1
|
Ji X, Liu S, Li S, Li X, Luo A, Zhang X, Zhao Y. GABA in early brain development: A dual role review. Int J Dev Neurosci 2024; 84:843-856. [PMID: 39503050 DOI: 10.1002/jdn.10387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 01/03/2025] Open
Abstract
This comprehensive review examines the multifaceted roles of gamma-aminobutyric acid (GABA) in early brain development. GABA, traditionally recognized for its inhibitory functions in the mature brain, also exhibits excitatory effects during early neural development. This article explores the mechanisms behind GABA's dual roles, detailing its impact on the properties of the immature brain, the mechanisms of GABA-mediated excitation, the role of GABA-mediated presynaptic inhibition, the trophic actions of GABA during early development, GABA regulation of neurite growth and GABA-mediated cell differentiation in the immature brain. Emphasizing recent research findings, the review highlights the significance of GABAergic signalling in shaping the developing brain and its potential implications for understanding neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuzhen Liu
- Department of Anesthesiology, Tai'an Central Hospital, Tai'an, China
| | - Shiyong Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Luo
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilin Zhao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Benarroch E. What Is the Role of the "GABA Tone" in Normal and Pathological Conditions? Neurology 2024; 102:e209152. [PMID: 38252909 DOI: 10.1212/wnl.0000000000209152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
|
3
|
Machado DN, Durán-Carabali LE, Odorcyk FK, Carvalho AVS, Martini APR, Schlemmer LM, de Mattos MDM, Bernd GP, Dalmaz C, Netto CA. Bumetanide Attenuates Cognitive Deficits and Brain Damage in Rats Subjected to Hypoxia-Ischemia at Two Time Points of the Early Postnatal Period. Neurotox Res 2023; 41:526-545. [PMID: 37378827 DOI: 10.1007/s12640-023-00654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Neonatal hypoxia-ischemia (HI) is one of the main causes of tissue damage, cell death, and imbalance between neuronal excitation and inhibition and synaptic loss in newborns. GABA, the major inhibitory neurotransmitter of the central nervous system (CNS) in adults, is excitatory at the onset of neurodevelopment and its action depends on the chloride (Cl-) cotransporters NKCC1 (imports Cl-) and KCC2 (exports Cl-) expression. Under basal conditions, the NKCC1/KCC2 ratio decreases over neurodevelopment. Thus, changes in this ratio caused by HI may be related to neurological disorders. The present study evaluated the effects of bumetanide (NKCC cotransporters inhibitor) on HI impairments in two neurodevelopmental periods. Male Wistar rat pups, 3 (PND3) and 11 (PND11) days old, were submitted to the Rice-Vannucci model. Animals were divided into 3 groups: SHAM, HI-SAL, and HI-BUM, considering each age. Bumetanide was administered intraperitoneally at 1, 24, 48, and 72 h after HI. NKCC1, KCC2, PSD-95, and synaptophysin proteins were analyzed after the last injection by western blot. Negative geotaxis, righting reflex, open field, object recognition test, and Morris water maze task were performed to assess neurological reflexes, locomotion, and memory function. Tissue atrophy and cell death were evaluated by histology. Bumetanide prevented neurodevelopmental delay, hyperactivity, and declarative and spatial memory deficits. Furthermore, bumetanide reversed HI-induced brain tissue damage, reduced neuronal death and controlled GABAergic tone, maintained the NKCC1/KCC2 ratio, and synaptogenesis close to normality. Thereby, bumetanide appears to play an important therapeutic role in the CNS, protecting the animals against HI damage and improving functional performance.
Collapse
Affiliation(s)
- Diorlon Nunes Machado
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil.
| | - Luz Elena Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Kawa Odorcyk
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andrey Vinicios Soares Carvalho
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Ana Paula Rodrigues Martini
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Livia Machado Schlemmer
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Marcel de Medeiros de Mattos
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Gabriel Pereira Bernd
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Carla Dalmaz
- Departament of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Departament of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Departament of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
4
|
Basu SK, Kapse KJ, Murnick J, Pradhan S, Spoehr E, Zhang A, Andescavage N, Nino G, du Plessis AJ, Limperopoulos C. Impact of bronchopulmonary dysplasia on brain GABA concentrations in preterm infants: Prospective cohort study. Early Hum Dev 2023; 186:105860. [PMID: 37757548 PMCID: PMC10843009 DOI: 10.1016/j.earlhumdev.2023.105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is associated with cognitive-behavioral deficits in very preterm (VPT) infants, often in the absence of structural brain injury. Advanced GABA-editing techniques like Mescher-Garwood point resolved spectroscopy (MEGA-PRESS) can quantify in-vivo gamma-aminobutyric acid (GABA+, with macromolecules) and glutamate (Glx, with glutamine) concentrations to investigate for neurophysiologic perturbations in the developing brain of VPT infants. OBJECTIVE To investigate the relationship between the severity of BPD and basal-ganglia GABA+ and Glx concentrations in VPT infants. METHODS MRI studies were performed on a 3 T scanner in a cohort of VPT infants [born ≤32 weeks gestational age (GA)] without major structural brain injury and healthy-term infants (>37 weeks GA) at term-equivalent age. MEGA-PRESS (TE68ms, TR2000ms, 256averages) sequence was acquired from the right basal-ganglia voxel (∼3cm3) and metabolite concentrations were quantified in institutional units (i.u.). We stratified VPT infants into no/mild (grade 0/1) and moderate-severe (grade 2/3) BPD. RESULTS Reliable MEGA-PRESS data was available from 63 subjects: 29 healthy-term and 34 VPT infants without major structural brain injury. VPT infants with moderate-severe BPD (n = 20) had the lowest right basal-ganglia GABA+ (median 1.88 vs. 2.28 vs. 2.12 i.u., p = 0.025) and GABA+/choline (0.73 vs. 0.99 vs. 0.88, p = 0.004) in comparison to infants with no/mild BPD and healthy-term infants. The GABA+/Glx ratio was lower (0.34 vs. 0.44, p = 0.034) in VPT infants with moderate-severe BPD than in infants with no/mild BPD. CONCLUSIONS Reduced GABA+ and GABA+/Glx in VPT infants with moderate-severe BPD indicate neurophysiologic perturbations which could serve as early biomarkers of future cognitive deficits.
Collapse
Affiliation(s)
- Sudeepta K Basu
- Neonatology, Children's National Hospital, Washington, D.C., USA; Developing Brain Institute, Children's National Hospital, Washington, D.C., USA; The George Washington University School of Medicine, Washington, D.C., USA
| | - Kushal J Kapse
- Developing Brain Institute, Children's National Hospital, Washington, D.C., USA
| | - Jonathan Murnick
- The George Washington University School of Medicine, Washington, D.C., USA; Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C., USA
| | - Subechhya Pradhan
- Developing Brain Institute, Children's National Hospital, Washington, D.C., USA; The George Washington University School of Medicine, Washington, D.C., USA
| | - Emma Spoehr
- Developing Brain Institute, Children's National Hospital, Washington, D.C., USA
| | - Anqing Zhang
- The George Washington University School of Medicine, Washington, D.C., USA; Division of Biostatistics and Epidemiology, Children's National Hospital, Washington, D.C., USA
| | - Nickie Andescavage
- Neonatology, Children's National Hospital, Washington, D.C., USA; Developing Brain Institute, Children's National Hospital, Washington, D.C., USA; The George Washington University School of Medicine, Washington, D.C., USA; Division of Neurology, Children's National Hospital, Washington, D.C., USA
| | - Gustavo Nino
- The George Washington University School of Medicine, Washington, D.C., USA; Division of Pulmonary and Sleep Medicine, Children's National Hospital, Washington, D.C., USA
| | - Adre J du Plessis
- The George Washington University School of Medicine, Washington, D.C., USA; Division of Neurology, Children's National Hospital, Washington, D.C., USA; Perinatal Pediatrics institute, Children's National Hospital, Washington, D.C., USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, D.C., USA; The George Washington University School of Medicine, Washington, D.C., USA; Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C., USA; Division of Neurology, Children's National Hospital, Washington, D.C., USA.
| |
Collapse
|
5
|
Milla LA, Corral L, Rivera J, Zuñiga N, Pino G, Nunez-Parra A, Cea-Del Rio CA. Neurodevelopment and early pharmacological interventions in Fragile X Syndrome. Front Neurosci 2023; 17:1213410. [PMID: 37599992 PMCID: PMC10433175 DOI: 10.3389/fnins.2023.1213410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Fragile X Syndrome (FXS) is a neurodevelopmental disorder and the leading monogenic cause of autism and intellectual disability. For years, several efforts have been made to develop an effective therapeutic approach to phenotypically rescue patients from the disorder, with some even advancing to late phases of clinical trials. Unfortunately, none of these attempts have completely succeeded, bringing urgency to further expand and refocus research on FXS therapeutics. FXS arises at early stages of postnatal development due to the mutation and transcriptional silencing of the Fragile X Messenger Ribonucleoprotein 1 gene (FMR1) and consequent loss of the Fragile X Messenger Ribonucleoprotein (FMRP) expression. Importantly, FMRP expression is critical for the normal adult nervous system function, particularly during specific windows of embryogenic and early postnatal development. Cellular proliferation, migration, morphology, axonal guidance, synapse formation, and in general, neuronal network establishment and maturation are abnormally regulated in FXS, underlying the cognitive and behavioral phenotypes of the disorder. In this review, we highlight the relevance of therapeutically intervening during critical time points of development, such as early postnatal periods in infants and young children and discuss past and current clinical trials in FXS and their potential to specifically target those periods. We also discuss potential benefits, limitations, and disadvantages of these pharmacological tools based on preclinical and clinical research.
Collapse
Affiliation(s)
- Luis A. Milla
- Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Lucia Corral
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Jhanpool Rivera
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Nolberto Zuñiga
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Gabriela Pino
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Alexia Nunez-Parra
- Physiology Laboratory, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- Cell Physiology Center, Universidad de Chile, Santiago, Chile
| | - Christian A. Cea-Del Rio
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
6
|
Cutler AJ, Mattingly GW, Maletic V. Understanding the mechanism of action and clinical effects of neuroactive steroids and GABAergic compounds in major depressive disorder. Transl Psychiatry 2023; 13:228. [PMID: 37365161 PMCID: PMC10293235 DOI: 10.1038/s41398-023-02514-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The pathophysiology of major depressive disorder (MDD) is thought to result from impaired connectivity between key brain networks. Gamma-aminobutyric acid (GABA) is the key inhibitory neurotransmitter in the brain, working primarily via GABAA receptors, with an important role in virtually all physiologic functions in the brain. Some neuroactive steroids (NASs) are positive allosteric modulators (PAMs) of GABAA receptors and potentiate phasic and tonic inhibitory responses via activation of synaptic and extrasynaptic GABAA receptors, respectively. This review first discusses preclinical and clinical data that support the association of depression with diverse defects in the GABAergic system of neurotransmission. Decreased levels of GABA and NASs have been observed in adults with depression compared with healthy controls, while treatment with antidepressants normalized the altered levels of GABA and NASs. Second, as there has been intense interest in treatment approaches for depression that target dysregulated GABAergic neurotransmission, we discuss NASs approved or currently in clinical development for the treatment of depression. Brexanolone, an intravenous NAS and a GABAA receptor PAM, is approved by the U.S. Food and Drug Administration for the treatment of postpartum depression (PPD) in patients 15 years and older. Other NASs include zuranolone, an investigational oral GABAA receptor PAM, and PH10, which acts on nasal chemosensory receptors; clinical data to date have shown improvement in depressive symptoms with these investigational NASs in adults with MDD or PPD. Finally, the review discusses how NAS GABAA receptor PAMs may potentially address the unmet need for novel and effective treatments with rapid and sustained antidepressant effects in patients with MDD.
Collapse
|
7
|
Colombo S, Reddy HP, Petri S, Williams DJ, Shalomov B, Dhindsa RS, Gelfman S, Krizay D, Bera AK, Yang M, Peng Y, Makinson CD, Boland MJ, Frankel WN, Goldstein DB, Dascal N. Epilepsy in a mouse model of GNB1 encephalopathy arises from altered potassium (GIRK) channel signaling and is alleviated by a GIRK inhibitor. Front Cell Neurosci 2023; 17:1175895. [PMID: 37275776 PMCID: PMC10232839 DOI: 10.3389/fncel.2023.1175895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 06/07/2023] Open
Abstract
De novo mutations in GNB1, encoding the Gβ1 subunit of G proteins, cause a neurodevelopmental disorder with global developmental delay and epilepsy, GNB1 encephalopathy. Here, we show that mice carrying a pathogenic mutation, K78R, recapitulate aspects of the disorder, including developmental delay and generalized seizures. Cultured mutant cortical neurons also display aberrant bursting activity on multi-electrode arrays. Strikingly, the antiepileptic drug ethosuximide (ETX) restores normal neuronal network behavior in vitro and suppresses spike-and-wave discharges (SWD) in vivo. ETX is a known blocker of T-type voltage-gated Ca2+ channels and G protein-coupled potassium (GIRK) channels. Accordingly, we present evidence that K78R results in a gain-of-function (GoF) effect by increasing the activation of GIRK channels in cultured neurons and a heterologous model (Xenopus oocytes)-an effect we show can be potently inhibited by ETX. This work implicates a GoF mechanism for GIRK channels in epilepsy, identifies a new mechanism of action for ETX in preventing seizures, and establishes this mouse model as a pre-clinical tool for translational research with predicative value for GNB1 encephalopathy.
Collapse
Affiliation(s)
- Sophie Colombo
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Haritha P. Reddy
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sabrina Petri
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Damian J. Williams
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Boris Shalomov
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ryan S. Dhindsa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Daniel Krizay
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Amal K. Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Mu Yang
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Mouse NeuroBehavior Core Facility, Columbia University Irving Medical Center, New York, NY, United States
| | - Yueqing Peng
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Christopher D. Makinson
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
- Department of Neuroscience, Columbia University, New York, NY, United States
| | - Michael J. Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Wayne N. Frankel
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Nathan Dascal
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Cheung DL, Toda T, Narushima M, Eto K, Takayama C, Ooba T, Wake H, Moorhouse AJ, Nabekura J. KCC2 downregulation after sciatic nerve injury enhances motor function recovery. Sci Rep 2023; 13:7871. [PMID: 37188694 DOI: 10.1038/s41598-023-34701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/05/2023] [Indexed: 05/17/2023] Open
Abstract
Injury to mature neurons induces downregulated KCC2 expression and activity, resulting in elevated intracellular [Cl-] and depolarized GABAergic signaling. This phenotype mirrors immature neurons wherein GABA-evoked depolarizations facilitate neuronal circuit maturation. Thus, injury-induced KCC2 downregulation is broadly speculated to similarly facilitate neuronal circuit repair. We test this hypothesis in spinal cord motoneurons injured by sciatic nerve crush, using transgenic (CaMKII-KCC2) mice wherein conditional CaMKIIα promoter-KCC2 expression coupling selectively prevents injury-induced KCC2 downregulation. We demonstrate, via an accelerating rotarod assay, impaired motor function recovery in CaMKII-KCC2 mice relative to wild-type mice. Across both cohorts, we observe similar motoneuron survival and re-innervation rates, but differing post-injury reorganization patterns of synaptic input to motoneuron somas-for wild-type, both VGLUT1-positive (excitatory) and GAD67-positive (inhibitory) terminal counts decrease; for CaMKII-KCC2, only VGLUT1-positive terminal counts decrease. Finally, we recapitulate the impaired motor function recovery of CaMKII-KCC2 mice in wild-type mice by administering local spinal cord injections of bicuculline (GABAA receptor blockade) or bumetanide (lowers intracellular [Cl-] by NKCC1 blockade) during the early post-injury period. Thus, our results provide direct evidence that injury-induced KCC2 downregulation enhances motor function recovery and suggest an underlying mechanism of depolarizing GABAergic signaling driving adaptive reconfiguration of presynaptic GABAergic input.
Collapse
Affiliation(s)
- Dennis Lawrence Cheung
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Takuya Toda
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Madoka Narushima
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Kei Eto
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | | | - Tatsuko Ooba
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Hiroaki Wake
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Andrew John Moorhouse
- School of Biomedical Sciences, UNSW Sydney (The University of New South Wales), Sydney, New South Wales, Australia
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.
- Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan.
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan.
| |
Collapse
|
9
|
Silva NF, Mascarenhas FNADP, Ribeiro DL, Zanon RG. Alterations in the dentate gyrus of the offspring of rats treated with alprazolam during gestation. J Chem Neuroanat 2023; 129:102253. [PMID: 36841439 DOI: 10.1016/j.jchemneu.2023.102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Benzodiazepine (BZD) abuse is a global problem, including pregnant women. For this population, the drug of choice is usually alprazolam, which acts as a GABAergic agonist and may compromise the development of integrative areas of the nervous system, such as the dentate gyrus (DG) of the hippocampus. In this context, we studied the changes in the DG of the offspring of rats treated with alprazolam during gestation: control, treatment 1 (T1: 1.25 mg/animal), and an overdose group (T2: 30 mg/animal). Alprazolam was administered orally ten days before mating and during the gestational period. After birth, newborns were counted, sexed, and the body mass of each pup was measured. The newborns' brains were extracted and processed for morphological study of the DG or for total protein extraction of the hippocampus. The results showed that alprazolam can affect the cell number and area, and increased euchromatin in both granular and molecular layers of the DG, especially in the overdose group. Also, alprazolam upregulated the NF-κB and reduced GFAP and caspase-3. Based on our findings, we conclude that the DG is a plausible region of influence by BZDs during embryogenesis. An overdose during gestation may cause structural changes in the DG.
Collapse
|
10
|
Aksenov DP, Gascoigne DA, Duan J, Drobyshevsky A. Function and development of interneurons involved in brain tissue oxygen regulation. Front Mol Neurosci 2022; 15:1069496. [PMID: 36504684 PMCID: PMC9729339 DOI: 10.3389/fnmol.2022.1069496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
The regulation of oxygen in brain tissue is one of the most important fundamental questions in neuroscience and medicine. The brain is a metabolically demanding organ, and its health directly depends on maintaining oxygen concentrations within a relatively narrow range that is both sufficiently high to prevent hypoxia, and low enough to restrict the overproduction of oxygen species. Neurovascular interactions, which are responsible for oxygen delivery, consist of neuronal and glial components. GABAergic interneurons play a particularly important role in neurovascular interactions. The involvement of interneurons extends beyond the perspective of inhibition, which prevents excessive neuronal activity and oxygen consumption, and includes direct modulation of the microvasculature depending upon their sub-type. Namely, nitric oxide synthase-expressing (NOS), vasoactive intestinal peptide-expressing (VIP), and somatostatin-expressing (SST) interneurons have shown modulatory effects on microvessels. VIP interneurons are known to elicit vasodilation, SST interneurons typically cause vasoconstriction, and NOS interneurons have to propensity to induce both effects. Given the importance and heterogeneity of interneurons in regulating local brain tissue oxygen concentrations, we review their differing functions and developmental trajectories. Importantly, VIP and SST interneurons display key developmental milestones in adolescence, while NOS interneurons mature much earlier. The implications of these findings point to different periods of critical development of the interneuron-mediated oxygen regulatory systems. Such that interference with normal maturation processes early in development may effect NOS interneuron neurovascular interactions to a greater degree, while insults later in development may be more targeted toward VIP- and SST-mediated mechanisms of oxygen regulation.
Collapse
Affiliation(s)
- Daniil P. Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States,Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL, United States,Pritzker School of Medicine, University of Chicago, Chicago, IL, United States,*Correspondence: Daniil P. Aksenov,
| | - David A. Gascoigne
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, United States,Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, United States
| | - Alexander Drobyshevsky
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States,Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
| |
Collapse
|
11
|
Investigating the Role of GABA in Neural Development and Disease Using Mice Lacking GAD67 or VGAT Genes. Int J Mol Sci 2022; 23:ijms23147965. [PMID: 35887307 PMCID: PMC9318753 DOI: 10.3390/ijms23147965] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
Normal development and function of the central nervous system involves a balance between excitatory and inhibitory neurotransmission. Activity of both excitatory and inhibitory neurons is modulated by inhibitory signalling of the GABAergic and glycinergic systems. Mechanisms that regulate formation, maturation, refinement, and maintenance of inhibitory synapses are established in early life. Deviations from ideal excitatory and inhibitory balance, such as down-regulated inhibition, are linked with many neurological diseases, including epilepsy, schizophrenia, anxiety, and autism spectrum disorders. In the mammalian forebrain, GABA is the primary inhibitory neurotransmitter, binding to GABA receptors, opening chloride channels and hyperpolarizing the cell. We review the involvement of down-regulated inhibitory signalling in neurological disorders, possible mechanisms for disease progression, and targets for therapeutic intervention. We conclude that transgenic models of disrupted inhibitory signalling—in GAD67+/− and VGAT−/− mice—are useful for investigating the effects of down-regulated inhibitory signalling in a range of neurological diseases.
Collapse
|
12
|
Capsoni S, Arisi I, Malerba F, D’Onofrio M, Cattaneo A, Cherubini E. Targeting the Cation-Chloride Co-Transporter NKCC1 to Re-Establish GABAergic Inhibition and an Appropriate Excitatory/Inhibitory Balance in Selective Neuronal Circuits: A Novel Approach for the Treatment of Alzheimer's Disease. Brain Sci 2022; 12:783. [PMID: 35741668 PMCID: PMC9221351 DOI: 10.3390/brainsci12060783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
GABA, the main inhibitory neurotransmitter in the adult brain, depolarizes and excites immature neurons because of an initially higher intracellular chloride concentration [Cl-]i due to the delayed expression of the chloride exporter KCC2 at birth. Depolarization-induced calcium rise via NMDA receptors and voltage-dependent calcium channels is instrumental in shaping neuronal circuits and in controlling the excitatory (E)/inhibitory (I) balance in selective brain areas. An E/I imbalance accounts for cognitive impairment observed in several neuropsychiatric disorders. The aim of this review is to summarize recent data on the mechanisms by which alterations of GABAergic signaling alter the E/I balance in cortical and hippocampal neurons in Alzheimer's disease (AD) and the role of cation-chloride co-transporters in this process. In particular, we discuss the NGF and AD relationship and how mice engineered to express recombinant neutralizing anti-NGF antibodies (AD11 mice), which develop a neurodegenerative pathology reminiscent of that observed in AD patients, exhibit a depolarizing action of GABA due to KCC2 impairment. Treating AD and other forms of dementia with bumetanide, a selective KCC2 antagonist, contributes to re-establishing a proper E/I balance in selective brain areas, leading to amelioration of AD symptoms and the slowing down of disease progression.
Collapse
Affiliation(s)
- Simona Capsoni
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy;
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Ivan Arisi
- Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (I.A.); (F.M.); (M.D.)
| | - Francesca Malerba
- Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (I.A.); (F.M.); (M.D.)
| | - Mara D’Onofrio
- Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (I.A.); (F.M.); (M.D.)
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy;
- Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (I.A.); (F.M.); (M.D.)
| | - Enrico Cherubini
- Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (I.A.); (F.M.); (M.D.)
| |
Collapse
|
13
|
Neonatal Anesthesia and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11040787. [PMID: 35453473 PMCID: PMC9026345 DOI: 10.3390/antiox11040787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Neonatal anesthesia, while often essential for surgeries or imaging procedures, is accompanied by significant risks to redox balance in the brain due to the relatively weak antioxidant system in children. Oxidative stress is characterized by concentrations of reactive oxygen species (ROS) that are elevated beyond what can be accommodated by the antioxidant defense system. In neonatal anesthesia, this has been proposed to be a contributing factor to some of the negative consequences (e.g., learning deficits and behavioral abnormalities) that are associated with early anesthetic exposure. In order to assess the relationship between neonatal anesthesia and oxidative stress, we first review the mechanisms of action of common anesthetic agents, the key pathways that produce the majority of ROS, and the main antioxidants. We then explore the possible immediate, short-term, and long-term pathways of neonatal-anesthesia-induced oxidative stress. We review a large body of literature describing oxidative stress to be evident during and immediately following neonatal anesthesia. Moreover, our review suggests that the short-term pathway has a temporally limited effect on oxidative stress, while the long-term pathway can manifest years later due to the altered development of neurons and neurovascular interactions.
Collapse
|
14
|
Bukina ES, Kondratyev NV, Kozin SV, Golimbet VE, Artyuhov AS, Dashinimaev EB. SLC6A1 and Neuropsychiatric Diseases: The Role of Mutations and Prospects for Treatment with Genome Editing Systems. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Sevetson JL, Theyel B, Hoffman-Kim D. Cortical spheroids display oscillatory network dynamics. LAB ON A CHIP 2021; 21:4586-4595. [PMID: 34734621 DOI: 10.1039/d1lc00737h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three-dimensional brain cultures can facilitate the study of central nervous system function and disease, and one of the most important components that they present is neuronal activity on a network level. Here we demonstrate network activity in rodent cortical spheroids while maintaining the networks intact in their 3D state. Networks developed by nine days in culture and became more complex over time. To measure network activity, we imaged neurons in rat and mouse spheroids labelled with a calcium indicator dye, and in mouse spheroids expressing GCaMP. Network activity was evident when we electrically stimulated spheroids, was abolished with glutamatergic blockade, and was altered by GABAergic blockade or partial glutamatergic blockade. We quantified correlations and distances between somas with micron-scale spatial resolution. Spheroids seeded at as few as 4000 cells gave rise to emergent network events, including oscillations. These results are the first demonstration that self-assembled rat and mouse spheroids exhibit network activity consistent with in vivo network events. These results open the door to experiments on neuronal networks that require fewer animals and enable high throughput experiments on network-perturbing alterations in neurons and glia.
Collapse
Affiliation(s)
- Jessica L Sevetson
- Department of Neuroscience, Brown University, Providence, RI 02906, USA.
- Robert J and Nancy D Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA
- Center for the Alternatives to Animals in Testing, Brown University, Providence, RI 02906, USA
| | - Brian Theyel
- Department of Neuroscience, Brown University, Providence, RI 02906, USA.
- Robert J and Nancy D Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA
- Department of Psychiatry, Brown University, Providence, RI 02906, USA
| | - Diane Hoffman-Kim
- Department of Neuroscience, Brown University, Providence, RI 02906, USA.
- Robert J and Nancy D Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA
- Center for the Alternatives to Animals in Testing, Brown University, Providence, RI 02906, USA
- Center for Biomedical Engineering, Brown University, Providence, RI 02906, USA
| |
Collapse
|
16
|
Gustorff C, Scheuer T, Schmitz T, Bührer C, Endesfelder S. GABA B Receptor-Mediated Impairment of Intermediate Progenitor Maturation During Postnatal Hippocampal Neurogenesis of Newborn Rats. Front Cell Neurosci 2021; 15:651072. [PMID: 34421540 PMCID: PMC8377254 DOI: 10.3389/fncel.2021.651072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
The neurotransmitter GABA and its receptors assume essential functions during fetal and postnatal brain development. The last trimester of a human pregnancy and early postnatal life involves a vulnerable period of brain development. In the second half of gestation, there is a developmental shift from depolarizing to hyperpolarizing in the GABAergic system, which might be disturbed by preterm birth. Alterations of the postnatal GABA shift are associated with several neurodevelopmental disorders. In this in vivo study, we investigated neurogenesis in the dentate gyrus (DG) in response to daily administration of pharmacological GABAA (DMCM) and GABAB (CGP 35348) receptor inhibitors to newborn rats. Six-day-old Wistar rats (P6) were daily injected (i.p.) to postnatal day 11 (P11) with DMCM, CGP 35348, or vehicle to determine the effects of both antagonists on postnatal neurogenesis. Due to GABAB receptor blockade by CGP 35348, immunohistochemistry revealed a decrease in the number of NeuroD1 positive intermediate progenitor cells and a reduction of proliferative Nestin-positive neuronal stem cells at the DG. The impairment of hippocampal neurogenesis at this stage of differentiation is in line with a significantly decreased RNA expression of the transcription factors Pax6, Ascl1, and NeuroD1. Interestingly, the number of NeuN-positive postmitotic neurons was not affected by GABAB receptor blockade, although strictly associated transcription factors for postmitotic neurons, Tbr1, Prox1, and NeuroD2, displayed reduced expression levels, suggesting impairment by GABAB receptor antagonization at this stage of neurogenesis. Antagonization of GABAB receptors decreased the expression of neurotrophins (BDNF, NT-3, and NGF). In contrast to the GABAB receptor blockade, the GABAA receptor antagonization revealed no significant changes in cell counts, but an increased transcriptional expression of Tbr1 and Tbr2. We conclude that GABAergic signaling via the metabotropic GABAB receptor is crucial for hippocampal neurogenesis at the time of rapid brain growth and of the postnatal GABA shift. Differentiation and proliferation of intermediate progenitor cells are dependent on GABA. These insights become more pertinent in preterm infants whose developing brains are prematurely exposed to spostnatal stress and predisposed to poor neurodevelopmental disorders, possibly as sequelae of early disruption in GABAergic signaling.
Collapse
Affiliation(s)
- Charlotte Gustorff
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Till Scheuer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Schmitz
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
17
|
Favuzzi E, Huang S, Saldi GA, Binan L, Ibrahim LA, Fernández-Otero M, Cao Y, Zeine A, Sefah A, Zheng K, Xu Q, Khlestova E, Farhi SL, Bonneau R, Datta SR, Stevens B, Fishell G. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell 2021; 184:4048-4063.e32. [PMID: 34233165 PMCID: PMC9122259 DOI: 10.1016/j.cell.2021.06.018] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 01/14/2023]
Abstract
Microglia, the resident immune cells of the brain, have emerged as crucial regulators of synaptic refinement and brain wiring. However, whether the remodeling of distinct synapse types during development is mediated by specialized microglia is unknown. Here, we show that GABA-receptive microglia selectively interact with inhibitory cortical synapses during a critical window of mouse postnatal development. GABA initiates a transcriptional synapse remodeling program within these specialized microglia, which in turn sculpt inhibitory connectivity without impacting excitatory synapses. Ablation of GABAB receptors within microglia impairs this process and leads to behavioral abnormalities. These findings demonstrate that brain wiring relies on the selective communication between matched neuronal and glial cell types.
Collapse
Affiliation(s)
- Emilia Favuzzi
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Shuhan Huang
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Giuseppe A Saldi
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Loïc Binan
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Leena A Ibrahim
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Marian Fernández-Otero
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yuqing Cao
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ayman Zeine
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Adwoa Sefah
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Karen Zheng
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Qing Xu
- New York University Abu Dhabi, Abu Dhabi, UAE
| | - Elizaveta Khlestova
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Samouil L Farhi
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Richard Bonneau
- Department of Biology, New York University, New York, NY 10003, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA; Center for Data Science, New York University, New York, NY 10011, USA
| | - Sandeep Robert Datta
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Beth Stevens
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA 02115, USA
| | - Gord Fishell
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
18
|
D’Alessandro G, Lauro C, Quaglio D, Ghirga F, Botta B, Trettel F, Limatola C. Neuro-Signals from Gut Microbiota: Perspectives for Brain Glioma. Cancers (Basel) 2021; 13:2810. [PMID: 34199968 PMCID: PMC8200200 DOI: 10.3390/cancers13112810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive form of glioma tumor in adult brain. Among the numerous factors responsible for GBM cell proliferation and invasion, neurotransmitters such as dopamine, serotonin and glutamate can play key roles. Studies performed in mice housed in germ-free (GF) conditions demonstrated the relevance of the gut-brain axis in a number of physiological and pathological conditions. The gut-brain communication is made possible by vagal/nervous and blood/lymphatic routes and pave the way for reciprocal modulation of functions. The gut microbiota produces and consumes a wide range of molecules, including neurotransmitters (dopamine, norepinephrine, serotonin, gamma-aminobutyric acid [GABA], and glutamate) that reach their cellular targets through the bloodstream. Growing evidence in animals suggests that modulation of these neurotransmitters by the microbiota impacts host neurophysiology and behavior, and affects neural cell progenitors and glial cells, along with having effects on tumor cell growth. In this review we propose a new perspective connecting neurotransmitter modulation by gut microbiota to glioma progression.
Collapse
Affiliation(s)
- Giuseppina D’Alessandro
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (G.D.); (C.L.); (F.T.)
- IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (G.D.); (C.L.); (F.T.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (F.G.); (B.B.)
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (F.G.); (B.B.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (F.G.); (B.B.)
| | - Flavia Trettel
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (G.D.); (C.L.); (F.T.)
| | - Cristina Limatola
- IRCCS Neuromed, 86077 Pozzilli, IS, Italy
- Department of Physiology and Pharmacology, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia, 00185 Rome, Italy
| |
Collapse
|
19
|
Basu SK, Pradhan S, du Plessis AJ, Ben-Ari Y, Limperopoulos C. GABA and glutamate in the preterm neonatal brain: In-vivo measurement by magnetic resonance spectroscopy. Neuroimage 2021; 238:118215. [PMID: 34058332 PMCID: PMC8404144 DOI: 10.1016/j.neuroimage.2021.118215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cognitive and behavioral disabilities in preterm infants, even without obvious brain injury on conventional neuroimaging, underscores a critical need to identify the subtle underlying microstructural and biochemical derangements. The gamma-aminobutyric acid (GABA) and glutamatergic neurotransmitter systems undergo rapid maturation during the crucial late gestation and early postnatal life, and are at-risk of disruption after preterm birth. Animal and human autopsy studies provide the bulk of current understanding since non-invasive specialized proton magnetic resonance spectroscopy (1H-MRS) to measure GABA and glutamate are not routinely available for this vulnerable population due to logistical and technical challenges. We review the specialized 1H-MRS techniques including MEscher-GArwood Point Resolved Spectroscopy (MEGA-PRESS), special challenges and considerations needed for interpretation of acquired data from the developing brain of preterm infants. We summarize the limited in-vivo preterm data, highlight the gaps in knowledge, and discuss future directions for optimal integration of available in-vivo approaches to understand the influence of GABA and glutamate on neurodevelopmental outcomes after preterm birth.
Collapse
Affiliation(s)
- Sudeepta K Basu
- Neonatology, Children's National Hospital, Washington, D.C., United States; Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Subechhya Pradhan
- Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Adre J du Plessis
- Fetal Medicine institute, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Yehezkel Ben-Ari
- Division of Neurology, Children's National Hospital, Washington, D.C., United States; Neurochlore, Marseille, France
| | - Catherine Limperopoulos
- Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States.
| |
Collapse
|
20
|
Brighi C, Salaris F, Soloperto A, Cordella F, Ghirga S, de Turris V, Rosito M, Porceddu PF, D’Antoni C, Reggiani A, Rosa A, Di Angelantonio S. Novel fragile X syndrome 2D and 3D brain models based on human isogenic FMRP-KO iPSCs. Cell Death Dis 2021; 12:498. [PMID: 33993189 PMCID: PMC8124071 DOI: 10.1038/s41419-021-03776-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder, characterized by intellectual disability and sensory deficits, caused by epigenetic silencing of the FMR1 gene and subsequent loss of its protein product, fragile X mental retardation protein (FMRP). Delays in synaptic and neuronal development in the cortex have been reported in FXS mouse models; however, the main goal of translating lab research into pharmacological treatments in clinical trials has been so far largely unsuccessful, leaving FXS a still incurable disease. Here, we generated 2D and 3D in vitro human FXS model systems based on isogenic FMR1 knock-out mutant and wild-type human induced pluripotent stem cell (hiPSC) lines. Phenotypical and functional characterization of cortical neurons derived from FMRP-deficient hiPSCs display altered gene expression and impaired differentiation when compared with the healthy counterpart. FXS cortical cultures show an increased number of GFAP positive cells, likely astrocytes, increased spontaneous network activity, and depolarizing GABAergic transmission. Cortical brain organoid models show an increased number of glial cells, and bigger organoid size. Our findings demonstrate that FMRP is required to correctly support neuronal and glial cell proliferation, and to set the correct excitation/inhibition ratio in human brain development.
Collapse
Affiliation(s)
- Carlo Brighi
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Federico Salaris
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy ,grid.7841.aDepartment of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro Soloperto
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Federica Cordella
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Silvia Ghirga
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy ,grid.7841.aDepartment of Physics, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Valeria de Turris
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Maria Rosito
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Pier Francesca Porceddu
- grid.25786.3e0000 0004 1764 2907D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Chiara D’Antoni
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Angelo Reggiani
- grid.25786.3e0000 0004 1764 2907D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Alessandro Rosa
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy ,grid.7841.aDepartment of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Silvia Di Angelantonio
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
21
|
Basu SK, Pradhan S, Jacobs MB, Said M, Kapse K, Murnick J, Whitehead MT, Chang T, du Plessis AJ, Limperopoulos C. Age and Sex Influences Gamma-aminobutyric Acid Concentrations in the Developing Brain of Very Premature Infants. Sci Rep 2020; 10:10549. [PMID: 32601466 PMCID: PMC7324587 DOI: 10.1038/s41598-020-67188-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) and glutamate are principal neurotransmitters essential for late gestational brain development and may play an important role in prematurity-related brain injury. In vivo investigation of GABA in the preterm infant with standard proton magnetic resonance spectroscopy (1H-MRS) has been limited due to its low concentrations in the developing brain, and overlap in the spectrum by other dominant metabolites. We describe early postnatal profiles of in vivo GABA and glutamate concentrations in the developing preterm brain measured by using the J-difference editing technique, Mescher-Garwood point resolved spectroscopy. We prospectively enrolled very preterm infants born ≤32 weeks gestational age and non-sedated 1H-MRS (echo time 68 ms, relaxation time 2000 ms, 256 signal averages) was acquired on a 3 Tesla magnetic resonance imaging scanner from a right frontal lobe voxel. Concentrations of GABA + (with macromolecules) was measured from the J-difference spectra; whereas glutamate and composite glutamate + glutamine (Glx) were measured from the unedited (OFF) spectra and reported in institutional units. We acquired 42 reliable spectra from 38 preterm infants without structural brain injury [median gestational age at birth of 28.0 (IQR 26.0, 28.9) weeks; 19 males (50%)] at a median postmenstrual age of 38.4 (range 33.4 to 46.4) weeks. With advancing post-menstrual age, the concentrations of glutamate OFF increased significantly, adjusted for co-variates (generalized estimating equation β = 0.22, p = 0.02). Advancing postnatal weeks of life at the time of imaging positively correlated with GABA + (β = 0.06, p = 0.02), glutamate OFF (β = 0.11, p = 0.02) and Glx OFF (β = 0.12, p = 0.04). Male infants had higher GABA + (1.66 ± 0.07 vs. 1.33 ± 0.11, p = 0.01) concentrations compared with female infants. For the first time, we report the early ex-utero developmental profile of in vivo GABA and glutamate stratified by age and sex in the developing brain of very preterm infants. This data may provide novel insights into the pathophysiology of neurodevelopmental disabilities reported in preterm infants even in the absence of structural brain injury.
Collapse
Affiliation(s)
- Sudeepta K Basu
- Neonatology, Children's National Hospital, Washington, D.C, US
- Center for the Developing Brain, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Subechhya Pradhan
- Center for the Developing Brain, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Marni B Jacobs
- Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Mariam Said
- Neonatology, Children's National Hospital, Washington, D.C, US
- Center for the Developing Brain, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Kushal Kapse
- Center for the Developing Brain, Children's National Hospital, Washington, D.C, US
| | - Jonathan Murnick
- Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Matthew T Whitehead
- Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Taeun Chang
- Division of Neurology, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Adre J du Plessis
- Fetal Medicine institute, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Catherine Limperopoulos
- Center for the Developing Brain, Children's National Hospital, Washington, D.C, US.
- Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C, US.
- The George Washington University School of Medicine, Washington, D.C, US.
| |
Collapse
|
22
|
Tao D, Liu F, Sun X, Qu H, Zhao S, Zhou Z, Xiao T, Zhao C, Zhao M. Bumetanide: A review of its neuroplasticity and behavioral effects after stroke. Restor Neurol Neurosci 2020; 37:397-407. [PMID: 31306143 DOI: 10.3233/rnn-190926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stroke often leads to neuronal injury and neurological functional deficits. Whilst spontaneous neurogenesis and axon regeneration are induced by ischemic stroke, effective pharmacological treatments are also essential for the improvement of neuroplasticity and functional recovery after stroke. However, no pharmacological therapy has been demonstrated to be able to effectively improve the functional recovery after stroke. Bumetanide is a specific Na+-K+-Cl- co-transporter inhibitor which can maintain chloride homeostasis in neurons. Therefore, many studies have focused on this drug's effect in stroke recovery in recent years. Here, we first review the function of Na+-K+-Cl- co-transporter in neurons, then how bumetanide's role in reducing brain damage, promoting neuroplasticity, leading to functional recovery after stroke, is elucidated. Finally, we discuss current limitations of bumetanide's efficiency and their potential solutions. These results may provide new avenues for further exploring mechanisms of post-stroke functional recovery as well as promising therapeutic targets for functional disability rehabilitation after ischemic stroke.
Collapse
Affiliation(s)
- Dongxia Tao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Fangxi Liu
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoyu Sun
- Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Huiling Qu
- Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Shanshan Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Zhike Zhou
- Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Ting Xiao
- Dermatology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Mei Zhao
- Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
23
|
Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders. Rev Neurosci 2019; 30:807-820. [DOI: 10.1515/revneuro-2019-0014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
Abstract
AbstractThe excitation/inhibition (E/I) balance controls the synaptic inputs to prevent the inappropriate responses of neurons to input strength, and is required to restore the initial pattern of network activity. Various neurotransmitters affect synaptic plasticity within neural networks via the modulation of neuronal E/I balance in the developing and adult brain. Less is known about the role of E/I balance in the control of the development of the neural stem and progenitor cells in the course of neurogenesis and gliogenesis. Recent findings suggest that neural stem and progenitor cells appear to be the target for the action of GABA within the neurogenic or oligovascular niches. The same might be true for the role of neuropeptides (i.e. oxytocin) in neurogenic niches. This review covers current understanding of the role of E/I balance in the regulation of neuroplasticity associated with social behavior in normal brain, and in neurodevelopmental and neurodegenerative diseases. Further studies are required to decipher the GABA-mediated regulation of postnatal neurogenesis and synaptic integration of newly-born neurons as a potential target for the treatment of brain diseases.
Collapse
|
24
|
Song S, Luo L, Sun B, Sun D. Roles of glial ion transporters in brain diseases. Glia 2019; 68:472-494. [PMID: 31418931 DOI: 10.1002/glia.23699] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Glial ion transporters are important in regulation of ionic homeostasis, cell volume, and cellular signal transduction under physiological conditions of the central nervous system (CNS). In response to acute or chronic brain injuries, these ion transporters can be activated and differentially regulate glial functions, which has subsequent impact on brain injury or tissue repair and functional recovery. In this review, we summarized the current knowledge about major glial ion transporters, including Na+ /H+ exchangers (NHE), Na+ /Ca2+ exchangers (NCX), Na+ -K+ -Cl- cotransporters (NKCC), and Na+ -HCO3 - cotransporters (NBC). In acute neurological diseases, such as ischemic stroke and traumatic brain injury (TBI), these ion transporters are rapidly activated and play significant roles in regulation of the intra- and extracellular pH, Na+ , K+ , and Ca2+ homeostasis, synaptic plasticity, and myelin formation. However, overstimulation of these ion transporters can contribute to glial apoptosis, demyelination, inflammation, and excitotoxicity. In chronic brain diseases, such as glioma, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), glial ion transporters are involved in the glioma Warburg effect, glial activation, neuroinflammation, and neuronal damages. These findings suggest that glial ion transporters are involved in tissue structural and functional restoration, or brain injury and neurological disease development and progression. A better understanding of these ion transporters in acute and chronic neurological diseases will provide insights for their potential as therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lanxin Luo
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China.,Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, Dois Portos, Portugal
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Lesuis SL, Lucassen PJ, Krugers HJ. Early life stress amplifies fear responses and hippocampal synaptic potentiation in the APPswe/PS1dE9 Alzheimer mouse model. Neuroscience 2019; 454:151-161. [PMID: 31302265 DOI: 10.1016/j.neuroscience.2019.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/25/2019] [Accepted: 07/02/2019] [Indexed: 01/04/2023]
Abstract
Cognitive deficits and alterations in emotional behaviour are typical features of Alzheimer's disease (AD). Moreover, exposure to stress or adversity during the early life period has been associated with an acceleration of cognitive deficits and increased AD pathology in transgenic AD mouse models. Whether and how early life adversity affects fear memory in AD mice remains elusive. We therefore investigated whether exposure to early life stress (ELS) alters fear learning in APPswe/PS1dE9 mice, a classic mouse model for AD, and whether this is accompanied by alterations in hippocampal synaptic potentiation, an important cellular substrate for learning and memory. Transgenic APPswe/PS1dE9 mice were subjected to ELS by housing the dams and her pups with limited nesting and bedding material from postnatal days 2-9. Following a fear conditioning paradigm, 12-month-old ELS-exposed APPswe/PS1dE9 mice displayed enhanced contextual freezing behaviour, both in the conditioning context and in a novel context. ELS-exposed APPswe/PS1dE9 mice also displayed enhanced hippocampal synaptic potentiation, even in the presence of the GluN2B antagonist Ro25-6981 (which prevented synaptic potentiation in control mice). No differences in the level of PSD-95 or synaptophysin were observed between the groups. We conclude that in APPswe/PS1dE9 mice, ELS increases fear memory in the conditioning context as well as a novel context, which is accompanied by aberrant hippocampal synaptic potentiation. These results may help to understand how individual differences in the vulnerability to develop AD arise and emphasise the importance of the early postnatal time window in these differences. This article is part of Special Issue entitled: Lifestyle and Brain Metaplasticity.
Collapse
Affiliation(s)
- Sylvie L Lesuis
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, the Netherlands.
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, the Netherlands
| |
Collapse
|
26
|
Clyburn C, Howe CA, Arnold AC, Lang CH, Travagli RA, Browning KN. Perinatal high-fat diet alters development of GABA A receptor subunits in dorsal motor nucleus of vagus. Am J Physiol Gastrointest Liver Physiol 2019; 317:G40-G50. [PMID: 31042399 PMCID: PMC6689732 DOI: 10.1152/ajpgi.00079.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 01/31/2023]
Abstract
Perinatal high-fat diet (pHFD) exposure increases the inhibition of dorsal motor nucleus of the vagus (DMV) neurons, potentially contributing to the dysregulation of gastric functions. The aim of this study was to test the hypothesis that pHFD increases the inhibition of DMV neurons by disrupting GABAA receptor subunit development. In vivo gastric recordings were made from adult anesthetized Sprague-Dawley rats fed a control or pHFD (14 or 60% kcal from fat, respectively) from embryonic day 13 (E13) to postnatal day 42 (P42), and response to brainstem microinjection of benzodiazepines was assessed. Whole cell patch clamp recordings from DMV neurons assessed the functional expression of GABAA α subunits, whereas mRNA and protein expression were measured via qPCR and Western blotting, respectively. pHFD decreased basal antrum and corpus motility, whereas brainstem microinjection of L838,417 (positive allosteric modulator of α2/3 subunit-containing GABAA receptors) produced a larger decrease in gastric tone and motility. GABAergic miniature inhibitory postsynaptic currents in pHFD DMV neurons were responsive to L838,417 throughout development, unlike control DMV neurons, which were responsive only at early postnatal timepoints. Brainstem mRNA and protein expression of the GABAA α1,2, and 3 subunits, however, did not differ between control and pHFD rats. This study suggests that pHFD exposure arrests the development of synaptic GABAA α2/3 receptor subunits on DMV neurons and that functional synaptic expression is maintained into adulthood, although cellular localization may differ. The tonic activation of slower GABAA α2/3 subunit-containing receptors implies that such developmental changes may contribute to the observed decreased gastric motility. NEW & NOTEWORTHY Vagal neurocircuits involved in the control of gastric functions, satiation, and food intake are subject to significant developmental regulation postnatally, with immature GABAA receptors expressing slower α2/3-subunits, whereas mature GABAA receptor express faster α1-subunits. After perinatal high-fat diet exposure, this developmental regulation of dorsal motor nucleus of the vagus (DMV) neurons is disrupted, increasing their tonic GABAergic inhibition, decreasing efferent output, and potentially decreasing gastric motility.
Collapse
Affiliation(s)
- Courtney Clyburn
- Department of Neural and Behavioral Sciences, Penn State College of Medicine , Hershey, Pennsylvania
| | - Caitlin A Howe
- Department of Neural and Behavioral Sciences, Penn State College of Medicine , Hershey, Pennsylvania
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Penn State College of Medicine , Hershey, Pennsylvania
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine , Hershey, Pennsylvania
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine , Hershey, Pennsylvania
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
27
|
Expanding Regulation Theory With Oxytocin: A Psychoneurobiological Model for Infant Development. Nurs Res 2019; 67:133-145. [PMID: 29489634 DOI: 10.1097/nnr.0000000000000261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxytocin (OT), an affiliation hormone released during supportive social interactions, provides an exemplar of how social environments are reflected in our neurobiology from the beginning of life. A growing body of OT research has uncovered previously unknown functions of OT, including modulation of parenting behaviors, neuroprotection, affiliation, and bonding. Regulation theory provides a strong framework for describing how the maternal care environment affects infant neurodevelopment through a symphony of molecules that form the neurobiological milieu of the developing infant brain. OBJECTIVES The purpose of this article was to expand on regulation theory by discussing how OT-based processes contribute to infant neurobiology and by proposing a new model for maternal-infant nursing practice and research. APPROACH We structure our discussion of the socially based, neurobiological processes of OT through its effects in the nested hierarchies of genetic, epigenetic, molecular, cellular, neural circuit, multiorgan, and behavioral levels. Our discussion is also presented chronologically, as OT works through a positive feedback loop during infant neurodevelopment, beginning prenatally and continuing after birth. IMPLICATIONS Nurses are in a unique position to use innovative discoveries made by the biologic sciences to generate new nursing theories that inform clinical practice and inspire the development of innovative interventions that maximize the infant's exposure to supportive maternal care.
Collapse
|
28
|
Lesuis SL, Lucassen PJ, Krugers HJ. Early life stress impairs fear memory and synaptic plasticity; a potential role for GluN2B. Neuropharmacology 2019; 149:195-203. [PMID: 30641077 DOI: 10.1016/j.neuropharm.2019.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/01/2023]
Abstract
Programming of the brain by early life stress has been associated with alterations in structure and function of the dorsal hippocampus. Yet, the underlying molecular mechanisms remain largely elusive. In this study, we examined the effects of early life stress (ELS) - by housing mouse dams with limited nesting and bedding material from postnatal days 2-9 and examined in 6 month old offspring; 1) auditory fear conditioning, 2) expression of the hippocampal N-methyl-d-aspartate receptor (NMDA-R) subunits 2A and 2B (GluN2A, GluN2B), and expression of PSD-95 and synaptophysin, and 3) short- and long-term (LTP) synaptic plasticity. Given its critical role in NMDA receptor function and synaptic plasticity, we further examined the role of GluN2B in effects of ELS on synaptic plasticity and fear memory formation. We demonstrate that ELS impaired fear memory in 6 month old mice and decreased hippocampal LTP as well as the paired-pulse ratio (PPR). ELS also reduced hippocampal GluN2B expression. Interestingly, pharmacological blockade of GluN2B with the selective antagonist Ro25 6981 was less effective to reduce synaptic plasticity in ELS mice, and was also ineffective to impair memory retrieval in ELS mice. These studies suggest that ELS reduces hippocampal synaptic plasticity and fear memory formation and hampers GluN2B receptor function. As such, GluN2B may provide an important target for future strategies to prevent lasting ELS effects on cognition.
Collapse
Affiliation(s)
- Sylvie L Lesuis
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
29
|
Loss-of-Huntingtin in Medial and Lateral Ganglionic Lineages Differentially Disrupts Regional Interneuron and Projection Neuron Subtypes and Promotes Huntington's Disease-Associated Behavioral, Cellular, and Pathological Hallmarks. J Neurosci 2019; 39:1892-1909. [PMID: 30626701 DOI: 10.1523/jneurosci.2443-18.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Emerging studies are providing compelling evidence that the pathogenesis of Huntington's disease (HD), a neurodegenerative disorder with frequent midlife onset, encompasses developmental components. Moreover, our previous studies using a hypomorphic model targeting huntingtin during the neurodevelopmental period indicated that loss-of-function mechanisms account for this pathogenic developmental component (Arteaga-Bracho et al., 2016). In the present study, we specifically ascertained the roles of subpallial lineage species in eliciting the previously observed HD-like phenotypes. Accordingly, we used the Cre-loxP system to conditionally ablate the murine huntingtin gene (Httflx) in cells expressing the subpallial patterning markers Gsx2 (Gsx2-Cre) or Nkx2.1 (Nkx2.1-Cre) in Httflx mice of both sexes. These genetic manipulations elicited anxiety-like behaviors, hyperkinetic locomotion, age-dependent motor deficits, and weight loss in both Httflx;Gsx2-Cre and Httflx;Nkx2.1-Cre mice. In addition, these strains displayed unique but complementary spatial patterns of basal ganglia degeneration that are strikingly reminiscent of those seen in human cases of HD. Furthermore, we observed early deficits of somatostatin-positive and Reelin-positive interneurons in both Htt subpallial null strains, as well as early increases of cholinergic interneurons, Foxp2+ arkypallidal neurons, and incipient deficits with age-dependent loss of parvalbumin-positive neurons in Httflx;Nkx2.1-Cre mice. Overall, our findings indicate that selective loss-of-huntingtin function in subpallial lineages differentially disrupts the number, complement, and survival of forebrain interneurons and globus pallidus GABAergic neurons, thereby leading to the development of key neurological hallmarks of HD during adult life. Our findings have important implications for the establishment and deployment of neural circuitries and the integrity of network reserve in health and disease.SIGNIFICANCE STATEMENT Huntington's disease (HD) is a progressive degenerative disorder caused by aberrant trinucleotide expansion in the huntingtin gene. Mechanistically, this mutation involves both loss- and gain-of-function mechanisms affecting a broad array of cellular and molecular processes. Although huntingtin is widely expressed during adult life, the mutant protein only causes the demise of selective neuronal subtypes. The mechanisms accounting for this differential vulnerability remain elusive. In this study, we have demonstrated that loss-of-huntingtin function in subpallial lineages not only differentially disrupts distinct interneuron species early in life, but also leads to a pattern of neurological deficits that are reminiscent of HD. This work suggests that early disruption of selective neuronal subtypes may account for the profiles of enhanced regional cellular vulnerability to death in HD.
Collapse
|
30
|
Scott H, Phillips T, Stuart G, Rogers M, Steinkraus B, Grant S, Case C. Preeclamptic placentae release factors that damage neurons: implications for foetal programming of disease. Neuronal Signal 2018; 2:NS20180139. [PMID: 32714596 PMCID: PMC7363326 DOI: 10.1042/ns20180139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022] Open
Abstract
Prenatal development is a critical period for programming of neurological disease. Preeclampsia, a pregnancy complication involving oxidative stress in the placenta, has been associated with long-term health implications for the child, including an increased risk of developing schizophrenia and autism spectrum disorders in later life. To investigate if molecules released by the placenta may be important mediators in foetal programming of the brain, we analysed if placental tissue delivered from patients with preeclampsia secreted molecules that could affect cortical cells in culture. Application of culture medium conditioned by preeclamptic placentae to mixed cortical cultures caused changes in neurons and astrocytes that were related to key changes observed in brains of patients with schizophrenia and autism, including effects on dendrite lengths, astrocyte number as well as on levels of glutamate and γ-aminobutyric acid receptors. Treatment of the placental explants with an antioxidant prevented neuronal abnormalities. Furthermore, we identified that bidirectional communication between neurons and astrocytes, potentially via glutamate, is required to produce the effects of preeclamptic placenta medium on cortical cells. Analysis of possible signalling molecules in the placenta-conditioned medium showed that the secretion profile of extracellular microRNAs, small post-transcriptional regulators, was altered in preeclampsia and partially rescued by antioxidant treatment of the placental explants. Predicted targets of these differentially abundant microRNAs were linked to neurodevelopment and the placenta. The present study provides further evidence that the diseased placenta may release factors that damage cortical cells and suggests the possibility of targeted antioxidant treatment of the placenta to prevent neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hannah Scott
- School of Clinical Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, U.K
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, U.K
| | - Tom J. Phillips
- School of Clinical Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, U.K
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, U.K
| | - Greer C. Stuart
- Department of Obstetrics, Southmead Hospital, Bristol BS10 5NB, U.K
| | - Mark F. Rogers
- Intelligent Systems Laboratory, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, U.K
| | - Bruno R. Steinkraus
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, U.K
| | - Simon Grant
- Department of Obstetrics, Southmead Hospital, Bristol BS10 5NB, U.K
| | - C. Patrick Case
- School of Clinical Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, U.K
| |
Collapse
|
31
|
Quesnel-Vallières M, Weatheritt RJ, Cordes SP, Blencowe BJ. Autism spectrum disorder: insights into convergent mechanisms from transcriptomics. Nat Rev Genet 2018; 20:51-63. [DOI: 10.1038/s41576-018-0066-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Granato A, Dering B. Alcohol and the Developing Brain: Why Neurons Die and How Survivors Change. Int J Mol Sci 2018; 19:ijms19102992. [PMID: 30274375 PMCID: PMC6213645 DOI: 10.3390/ijms19102992] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023] Open
Abstract
The consequences of alcohol drinking during pregnancy are dramatic and usually referred to as fetal alcohol spectrum disorders (FASD). This condition is one of the main causes of intellectual disability in Western countries. The immature fetal brain exposed to ethanol undergoes massive neuron death. However, the same mechanisms leading to cell death can also be responsible for changes of developmental plasticity. As a consequence of such a maladaptive plasticity, the functional damage to central nervous system structures is amplified and leads to permanent sequelae. Here we review the literature dealing with experimental FASD, focusing on the alterations of the cerebral cortex. We propose that the reciprocal interaction between cell death and maladaptive plasticity represents the main pathogenetic mechanism of the alcohol-induced damage to the developing brain.
Collapse
Affiliation(s)
- Alberto Granato
- Department of Psychology, Catholic University, Largo A. Gemelli 1, 20123 Milan, Italy.
| | - Benjamin Dering
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| |
Collapse
|
33
|
Alonazi NA, Alnemri A, El Melegy E, Mohamed N, Talaat I, Hosny A, Alonazi A, Mohamed S. Clinical characteristics and aetiology of early childhood epilepsy: a single centre experience in Saudi Arabia. Sudan J Paediatr 2018; 18:57-62. [PMID: 30166763 DOI: 10.24911/sjp.2018.1.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Seizures in children and neonatal period have variety of causes; however, most of childhood seizures are idiopathic. The aim of this study was to review the causes of epilepsy in children presenting in the first 2 years of life using the International League Against Epilepsy classification released in 2010. This was a retrospective chart review study that was conducted at a tertiary center in Saudi Arabia. Two hundred and twenty-one patients were included in the study, 31 with conditions mimic epilepsy were excluded. The remaining 190 patients were classified into: Group A, structural/metabolic, 82 (43%); Group B, genetic, 24 (13%) and Group C, unknown, 84 (44%). The commonest seizures' type was tonic-clonic in 106 (56%), followed by clonic 29 (15.3%), myoclonic 22 (11.6%) and a tonic 16 (8.4%). Pyramidal signs, global developmental delay, hypotonia, micro/macrocephaly and abnormal computed tomography and/or magnetic resonance imaging brain were more common in the structural/metabolic group (p < 0.05). Electroencephalography was abnormal in 136 (72%) patients, mostly in the structural/metabolic group (p = 0.011). In conclusion, the aetiology of epilepsy in this cohort was mainly unknown or secondary to structural/metabolic causes.
Collapse
Affiliation(s)
- Noufa A Alonazi
- Paediatric Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Abdulrahman Alnemri
- Department of Pediatrics, King Saud University, College of Medicine, Riyadh, Saudi Arabia
| | - Ebtessam El Melegy
- Department of Pediatrics, Saad Specialist Hospital, Al Khobar, Saudi Arabia
| | - Noon Mohamed
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Iman Talaat
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Amany Hosny
- Department of Pediatrics, Saad Specialist Hospital, Al Khobar, Saudi Arabia
| | - Aisha Alonazi
- Paediatric Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Sarar Mohamed
- Paediatric Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.,Department of Pediatrics, Saad Specialist Hospital, Al Khobar, Saudi Arabia
| |
Collapse
|
34
|
Bird CW, Taylor DH, Pinkowski NJ, Chavez GJ, Valenzuela CF. Long-term Reductions in the Population of GABAergic Interneurons in the Mouse Hippocampus following Developmental Ethanol Exposure. Neuroscience 2018; 383:60-73. [PMID: 29753864 PMCID: PMC5994377 DOI: 10.1016/j.neuroscience.2018.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
Developmental exposure to ethanol leads to a constellation of cognitive and behavioral abnormalities known as Fetal Alcohol Spectrum Disorders (FASDs). Many cell types throughout the central nervous system are negatively impacted by gestational alcohol exposure, including inhibitory, GABAergic interneurons. Little evidence exists, however, describing the long-term impact of fetal alcohol exposure on survival of interneurons within the hippocampal formation, which is critical for learning and memory processes that are impaired in individuals with FASDs. Mice expressing Venus yellow fluorescent protein in inhibitory interneurons were exposed to vaporized ethanol during the third trimester equivalent of human gestation (postnatal days 2-9), and the long-term effects on interneuron numbers were measured using unbiased stereology at P90. In adulthood, interneuron populations were reduced in every hippocampal region examined. Moreover, we found that a single exposure to ethanol at P7 caused robust activation of apoptotic neurodegeneration of interneurons in the hilus, granule cell layer, CA1 and CA3 regions of the hippocampus. These studies demonstrate that developmental ethanol exposure has a long-term impact on hippocampal interneuron survivability, and may provide a mechanism partially explaining deficits in hippocampal function and hippocampus-dependent behaviors in those afflicted with FASDs.
Collapse
Affiliation(s)
- Clark W Bird
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Devin H Taylor
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Natalie J Pinkowski
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - G Jill Chavez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
35
|
Katahira T, Miyazaki N, Motoyama J. Immediate effects of maternal separation on the development of interneurons derived from medial ganglionic eminence in the neonatal mouse hippocampus. Dev Growth Differ 2018; 60:278-290. [DOI: 10.1111/dgd.12540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Tatsuya Katahira
- Organization of Advanced Research and Education; Doshisha University; Kyoto Japan
| | | | - Jun Motoyama
- Laboratory of Developmental Neurobiology; Graduate School of Brain Science; Doshisha University; Kyoto Japan
| |
Collapse
|
36
|
Fueta Y, Sekino Y, Yoshida S, Kanda Y, Ueno S. Prenatal exposure to valproic acid alters the development of excitability in the postnatal rat hippocampus. Neurotoxicology 2018; 65:1-8. [DOI: 10.1016/j.neuro.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/03/2017] [Accepted: 01/04/2018] [Indexed: 11/16/2022]
|
37
|
Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018; 78:238-270. [PMID: 28901728 PMCID: PMC6589839 DOI: 10.1002/dneu.22536] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
38
|
Antkowiak B, Rudolph U. New insights in the systemic and molecular underpinnings of general anesthetic actions mediated by γ-aminobutyric acid A receptors. Curr Opin Anaesthesiol 2018; 29:447-53. [PMID: 27168087 DOI: 10.1097/aco.0000000000000358] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The review highlights novel insights into the role of γ-aminobutyric acid A (GABAA) receptors in mediating clinically relevant actions of anesthetic agents. RECENT FINDINGS GABAA receptors in the hippocampus are located on glutamatergic pyramidal cells and GABAergic interneurons. Etomidate-induced inhibition of a synaptic correlate of learning and memory is caused by receptors on nonpyramidal neurons, likely on interneurons that incorporate α5 subunits. Selective enhancement of α2 subunit containing GABAA receptors in the spinal cord provides antihyperalgesia against inflammatory and neuropathic pain without causing sedation, motor impairment, and tolerance development. Inflammation, traumatic brain injury, and exposure to anesthetic agents modify the expression patterns of GABAA receptors in a subtype-specific manner. These modifications may persist for weeks. The neuroactive steroid alphaxalone causes fast-onset and short-duration anesthesia in humans. Cardiovascular and respiratory side-effects are less severe than with propofol. SUMMARY Identification of the molecular and cellular substrates involved in anesthesia and insights into disease and drug-induced alterations in the expression patterns of GABAA receptors in the central nervous system are emphasizing the need for individualized anesthesia care. Introducing neuroactive steroids into clinical anesthesia is expected to reduce cardiovascular and respiratory side-effects.
Collapse
Affiliation(s)
- Bernd Antkowiak
- aDepartment of Anesthesiology and Intensive Care, Experimental Anesthesiology Section bWerner Reichardt Center for Integrative Neuroscience, Eberhard-Karls-University, Tübingen, Germany cLaboratory of Genetic Neuropharmacology, McLean Hospital, Belmont dDepartment of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
39
|
Belelli D, Brown AR, Mitchell SJ, Gunn BG, Herd MB, Phillips GD, Seifi M, Swinny JD, Lambert JJ. Endogenous neurosteroids influence synaptic GABA A receptors during postnatal development. J Neuroendocrinol 2018; 30. [PMID: 28905487 DOI: 10.1111/jne.12537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 12/12/2022]
Abstract
GABA plays a key role in both embryonic and neonatal brain development. For example, during early neonatal nervous system maturation, synaptic transmission, mediated by GABAA receptors (GABAA Rs), undergoes a temporally specific form of synaptic plasticity to accommodate the changing requirements of maturing neural networks. Specifically, the duration of miniature inhibitory postsynaptic currents (mIPSCs), resulting from vesicular GABA activating synaptic GABAA Rs, is reduced, permitting neurones to appropriately influence the window for postsynaptic excitation. Conventionally, programmed expression changes to the subtype of synaptic GABAA R are primarily implicated in this plasticity. However, it is now evident that, in developing thalamic and cortical principal- and inter-neurones, an endogenous neurosteroid tone (eg, allopregnanolone) enhances synaptic GABAA R function. Furthermore, a cessation of steroidogenesis, as a result of a lack of substrate, or a co-factor, appears to be primarily responsible for early neonatal changes to GABAergic synaptic transmission, followed by further refinement, which results from subsequent alterations of the GABAA R subtype. The timing of this cessation of neurosteroid influence is neurone-specific, occurring by postnatal day (P)10 in the thalamus but approximately 1 week later in the cortex. Neurosteroid levels are not static and change dynamically in a variety of physiological and pathophysiological scenarios. Given that GABA plays an important role in brain development, abnormal perturbations of neonatal GABAA R-active neurosteroids may have not only a considerable immediate, but also a longer-term impact upon neural network activity. Here, we review recent evidence indicating that changes in neurosteroidogenesis substantially influence neonatal GABAergic synaptic transmission. We discuss the physiological relevance of these findings and how the interference of neurosteroid-GABAA R interaction early in life may contribute to psychiatric conditions later in life.
Collapse
Affiliation(s)
- D Belelli
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - A R Brown
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - S J Mitchell
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - B G Gunn
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - M B Herd
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - G D Phillips
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - M Seifi
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - J D Swinny
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - J J Lambert
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| |
Collapse
|
40
|
Antisecretory Factor Modulates GABA A Receptor Activity in Neurons. J Mol Neurosci 2018; 64:312-320. [PMID: 29308551 DOI: 10.1007/s12031-017-1024-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
The antisecretory factor is an endogenous protein found in all mammalian tissues investigated so far. It acts by counteracting intestinal hypersecretion and various forms of inflammation, but the detailed mechanism of antisecretory factor (AF) action is unknown. We tested neuronal GABAA receptors by means of AF-16, a potent AF peptide derived from amino acids 36-51 from the NH2 part of AF. Cultured rat cerebellar granule cells were used, and the effects on the GABA-mediated chloride currents were determined by whole-cell patch clamp. Both the neurotransmitter GABA and AF-16 were added by perfusion of the experimental system. A 3-min AF-16 preincubation was more efficacious than 30 s in significantly elevating the rapidly desensitizing GABA-activated chloride current. No effect was found on the tonic, slowly desensitizing current. The GABA-activated current increase by AF-16 demonstrated a low k of 41 pM with a maximal increase of 37% persisting for some minutes after AF washout, independent from GABA concentration. This indicates an effect on the maximal stimulation (E%Max) excluding an altered affinity between GABA and its receptor. An immunocytochemical fluorescence approach with anti γ2 subunit antibodies demonstrated an increased expression of GABAA receptors. Thus, both the electrophysiological and the immunofluorescence approach indicate an increased appearance of GABAA receptors on the neuronal membrane. The rationale of the experiments was to test the effect of AF on a defined neuronal population of GABAA receptors. The implications of the results on the impact of AF on the enteric nervous system or on brain function are discussed.
Collapse
|
41
|
Al-Muhtasib N, Sepulveda-Rodriguez A, Vicini S, Forcelli PA. Neonatal phenobarbital exposure disrupts GABAergic synaptic maturation in rat CA1 neurons. Epilepsia 2018; 59:333-344. [PMID: 29315524 DOI: 10.1111/epi.13990] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. The use of phenobarbital continues despite growing evidence that it exerts suboptimal seizure control and is associated with long-term alterations in brain structure, function, and behavior. Alterations following neonatal phenobarbital exposure include acute induction of neuronal apoptosis, disruption of synaptic development in the striatum, and a host of behavioral deficits. These behavioral deficits include those in learning and memory mediated by the hippocampus. However, the synaptic changes caused by acute exposure to phenobarbital that lead to lasting effects on brain function and behavior remain understudied. METHODS Postnatal day (P)7 rat pups were treated with phenobarbital (75 mg/kg) or saline. On P13-14 or P29-37, acute slices were prepared and whole-cell patch-clamp recordings were made from CA1 pyramidal neurons. RESULTS At P14 we found an increase in miniature inhibitory postsynaptic current (mIPSC) frequency in the phenobarbital-exposed as compared to the saline-exposed group. In addition to this change in mIPSC frequency, the phenobarbital group displayed larger bicuculline-sensitive tonic currents, decreased capacitance and membrane time constant, and a surprising persistence of giant depolarizing potentials. At P29+, the frequency of mIPSCs in the saline-exposed group had increased significantly from the frequency at P14, typical of normal synaptic development; at this age the phenobarbital-exposed group displayed a lower mIPSC frequency than did the control group. Spontaneous inhibitory postsynaptic current (sIPSC) frequency was unaffected at either P14 or P29+. SIGNIFICANCE These neurophysiological alterations following phenobarbital exposure provide a potential mechanism by which acute phenobarbital exposure can have a long-lasting impact on brain development and behavior.
Collapse
Affiliation(s)
- Nour Al-Muhtasib
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA
| | - Alberto Sepulveda-Rodriguez
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.,Department of Neuroscience, Georgetown University, Washington, DC, USA
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.,Department of Neuroscience, Georgetown University, Washington, DC, USA
| |
Collapse
|
42
|
McMenamin CA, Travagli RA, Browning KN. Perinatal high fat diet increases inhibition of dorsal motor nucleus of the vagus neurons regulating gastric functions. Neurogastroenterol Motil 2018; 30:10.1111/nmo.13150. [PMID: 28762595 PMCID: PMC5739938 DOI: 10.1111/nmo.13150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/07/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Previous studies suggest an increased inhibition of dorsal motor nucleus of the vagus (DMV) neurons following exposure to a perinatal high fat diet (PNHFD); the underlying neural mechanisms, however, remain unknown. This study assessed the effects of PNHFD on inhibitory synaptic inputs to DMV neurons and the vagally dependent control of gastric tone and motility. METHODS Whole-cell patch clamp recordings were made from DMV neurons in thin brainstem slices from Sprague-Dawley rats fed either a control diet or HFD (14 or 60% kcal from fat, respectively) from embryonic day 13 onwards; gastric tone and motility were recorded in in vivo anesthetized rats. KEY RESULTS The non-selective GABAA antagonist, BIC (10 μmol L-1 ), induced comparable inward currents in PNHFD and control DMV neurons, but a larger current in PNHFD neurons at higher concentrations (50 μmol L-1 ). Differences were not apparent in neuronal responses to the phasic GABAA antagonist, gabazine (GBZ), the extrasynaptic GABAA agonist, THIP, the GABA transport blocker, nipecotic acid, or the gliotoxin, fluoroacetate, suggesting that PNHFD altered inhibitory transmission but not GABAA receptor density or function, GABA uptake or glial modulation of synaptic strength. Similarly, the increase in gastric motility and tone following brainstem microinjection of low doses of BIC (1-10 pmoles) and GBZ (0.01-0.1 pmoles) were unchanged in PNHFD rats while higher doses of BIC (25 pmoles) induced a significantly larger increase in gastric tone compared to control. CONCLUSIONS AND INFERENCES These studies suggest that exposure to PNHFD increases the tonic inhibition of DMV neurons, possibly contributing to dysregulated vagal control of gastric functions.
Collapse
Affiliation(s)
| | | | - Kirsteen N. Browning
- Address for correspondence: Kirsteen N Browning, PhD, Department of Neural and Behavioral Science, Penn State College of Medicine, 500 University Drive, MC H109, Hershey, PA 17033, Tel: 717 531 8267,
| |
Collapse
|
43
|
Developmental excitatory-to-inhibitory GABA-polarity switch is disrupted in 22q11.2 deletion syndrome: a potential target for clinical therapeutics. Sci Rep 2017; 7:15752. [PMID: 29146941 PMCID: PMC5691208 DOI: 10.1038/s41598-017-15793-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
Individuals with 22q11.2 microdeletion syndrome (22q11.2 DS) show cognitive and behavioral dysfunctions, developmental delays in childhood and risk of developing schizophrenia and autism. Despite extensive previous studies in adult animal models, a possible embryonic root of this syndrome has not been determined. Here, in neurons from a 22q11.2 DS mouse model (Lgdel+/−), we found embryonic-premature alterations in the neuronal chloride cotransporters indicated by dysregulated NKCC1 and KCC2 protein expression levels. We demonstrate with large-scale spiking activity recordings a concurrent deregulation of the spontaneous network activity and homeostatic network plasticity. Additionally, Lgdel+/− networks at early development show abnormal neuritogenesis and void of synchronized spontaneous activity. Furthermore, parallel experiments on Dgcr8+/− mouse cultures reveal a significant, yet not exclusive contribution of the dgcr8 gene to our phenotypes of Lgdel+/− networks. Finally, we show that application of bumetanide, an inhibitor of NKCC1, significantly decreases the hyper-excitable action of GABAA receptor signaling and restores network homeostatic plasticity in Lgdel+/− networks. Overall, by exploiting an on-a-chip 22q11.2 DS model, our results suggest a delayed GABA-switch in Lgdel+/− neurons, which may contribute to a delayed embryonic development. Prospectively, acting on the GABA-polarity switch offers a potential target for 22q11.2 DS therapeutic intervention.
Collapse
|
44
|
Hu D, Yu ZL, Zhang Y, Han Y, Zhang W, Lu L, Shi J. Bumetanide treatment during early development rescues maternal separation-induced susceptibility to stress. Sci Rep 2017; 7:11878. [PMID: 28928398 PMCID: PMC5605528 DOI: 10.1038/s41598-017-12183-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Stress is a major risk factor for psychiatric disorders, such as depression, posttraumatic stress disorder, and schizophrenia. Early life stress, such as maternal separation, can have long-term effects on the development of the central nervous system and pathogenesis of psychiatric disorders. In the present study, we found that maternal separation increased the susceptibility to stress in adolescent rats, increased the expression of Na+/K+/2Cl- cotransporter 1 (NKCC1) on postnatal day 14, and increased the expression of K+/2Cl- cotransporter 2 (KCC2) and γ-aminobutyric acid A (GABAA) receptor subunits on postnatal day 40 in the hippocampus. NKCC1 inhibition by the U.S. Food and Drug Administration-approved drug bumetanide during the first two postnatal weeks rescued the depressive- and anxiety-like behavior that was induced by maternal separation and decreased the expression of NKCC1, KCC2 and GABAA receptor α1 and β2,3 subunits in the hippocampus. Bumetanide treatment during early development did not adversely affect body weight or normal behaviors in naive rats, or affect serum osmolality in adult rats. These results suggest that bumetanide treatment during early development may prevent the maternal separation-induced susceptibility to stress and impairments in GABAergic transmission in the hippocampus.
Collapse
Affiliation(s)
- Die Hu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhou-Long Yu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Beijing, 100191, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing, 100191, China.
- Key Laboratory for Neuroscience of the Ministry of Education and Ministry of Public Healthy, Beijing, 100191, China.
| |
Collapse
|
45
|
Misregulation of an Activity-Dependent Splicing Network as a Common Mechanism Underlying Autism Spectrum Disorders. Mol Cell 2017; 64:1023-1034. [PMID: 27984743 DOI: 10.1016/j.molcel.2016.11.033] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/27/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022]
Abstract
A key challenge in understanding and ultimately treating autism is to identify common molecular mechanisms underlying this genetically heterogeneous disorder. Transcriptomic profiling of autistic brains has revealed correlated misregulation of the neuronal splicing regulator nSR100/SRRM4 and its target microexon splicing program in more than one-third of analyzed individuals. To investigate whether nSR100 misregulation is causally linked to autism, we generated mutant mice with reduced levels of this protein and its target splicing program. Remarkably, these mice display multiple autistic-like features, including altered social behaviors, synaptic density, and signaling. Moreover, increased neuronal activity, which is often associated with autism, results in a rapid decrease in nSR100 and splicing of microexons that significantly overlap those misregulated in autistic brains. Collectively, our results provide evidence that misregulation of an nSR100-dependent splicing network controlled by changes in neuronal activity is causally linked to a substantial fraction of autism cases.
Collapse
|
46
|
Xie SN, Ye H, Li JF, An LX. Sevoflurane neurotoxicity in neonatal rats is related to an increase in the GABAAR α1/GABAAR α2 ratio. J Neurosci Res 2017; 95:2367-2375. [PMID: 28843008 DOI: 10.1002/jnr.24118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 05/23/2017] [Accepted: 06/26/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Si-Ning Xie
- Department of Anesthesiology, Beijing TianTan Hospital; Capital Medical University; No. 6 Tiantan Xili, Dongcheng District Beijing 100050 China
| | - Hong Ye
- Department of Anesthesiology, Beijing TianTan Hospital; Capital Medical University; No. 6 Tiantan Xili, Dongcheng District Beijing 100050 China
| | - Jun-Fa Li
- Department of Neurobiology; Capital Medical University; No. 10 Xi-Tou-Tiao, You’an Men Wai, Fengtai District Beijing 100069 China
| | - Li-Xin An
- Department of Anesthesiology, Beijing TianTan Hospital; Capital Medical University; No. 6 Tiantan Xili, Dongcheng District Beijing 100050 China
| |
Collapse
|
47
|
Vidal V, García-Cerro S, Martínez P, Corrales A, Lantigua S, Vidal R, Rueda N, Ozmen L, Hernández MC, Martínez-Cué C. Decreasing the Expression of GABA A α5 Subunit-Containing Receptors Partially Improves Cognitive, Electrophysiological, and Morphological Hippocampal Defects in the Ts65Dn Model of Down Syndrome. Mol Neurobiol 2017; 55:4745-4762. [PMID: 28717969 DOI: 10.1007/s12035-017-0675-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022]
Abstract
Trisomy 21 or Down syndrome (DS) is the most common cause of intellectual disability of a genetic origin. The Ts65Dn (TS) mouse, which is the most commonly used and best-characterized mouse model of DS, displays many of the cognitive, neuromorphological, and biochemical anomalies that are found in the human condition. One of the mechanisms that have been proposed to be responsible for the cognitive deficits in this mouse model is impaired GABA-mediated inhibition. Because of the well-known modulatory role of GABAA α5 subunit-containing receptors in cognitive processes, these receptors are considered to be potential targets for improving the intellectual disability in DS. The chronic administration of GABAA α5-negative allosteric modulators has been shown to be procognitive without anxiogenic or proconvulsant side effects. In the present study, we use a genetic approach to evaluate the contribution of GABAA α5 subunit-containing receptors to the cognitive, electrophysiological, and neuromorphological deficits in TS mice. We show that reducing the expression of GABAA α5 receptors by deleting one or two copies of the Gabra5 gene in TS mice partially ameliorated the cognitive impairments, improved long-term potentiation, enhanced neural differentiation and maturation, and normalized the density of the GABAergic synapse markers. Reducing the gene dosage of Gabra5 in TS mice did not induce motor alterations and anxiety or affect the viability of the mice. Our results provide further evidence of the role of GABAA α5 receptor-mediated inhibition in cognitive impairment in the TS mouse model of DS.
Collapse
Affiliation(s)
- Verónica Vidal
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad deCantabria, Santander, Spain
| | - Susana García-Cerro
- Departamento de Fundamentos Clínicos, Unidad de Farmacología, Universitat de Barcelona, Barcelona, Spain
| | - Paula Martínez
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad deCantabria, Santander, Spain
| | - Andrea Corrales
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad deCantabria, Santander, Spain
| | - Sara Lantigua
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad deCantabria, Santander, Spain
| | - Rebeca Vidal
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad deCantabria, Santander, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Santander, Spain.,Centro de Investigacion Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Noemí Rueda
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad deCantabria, Santander, Spain
| | - Laurence Ozmen
- Pharma Research and Early Development, Hoffman-La Roche Ltd., Basel, Switzerland
| | | | - Carmen Martínez-Cué
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad deCantabria, Santander, Spain.
| |
Collapse
|
48
|
McMenamin CA, Travagli RA, Browning KN. Inhibitory neurotransmission regulates vagal efferent activity and gastric motility. Exp Biol Med (Maywood) 2017; 241:1343-50. [PMID: 27302177 DOI: 10.1177/1535370216654228] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The gastrointestinal tract receives extrinsic innervation from both the sympathetic and parasympathetic nervous systems, which regulate and modulate the function of the intrinsic (enteric) nervous system. The stomach and upper gastrointestinal tract in particular are heavily influenced by the parasympathetic nervous system, supplied by the vagus nerve, and disruption of vagal sensory or motor functions results in disorganized motility patterns, disrupted receptive relaxation and accommodation, and delayed gastric emptying, amongst others. Studies from several laboratories have shown that the activity of vagal efferent motoneurons innervating the upper GI tract is inhibited tonically by GABAergic synaptic inputs from the adjacent nucleus tractus solitarius. Disruption of this influential central GABA input impacts vagal efferent output, hence gastric functions, significantly. The purpose of this review is to describe the development, physiology, and pathophysiology of this functionally dominant inhibitory synapse and its role in regulating vagally determined gastric functions.
Collapse
Affiliation(s)
- Caitlin A McMenamin
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
49
|
Heeger DJ, Behrmann M, Dinstein I. Vision as a Beachhead. Biol Psychiatry 2017; 81:832-837. [PMID: 27884424 DOI: 10.1016/j.biopsych.2016.09.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/08/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
When neural circuits develop abnormally due to different genetic deficits and/or environmental insults, neural computations and the behaviors that rely on them are altered. Computational theories that relate neural circuits with specific quantifiable behavioral and physiological phenomena, therefore, serve as extremely useful tools for elucidating the neuropathological mechanisms that underlie different disorders. The visual system is particularly well suited for characterizing differences in neural computations; computational theories of vision are well established, and empirical protocols for measuring the parameters of those theories are well developed. In this article, we examine how psychophysical and neuroimaging measurements from human subjects are being used to test hypotheses about abnormal neural computations in autism, with an emphasis on hypotheses regarding potential excitation/inhibition imbalances. We discuss the complexity of relating specific computational abnormalities to particular underlying mechanisms given the diversity of neural circuits that can generate the same computation, and we discuss areas of research in which computational theories need to be further developed to provide useful frameworks for interpreting existing results. A final emphasis is placed on the need to extend existing ideas into developmental frameworks that take into account the dramatic developmental changes in neurophysiology (e.g., changes in excitation/inhibition balance) that take place during the first years of life, when autism initially emerges.
Collapse
Affiliation(s)
- David J Heeger
- Department of Psychology and Center for Neural Science, New York University, New York, New York.
| | - Marlene Behrmann
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Ilan Dinstein
- Psychology Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
50
|
Contestabile A, Magara S, Cancedda L. The GABAergic Hypothesis for Cognitive Disabilities in Down Syndrome. Front Cell Neurosci 2017; 11:54. [PMID: 28326014 PMCID: PMC5339239 DOI: 10.3389/fncel.2017.00054] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/14/2017] [Indexed: 12/04/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by the presence of a third copy of chromosome 21. DS affects multiple organs, but it invariably results in altered brain development and diverse degrees of intellectual disability. A large body of evidence has shown that synaptic deficits and memory impairment are largely determined by altered GABAergic signaling in trisomic mouse models of DS. These alterations arise during brain development while extending into adulthood, and include genesis of GABAergic neurons, variation of the inhibitory drive and modifications in the control of neural-network excitability. Accordingly, different pharmacological interventions targeting GABAergic signaling have proven promising preclinical approaches to rescue cognitive impairment in DS mouse models. In this review, we will discuss recent data regarding the complex scenario of GABAergic dysfunctions in the trisomic brain of DS mice and patients, and we will evaluate the state of current clinical research targeting GABAergic signaling in individuals with DS.
Collapse
Affiliation(s)
- Andrea Contestabile
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Salvatore Magara
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT)Genova, Italy; Dulbecco Telethon InstituteGenova, Italy
| |
Collapse
|