1
|
Ademar K, Ulenius L, Loftén A, Söderpalm B, Adermark L, Ericson M. Separate mechanisms regulating accumbal taurine levels during baseline conditions and following ethanol exposure in the rat. Sci Rep 2024; 14:24166. [PMID: 39406746 PMCID: PMC11480114 DOI: 10.1038/s41598-024-74449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Ethanol-induced dopamine release in the nucleus accumbens (nAc) is associated with reward and reinforcement, and for ethanol to elevate nAc dopamine levels, a simultaneous increase in endogenous taurine is required within the same brain region. By employing in vivo microdialysis in male Wistar rats combined with pharmacological, chemogenetic and metabolic approaches, our aim with this study was to identify mechanisms underlying ethanol-induced taurine release. Our results demonstrate that the taurine elevation, elicited by either systemic or local ethanol administration, occurs both in presence and absence of action potential firing or NMDA receptor blockade. Inhibition of volume regulated anion channels did not alter the ethanol-induced taurine levels, while inhibition of the taurine transporter occluded the ethanol-induced taurine increase, putatively due to a ceiling effect. Selective manipulation of nAc astrocytes using Gq-coupled designer receptors exclusively activated by designer drugs (DREADDs) did not affect ethanol-induced taurine release. However, activation of Gi-coupled DREADDs, or metabolic inhibition using fluorocitrate, rather enhanced than depressed taurine elevation. Finally, ethanol-induced taurine increase was fully blocked in rats pre-treated with the L-type Ca2+-channel blocker nicardipine, suggesting that the release is Ca2+ dependent. In conclusion, while astrocytes appear to be important regulators of basal taurine levels in the nAc, they do not appear to be the main cells underlying ethanol-induced taurine release.
Collapse
Affiliation(s)
- Karin Ademar
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden.
| | - Lisa Ulenius
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
| | - Anna Loftén
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
| |
Collapse
|
2
|
Guttenplan KA, Maxwell I, Santos E, Borchardt LA, Manzo E, Abalde-Atristain L, Kim RD, Freeman MR. Adrenergic signaling gates astrocyte responsiveness to neurotransmitters and control of neuronal activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614537. [PMID: 39386551 PMCID: PMC11463463 DOI: 10.1101/2024.09.23.614537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
How astrocytes regulate neuronal circuits is a fundamental, unsolved question in neurobiology. Nevertheless, few studies have explored the rules that govern when astrocytes respond to different neurotransmitters in vivo and how they affect downstream circuit modulation. Here, we report an unexpected mechanism in Drosophila by which G-protein coupled adrenergic signaling in astrocytes can control, or "gate," their ability to respond to other neurotransmitters. Further, we show that manipulating this pathway potently regulates neuronal circuit activity and animal behavior. Finally, we demonstrate that this gating mechanism is conserved in mammalian astrocytes, arguing it is an ancient feature of astrocyte circuit function. Our work establishes a new mechanism by which astrocytes dynamically respond to and modulate neuronal activity in different brain regions and in different behavioral states.
Collapse
Affiliation(s)
- Kevin A. Guttenplan
- Vollum Institute, Oregon Health and Sciences University; Portland, Oregon, USA
| | - Isa Maxwell
- Vollum Institute, Oregon Health and Sciences University; Portland, Oregon, USA
| | - Erin Santos
- Vollum Institute, Oregon Health and Sciences University; Portland, Oregon, USA
| | - Luke A. Borchardt
- Vollum Institute, Oregon Health and Sciences University; Portland, Oregon, USA
| | - Ernesto Manzo
- Vollum Institute, Oregon Health and Sciences University; Portland, Oregon, USA
| | | | - Rachel D Kim
- Neuroscience Institute, NYU Grossman School of Medicine; New York, NY., USA
| | - Marc R. Freeman
- Vollum Institute, Oregon Health and Sciences University; Portland, Oregon, USA
| |
Collapse
|
3
|
Mak A, Abramian A, Driessens SLW, Boers-Escuder C, van der Loo RJ, Smit AB, van den Oever MC, Verheijen MHG. Activation of G s Signaling in Cortical Astrocytes Does Not Influence Formation of a Persistent Contextual Memory Engram. eNeuro 2024; 11:ENEURO.0056-24.2024. [PMID: 38902023 PMCID: PMC11209656 DOI: 10.1523/eneuro.0056-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 06/22/2024] Open
Abstract
Formation and retrieval of remote contextual memory depends on cortical engram neurons that are defined during learning. Manipulation of astrocytic Gq and Gi associated G-protein coupled receptor (GPCR) signaling has been shown to affect memory processing, but little is known about the role of cortical astrocytic Gs-GPCR signaling in remote memory acquisition and the functioning of cortical engram neurons. We assessed this by chemogenetic manipulation of astrocytes in the medial prefrontal cortex (mPFC) of male mice, during either encoding or consolidation of a contextual fear memory, while simultaneously labeling cortical engram neurons. We found that stimulation of astrocytic Gs signaling during memory encoding and consolidation did not alter remote memory expression. In line with this, the size of the mPFC engram population and the recall-induced reactivation of these neurons was unaffected. Hence, our data indicate that activation of Gs-GPCR signaling in cortical astrocytes is not sufficient to alter memory performance and functioning of cortical engram neurons.
Collapse
Affiliation(s)
- Aline Mak
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Adlin Abramian
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Stan L W Driessens
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Cristina Boers-Escuder
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Rolinka J van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
4
|
Holt LM, Nestler EJ. Astrocytic transcriptional and epigenetic mechanisms of drug addiction. J Neural Transm (Vienna) 2024; 131:409-424. [PMID: 37940687 PMCID: PMC11066772 DOI: 10.1007/s00702-023-02716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Addiction is a leading cause of disease burden worldwide and remains a challenge in current neuroscience research. Drug-induced lasting changes in gene expression are mediated by transcriptional and epigenetic regulation in the brain and are thought to underlie behavioral adaptations. Emerging evidence implicates astrocytes in regulating drug-seeking behaviors and demonstrates robust transcriptional response to several substances of abuse. This review focuses on the astrocytic transcriptional and epigenetic mechanisms of drug action.
Collapse
Affiliation(s)
- Leanne M Holt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Refaeli R, Kreisel T, Yaish TR, Groysman M, Goshen I. Astrocytes control recent and remote memory strength by affecting the recruitment of the CA1→ACC projection to engrams. Cell Rep 2024; 43:113943. [PMID: 38483907 PMCID: PMC10995765 DOI: 10.1016/j.celrep.2024.113943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/14/2024] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
The maturation of engrams from recent to remote time points involves the recruitment of CA1 neurons projecting to the anterior cingulate cortex (CA1→ACC). Modifications of G-protein-coupled receptor pathways in CA1 astrocytes affect recent and remote recall in seemingly contradictory ways. To address this inconsistency, we manipulated these pathways in astrocytes during memory acquisition and tagged c-Fos-positive engram cells and CA1→ACC cells during recent and remote recall. The behavioral results were coupled with changes in the recruitment of CA1→ACC projection cells to the engram: Gq pathway activation in astrocytes caused enhancement of recent recall alone and was accompanied by earlier recruitment of CA1→ACC projecting cells to the engram. In contrast, Gi pathway activation in astrocytes resulted in the impairment of only remote recall, and CA1→ACC projecting cells were not recruited during remote memory. Finally, we provide a simple working model, hypothesizing that Gq and Gi pathway activation affect memory differently, by modulating the same mechanism: CA1→ACC projection.
Collapse
Affiliation(s)
- Ron Refaeli
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tirzah Kreisel
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | - Maya Groysman
- ELSC Vector Core Facility, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
6
|
Adermark L, Stomberg R, Söderpalm B, Ericson M. Astrocytic Regulation of Endocannabinoid-Dependent Synaptic Plasticity in the Dorsolateral Striatum. Int J Mol Sci 2024; 25:581. [PMID: 38203752 PMCID: PMC10779090 DOI: 10.3390/ijms25010581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Astrocytes are pivotal for synaptic transmission and may also play a role in the induction and expression of synaptic plasticity, including endocannabinoid-mediated long-term depression (eCB-LTD). In the dorsolateral striatum (DLS), eCB signaling plays a major role in balancing excitation and inhibition and promoting habitual learning. The aim of this study was to outline the role of astrocytes in regulating eCB signaling in the DLS. To this end, we employed electrophysiological slice recordings combined with metabolic, chemogenetic and pharmacological approaches in an attempt to selectively suppress astrocyte function. High-frequency stimulation induced eCB-mediated LTD (HFS-LTD) in brain slices from both male and female rats. The metabolic uncoupler fluorocitrate (FC) reduced the probability of transmitter release and depressed synaptic output in a manner that was independent on cannabinoid 1 receptor (CB1R) activation. Fluorocitrate did not affect the LTD induced by the CB1R agonist WIN55,212-2, but enhanced CB1R-dependent HFS-LTD. Reduced neurotransmission and facilitated HFS-LTD were also observed during chemogenetic manipulation using Gi-coupled DREADDs targeting glial fibrillary acidic protein (GFAP)-expressing cells, during the pharmacological inhibition of connexins using carbenoxolone disodium, or during astrocytic glutamate uptake using TFB-TBOA. While pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanoic acid (APV) failed to prevent synaptic depression induced by FC, it blocked the facilitation of HFS-LTD. While the lack of tools to disentangle astrocytes from neurons is a major limitation of this study, our data collectively support a role for astrocytes in modulating basal neurotransmission and eCB-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Louise Adermark
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Rosita Stomberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (R.S.); (B.S.); (M.E.)
| | - Bo Söderpalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (R.S.); (B.S.); (M.E.)
- Beroendekliniken, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Mia Ericson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (R.S.); (B.S.); (M.E.)
| |
Collapse
|
7
|
Wang J, Cheng P, Qu Y, Zhu G. Astrocytes and Memory: Implications for the Treatment of Memory-related Disorders. Curr Neuropharmacol 2024; 22:2217-2239. [PMID: 38288836 PMCID: PMC11337689 DOI: 10.2174/1570159x22666240128102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/29/2023] [Indexed: 08/23/2024] Open
Abstract
Memory refers to the imprint accumulated in the brain by life experiences and represents the basis for humans to engage in advanced psychological activities such as thinking and imagination. Previously, research activities focused on memory have always targeted neurons. However, in addition to neurons, astrocytes are also involved in the encoding, consolidation, and extinction of memory. In particular, astrocytes are known to affect the recruitment and function of neurons at the level of local synapses and brain networks. Moreover, the involvement of astrocytes in memory and memory-related disorders, especially in Alzheimer's disease (AD) and post-traumatic stress disorder (PTSD), has been investigated extensively. In this review, we describe the unique contributions of astrocytes to synaptic plasticity and neuronal networks and discuss the role of astrocytes in different types of memory processing. In addition, we also explore the roles of astrocytes in the pathogenesis of memory-related disorders, such as AD, brain aging, PTSD and addiction, thus suggesting that targeting astrocytes may represent a potential strategy to treat memory-related neurological diseases. In conclusion, this review emphasizes that thinking from the perspective of astrocytes will provide new ideas for the diagnosis and therapy of memory-related neurological disorders.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ping Cheng
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yan Qu
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
8
|
Brazhe A, Verisokin A, Verveyko D, Postnov D. Astrocytes: new evidence, new models, new roles. Biophys Rev 2023; 15:1303-1333. [PMID: 37975000 PMCID: PMC10643736 DOI: 10.1007/s12551-023-01145-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
Astrocytes have been in the limelight of active research for about 3 decades now. Over this period, ideas about their function and role in the nervous system have evolved from simple assistance in energy supply and homeostasis maintenance to a complex informational and metabolic hub that integrates data on local neuronal activity, sensory and arousal context, and orchestrates many crucial processes in the brain. Rapid progress in experimental techniques and data analysis produces a growing body of data, which can be used as a foundation for formulation of new hypotheses, building new refined mathematical models, and ultimately should lead to a new level of understanding of the contribution of astrocytes to the cognitive tasks performed by the brain. Here, we highlight recent progress in astrocyte research, which we believe expands our understanding of how low-level signaling at a cellular level builds up to processes at the level of the whole brain and animal behavior. We start our review with revisiting data on the role of noradrenaline-mediated astrocytic signaling in locomotion, arousal, sensory integration, memory, and sleep. We then briefly review astrocyte contribution to the regulation of cerebral blood flow regulation, which is followed by a discussion of biophysical mechanisms underlying astrocyte effects on different brain processes. The experimental section is closed by an overview of recent experimental techniques available for modulation and visualization of astrocyte dynamics. We then evaluate how the new data can be potentially incorporated into the new mathematical models or where and how it already has been done. Finally, we discuss an interesting prospect that astrocytes may be key players in important processes such as the switching between sleep and wakefulness and the removal of toxic metabolites from the brain milieu.
Collapse
Affiliation(s)
- Alexey Brazhe
- Department of Biophysics, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1/24, Moscow, 119234 Russia
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry RAS, GSP-7, Miklukho-Maklay Str., 16/10, Moscow, 117997 Russia
| | - Andrey Verisokin
- Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, Kursk, 305000 Russia
| | - Darya Verveyko
- Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, Kursk, 305000 Russia
| | - Dmitry Postnov
- Department of Optics and Biophotonics, Saratov State University, Astrakhanskaya st., 83, Saratov, 410012 Russia
| |
Collapse
|
9
|
Akbari A, Hadizadeh A, Islampanah M, Salavati Nik E, Atkin SL, Sahebkar A. COVID-19, G protein-coupled receptor, and renin-angiotensin system autoantibodies: Systematic review and meta-analysis. Autoimmun Rev 2023; 22:103402. [PMID: 37490975 DOI: 10.1016/j.autrev.2023.103402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION There are an increasing number of reports of autoantibodies (AAbs) against host proteins such as G-protein coupled receptors (GPCRs) and the renin-angiotensin system (RAS) in COVID-19 disease. Here we have undertaken a systematic review and meta-analysis of all reports of AAbs against GPCRs and RAS in COVID-19 patients including those with long-COVID or post-COVID symptoms. METHODS PubMed, Embase, Web of Science, and Scopus databases were searched to find papers on the role of GPCR and RAS AAbs in the presence and severity of COVID-19 or post- COVID symptoms available through March 21, 2023. Data on the prevalence of AngII or ACE, comparing AngII or ACE between COVID-19 and non-COVID-19, or comparing AngII or ACE between COVID-19 patients with different disease stages were pooled and a meta-analysed using random- or fixed-effects models were undertaken. RESULTS The search yielded a total of 1042 articles, of which 68 studies were included in this systematic review and nine in the meta-analysis. Among 18 studies that investigated GPCRs and COVID-19 severity, 18 distinct AAbs were detected. In addition, nine AAbs were found in case reports that assessed post- COVID, and 19 AAbs were found in other studies that assessed post- COVID or long- COVID symptoms. Meta-analysis revealed a significantly higher number of seropositive ACE2 AAbs in COVID-19 patients (odds ratio = 7.766 [2.056, 29.208], p = 0.002) and particularly in severe disease (odds ratio = 11.49 [1.04, 126.86], p = 0.046), whereas AngII-AAbs seropositivity was no different between COVID-19 and control subjects (odds ratio = 2.890 [0.546-15.283], p = 0.21). CONCLUSIONS GPCR and RAS AAbs may play an important role in COVID-19 severity, the development of disease progression, long-term symptoms COVID and post- COVID symptoms.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hadizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Islampanah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ensie Salavati Nik
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland, Bahrain, Adliya, PO Box 15503, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|