1
|
Vidaurre C, Irastorza-Landa N, Sarasola-Sanz A, Insausti-Delgado A, Ray AM, Bibián C, Helmhold F, Mahmoud WJ, Ortego-Isasa I, López-Larraz E, Lozano Peiteado H, Ramos-Murguialday A. Challenges of neural interfaces for stroke motor rehabilitation. Front Hum Neurosci 2023; 17:1070404. [PMID: 37789905 PMCID: PMC10543821 DOI: 10.3389/fnhum.2023.1070404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
More than 85% of stroke survivors suffer from different degrees of disability for the rest of their lives. They will require support that can vary from occasional to full time assistance. These conditions are also associated to an enormous economic impact for their families and health care systems. Current rehabilitation treatments have limited efficacy and their long-term effect is controversial. Here we review different challenges related to the design and development of neural interfaces for rehabilitative purposes. We analyze current bibliographic evidence of the effect of neuro-feedback in functional motor rehabilitation of stroke patients. We highlight the potential of these systems to reconnect brain and muscles. We also describe all aspects that should be taken into account to restore motor control. Our aim with this work is to help researchers designing interfaces that demonstrate and validate neuromodulation strategies to enforce a contingent and functional neural linkage between the central and the peripheral nervous system. We thus give clues to design systems that can improve or/and re-activate neuroplastic mechanisms and open a new recovery window for stroke patients.
Collapse
Affiliation(s)
- Carmen Vidaurre
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Ikerbasque Science Foundation, Bilbao, Spain
| | | | | | | | - Andreas M. Ray
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Carlos Bibián
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Florian Helmhold
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Wala J. Mahmoud
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Iñaki Ortego-Isasa
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Eduardo López-Larraz
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Bitbrain, Zaragoza, Spain
| | | | - Ander Ramos-Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Branco MP, Geukes SH, Aarnoutse EJ, Ramsey NF, Vansteensel MJ. Nine decades of electrocorticography: A comparison between epidural and subdural recordings. Eur J Neurosci 2023; 57:1260-1288. [PMID: 36843389 DOI: 10.1111/ejn.15941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
In recent years, electrocorticography (ECoG) has arisen as a neural signal recording tool in the development of clinically viable neural interfaces. ECoG electrodes are generally placed below the dura mater (subdural) but can also be placed on top of the dura (epidural). In deciding which of these modalities best suits long-term implants, complications and signal quality are important considerations. Conceptually, epidural placement may present a lower risk of complications as the dura is left intact but also a lower signal quality due to the dura acting as a signal attenuator. The extent to which complications and signal quality are affected by the dura, however, has been a matter of debate. To improve our understanding of the effects of the dura on complications and signal quality, we conducted a literature review. We inventorized the effect of the dura on signal quality, decodability and longevity of acute and chronic ECoG recordings in humans and non-human primates. Also, we compared the incidence and nature of serious complications in studies that employed epidural and subdural ECoG. Overall, we found that, even though epidural recordings exhibit attenuated signal amplitude over subdural recordings, particularly for high-density grids, the decodability of epidural recorded signals does not seem to be markedly affected. Additionally, we found that the nature of serious complications was comparable between epidural and subdural recordings. These results indicate that both epidural and subdural ECoG may be suited for long-term neural signal recordings, at least for current generations of clinical and high-density ECoG grids.
Collapse
Affiliation(s)
- Mariana P Branco
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Simon H Geukes
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Erik J Aarnoutse
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Insausti-Delgado A, López-Larraz E, Nishimura Y, Ziemann U, Ramos-Murguialday A. Non-invasive brain-spine interface: Continuous control of trans-spinal magnetic stimulation using EEG. Front Bioeng Biotechnol 2022; 10:975037. [PMID: 36394044 PMCID: PMC9659618 DOI: 10.3389/fbioe.2022.975037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/23/2022] [Indexed: 08/22/2023] Open
Abstract
Brain-controlled neuromodulation has emerged as a promising tool to promote functional recovery in patients with motor disorders. Brain-machine interfaces exploit this neuromodulatory strategy and could be used for restoring voluntary control of lower limbs. In this work, we propose a non-invasive brain-spine interface (BSI) that processes electroencephalographic (EEG) activity to volitionally control trans-spinal magnetic stimulation (ts-MS), as an approach for lower-limb neurorehabilitation. This novel platform allows to contingently connect motor cortical activation during leg motor imagery with the activation of leg muscles via ts-MS. We tested this closed-loop system in 10 healthy participants using different stimulation conditions. This BSI efficiently removed stimulation artifacts from EEG regardless of ts-MS intensity used, allowing continuous monitoring of cortical activity and real-time closed-loop control of ts-MS. Our BSI induced afferent and efferent evoked responses, being this activation ts-MS intensity-dependent. We demonstrated the feasibility, safety and usability of this non-invasive BSI. The presented system represents a novel non-invasive means of brain-controlled neuromodulation and opens the door towards its integration as a therapeutic tool for lower-limb rehabilitation.
Collapse
Affiliation(s)
- Ainhoa Insausti-Delgado
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- International Max Planck Research School (IMPRS) for Cognitive and Systems Neuroscience, Tübingen, Germany
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Eduardo López-Larraz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Bitbrain, Zaragoza, Spain
| | - Yukio Nishimura
- Neural Prosthetics Project, Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ander Ramos-Murguialday
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| |
Collapse
|
4
|
Naros G, Lehnertz T, Leão MT, Ziemann U, Gharabaghi A. Brain State-dependent Gain Modulation of Corticospinal Output in the Active Motor System. Cereb Cortex 2021; 30:371-381. [PMID: 31204431 DOI: 10.1093/cercor/bhz093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/18/2019] [Accepted: 04/10/2019] [Indexed: 01/17/2023] Open
Abstract
The communication through coherence hypothesis suggests that only coherently oscillating neuronal groups can interact effectively and predicts an intrinsic response modulation along the oscillatory rhythm. For the motor cortex (MC) at rest, the oscillatory cycle has been shown to determine the brain's responsiveness to external stimuli. For the active MC, however, the demonstration of such a phase-specific modulation of corticospinal excitability (CSE) along the rhythm cycle is still missing. Motor evoked potentials in response to transcranial magnetic stimulation (TMS) over the MC were used to probe the effect of cortical oscillations on CSE during several motor conditions. A brain-machine interface (BMI) with a robotic hand orthosis allowed investigating effects of cortical activity on CSE without the confounding effects of voluntary muscle activation. Only this BMI approach (and not active or passive hand opening alone) revealed a frequency- and phase-specific cortical modulation of CSE by sensorimotor beta-band activity that peaked once per oscillatory cycle and was independent of muscle activity. The active MC follows an intrinsic response modulation in accordance with the communication through coherence hypothesis. Furthermore, the BMI approach may facilitate and strengthen effective corticospinal communication in a therapeutic context, for example, when voluntary hand opening is no longer possible after stroke.
Collapse
Affiliation(s)
- Georgios Naros
- Division of Functional and Restorative Neurosurgery, and Tuebingen NeuroCampus, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Tobias Lehnertz
- Division of Functional and Restorative Neurosurgery, and Tuebingen NeuroCampus, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Maria Teresa Leão
- Division of Functional and Restorative Neurosurgery, and Tuebingen NeuroCampus, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, and Tuebingen NeuroCampus, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
5
|
Guerrero Moreno J, Biazoli CE, Baptista AF, Trambaiolli LR. Closed-loop neurostimulation for affective symptoms and disorders: An overview. Biol Psychol 2021; 161:108081. [PMID: 33757806 DOI: 10.1016/j.biopsycho.2021.108081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022]
Abstract
Affective and anxiety disorders are the most prevalent and incident psychiatric disorders worldwide. Therapeutic approaches to these disorders using non-invasive brain stimulation (NIBS) and analogous techniques have been extensively investigated. In this paper, we discuss the combination of NIBS and neurofeedback in closed-loop setups and its application for affective symptoms and disorders. For this, we first provide a rationale for this combination by presenting some of the main original findings of NIBS, with a primary focus on transcranial magnetic stimulation (TMS), and neurofeedback, including protocols based on electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Then, we provide a scope review of studies combining real-time neurofeedback with NIBS protocols in the so-called closed-loop brain state-dependent neuromodulation (BSDS). Finally, we discuss the concomitant use of TMS and real-time functional near-infrared spectroscopy (fNIRS) as a possible solution to the current limitations of BSDS-based protocols for affective and anxiety disorders.
Collapse
Affiliation(s)
- Javier Guerrero Moreno
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo André, Brazil; Department of Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Abrahão Fontes Baptista
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo André, Brazil; Laboratory of Medical Investigations 54 (LIM-54), Universidade de São Paulo, São Paulo, Brazil; NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Lucas Remoaldo Trambaiolli
- McLean Hospital, Harvard Medical School, Boston, USA; School of Medicine and Dentistry, University of Rochester, Rochester, USA.
| |
Collapse
|
6
|
Insausti-Delgado A, López-Larraz E, Omedes J, Ramos-Murguialday A. Intensity and Dose of Neuromuscular Electrical Stimulation Influence Sensorimotor Cortical Excitability. Front Neurosci 2021; 14:593360. [PMID: 33519355 PMCID: PMC7845652 DOI: 10.3389/fnins.2020.593360] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) of the nervous system has been extensively used in neurorehabilitation due to its capacity to engage the muscle fibers, improving muscle tone, and the neural pathways, sending afferent volleys toward the brain. Although different neuroimaging tools suggested the capability of NMES to regulate the excitability of sensorimotor cortex and corticospinal circuits, how the intensity and dose of NMES can neuromodulate the brain oscillatory activity measured with electroencephalography (EEG) is still unknown to date. We quantified the effect of NMES parameters on brain oscillatory activity of 12 healthy participants who underwent stimulation of wrist extensors during rest. Three different NMES intensities were included, two below and one above the individual motor threshold, fixing the stimulation frequency to 35 Hz and the pulse width to 300 μs. Firstly, we efficiently removed stimulation artifacts from the EEG recordings. Secondly, we analyzed the effect of amplitude and dose on the sensorimotor oscillatory activity. On the one hand, we observed a significant NMES intensity-dependent modulation of brain activity, demonstrating the direct effect of afferent receptor recruitment. On the other hand, we described a significant NMES intensity-dependent dose-effect on sensorimotor activity modulation over time, with below-motor-threshold intensities causing cortical inhibition and above-motor-threshold intensities causing cortical facilitation. Our results highlight the relevance of intensity and dose of NMES, and show that these parameters can influence the recruitment of the sensorimotor pathways from the muscle to the brain, which should be carefully considered for the design of novel neuromodulation interventions based on NMES.
Collapse
Affiliation(s)
- Ainhoa Insausti-Delgado
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- International Max Planck Research School (IMPRS) for Cognitive and Systems Neuroscience, Tübingen, Germany
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Eduardo López-Larraz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Bitbrain, Zaragoza, Spain
| | - Jason Omedes
- Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain
- Departamento de Informática e Ingeniería de Sistemas (DIIS), University of Zaragoza, Zaragoza, Spain
| | - Ander Ramos-Murguialday
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Neurotechnology Laboratory, TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| |
Collapse
|
7
|
A Systematic Review of Closed-Loop Feedback Techniques in Sleep Studies-Related Issues and Future Directions. SENSORS 2020; 20:s20102770. [PMID: 32414060 PMCID: PMC7285770 DOI: 10.3390/s20102770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 05/10/2020] [Indexed: 01/09/2023]
Abstract
Advances in computer processing technology have enabled researchers to analyze real-time brain activity and build real-time closed-loop paradigms. In many fields, the effectiveness of these closed-loop protocols has proven to be better than that of the simple open-loop paradigms. Recently, sleep studies have attracted much attention as one possible application of closed-loop paradigms. To date, several studies that used closed-loop paradigms have been reported in the sleep-related literature and recommend a closed-loop feedback system to enhance specific brain activity during sleep, which leads to improvements in sleep's effects, such as memory consolidation. However, to the best of our knowledge, no report has reviewed and discussed the detailed technical issues that arise in designing sleep closed-loop paradigms. In this paper, we reviewed the most recent reports on sleep closed-loop paradigms and offered an in-depth discussion of some of their technical issues. We found 148 journal articles strongly related with 'sleep and stimulation' and reviewed 20 articles on closed-loop feedback sleep studies. We focused on human sleep studies conducting any modality of feedback stimulation. Then we introduced the main component of the closed-loop system and summarized several open-source libraries, which are widely used in closed-loop systems, with step-by-step guidelines for closed-loop system implementation for sleep. Further, we proposed future directions for sleep research with closed-loop feedback systems, which provide some insight into closed-loop feedback systems.
Collapse
|
8
|
Pichiorri F, Mattia D. Brain-computer interfaces in neurologic rehabilitation practice. HANDBOOK OF CLINICAL NEUROLOGY 2020; 168:101-116. [PMID: 32164846 DOI: 10.1016/b978-0-444-63934-9.00009-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The brain-computer interfaces (BCIs) for neurologic rehabilitation are based on the assumption that by retraining the brain to specific activities, an ultimate improvement of function can be expected. In this chapter, we review the present status, key determinants, and future directions of the clinical use of BCI in neurorehabilitation. The recent advancements in noninvasive BCIs as a therapeutic tool to promote functional motor recovery by inducing neuroplasticity are described, focusing on stroke as it represents the major cause of long-term motor disability. The relevance of recent findings on BCI use in spinal cord injury beyond the control of neuroprosthetic devices to restore motor function is briefly discussed. In a dedicated section, we examine the potential role of BCI technology in the domain of cognitive function recovery by instantiating BCIs in the long history of neurofeedback and some emerging BCI paradigms to address cognitive rehabilitation are highlighted. Despite the knowledge acquired over the last decade and the growing number of studies providing evidence for clinical efficacy of BCI in motor rehabilitation, an exhaustive deployment of this technology in clinical practice is still on its way. The pipeline to translate BCI to clinical practice in neurorehabilitation is the subject of this chapter.
Collapse
Affiliation(s)
- Floriana Pichiorri
- Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Donatella Mattia
- Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy.
| |
Collapse
|
9
|
Khoyratee F, Grassia F, Saïghi S, Levi T. Optimized Real-Time Biomimetic Neural Network on FPGA for Bio-hybridization. Front Neurosci 2019; 13:377. [PMID: 31068781 PMCID: PMC6491680 DOI: 10.3389/fnins.2019.00377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/02/2019] [Indexed: 01/04/2023] Open
Abstract
Neurological diseases can be studied by performing bio-hybrid experiments using a real-time biomimetic Spiking Neural Network (SNN) platform. The Hodgkin-Huxley model offers a set of equations including biophysical parameters which can serve as a base to represent different classes of neurons and affected cells. Also, connecting the artificial neurons to the biological cells would allow us to understand the effect of the SNN stimulation using different parameters on nerve cells. Thus, designing a real-time SNN could useful for the study of simulations of some part of the brain. Here, we present a different approach to optimize the Hodgkin-Huxley equations adapted for Field Programmable Gate Array (FPGA) implementation. The equations of the conductance have been unified to allow the use of same functions with different parameters for all ionic channels. The low resources and high-speed implementation also include features, such as synaptic noise using the Ornstein-Uhlenbeck process and different synapse receptors including AMPA, GABAa, GABAb, and NMDA receptors. The platform allows real-time modification of the neuron parameters and can output different cortical neuron families like Fast Spiking (FS), Regular Spiking (RS), Intrinsically Bursting (IB), and Low Threshold Spiking (LTS) neurons using a Digital to Analog Converter (DAC). Gaussian distribution of the synaptic noise highlights similarities with the biological noise. Also, cross-correlation between the implementation and the model shows strong correlations, and bifurcation analysis reproduces similar behavior compared to the original Hodgkin-Huxley model. The implementation of one core of calculation uses 3% of resources of the FPGA and computes in real-time 500 neurons with 25,000 synapses and synaptic noise which can be scaled up to 15,000 using all resources. This is the first step toward neuromorphic system which can be used for the simulation of bio-hybridization and for the study of neurological disorders or the advanced research on neuroprosthesis to regain lost function.
Collapse
Affiliation(s)
- Farad Khoyratee
- Laboratoire de l'Intégration du Matériau au Système, Bordeaux INP, CNRS UMR 5218, University of Bordeaux, Talence, France
| | - Filippo Grassia
- LTI Laboratory, EA 3899, University of Picardie Jules Verne, Amiens, France
| | - Sylvain Saïghi
- Laboratoire de l'Intégration du Matériau au Système, Bordeaux INP, CNRS UMR 5218, University of Bordeaux, Talence, France
| | - Timothée Levi
- Laboratoire de l'Intégration du Matériau au Système, Bordeaux INP, CNRS UMR 5218, University of Bordeaux, Talence, France.,Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Combined endogenous and exogenous disinhibition of intracortical circuits augments plasticity induction in the human motor cortex. Brain Stimul 2019; 12:1027-1040. [PMID: 30894281 DOI: 10.1016/j.brs.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/03/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Motor imagery (MI) engages cortical areas in the human brain similar to motor practice. Corticospinal excitability (CSE) is facilitated during but not after MI practice. We hypothesized that lasting CSE changes could be achieved by associatively pairing this endogenous modulation with exogenous stimulation of the same intracortical circuits. METHODS We combined MI with a disinhibition protocol (DIS) targeting intracortical circuits by paired-pulse repetitive transcranial magnetic stimulation in one main and three subsequent experiments. The follow-up experiments were applied to increase effects, e.g., by individualizing inter-stimulus intervals, adding neuromuscular stimulation and expanding the intervention period. CSE was captured during (online) and after (offline) the interventions via input-output changes and cortical maps of motor evoked potentials. A total of 35 healthy subjects (mean age 26.1 ± 2.6 years, 20 females) participated in this study. RESULTS A short intervention (48 stimuli within ∼90s) increased CSE. This plasticity developed rapidly, was associative (with MIon, but not MIoff or REST) and persisted beyond the intervention period. Follow-up experiments revealed the relevance of individualizing inter-stimulus intervals and of consistent inter-burst periods for online and offline effects, respectively. Expanding this combined MI/DIS intervention to 480 stimuli amplified the sustainability of CSE changes. When concurrent neuromuscular electrical stimulation was applied, the plasticity induction was cancelled. CONCLUSIONS This novel associative stimulation protocol augmented plasticity induction in the human motor cortex within a remarkably short period of time and in the absence of active movements. The combination of endogenous and exogenous disinhibition of intracortical circuits may provide a therapeutic backdoor when active movements are no longer possible, e.g., for hand paralysis after stroke.
Collapse
|
11
|
Closed-Loop Systems and In Vitro Neuronal Cultures: Overview and Applications. ADVANCES IN NEUROBIOLOGY 2019; 22:351-387. [DOI: 10.1007/978-3-030-11135-9_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Affiliation(s)
- Til O Bergmann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Deutsches Resilienz Zentrum, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
13
|
López-Larraz E, Sarasola-Sanz A, Irastorza-Landa N, Birbaumer N, Ramos-Murguialday A. Brain-machine interfaces for rehabilitation in stroke: A review. NeuroRehabilitation 2018; 43:77-97. [PMID: 30056435 DOI: 10.3233/nre-172394] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Motor paralysis after stroke has devastating consequences for the patients, families and caregivers. Although therapies have improved in the recent years, traditional rehabilitation still fails in patients with severe paralysis. Brain-machine interfaces (BMI) have emerged as a promising tool to guide motor rehabilitation interventions as they can be applied to patients with no residual movement. OBJECTIVE This paper reviews the efficiency of BMI technologies to facilitate neuroplasticity and motor recovery after stroke. METHODS We provide an overview of the existing rehabilitation therapies for stroke, the rationale behind the use of BMIs for motor rehabilitation, the current state of the art and the results achieved so far with BMI-based interventions, as well as the future perspectives of neural-machine interfaces. RESULTS Since the first pilot study by Buch and colleagues in 2008, several controlled clinical studies have been conducted, demonstrating the efficacy of BMIs to facilitate functional recovery in completely paralyzed stroke patients with noninvasive technologies such as the electroencephalogram (EEG). CONCLUSIONS Despite encouraging results, motor rehabilitation based on BMIs is still in a preliminary stage, and further improvements are required to boost its efficacy. Invasive and hybrid approaches are promising and might set the stage for the next generation of stroke rehabilitation therapies.
Collapse
Affiliation(s)
- E López-Larraz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - A Sarasola-Sanz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,International Max Planck Research School (IMPRS) for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany.,Neurotechnology, Tecnalia Research & Innovation, San Sebastián, Spain
| | - N Irastorza-Landa
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,International Max Planck Research School (IMPRS) for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - N Birbaumer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Wyss Center for Bio and Neuro Engineering, Geneva, Switzerland
| | - A Ramos-Murguialday
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Neurotechnology, Tecnalia Research & Innovation, San Sebastián, Spain
| |
Collapse
|
14
|
López-Larraz E, Figueiredo TC, Insausti-Delgado A, Ziemann U, Birbaumer N, Ramos-Murguialday A. Event-related desynchronization during movement attempt and execution in severely paralyzed stroke patients: An artifact removal relevance analysis. Neuroimage Clin 2018; 20:972-986. [PMID: 30312940 PMCID: PMC6180341 DOI: 10.1016/j.nicl.2018.09.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/27/2018] [Accepted: 09/25/2018] [Indexed: 02/04/2023]
Abstract
The electroencephalogram (EEG) constitutes a relevant tool to study neural dynamics and to develop brain-machine interfaces (BMI) for rehabilitation of patients with paralysis due to stroke. However, the EEG is easily contaminated by artifacts of physiological origin, which can pollute the measured cortical activity and bias the interpretations of such data. This is especially relevant when recording EEG of stroke patients while they try to move their paretic limbs, since they generate more artifacts due to compensatory activity. In this paper, we study how physiological artifacts (i.e., eye movements, motion artifacts, muscle artifacts and compensatory movements with the other limb) can affect EEG activity of stroke patients. Data from 31 severely paralyzed stroke patients performing/attempting grasping movements with their healthy/paralyzed hand were analyzed offline. We estimated the cortical activation as the event-related desynchronization (ERD) of sensorimotor rhythms and used it to detect the movements with a pseudo-online simulated BMI. Automated state-of-the-art methods (linear regression to remove ocular contaminations and statistical thresholding to reject the other types of artifacts) were used to minimize the influence of artifacts. The effect of artifact reduction was quantified in terms of ERD and BMI performance. The results reveal a significant contamination affecting the EEG, being involuntary muscle activity the main source of artifacts. Artifact reduction helped extracting the oscillatory signatures of motor tasks, isolating relevant information from noise and revealing a more prominent ERD activity. Lower BMI performances were obtained when artifacts were eliminated from the training datasets. This suggests that artifacts produce an optimistic bias that improves theoretical accuracy but may result in a poor link between task-related oscillatory activity and BMI peripheral feedback. With a clinically relevant dataset of stroke patients, we evidence the need of appropriate methodologies to remove artifacts from EEG datasets to obtain accurate estimations of the motor brain activity.
Collapse
Affiliation(s)
- Eduardo López-Larraz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany.
| | - Thiago C Figueiredo
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany
| | - Ainhoa Insausti-Delgado
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany; International Max Planck Research School (IMPRS) for Cognitive and Systems Neuroscience, Tübingen, Germany; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Niels Birbaumer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany; Wyss Institute for Bio- and Neuroengineering, Genève, Switzerland
| | - Ander Ramos-Murguialday
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany; Neural Engineering Laboratory, Health Department, TECNALIA, San Sebastián, Spain
| |
Collapse
|
15
|
Pre-stimulus theta power is correlated with variation of motor evoked potential latency: a single-pulse TMS study. Exp Brain Res 2018; 236:3003-3014. [PMID: 30116864 DOI: 10.1007/s00221-018-5359-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022]
Abstract
There has been a growing interest in the role of pre-stimulus oscillations on cortical excitability in visual and motor systems. Prior studies focused on the relationship between pre-stimulus neuronal activity and TMS-evoked motor evoked potentials (MEPs) have reported heterogeneous results. We aimed to assess the role of pre-stimulus neural activity on the latency of MEPs, which might enhance our understanding of the variability of MEP signals, and potentially provide information on the role played by cortical activity fluctuations in the excitability of corticospinal pathways. Near-threshold single-pulse TMS (spTMS) was applied at random intervals over the primary motor cortex of 14 healthy participants while they sat passively, to trigger hand muscle contractions. Multichannel EEG was recorded during spTMS blocks. Spearman correlations between both the variation in MEP onset latencies and peak-to-peak MEP amplitudes, and the pre-stimulus power of EEG oscillations were calculated across participants. We found that the variation in MEP latency was positively correlated with pre-stimulus power in the theta range (4-7 Hz) in a broad time window (- 3.1 to - 1.9 s) preceding the spTMS generating the MEP. No correlation between pre-stimulus power in any frequency band and MEP amplitude was found. Our results show that pre-stimulus theta oscillations are correlated with the variation in MEP latency, an outcome measure determined by fiber conduction velocity and synaptic delays along the corticospinal tract. This finding could prove useful for clinicians using MEP latency-based information in pre- or intra-operative diagnostics of corticospinal impairment.
Collapse
|
16
|
López-Larraz E, Ibáñez J, Trincado-Alonso F, Monge-Pereira E, Pons JL, Montesano L. Comparing Recalibration Strategies for Electroencephalography-Based Decoders of Movement Intention in Neurological Patients with Motor Disability. Int J Neural Syst 2018; 28:1750060. [DOI: 10.1142/s0129065717500605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Motor rehabilitation based on the association of electroencephalographic (EEG) activity and proprioceptive feedback has been demonstrated as a feasible therapy for patients with paralysis. To promote long-lasting motor recovery, these interventions have to be carried out across several weeks or even months. The success of these therapies partly relies on the performance of the system decoding movement intentions, which normally has to be recalibrated to deal with the nonstationarities of the cortical activity. Minimizing the recalibration times is important to reduce the setup preparation and maximize the effective therapy time. To date, a systematic analysis of the effect of recalibration strategies in EEG-driven interfaces for motor rehabilitation has not yet been performed. Data from patients with stroke (4 patients, 8 sessions) and spinal cord injury (SCI) (4 patients, 5 sessions) undergoing two different paradigms (self-paced and cue-guided, respectively) are used to study the performance of the EEG-based classification of motor intentions. Four calibration schemes are compared, considering different combinations of training datasets from previous and/or the validated session. The results show significant differences in classifier performances in terms of the true and false positives (TPs) and (FPs). Combining training data from previous sessions with data from the validation session provides the best compromise between the amount of data needed for calibration and the classifier performance. With this scheme, the average true (false) positive rates obtained are 85.3% (17.3%) and 72.9% (30.3%) for the self-paced and the cue-guided protocols, respectively. These results suggest that the use of optimal recalibration schemes for EEG-based classifiers of motor intentions leads to enhanced performances of these technologies, while not requiring long calibration phases prior to starting the intervention.
Collapse
Affiliation(s)
- Eduardo López-Larraz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Silcherstr. 5, 72076, Tübingen, Germany
- Instituto de Investigación de Ingeniería de Aragón (I3A), Departamento de Informática e Ingeniería de Sistemas, University of Zaragoza, María de Luna 1, 50015, Zaragoza, Spain
| | - Jaime Ibáñez
- Sobell Department of Motor Neuroscience, Institute of Neurology, University College London, 3rd Floor, Clinical Neurosciences Building, 33, Queen Square, London, WC1N 3BG, UK
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Av Doctor Arce, 37, 28002 Madrid, Spain
| | - Fernando Trincado-Alonso
- Biomechanics and Technical Aids Unit, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Esther Monge-Pereira
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de CC de la Salud, Universidad Rey Juan Carlos, Av. de Atenas, s/n, 28922, Alcorcón, Spain
| | - José Luis Pons
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Av Doctor Arce, 37, 28002 Madrid, Spain
- Tecnológico de Monterrey, Mexico
| | - Luis Montesano
- Instituto de Investigación de Ingeniería de Aragón (I3A), Departamento de Informática e Ingeniería de Sistemas, University of Zaragoza, María de Luna 1, 50015, Zaragoza, Spain
- Bit&Brain Technologies SL, Paseo de Sagasta, 19, 50008, Zaragoza, Spain
| |
Collapse
|
17
|
YOUNG D, WILLETT F, MEMBERG WD, MURPHY B, WALTER B, SWEET J, MILLER J, HOCHBERG LR, KIRSCH RF, AJIBOYE AB. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation. J Neural Eng 2018; 15:026014. [PMID: 29199642 PMCID: PMC5818316 DOI: 10.1088/1741-2552/aa9ee8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Functional electrical stimulation (FES) is a promising technology for restoring movement to paralyzed limbs. Intracortical brain-computer interfaces (iBCIs) have enabled intuitive control over virtual and robotic movements, and more recently over upper extremity FES neuroprostheses. However, electrical stimulation of muscles creates artifacts in intracortical microelectrode recordings that could degrade iBCI performance. Here, we investigate methods for reducing the cortically recorded artifacts that result from peripheral electrical stimulation. APPROACH One participant in the BrainGate2 pilot clinical trial had two intracortical microelectrode arrays placed in the motor cortex, and thirty-six stimulating intramuscular electrodes placed in the muscles of the contralateral limb. We characterized intracortically recorded electrical artifacts during both intramuscular and surface stimulation. We compared the performance of three artifact reduction methods: blanking, common average reference (CAR) and linear regression reference (LRR), which creates channel-specific reference signals, composed of weighted sums of other channels. MAIN RESULTS Electrical artifacts resulting from surface stimulation were 175 × larger than baseline neural recordings (which were 110 µV peak-to-peak), while intramuscular stimulation artifacts were only 4 × larger. The artifact waveforms were highly consistent across electrodes within each array. Application of LRR reduced artifact magnitudes to less than 10 µV and largely preserved the original neural feature values used for decoding. Unmitigated stimulation artifacts decreased iBCI decoding performance, but performance was almost completely recovered using LRR, which outperformed CAR and blanking and extracted useful neural information during stimulation artifact periods. SIGNIFICANCE The LRR method was effective at reducing electrical artifacts resulting from both intramuscular and surface FES, and almost completely restored iBCI decoding performance (>90% recovery for surface stimulation and full recovery for intramuscular stimulation). The results demonstrate that FES-induced artifacts can be easily mitigated in FES + iBCI systems by using LRR for artifact reduction, and suggest that the LRR method may also be useful in other noise reduction applications.
Collapse
Affiliation(s)
- D. YOUNG
- Case Western Reserve Univ., Cleveland, OH
- FES Ctr. of Excellence, Rehab. R&D Service, Louis Stokes Cleveland Dept. of VA Med. Ctr., Cleveland, OH
| | - F. WILLETT
- Case Western Reserve Univ., Cleveland, OH
- FES Ctr. of Excellence, Rehab. R&D Service, Louis Stokes Cleveland Dept. of VA Med. Ctr., Cleveland, OH
- Dept of Neurosurgery, Stanford University, Stanford, CA
| | - W. D. MEMBERG
- Case Western Reserve Univ., Cleveland, OH
- FES Ctr. of Excellence, Rehab. R&D Service, Louis Stokes Cleveland Dept. of VA Med. Ctr., Cleveland, OH
| | - B. MURPHY
- Case Western Reserve Univ., Cleveland, OH
| | - B. WALTER
- Neurol., UH Cleveland Med. Ctr., Cleveland, OH
- Neurol., CWRU Sch. of Med., Cleveland, OH
| | - J. SWEET
- Neurosurg., UH Cleveland Med. Ctr., Cleveland, OH
- Neurolog. Surgery, CWRU Sch. of Med., Cleveland, OH
| | - J. MILLER
- Neurosurg., UH Cleveland Med. Ctr., Cleveland, OH
- Neurolog. Surgery, CWRU Sch. of Med., Cleveland, OH
| | - L. R. HOCHBERG
- Ctr. for Neurorestoration and Neurotechnology, Rehab. R&D Service, Dept. of VA Medical Center, Providence RI
- Sch. of Engin., Brown Univ., Providence, RI
- Neurol., Massachusetts Gen. Hosp., Boston, MA
- Neurol., Harvard Med. Sch., Boston, MA
- Inst. For Brain Sci., Brown Univ., Providence, RI
| | - R. F. KIRSCH
- Case Western Reserve Univ., Cleveland, OH
- FES Ctr. of Excellence, Rehab. R&D Service, Louis Stokes Cleveland Dept. of VA Med. Ctr., Cleveland, OH
| | - A. B. AJIBOYE
- Case Western Reserve Univ., Cleveland, OH
- FES Ctr. of Excellence, Rehab. R&D Service, Louis Stokes Cleveland Dept. of VA Med. Ctr., Cleveland, OH
| |
Collapse
|
18
|
Shu X, Chen S, Yao L, Sheng X, Zhang D, Jiang N, Jia J, Zhu X. Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients. Front Neurosci 2018; 12:93. [PMID: 29515363 PMCID: PMC5826359 DOI: 10.3389/fnins.2018.00093] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/05/2018] [Indexed: 11/13/2022] Open
Abstract
Motor imagery (MI) based brain-computer interface (BCI) has been developed as an alternative therapy for stroke rehabilitation. However, experimental evidence demonstrates that a significant portion (10-50%) of subjects are BCI-inefficient users (accuracy less than 70%). Thus, predicting BCI performance prior to clinical BCI usage would facilitate the selection of suitable end-users and improve the efficiency of stroke rehabilitation. In the current study, we proposed two physiological variables, i.e., laterality index (LI) and cortical activation strength (CAS), to predict MI-BCI performance. Twenty-four stroke patients and 10 healthy subjects were recruited for this study. Each subject was required to perform two blocks of left- and right-hand MI tasks. Linear regression analyses were performed between the BCI accuracies and two physiological predictors. Here, the predictors were calculated from the electroencephalography (EEG) signals during paretic hand MI tasks (5 trials; approximately 1 min). LI values exhibited a statistically significant correlation with two-class BCI (left vs. right) performance (r = -0.732, p < 0.001), and CAS values exhibited a statistically significant correlation with brain-switch BCI (task vs. idle) performance (r = 0.641, p < 0.001). Furthermore, the BCI-inefficient users were successfully recognized with a sensitivity of 88.2% and a specificity of 85.7% in the two-class BCI. The brain-switch BCI achieved a sensitivity of 100.0% and a specificity of 87.5% in the discrimination of BCI-inefficient users. These results demonstrated that the proposed BCI predictors were promising to promote the BCI usage in stroke rehabilitation and contribute to a better understanding of the BCI-inefficiency phenomenon in stroke patients.
Collapse
Affiliation(s)
- Xiaokang Shu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Shugeng Chen
- Department of Rehabilitation, Huashan Hospital, Shanghai, China
| | - Lin Yao
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Xinjun Sheng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Dingguo Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Jiang
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Shanghai, China
| | - Xiangyang Zhu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Recruitment of Additional Corticospinal Pathways in the Human Brain with State-Dependent Paired Associative Stimulation. J Neurosci 2018; 38:1396-1407. [PMID: 29335359 DOI: 10.1523/jneurosci.2893-17.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/20/2017] [Accepted: 12/18/2017] [Indexed: 01/14/2023] Open
Abstract
Standard brain stimulation protocols modify human motor cortex excitability by modulating the gain of the activated corticospinal pathways. However, the restoration of motor function following lesions of the corticospinal tract requires also the recruitment of additional neurons to increase the net corticospinal output. For this purpose, we investigated a novel protocol based on brain state-dependent paired associative stimulation.Motor imagery (MI)-related electroencephalography was recorded in healthy males and females for brain state-dependent control of both cortical and peripheral stimulation in a brain-machine interface environment. State-dependency was investigated with concurrent, delayed, and independent stimulation relative to the MI task. Specifically, sensorimotor event-related desynchronization (ERD) in the β-band (16-22 Hz) triggered peripheral stimulation through passive hand opening by a robotic orthosis and transcranial magnetic stimulation to the respective cortical motor representation, either synchronously or subsequently. These MI-related paradigms were compared with paired cortical and peripheral input applied independent of the brain state. Cortical stimulation resulted in a significant increase in corticospinal excitability only when applied brain state-dependently and synchronously to peripheral input. These gains were resistant to a depotentiation task, revealed a nonlinear evolution of plasticity, and were mediated via the recruitment of additional corticospinal neurons rather than via synchronization of neuronal firing. Recruitment of additional corticospinal pathways may be achieved when cortical and peripheral inputs are applied concurrently, and during β-ERD. These findings resemble a gating mechanism and are potentially important for developing closed-loop brain stimulation for the treatment of hand paralysis following lesions of the corticospinal tract.SIGNIFICANCE STATEMENT The activity state of the motor system influences the excitability of corticospinal pathways to external input. State-dependent interventions harness this property to increase the connectivity between motor cortex and muscles. These stimulation protocols modulate the gain of the activated pathways, but not the overall corticospinal recruitment. In this study, a brain-machine interface paired peripheral stimulation through passive hand opening with transcranial magnetic stimulation to the respective cortical motor representation during volitional β-band desynchronization. Cortical stimulation resulted in the recruitment of additional corticospinal pathways, but only when applied brain state-dependently and synchronously to peripheral input. These effects resemble a gating mechanism and may be important for the restoration of motor function following lesions of the corticospinal tract.
Collapse
|
20
|
Plasticity of premotor cortico-muscular coherence in severely impaired stroke patients with hand paralysis. NEUROIMAGE-CLINICAL 2017; 14:726-733. [PMID: 28409112 PMCID: PMC5379882 DOI: 10.1016/j.nicl.2017.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/23/2017] [Accepted: 03/15/2017] [Indexed: 12/20/2022]
Abstract
Motor recovery in severely impaired stroke patients is often very limited. To refine therapeutic interventions for regaining motor control in this patient group, the functionally relevant mechanisms of neuronal plasticity need to be detected. Cortico-muscular coherence (CMC) may provide physiological and topographic insights to achieve this goal. Synchronizing limb movements to motor-related brain activation is hypothesized to reestablish cortico-motor control indexed by CMC. In the present study, right-handed, chronic stroke patients with right-hemispheric lesions and left hand paralysis participated in a four-week training for their left upper extremity. A brain-robot interface turned event-related beta-band desynchronization of the lesioned sensorimotor cortex during kinesthetic motor-imagery into the opening of the paralyzed hand by a robotic orthosis. Simultaneous MEG/EMG recordings and individual models from MRIs were used for CMC detection and source reconstruction of cortico-muscular connectivity to the affected finger extensors before and after the training program. The upper extremity-FMA of the patients improved significantly from 16.23 ± 6.79 to 19.52 ± 7.91 (p = 0.0015). All patients showed significantly increased CMC in the beta frequency-band, with a distributed, bi-hemispheric pattern and considerable inter-individual variability. The location of CMC changes was not correlated to the severity of the motor impairment, the motor improvement or the lesion volume. Group analysis of the cortical overlap revealed a common feature in all patients following the intervention: a significantly increased level of ipsilesional premotor CMC that extended from the superior to the middle and inferior frontal gyrus, along with a confined area of increased CMC in the contralesional premotor cortex. In conclusion, functionally relevant modulations of CMC can be detected in patients with long-term, severe motor deficits after a brain-robot assisted rehabilitation training. Premotor beta-band CMC may serve as a biomarker and therapeutic target for novel treatment approaches in this patient group.
Collapse
|
21
|
Iscan Z, Nazarova M, Fedele T, Blagovechtchenski E, Nikulin VV. Pre-stimulus Alpha Oscillations and Inter-subject Variability of Motor Evoked Potentials in Single- and Paired-Pulse TMS Paradigms. Front Hum Neurosci 2016; 10:504. [PMID: 27774060 PMCID: PMC5054042 DOI: 10.3389/fnhum.2016.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/26/2016] [Indexed: 12/17/2022] Open
Abstract
Inter- and intra-subject variability of the motor evoked potentials (MEPs) to TMS is a well-known phenomenon. Although a possible link between this variability and ongoing brain oscillations was demonstrated, the results of the studies are not consistent with each other. Exploring this topic further is important since the modulation of MEPs provides unique possibility to relate oscillatory cortical phenomena to the state of the motor cortex probed with TMS. Given that alpha oscillations were shown to reflect cortical excitability, we hypothesized that their power and variability might explain the modulation of subject-specific MEPs to single- and paired-pulse TMS (spTMS, ppTMS, respectively). Neuronal activity was recorded with multichannel electroencephalogram. We used spTMS and two ppTMS conditions: intracortical facilitation (ICF) and short-interval intracortical inhibition (SICI). Spearman correlations were calculated within and across subjects between MEPs and the pre-stimulus power of alpha oscillations in low (8-10 Hz) and high (10-12 Hz) frequency bands. Coefficient of quartile variation was used to measure variability. Across-subject analysis revealed no difference in the pre-stimulus alpha power among the TMS conditions. However, the variability of high-alpha power in spTMS condition was larger than in the SICI condition. In ICF condition pre-stimulus high-alpha power variability correlated positively with MEP amplitude variability. No correlation has been observed between the pre-stimulus alpha power and MEP responses in any of the conditions. Our results show that the variability of the alpha oscillations can be more predictive of TMS effects than the commonly used power of oscillations and we provide further support for the dissociation of high and low-alpha bands in predicting responses produced by the stimulation of the motor cortex.
Collapse
Affiliation(s)
- Zafer Iscan
- Centre for Cognition and Decision Making, National Research University Higher School of Economics Moscow, Russia
| | - Maria Nazarova
- Centre for Cognition and Decision Making, National Research University Higher School of EconomicsMoscow, Russia; Research Center of NeurologyMoscow, Russia
| | - Tommaso Fedele
- Centre for Cognition and Decision Making, National Research University Higher School of EconomicsMoscow, Russia; Department of Neurosurgery, University Hospital of Zurich, University of ZurichZurich, Switzerland
| | - Evgeny Blagovechtchenski
- Centre for Cognition and Decision Making, National Research University Higher School of EconomicsMoscow, Russia; Laboratory of Neuroscience and Molecular Pharmacology, Institute of Translational Biomedicine, Saint Petersburg State UniversitySaint Petersburg, Russia
| | - Vadim V Nikulin
- Centre for Cognition and Decision Making, National Research University Higher School of EconomicsMoscow, Russia; Neurophysics Group, Department of Neurology, Charité - University Medicine BerlinBerlin, Germany
| |
Collapse
|
22
|
Farzan F, Vernet M, Shafi MMD, Rotenberg A, Daskalakis ZJ, Pascual-Leone A. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography. Front Neural Circuits 2016; 10:73. [PMID: 27713691 PMCID: PMC5031704 DOI: 10.3389/fncir.2016.00073] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research.
Collapse
Affiliation(s)
- Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Marine Vernet
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Mouhsin M D Shafi
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA; Neuromodulation Program, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| |
Collapse
|
23
|
Bauer R, Vukelić M, Gharabaghi A. What is the optimal task difficulty for reinforcement learning of brain self-regulation? Clin Neurophysiol 2016; 127:3033-3041. [DOI: 10.1016/j.clinph.2016.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/10/2016] [Accepted: 06/19/2016] [Indexed: 11/28/2022]
|
24
|
Bauer R, Fels M, Royter V, Raco V, Gharabaghi A. Closed-loop adaptation of neurofeedback based on mental effort facilitates reinforcement learning of brain self-regulation. Clin Neurophysiol 2016; 127:3156-3164. [DOI: 10.1016/j.clinph.2016.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/05/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
|
25
|
Grimm F, Walter A, Spüler M, Naros G, Rosenstiel W, Gharabaghi A. Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton. Front Neurosci 2016; 10:367. [PMID: 27555805 PMCID: PMC4977295 DOI: 10.3389/fnins.2016.00367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
Brain-machine interface-controlled (BMI) neurofeedback training aims to modulate cortical physiology and is applied during neurorehabilitation to increase the responsiveness of the brain to subsequent physiotherapy. In a parallel line of research, robotic exoskeletons are used in goal-oriented rehabilitation exercises for patients with severe motor impairment to extend their range of motion (ROM) and the intensity of training. Furthermore, neuromuscular electrical stimulation (NMES) is applied in neurologically impaired patients to restore muscle strength by closing the sensorimotor loop. In this proof-of-principle study, we explored an integrated approach for providing assistance as needed to amplify the task-related ROM and the movement-related brain modulation during rehabilitation exercises of severely impaired patients. For this purpose, we combined these three approaches (BMI, NMES, and exoskeleton) in an integrated neuroprosthesis and studied the feasibility of this device in seven severely affected chronic stroke patients who performed wrist flexion and extension exercises while receiving feedback via a virtual environment. They were assisted by a gravity-compensating, seven degree-of-freedom exoskeleton which was attached to the paretic arm. NMES was applied to the wrist extensor and flexor muscles during the exercises and was controlled by a hybrid BMI based on both sensorimotor cortical desynchronization (ERD) and electromyography (EMG) activity. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. The hybrid BMI controlled the stimulation significantly better than the offline analyzed ERD (p = 0.028) or EMG (p = 0.021) modality alone. Neuromuscular stimulation could be well integrated into the exoskeleton-based training and amplified both the task-related ROM (p = 0.009) and the movement-related brain modulation (p = 0.019). Combining a hybrid BMI with neuromuscular stimulation and antigravity assistance augments upper limb function and brain activity during rehabilitation exercises and may thus provide a novel restorative framework for severely affected stroke patients.
Collapse
Affiliation(s)
- Florian Grimm
- Division of Functional and Restorative Neurosurgery, Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Armin Walter
- Department of Computer Engineering, Wilhelm Schickard Institute for Computer Science, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Martin Spüler
- Department of Computer Engineering, Wilhelm Schickard Institute for Computer Science, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Georgios Naros
- Division of Functional and Restorative Neurosurgery, Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Wolfgang Rosenstiel
- Department of Computer Engineering, Wilhelm Schickard Institute for Computer Science, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| |
Collapse
|
26
|
|
27
|
Riccio A, Pichiorri F, Schettini F, Toppi J, Risetti M, Formisano R, Molinari M, Astolfi L, Cincotti F, Mattia D. Interfacing brain with computer to improve communication and rehabilitation after brain damage. PROGRESS IN BRAIN RESEARCH 2016; 228:357-87. [PMID: 27590975 DOI: 10.1016/bs.pbr.2016.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Communication and control of the external environment can be provided via brain-computer interfaces (BCIs) to replace a lost function in persons with severe diseases and little or no chance of recovery of motor abilities (ie, amyotrophic lateral sclerosis, brainstem stroke). BCIs allow to intentionally modulate brain activity, to train specific brain functions, and to control prosthetic devices, and thus, this technology can also improve the outcome of rehabilitation programs in persons who have suffered from a central nervous system injury (ie, stroke leading to motor or cognitive impairment). Overall, the BCI researcher is challenged to interact with people with severe disabilities and professionals in the field of neurorehabilitation. This implies a deep understanding of the disabled condition on the one hand, and it requires extensive knowledge on the physiology and function of the human brain on the other. For these reasons, a multidisciplinary approach and the continuous involvement of BCI users in the design, development, and testing of new systems are desirable. In this chapter, we will focus on noninvasive EEG-based systems and their clinical applications, highlighting crucial issues to foster BCI translation outside laboratories to eventually become a technology usable in real-life realm.
Collapse
Affiliation(s)
- A Riccio
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - F Pichiorri
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy; Sapienza University of Rome, Rome, Italy
| | - F Schettini
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - J Toppi
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy; Sapienza University of Rome, Rome, Italy
| | - M Risetti
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - R Formisano
- Post-Coma Unit, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - M Molinari
- Spinal Cord Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - L Astolfi
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy; Sapienza University of Rome, Rome, Italy
| | - F Cincotti
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy; Sapienza University of Rome, Rome, Italy
| | - D Mattia
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy.
| |
Collapse
|
28
|
Royter V, Gharabaghi A. Brain State-Dependent Closed-Loop Modulation of Paired Associative Stimulation Controlled by Sensorimotor Desynchronization. Front Cell Neurosci 2016; 10:115. [PMID: 27242429 PMCID: PMC4861730 DOI: 10.3389/fncel.2016.00115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/20/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pairing peripheral electrical stimulation (ES) and transcranial magnetic stimulation (TMS) increases corticospinal excitability when applied with a specific temporal pattern. When the two stimulation techniques are applied separately, motor imagery (MI)-related oscillatory modulation amplifies both ES-related cortical effects-sensorimotor event-related desynchronization (ERD), and TMS-induced peripheral responses-motor-evoked potentials (MEP). However, the influence of brain self-regulation on the associative pairing of these stimulation techniques is still unclear. OBJECTIVE The aim of this pilot study was to investigate the effects of MI-related ERD during associative ES and TMS on subsequent corticospinal excitability. METHOD The paired application of functional electrical stimulation (FES) of the extensor digitorum communis (EDC) muscle and subsequent single-pulse TMS (110% resting motor threshold (RMT)) of the contralateral primary motor cortex (M1) was controlled by beta-band (16-22 Hz) ERD during MI of finger extension and applied within a brain-machine interface environment in six healthy subjects. Neural correlates were probed by acquiring the stimulus-response curve (SRC) of both MEP peak-to-peak amplitude and area under the curve (AUC) before and after the intervention. RESULT The application of approximately 150 pairs of associative FES and TMS resulted in a significant increase of MEP amplitudes and AUC, indicating that the induced increase of corticospinal excitability was mediated by the recruitment of additional neuronal pools. MEP increases were brain state-dependent and correlated with beta-band ERD, but not with the background EDC muscle activity; this finding was independent of the FES intensity applied. CONCLUSION These results could be relevant for developing closed-loop therapeutic approaches such as the application of brain state-dependent, paired associative stimulation (PAS) in the context of neurorehabilitation.
Collapse
Affiliation(s)
- Vladislav Royter
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| |
Collapse
|
29
|
Kraus D, Naros G, Bauer R, Khademi F, Leão MT, Ziemann U, Gharabaghi A. Brain State-Dependent Transcranial Magnetic Closed-Loop Stimulation Controlled by Sensorimotor Desynchronization Induces Robust Increase of Corticospinal Excitability. Brain Stimul 2016; 9:415-424. [DOI: 10.1016/j.brs.2016.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022] Open
|
30
|
Naros G, Gharabaghi A. Reinforcement learning of self-regulated β-oscillations for motor restoration in chronic stroke. Front Hum Neurosci 2015; 9:391. [PMID: 26190995 PMCID: PMC4490244 DOI: 10.3389/fnhum.2015.00391] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/19/2015] [Indexed: 11/21/2022] Open
Abstract
Neurofeedback training of Motor imagery (MI)-related brain-states with brain-computer/brain-machine interfaces (BCI/BMI) is currently being explored as an experimental intervention prior to standard physiotherapy to improve the motor outcome of stroke rehabilitation. The use of BCI/BMI technology increases the adherence to MI training more efficiently than interventions with sham or no feedback. Moreover, pilot studies suggest that such a priming intervention before physiotherapy might—like some brain stimulation techniques—increase the responsiveness of the brain to the subsequent physiotherapy, thereby improving the general clinical outcome. However, there is little evidence up to now that these BCI/BMI-based interventions have achieved operate conditioning of specific brain states that facilitate task-specific functional gains beyond the practice of primed physiotherapy. In this context, we argue that BCI/BMI technology provides a valuable neurofeedback tool for rehabilitation but needs to aim at physiological features relevant for the targeted behavioral gain. Moreover, this therapeutic intervention has to be informed by concepts of reinforcement learning to develop its full potential. Such a refined neurofeedback approach would need to address the following issues: (1) Defining a physiological feedback target specific to the intended behavioral gain, e.g., β-band oscillations for cortico-muscular communication. This targeted brain state could well be different from the brain state optimal for the neurofeedback task, e.g., α-band oscillations for differentiating MI from rest; (2) Selecting a BCI/BMI classification and thresholding approach on the basis of learning principles, i.e., balancing challenge and reward of the neurofeedback task instead of maximizing the classification accuracy of the difficulty level device; and (3) Adjusting the difficulty level in the course of the training period to account for the cognitive load and the learning experience of the participant. Here, we propose a comprehensive neurofeedback strategy for motor restoration after stroke that addresses these aspects, and provide evidence for the feasibility of the suggested approach by demonstrating that dynamic threshold adaptation based on reinforcement learning may lead to frequency-specific operant conditioning of β-band oscillations paralleled by task-specific motor improvement; a proposal that requires investigation in a larger cohort of stroke patients.
Collapse
Affiliation(s)
- Georgios Naros
- Division of Functional and Restorative Neurosurgery and Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen Tuebingen, Germany ; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery and Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen Tuebingen, Germany ; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| |
Collapse
|
31
|
Gharabaghi A, Naros G, Khademi F, Jesser J, Spüler M, Walter A, Bogdan M, Rosenstiel W, Birbaumer N. Learned self-regulation of the lesioned brain with epidural electrocorticography. Front Behav Neurosci 2014; 8:429. [PMID: 25538591 PMCID: PMC4260503 DOI: 10.3389/fnbeh.2014.00429] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/24/2014] [Indexed: 11/29/2022] Open
Abstract
Introduction: Different techniques for neurofeedback of voluntary brain activations are currently being explored for clinical application in brain disorders. One of the most frequently used approaches is the self-regulation of oscillatory signals recorded with electroencephalography (EEG). Many patients are, however, unable to achieve sufficient voluntary control of brain activity. This could be due to the specific anatomical and physiological changes of the patient’s brain after the lesion, as well as to methodological issues related to the technique chosen for recording brain signals. Methods: A patient with an extended ischemic lesion of the cortex did not gain volitional control of sensorimotor oscillations when using a standard EEG-based approach. We provided him with neurofeedback of his brain activity from the epidural space by electrocorticography (ECoG). Results: Ipsilesional epidural recordings of field potentials facilitated self-regulation of brain oscillations in an online closed-loop paradigm and allowed reliable neurofeedback training for a period of 4 weeks. Conclusion: Epidural implants may decode and train brain activity even when the cortical physiology is distorted following severe brain injury. Such practice would allow for reinforcement learning of preserved neural networks and may well provide restorative tools for those patients who are severely afflicted.
Collapse
Affiliation(s)
- Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery and Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen Tuebingen, Germany ; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Georgios Naros
- Division of Functional and Restorative Neurosurgery and Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen Tuebingen, Germany ; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Fatemeh Khademi
- Division of Functional and Restorative Neurosurgery and Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen Tuebingen, Germany ; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Jessica Jesser
- Division of Functional and Restorative Neurosurgery and Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen Tuebingen, Germany ; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Martin Spüler
- Department of Computer Engineering, Wilhelm-Schickard Institute for Computer Science, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Armin Walter
- Department of Computer Engineering, Wilhelm-Schickard Institute for Computer Science, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Martin Bogdan
- Department of Computer Engineering, Wilhelm-Schickard Institute for Computer Science, Eberhard Karls University Tuebingen Tuebingen, Germany ; Department of Computer Engineering, University of Leipzig Leipzig, Germany
| | - Wolfgang Rosenstiel
- Department of Computer Engineering, Wilhelm-Schickard Institute for Computer Science, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Niels Birbaumer
- Institute for Medical Psychology and Behavioural Neurobiology, Eberhard Karls University Tuebingen Tuebingen, Germany ; Ospedale San Camillo, IRCCS Venice, Italy ; DZD, Eberhard Karls University Tuebingen Tuebingen, Germany
| |
Collapse
|
32
|
Spüler M, Walter A, Ramos-Murguialday A, Naros G, Birbaumer N, Gharabaghi A, Rosenstiel W, Bogdan M. Decoding of motor intentions from epidural ECoG recordings in severely paralyzed chronic stroke patients. J Neural Eng 2014; 11:066008. [DOI: 10.1088/1741-2560/11/6/066008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Raco V, Bauer R, Olenik M, Brkic D, Gharabaghi A. Neurosensory effects of transcranial alternating current stimulation. Brain Stimul 2014; 7:823-31. [PMID: 25442154 DOI: 10.1016/j.brs.2014.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/16/2014] [Accepted: 08/08/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Electrical brain stimulation can elicit neurosensory side effects that are unrelated to the intended stimulation effects. This presents a challenge when designing studies with blinded control conditions. OBJECTIVE The aim of this research was to investigate the role of different transcranial alternating current stimulation (tACS) parameters, i.e. intensity, frequency, and electrode montage, on the probability, duration and intensity of elicited neurosensory side effects. METHODS In a first study, we examined the influence of tACS on sensations of phosphenes, dizziness, pressure, and skin sensation in fifteen healthy subjects, during 8 s of stimulation with different amplitudes (1500 μA, 1000 μA, 500 μA, 250 μA), frequencies (2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, 64 Hz), and montages (F3/F4, F3/C4, F3/P4, P3/F4, P3/C4, P3/P4). In a second study, ten healthy subjects were exposed to 60 s of tACS (1000 μA, 2 Hz versus 16 Hz, F3/F4 versus P3/P4) and were asked to rate the intensity of sensations every 12 s. RESULTS The first study showed that all stimulation parameters had an influence on the probability and intensity of sensations. Phosphenes were most likely and strongest for frontal montages and higher frequencies. Dizziness was most likely and strongest for parietal montages and at stimulation frequency of 4 Hz. Skin sensations and pressure was more likely when stimulation was performed across central regions and at posterior montages, respectively. The second study also revealed that the probability and the intensity of sensations were neither modified during more extended periods of stimulation nor affected by carry-over effects. CONCLUSION We demonstrated that the strength and the likelihood of sensations elicited by tACS were specifically modulated by the stimulation parameters. The present work may therefore be instrumental in establishing effective blinding conditions for studies with tACS.
Collapse
Affiliation(s)
- Valerio Raco
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Eberhard Karls University, Tuebingen, Germany; Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University, Tuebingen, Germany; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University, Tuebingen, Germany
| | - Robert Bauer
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Eberhard Karls University, Tuebingen, Germany; Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University, Tuebingen, Germany; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University, Tuebingen, Germany
| | - Mark Olenik
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Eberhard Karls University, Tuebingen, Germany; Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University, Tuebingen, Germany; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University, Tuebingen, Germany
| | - Diandra Brkic
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Eberhard Karls University, Tuebingen, Germany; Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University, Tuebingen, Germany; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University, Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Eberhard Karls University, Tuebingen, Germany; Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University, Tuebingen, Germany; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University, Tuebingen, Germany.
| |
Collapse
|
34
|
Potter SM, El Hady A, Fetz EE. Closed-loop neuroscience and neuroengineering. Front Neural Circuits 2014; 8:115. [PMID: 25294988 PMCID: PMC4171982 DOI: 10.3389/fncir.2014.00115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 09/01/2014] [Indexed: 01/18/2023] Open
Affiliation(s)
- Steve M Potter
- Laboratory for Neuroengineering, Coulter Department of Biomedical Engineering, Georgia Institute of Technology Atlanta, GA, USA
| | - Ahmed El Hady
- Department of Non Linear Dynamics, Max Planck Institute for Dynamics and Self Organization Goettingen, Germany
| | - Eberhard E Fetz
- Departments of Physiology and Biophysics and Bioengineering, Washington National Primate Research Center, University of Washington Seattle, WA, USA
| |
Collapse
|
35
|
Klaes C, Shi Y, Kellis S, Minxha J, Revechkis B, Andersen RA. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback. J Neural Eng 2014; 11:056024. [PMID: 25242377 DOI: 10.1088/1741-2560/11/5/056024] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. APPROACH To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide 'tactile' sensation to a non-human primate. MAIN RESULT Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. SIGNIFICANCE Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.
Collapse
|
36
|
Andersen RA, Kellis S, Klaes C, Aflalo T. Toward more versatile and intuitive cortical brain-machine interfaces. Curr Biol 2014; 24:R885-R897. [PMID: 25247368 PMCID: PMC4410026 DOI: 10.1016/j.cub.2014.07.068] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Brain-machine interfaces have great potential for the development of neuroprosthetic applications to assist patients suffering from brain injury or neurodegenerative disease. One type of brain-machine interface is a cortical motor prosthetic, which is used to assist paralyzed subjects. Motor prosthetics to date have typically used the motor cortex as a source of neural signals for controlling external devices. The review will focus on several new topics in the arena of cortical prosthetics. These include using: recordings from cortical areas outside motor cortex; local field potentials as a source of recorded signals; somatosensory feedback for more dexterous control of robotics; and new decoding methods that work in concert to form an ecology of decode algorithms. These new advances promise to greatly accelerate the applicability and ease of operation of motor prosthetics.
Collapse
Affiliation(s)
- Richard A Andersen
- Division of Biology and Biological Engineering, California Institute of Technology, Mail Code 216-76, Pasadena, CA, 91125-7600, USA.
| | - Spencer Kellis
- Division of Biology and Biological Engineering, California Institute of Technology, Mail Code 216-76, Pasadena, CA, 91125-7600, USA
| | - Christian Klaes
- Division of Biology and Biological Engineering, California Institute of Technology, Mail Code 216-76, Pasadena, CA, 91125-7600, USA
| | - Tyson Aflalo
- Division of Biology and Biological Engineering, California Institute of Technology, Mail Code 216-76, Pasadena, CA, 91125-7600, USA
| |
Collapse
|
37
|
Gharabaghi A, Kraus D, Leão MT, Spüler M, Walter A, Bogdan M, Rosenstiel W, Naros G, Ziemann U. Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation. Front Hum Neurosci 2014; 8:122. [PMID: 24634650 PMCID: PMC3942791 DOI: 10.3389/fnhum.2014.00122] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/19/2014] [Indexed: 12/20/2022] Open
Abstract
Motor recovery after stroke is an unsolved challenge despite intensive rehabilitation training programs. Brain stimulation techniques have been explored in addition to traditional rehabilitation training to increase the excitability of the stimulated motor cortex. This modulation of cortical excitability augments the response to afferent input during motor exercises, thereby enhancing skilled motor learning by long-term potentiation-like plasticity. Recent approaches examined brain stimulation applied concurrently with voluntary movements to induce more specific use-dependent neural plasticity during motor training for neurorehabilitation. Unfortunately, such approaches are not applicable for the many severely affected stroke patients lacking residual hand function. These patients require novel activity-dependent stimulation paradigms based on intrinsic brain activity. Here, we report on such brain state-dependent stimulation (BSDS) combined with haptic feedback provided by a robotic hand orthosis. Transcranial magnetic stimulation (TMS) of the motor cortex and haptic feedback to the hand were controlled by sensorimotor desynchronization during motor-imagery and applied within a brain-machine interface (BMI) environment in one healthy subject and one patient with severe hand paresis in the chronic phase after stroke. BSDS significantly increased the excitability of the stimulated motor cortex in both healthy and post-stroke conditions, an effect not observed in non-BSDS protocols. This feasibility study suggests that closing the loop between intrinsic brain state, cortical stimulation and haptic feedback provides a novel neurorehabilitation strategy for stroke patients lacking residual hand function, a proposal that warrants further investigation in a larger cohort of stroke patients.
Collapse
Affiliation(s)
- Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen Tuebingen, Germany ; Neuroprosthetics Research Group, Department of Integrative Neuroscience, Werner Reichardt Centre, Eberhard Karls University Tübingen, Germany
| | - Dominic Kraus
- Division of Functional and Restorative Neurosurgery, Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen Tuebingen, Germany ; Neuroprosthetics Research Group, Department of Integrative Neuroscience, Werner Reichardt Centre, Eberhard Karls University Tübingen, Germany
| | - Maria T Leão
- Division of Functional and Restorative Neurosurgery, Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen Tuebingen, Germany ; Neuroprosthetics Research Group, Department of Integrative Neuroscience, Werner Reichardt Centre, Eberhard Karls University Tübingen, Germany
| | - Martin Spüler
- Department of Computer Engineering, Wilhelm-Schickard Institute for Computer Science, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Armin Walter
- Department of Computer Engineering, Wilhelm-Schickard Institute for Computer Science, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Martin Bogdan
- Department of Computer Engineering, Wilhelm-Schickard Institute for Computer Science, Eberhard Karls University Tuebingen Tuebingen, Germany ; Department of Computer Engineering, University of Leipzig Leipzig, Germany
| | - Wolfgang Rosenstiel
- Department of Computer Engineering, Wilhelm-Schickard Institute for Computer Science, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Georgios Naros
- Division of Functional and Restorative Neurosurgery, Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen Tuebingen, Germany ; Neuroprosthetics Research Group, Department of Integrative Neuroscience, Werner Reichardt Centre, Eberhard Karls University Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tuebingen Tuebingen, Germany
| |
Collapse
|
38
|
Micoulaud-Franchi JA, Fond G, Dumas G. Cyborg psychiatry to ensure agency and autonomy in mental disorders. A proposal for neuromodulation therapeutics. Front Hum Neurosci 2013; 7:463. [PMID: 24046734 PMCID: PMC3763194 DOI: 10.3389/fnhum.2013.00463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/25/2013] [Indexed: 11/23/2022] Open
Abstract
Neuromodulation therapeutics—as repeated Transcranial Magnetic Stimulation (rTMS) and neurofeedback—are valuable tools for psychiatry. Nevertheless, they currently face some limitations: rTMS has confounding effects on neural activation patterns, and neurofeedback fails to change neural dynamics in some cases. Here we propose how coupling rTMS and neurofeedback can tackle both issues by adapting neural activations during rTMS and actively guiding individuals during neurofeedback. An algorithmic challenge then consists in designing the proper recording, processing, feedback, and control of unwanted effects. But this new neuromodulation technique also poses an ethical challenge: ensuring treatment occurs within a biopsychosocial model of medicine, while considering both the interaction between the patients and the psychiatrist, and the maintenance of individuals' autonomy. Our solution is the concept of Cyborg psychiatry, which embodies the technique and includes a self-engaged interaction between patients and the neuromodulation device.
Collapse
Affiliation(s)
- Jean-Arthur Micoulaud-Franchi
- Unité de Neurophysiologie, Psychophysiologie et Neurophénoménologie, Solaris, Pôle de Psychiatrie Universitaire, Hôpital Sainte-Marguerite Marseille, France ; Laboratoire de Neurosciences Cognitives, UMR CNRS 7291, 31 Aix-Marseille Université, Site St Charles Marseille, France
| | | | | |
Collapse
|