1
|
Pauzuolyte V, Patel A, Wawrzynski JR, Ingham NJ, Leong YC, Karda R, Bitner‐Glindzicz M, Berger W, Waddington SN, Steel KP, Sowden JC. Systemic gene therapy rescues retinal dysfunction and hearing loss in a model of Norrie disease. EMBO Mol Med 2023; 15:e17393. [PMID: 37642150 PMCID: PMC10565640 DOI: 10.15252/emmm.202317393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023] Open
Abstract
Deafness affects 5% of the world's population, yet there is a lack of treatments to prevent hearing loss due to genetic causes. Norrie disease is a recessive X-linked disorder, caused by NDP gene mutation. It manifests as blindness at birth and progressive sensorineural hearing loss, leading to debilitating dual sensory deprivation. To develop a gene therapy, we used a Norrie disease mouse model (Ndptm1Wbrg ), which recapitulates abnormal retinal vascularisation and progressive hearing loss. We delivered human NDP cDNA by intravenous injection of adeno-associated viral vector (AAV)9 at neonatal, juvenile and young adult pathological stages and investigated its therapeutic effects on the retina and cochlea. Neonatal treatment prevented the death of the sensory cochlear hair cells and rescued cochlear disease biomarkers as demonstrated by RNAseq and physiological measurements of auditory function. Retinal vascularisation and electroretinograms were restored to normal by neonatal treatment. Delivery of NDP gene therapy after the onset of the degenerative inner ear disease also ameliorated the cochlear pathology, supporting the feasibility of a clinical treatment for progressive hearing loss in people with Norrie disease.
Collapse
Affiliation(s)
- Valda Pauzuolyte
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Aara Patel
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - James R Wawrzynski
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Neil J Ingham
- Wolfson Centre for Age‐Related Diseases, King's College LondonLondonUK
| | - Yeh Chwan Leong
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Rajvinder Karda
- EGA Institute for Woman's Health, University College LondonLondonUK
| | - Maria Bitner‐Glindzicz
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of ZürichZürichSwitzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of ZürichZürichSwitzerland
- Neuroscience Center Zurich, University and ETH Zurich, University of ZürichZürichSwitzerland
| | - Simon N Waddington
- EGA Institute for Woman's Health, University College LondonLondonUK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health SciencesUniversity of the WitswatersrandJohannesburgSouth Africa
| | - Karen P Steel
- Wolfson Centre for Age‐Related Diseases, King's College LondonLondonUK
| | - Jane C Sowden
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| |
Collapse
|
2
|
Ishibashi Y, Sung CYW, Grati M, Chien W. Immune responses in the mammalian inner ear and their implications for AAV-mediated inner ear gene therapy. Hear Res 2023; 432:108735. [PMID: 36965335 DOI: 10.1016/j.heares.2023.108735] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/13/2023]
Abstract
Adeno-associated virus (AAV)-mediated inner ear gene therapy is a promising treatment option for hearing loss and dizziness. Several studies have shown that AAV-mediated inner ear gene therapy can be applied to various mouse models of hereditary hearing loss to improve their auditory function. Despite the increase in AAV-based animal and clinical studies aiming to rescue auditory and vestibular functions, little is currently known about the host immune responses to AAV in the mammalian inner ear. It has been reported that the host immune response plays an important role in the safety and efficacy of viral-mediated gene therapy. Therefore, in order for AAV-mediated gene therapy to be successfully and safely translated into patients with hearing loss and dizziness, a better understanding of the host immune responses to AAV in the inner ear is critical. In this review, we summarize the current knowledge on host immune responses to AAV-mediated gene therapy in the mammalian inner ear and other organ systems. We also outline the areas of research that are critical for ensuring the safety and efficacy of AAV-mediated inner ear gene therapy in future clinical and translational studies.
Collapse
Affiliation(s)
- Yasuko Ishibashi
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA; Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Mhamed Grati
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA
| | - Wade Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA; Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Nist-Lund C, Kim J, Koehler KR. Advancements in inner ear development, regeneration, and repair through otic organoids. Curr Opin Genet Dev 2022; 76:101954. [PMID: 35853286 PMCID: PMC10425989 DOI: 10.1016/j.gde.2022.101954] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022]
Abstract
The vertebrate inner ear contains a diversity of unique cell types arranged in a particularly complex 3D cytoarchitecture. Both of these features are integral to the proper development, function, and maintenance of hearing and balance. Since the elucidation of the timing and delivery of signaling molecules to produce inner ear sensory cells, supporting cells, and neurons from human induced pluripotent stem cells, we have entered a revolution using organ-like 'otic organoid' cultures to explore inner ear specific genetic programs, developmental rules, and potential therapeutics. This review aims to highlight a selection of reviews and primary research papers from the past two years of particular merit that use otic organoids to investigate the broadly defined topics of cell reprogramming, regeneration, and repair.
Collapse
Affiliation(s)
- Carl Nist-Lund
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Department of Otolaryngology, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
| | - Jin Kim
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, 02115, USA
| |
Collapse
|
4
|
Abstract
Current estimates suggest that nearly half a billion people worldwide are affected by hearing loss. Because of the major psychological, social, economic, and health ramifications, considerable efforts have been invested in identifying the genes and molecular pathways involved in hearing loss, whether genetic or environmental, to promote prevention, improve rehabilitation, and develop therapeutics. Genomic sequencing technologies have led to the discovery of genes associated with hearing loss. Studies of the transcriptome and epigenome of the inner ear have characterized key regulators and pathways involved in the development of the inner ear and have paved the way for their use in regenerative medicine. In parallel, the immense preclinical success of using viral vectors for gene delivery in animal models of hearing loss has motivated the industry to work on translating such approaches into the clinic. Here, we review the recent advances in the genomics of auditory function and dysfunction, from patient diagnostics to epigenetics and gene therapy.
Collapse
Affiliation(s)
- Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ,
| | - Kathleen Gwilliam
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ,
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Abstract
High-resolution immunofluorescence imaging of cochlear hair bundles faces many challenges due to the hair bundle’s small dimensions, fragile nature, and complex organization. Here, we describe an optimized protocol for hair-bundle protein immunostaining and localization. We detail the steps and solutions for extracting and fixing the mouse inner ear and for dissecting the organ of Corti. We further emphasize the optimal permeabilization, blocking, staining, and mounting conditions as well as the parameters for high-resolution microscopy imaging. For complete details on the use and execution of this protocol, please refer to Trouillet et al. (2021). Techniques for dissecting the mouse cochlea and the organ of Corti Dissection, permeabilization, blocking parameters to detect hair bundle proteins Mounting method to localize protein in the hair bundles
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Katharine K Miller
- Stanford University, Department of Otolaryngology - Head & Neck Surgery, Stanford, CA, USA
| | - Pei Wang
- Stanford University, Department of Otolaryngology - Head & Neck Surgery, Stanford, CA, USA
| | - Nicolas Grillet
- Stanford University, Department of Otolaryngology - Head & Neck Surgery, Stanford, CA, USA
| |
Collapse
|