) is a traditional herbal medicine widely known for its antifatigue and antistress effects, as well as tonifying qi, invigorating spleen and kidney, and tranquilizing the mind. Recent evidence suggests that ASH has a therapeutic effect on major depressive disorder (MDD), but its mechanism is still unclear. The current study aimed to investigate the effect of ASH on MDD and potential therapeutic mechanisms. Materials and Methods: The chemical compound potential target network was predicted based on network pharmacology. Simultaneously, chronic unpredictable mild stress (CUMS) model mice were orally administrated ASH with three dosages (400, 200, and 100 mg/kg) for 6 weeks, and hepatic metabolomics based on gas chromatography–mass spectrometry (GC–MS) was carried out to identify differential metabolites and related metabolic pathways. Next, the integrated analysis of metabolomics and network pharmacology was applied to find the key target. Finally, molecular docking technology was employed to define the combination of the key target and the corresponding compounds. Results: A total of 13 metabolites and four related metabolic pathways were found in metabolomics analysis. From the combined analysis of network pharmacology and metabolomics, six targets (DAO, MAOA, MAOB, GAA, HK1, and PYGM) are the overlapping targets and two metabolic pathways (glycine, serine, and threonine metabolism and starch and sucrose metabolism) are the most related pathways. Finally, DAO, MAOA, MAOB, GAA, HK1, and PYGM were verified bounding well to their corresponding compounds including isofraxidin, eleutheroside B1, eleutheroside C, quercetin, kaempferol, and acacetin. Conclusion: Based on these results, it was implied that the potential mechanism of ASH on MDD was related to the regulation of metabolism of several excitatory amino acids and carbohydrates, as well as the expression of DAO, MAOA, MAOB, GAA, HK1, and PYGM.
Collapse
Affiliation(s)
- Xinyi Gu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanying Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Song
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Li
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jijia Sun
- Department of Mathematics and Physics, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jijia Sun, ; Mingmei Zhou,
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jijia Sun, ; Mingmei Zhou,
| |
Collapse
|
35
|
McCarthy B, O’Neill G, Abu-Ghannam N. Potential Psychoactive Effects of Microalgal Bioactive Compounds for the Case of Sleep and Mood Regulation: Opportunities and Challenges. Mar Drugs 2022; 20:493. [PMID: 36005495 PMCID: PMC9410000 DOI: 10.3390/md20080493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
Sleep deficiency is now considered an emerging global epidemic associated with many serious health problems, and a major cause of financial and social burdens. Sleep and mental health are closely connected, further exacerbating the negative impact of sleep deficiency on overall health and well-being. A major drawback of conventional treatments is the wide range of undesirable side-effects typically associated with benzodiazepines and antidepressants, which can be more debilitating than the initial disorder. It is therefore valuable to explore the efficiency of other remedies for complementarity and synergism with existing conventional treatments, leading to possible reduction in undesirable side-effects. This review explores the relevance of microalgae bioactives as a sustainable source of valuable phytochemicals that can contribute positively to mood and sleep disorders. Microalgae species producing these compounds are also catalogued, thus creating a useful reference of the state of the art for further exploration of this proposed approach. While we highlight possibilities awaiting investigation, we also identify the associated issues, including minimum dose for therapeutic effect, bioavailability, possible interactions with conventional treatments and the ability to cross the blood brain barrier. We conclude that physical and biological functionalization of microalgae bioactives can have potential in overcoming some of these challenges.
Collapse
Affiliation(s)
- Bozena McCarthy
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
| | - Graham O’Neill
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland
| | - Nissreen Abu-Ghannam
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland
| |
Collapse
|
36
|
Mokhtari T. Targeting autophagy and neuroinflammation pathways with plant-derived natural compounds as potential antidepressant agents. Phytother Res 2022; 36:3470-3489. [PMID: 35794794 DOI: 10.1002/ptr.7551] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Major depressive disorder (MDD) is a life-threatening disease that presents several characteristics. The pathogenesis of depression still remains poorly understood. Moreover, the mechanistic interactions of natural components in treating depression to target autophagy and neuroinflammation are yet to be evaluated. This study overviewed the effects of plant-derived natural components in regulating critical pathways, particularly neuroinflammation and autophagy, associated with depression. A list of natural components, including luteolin, apigenin, hyperforin, resveratrol, salvianolic acid b, isoliquiritin, nobiletin, andrographolide, and oridonin, have been investigated. All peer-reviewed journal articles were searched by Scopus, MEDLINE, PubMed, Web of Science, and Google Scholar using the appropriated keywords, including depression, neuroinflammation, autophagy, plant, natural components, etc. The neuroinflammation and autophagy dysfunction are critically associated with the pathophysiology of depression. Natural components with higher efficiency and lower complications can be used for targeting neuroinflammation and autophagy. These components with different doses showed the beneficial antidepressant properties in rodents. These can modulate autophagy markers, mainly AMPK, LC3II/LC3I ratio, Beclin-1. Moreover, they can regulate the NLRP3 inflammasome, resulting in the suppression of proinflammatory cytokines (e.g., IL-1β and IL-18). Future in vitro and in vivo studies are required to develop novel therapeutic approaches based on plant-derived active components to treat MDD.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Komoto M, Asada A, Ohshima Y, Miyanaga K, Morimoto H, Yasukawa T, Morito K, Takayama K, Uozumi Y, Nagasawa K. Dextran sulfate sodium-induced colitis in C57BL/6J mice increases their susceptibility to chronic unpredictable mild stress that induces depressive-like behavior. Life Sci 2022; 289:120217. [PMID: 34896162 DOI: 10.1016/j.lfs.2021.120217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
AIMS In patients with colitis, the high comorbidity of depressive disorders is well-known, but the detailed mechanisms remain unresolved. In this study, we examined whether colitis induced by dextran sulfate sodium (DSS) increased the susceptibility to chronic unpredictable mild stress (CUMS) in C57BL/6J mice with resilience to CUMS. MAIN METHODS To induce experimental colitis and depressive-like behaviors, male 7-weeks old C57BL/6J mice were administered ad libitum 1% DSS solution for 11 days, and subjected to various mild stressors in a chronic, inevitable and unpredictable way according to a random schedule for 21 days, respectively. KEY FINDINGS In naïve mice exposed to CUMS, their immobility times in a forced swim (FS) test were almost equal to those in control mice. The DSS administration to naïve mice induced colitis without depressive-like behavior, and at 18 days after termination of the DSS administration, the colitis had recovered to control levels, while altered diversity and composition of bacterial genera such as Bacteroides spp., Alistipes spp., etc., were found in the gut microbiota. Exposure of mice with DSS-induced colitis to CUMS (DSS + CUMS) significantly increased the immobility times in the FS test. In the gut microbiota of DSS + CUMS mice, the alteration profile of the relative abundance of bacterial genera differed from in the DSS ones. SIGNIFICANCE These findings indicate that mice with colitis exhibit increased susceptibility to psychological stress, resulting in induction of depressive-like behavior, and this might be due, at least in part, to altered characteristics of the gut microbiota.
Collapse
Affiliation(s)
- Miki Komoto
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Ayumi Asada
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yasuyuki Ohshima
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kayo Miyanaga
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hirotoshi Morimoto
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako 678-0193, Japan
| | - Takeshi Yasukawa
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako 678-0193, Japan
| | - Katsuya Morito
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kentaro Takayama
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yoshinobu Uozumi
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako 678-0193, Japan
| | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
38
|
Eren-Koçak E, Dalkara T. Ion Channel Dysfunction and Neuroinflammation in Migraine and Depression. Front Pharmacol 2021; 12:777607. [PMID: 34858192 PMCID: PMC8631474 DOI: 10.3389/fphar.2021.777607] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 01/15/2023] Open
Abstract
Migraine and major depression are debilitating disorders with high lifetime prevalence rates. Interestingly these disorders are highly comorbid and show significant heritability, suggesting shared pathophysiological mechanisms. Non-homeostatic function of ion channels and neuroinflammation may be common mechanisms underlying both disorders: The excitation-inhibition balance of microcircuits and their modulation by monoaminergic systems, which depend on the expression and function of membrane located K+, Na+, and Ca+2 channels, have been reported to be disturbed in both depression and migraine. Ion channels and energy supply to synapses not only change excitability of neurons but can also mediate the induction and maintenance of inflammatory signaling implicated in the pathophysiology of both disorders. In this respect, Pannexin-1 and P2X7 large-pore ion channel receptors can induce inflammasome formation that triggers release of pro-inflammatory mediators from the cell. Here, the role of ion channels involved in the regulation of excitation-inhibition balance, synaptic energy homeostasis as well as inflammatory signaling in migraine and depression will be reviewed.
Collapse
Affiliation(s)
- Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Psychiatry, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
39
|
Influence of Smallanthus sonchifolius (Yacon) on the Activity of Antidepressant Drugs in Mice. Life (Basel) 2021; 11:life11111117. [PMID: 34832993 PMCID: PMC8624190 DOI: 10.3390/life11111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Depression is one of the most common mental disorders in the world that negatively affects the daily functioning of patients. Numerous studies are currently being conducted to examine the antidepressant potential of innovative synthetic compounds and herbal substances. Yacon, Smallantchus sonchifolius, belongs to plants with numerous health-beneficial properties. Yacon-based products are regarded as a functional food. In our study, we attempted to check whether administration of Yacon tuber extract would have an antidepressant effect in the forced swim test (FST) in mice and whether its intake could influence the activity of conventional antidepressant drugs with different mechanisms of action, i.e., imipramine hydrochloride, fluoxetine hydrochloride, and reboxetine mesylate. The spontaneous locomotor activity of the tested mice was also investigated to eliminate any false-positive results. We demonstrated that an intragastric administration of the Yacon tuber extract at a dose of 100 mg/kg induced the antidepressant-like behavior in the FST in mice and that a combined administration of the sub-effective doses of the Yacon extract (50 mg/kg) with imipramine hydrochloride (7.5 mg/kg), fluoxetine hydrochloride (20 mg/kg), or reboxetine mesylate (5 mg/kg) significantly reduced the immobility time of animals in this behavioral test. The obtained results were not affected by the increased locomotor activity of the tested subjects. In conclusion, our findings suggest that Yacon tuber extract is promising as an alternative mood-improving product since it possesses an antidepressant potential and it can acts synergistically with conventional antidepressant drugs.
Collapse
|