1
|
Vasques X, Paik H, Cif L. Application of quantum machine learning using quantum kernel algorithms on multiclass neuron M-type classification. Sci Rep 2023; 13:11541. [PMID: 37460767 DOI: 10.1038/s41598-023-38558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
The functional characterization of different neuronal types has been a longstanding and crucial challenge. With the advent of physical quantum computers, it has become possible to apply quantum machine learning algorithms to translate theoretical research into practical solutions. Previous studies have shown the advantages of quantum algorithms on artificially generated datasets, and initial experiments with small binary classification problems have yielded comparable outcomes to classical algorithms. However, it is essential to investigate the potential quantum advantage using real-world data. To the best of our knowledge, this study is the first to propose the utilization of quantum systems to classify neuron morphologies, thereby enhancing our understanding of the performance of automatic multiclass neuron classification using quantum kernel methods. We examined the influence of feature engineering on classification accuracy and found that quantum kernel methods achieved similar performance to classical methods, with certain advantages observed in various configurations.
Collapse
Affiliation(s)
- Xavier Vasques
- Laboratoire de Recherche en Neurosciences Cliniques, Montferrier-sur-Lez, France.
- IBM Technology, Bois-Colombes, France.
- Ecole Nationale Supérieure de Cognitique Bordeaux, Bordeaux, France.
| | - Hanhee Paik
- IBM Quantum, IBM T J Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Laura Cif
- Laboratoire de Recherche en Neurosciences Cliniques, Montferrier-sur-Lez, France
| |
Collapse
|
2
|
Guo S, Xue J, Liu J, Ye X, Guo Y, Liu D, Zhao X, Xiong F, Han X, Peng H. Smart imaging to empower brain-wide neuroscience at single-cell levels. Brain Inform 2022; 9:10. [PMID: 35543774 PMCID: PMC9095808 DOI: 10.1186/s40708-022-00158-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
A deep understanding of the neuronal connectivity and networks with detailed cell typing across brain regions is necessary to unravel the mechanisms behind the emotional and memorial functions as well as to find the treatment of brain impairment. Brain-wide imaging with single-cell resolution provides unique advantages to access morphological features of a neuron and to investigate the connectivity of neuron networks, which has led to exciting discoveries over the past years based on animal models, such as rodents. Nonetheless, high-throughput systems are in urgent demand to support studies of neural morphologies at larger scale and more detailed level, as well as to enable research on non-human primates (NHP) and human brains. The advances in artificial intelligence (AI) and computational resources bring great opportunity to 'smart' imaging systems, i.e., to automate, speed up, optimize and upgrade the imaging systems with AI and computational strategies. In this light, we review the important computational techniques that can support smart systems in brain-wide imaging at single-cell resolution.
Collapse
Affiliation(s)
- Shuxia Guo
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China.
| | - Jie Xue
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Jian Liu
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xiangqiao Ye
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Yichen Guo
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Di Liu
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xuan Zhao
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Feng Xiong
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xiaofeng Han
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China.
| | - Hanchuan Peng
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| |
Collapse
|
3
|
Zhang T, Zeng Y, Zhang Y, Zhang X, Shi M, Tang L, Zhang D, Xu B. Neuron type classification in rat brain based on integrative convolutional and tree-based recurrent neural networks. Sci Rep 2021; 11:7291. [PMID: 33790380 PMCID: PMC8012629 DOI: 10.1038/s41598-021-86780-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/17/2021] [Indexed: 11/24/2022] Open
Abstract
The study of cellular complexity in the nervous system based on anatomy has shown more practical and objective advantages in morphology than other perspectives on molecular, physiological, and evolutionary aspects. However, morphology-based neuron type classification in the whole rat brain is challenging, given the significant number of neuron types, limited reconstructed neuron samples, and diverse data formats. Here, we report that different types of deep neural network modules may well process different kinds of features and that the integration of these submodules will show power on the representation and classification of neuron types. For SWC-format data, which are compressed but unstructured, we construct a tree-based recurrent neural network (Tree-RNN) module. For 2D or 3D slice-format data, which are structured but with large volumes of pixels, we construct a convolutional neural network (CNN) module. We also generate a virtually simulated dataset with two classes, reconstruct a CASIA rat-neuron dataset with 2.6 million neurons without labels, and select the NeuroMorpho-rat dataset with 35,000 neurons containing hierarchical labels. In the twelve-class classification task, the proposed model achieves state-of-the-art performance compared with other models, e.g., the CNN, RNN, and support vector machine based on hand-designed features.
Collapse
Affiliation(s)
- Tielin Zhang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Yi Zeng
- Institute of Automation, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yue Zhang
- Electronics and Communication Engineering, Peking University, Beijing, China
| | - Xinhe Zhang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Mengting Shi
- Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Likai Tang
- Department of Automation, Tsinghua University, Beijing, China
| | - Duzhen Zhang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bo Xu
- Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
4
|
Yuste R, Hawrylycz M, Aalling N, Aguilar-Valles A, Arendt D, Armañanzas R, Ascoli GA, Bielza C, Bokharaie V, Bergmann TB, Bystron I, Capogna M, Chang Y, Clemens A, de Kock CPJ, DeFelipe J, Dos Santos SE, Dunville K, Feldmeyer D, Fiáth R, Fishell GJ, Foggetti A, Gao X, Ghaderi P, Goriounova NA, Güntürkün O, Hagihara K, Hall VJ, Helmstaedter M, Herculano-Houzel S, Hilscher MM, Hirase H, Hjerling-Leffler J, Hodge R, Huang J, Huda R, Khodosevich K, Kiehn O, Koch H, Kuebler ES, Kühnemund M, Larrañaga P, Lelieveldt B, Louth EL, Lui JH, Mansvelder HD, Marin O, Martinez-Trujillo J, Chameh HM, Mohapatra AN, Munguba H, Nedergaard M, Němec P, Ofer N, Pfisterer UG, Pontes S, Redmond W, Rossier J, Sanes JR, Scheuermann RH, Serrano-Saiz E, Staiger JF, Somogyi P, Tamás G, Tolias AS, Tosches MA, García MT, Wozny C, Wuttke TV, Liu Y, Yuan J, Zeng H, Lein E. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat Neurosci 2020; 23:1456-1468. [PMID: 32839617 PMCID: PMC7683348 DOI: 10.1038/s41593-020-0685-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the first time, systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of being complete, accurate and permanent. Statistical analyses of these data reveal clusters that often correspond to cell types previously defined by morphological or physiological criteria and that appear conserved across cortical areas and species. To capitalize on these new methods, we propose the adoption of a transcriptome-based taxonomy of cell types for mammalian neocortex. This classification should be hierarchical and use a standardized nomenclature. It should be based on a probabilistic definition of a cell type and incorporate data from different approaches, developmental stages and species. A community-based classification and data aggregation model, such as a knowledge graph, could provide a common foundation for the study of cortical circuits. This community-based classification, nomenclature and data aggregation could serve as an example for cell type atlases in other parts of the body.
Collapse
Affiliation(s)
| | | | | | | | - Detlev Arendt
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ruben Armañanzas
- George Mason University, Fairfax, VA, USA
- BrainScope Company Inc., Bethesda, MD, USA
| | | | | | - Vahid Bokharaie
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | | | | | - Marco Capogna
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - YoonJeung Chang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | - Richárd Fiáth
- Research Centre for Natural Sciences, Budapest, Hungary
| | | | | | - Xuefan Gao
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Parviz Ghaderi
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | - Kenta Hagihara
- Friedrich Miescher Institute for Biological Research, Basel, Switzerland
| | | | | | | | - Markus M Hilscher
- Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | | | | | | | - Josh Huang
- Cold Spring Harbor Laboratory, Laurel Hollow, NY, USA
| | - Rafiq Huda
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, Piscataway, NJ, USA
| | | | - Ole Kiehn
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Eric S Kuebler
- Robarts Research Institute, Western University, London, Ontario, Canada
| | | | | | | | | | - Jan H Lui
- Stanford University, Stanford, CA, USA
| | | | | | - Julio Martinez-Trujillo
- Schulich School of Medicine and Dentistry, Departments of Physiology, Pharmacology and Psychiatry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, CA, USA
| | | | - Jochen F Staiger
- Institute for Neuroanatomy, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | - Christian Wozny
- University of Strathclyde, Glasgow, UK
- MSH Medical School, Hamburg, Germany
| | - Thomas V Wuttke
- Departments of Neurosurgery and of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yong Liu
- University of Copenhagen, Copenhagen, Denmark
| | - Juan Yuan
- Karolinska Institutet, Stockholm, Sweden
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA.
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
5
|
López-Cabrera JD, Hernández-Pérez LA, Orozco-Morales R, Lorenzo-Ginori JV. New morphological features based on the Sholl analysis for automatic classification of traced neurons. J Neurosci Methods 2020; 343:108835. [PMID: 32615140 DOI: 10.1016/j.jneumeth.2020.108835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/29/2020] [Accepted: 06/26/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND This article addresses the automatic classification of reconstructed neurons through their morphological features. The purpose was to extend the capabilities of the L-Measure software. METHODS New morphological features were developed, based on modifications of the conventional Sholl analysis. The lengths of the compartments, as well as their volumes, were added to the features used in the classical analysis in order to improve the results during automatic neuron classification. FSM were used to obtain subsets of lower cardinality from the full feature sets and the usefulness of these subsets was tested through their use in supervised classification tasks. The study was based on two types of neurons belonging to mice: pyramidal and GABAergic interneurons. Furthermore, a set of pyramidal neurons belonging to Later 4 and Layer 5 was analyzed. RESULTS RF classifier shown the best performance combined with a Wrapper method.U-WNAD set allowed to obtain higher values than WN, A and D in all cases and better results than LM for the filters and wrappers FSM. U-LM-WNAD set, led to the highest AUC values for all the FSM studied. Similar results for different regions of cortex were obtained. Comparison with Existing Methods The new features exhibited high discriminatory power with which the values of AUC and Acc obtained in the experiments exceeded those obtained using only the features provided by L-Measure. CONCLUSIONS The highest values of AUC and Acc were obtained from the sets U-WNAD and U-LM-WNAD, evidencing the discriminatory power of the new proposed features.
Collapse
Affiliation(s)
- José D López-Cabrera
- Centro de Investigaciones de la Informática, Universidad Central "Marta Abreu" de Las Villas, Santa Clara, CP 54830, Cuba.
| | | | - Rubén Orozco-Morales
- Departmento de Automática y Sistemas Computacionales, Universidad Central "Marta Abreu" de Las Villas, Santa Clara, Cuba
| | - Juan V Lorenzo-Ginori
- Centro de Investigaciones de la Informática, Universidad Central "Marta Abreu" de Las Villas, Santa Clara, CP 54830, Cuba
| |
Collapse
|
6
|
Cervantes EP, Comin CH, Junior RMC, Costa LDF. Morphological Neuron Classification Based on Dendritic Tree Hierarchy. Neuroinformatics 2019; 17:147-161. [PMID: 30008070 DOI: 10.1007/s12021-018-9388-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The shape of a neuron can reveal interesting properties about its function. Therefore, morphological neuron characterization can contribute to a better understanding of how the brain works. However, one of the great challenges of neuroanatomy is the definition of morphological properties that can be used for categorizing neurons. This paper proposes a new methodology for neuron morphological analysis by considering different hierarchies of the dendritic tree for characterizing and categorizing neuronal cells. The methodology consists in using different strategies for decomposing the dendritic tree along its hierarchies, allowing the identification of relevant parts (possibly related to specific neuronal functions) for classification tasks. A set of more than 5000 neurons corresponding to 10 classes were examined with supervised classification algorithms based on this strategy. It was found that classification accuracies similar to those obtained by using whole neurons can be achieved by considering only parts of the neurons. Branches close to the soma were found to be particularly relevant for classification.
Collapse
Affiliation(s)
| | - Cesar Henrique Comin
- Department of Computer Science, Federal University of São Carlos, São Carlos, Brazil
| | | | - Luciano da Fontoura Costa
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
7
|
Emmenegger V, Qi G, Wang H, Feldmeyer D. Morphological and Functional Characterization of Non-fast-Spiking GABAergic Interneurons in Layer 4 Microcircuitry of Rat Barrel Cortex. Cereb Cortex 2019; 28:1439-1457. [PMID: 29329401 PMCID: PMC6093438 DOI: 10.1093/cercor/bhx352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 12/23/2022] Open
Abstract
GABAergic interneurons are notorious for their heterogeneity, despite constituting a small fraction of the neuronal population in the neocortex. Classification of interneurons is crucial for understanding their widespread cortical functions as they provide a complex and dynamic network, balancing excitation and inhibition. Here, we investigated different types of non-fast-spiking (nFS) interneurons in Layer 4 (L4) of rat barrel cortex using whole-cell patch-clamp recordings with biocytin-filling. Based on a quantitative analysis on a combination of morphological and electrophysiological parameters, we identified 5 distinct types of L4 nFS interneurons: 1) trans-columnar projecting interneurons, 2) locally projecting non-Martinotti-like interneurons, 3) supra-granular projecting Martinotti-like interneurons, 4) intra-columnar projecting VIP-like interneurons, and 5) locally projecting neurogliaform-like interneurons. Trans-columnar projecting interneurons are one of the most striking interneuron types, which have not been described so far in Layer 4. They feature extensive axonal collateralization not only in their home barrel but also in adjacent barrels. Furthermore, we identified that most of the L4 nFS interneurons express somatostatin, while few are positive for the transcription factor Prox1. The morphological and electrophysiological characterization of different L4 nFS interneuron types presented here provides insights into their synaptic connectivity and functional role in cortical information processing.
Collapse
Affiliation(s)
- Vishalini Emmenegger
- Institute of Neuroscience and Medicine, INM-2 and INM-10, Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Department of Biosystems Sciences and Engineering, Bio Engineering Lab, ETH Zürich, Basel, Switzerland
| | - Guanxiao Qi
- Institute of Neuroscience and Medicine, INM-2 and INM-10, Research Centre Jülich, Jülich, Germany
| | - Haijun Wang
- Institute of Neuroscience and Medicine, INM-2 and INM-10, Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, P.R. China
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-2 and INM-10, Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany
- Address correspondence to Dirk Feldmeyer, Institute of Neuroscience and Medicine (INM-2), Research Centre Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
8
|
Ghaderi P, Marateb HR, Safari MS. Electrophysiological Profiling of Neocortical Neural Subtypes: A Semi-Supervised Method Applied to in vivo Whole-Cell Patch-Clamp Data. Front Neurosci 2018; 12:823. [PMID: 30542256 PMCID: PMC6277855 DOI: 10.3389/fnins.2018.00823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022] Open
Abstract
A lot of efforts have been made to understand the structure and function of neocortical circuits. In fact, a promising way to understand the functions of cortical circuits is the classification of the neural types, based on their different properties. Recent studies focused on applying modern computational methods to classify neurons based on molecular, morphological, physiological, or mixed of these criteria. Although there are studies in the literature on in vitro/vivo extracellular or in vitro intracellular recordings, a study on the classification of neuronal types using in vivo whole-cell patch-clamp recordings is still lacking. We thus proposed a novel semi-supervised classification method based on waveform shape of neurons' spikes using in vivo whole-cell patch-clamp recordings. We, first, detected spike candidates. Then discriminative features were extracted from the time samples of the spikes using discrete cosine transform. We then extracted the center of clusters using fuzzy c-mean clustering and finally, the neurons were classified using the minimum distance classifier. We distinguished three types of neurons: excitatory pyramidal cells (Pyr) and two types of inhibitory neurons: GABAergic- parvalbumin positive (PV), and somatostatin positive (SST) non-pyramidal cells in layer II/III of the mice primary visual cortex. We used 10-fold cross validation in our study. The classification accuracy for PV, Pyr, and SST was 91.59 ± 1.69, 97.47 ± 0.67, and 89.06 ± 1.99, respectively. Overall, the algorithm correctly classified 92.67 ± 0.54% of the cells, confirming the relative robustness of the discriminant functions. The performance of the method was further assessed on in vitro recordings by using a pool of 50 neurons from Allen institute Cell Types Database (5 major subtypes of neurons: Pyr, PV, SST, 5HT3a, and vasoactive intestinal peptide (VIP) cells). Its overall accuracy was 84.13 ± 0.81% on this data set using cross validation framework. The proposed algorithm is thus a promising new tool in recognizing cell's type with high accuracy in laboratories using in vivo/vitro whole-cell patch-clamp recording technique. The developed programs and the entire dataset are available online to interested readers.
Collapse
Affiliation(s)
- Parviz Ghaderi
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamid Reza Marateb
- Biomedical Engineering Department, Engineering Faculty, University of Isfahan, Isfahan, Iran
| | - Mir-Shahram Safari
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.,Brain Science Institute, RIKEN, Wako, Japan.,Brain Future Institute, Tehran, Iran
| |
Collapse
|
9
|
Mining Big Neuron Morphological Data. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2018; 2018:8234734. [PMID: 30034462 PMCID: PMC6035829 DOI: 10.1155/2018/8234734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/09/2018] [Accepted: 05/24/2018] [Indexed: 11/26/2022]
Abstract
The advent of automatic tracing and reconstruction technology has led to a surge in the number of neurons 3D reconstruction data and consequently the neuromorphology research. However, the lack of machine-driven annotation schema to automatically detect the types of the neurons based on their morphology still hinders the development of this branch of science. Neuromorphology is important because of the interplay between the shape and functionality of neurons and the far-reaching impact on the diagnostics and therapeutics in neurological disorders. This survey paper provides a comprehensive research in the field of automatic neurons classification and presents the existing challenges, methods, tools, and future directions for automatic neuromorphology analytics. We summarize the major automatic techniques applicable in the field and propose a systematic data processing pipeline for automatic neuron classification, covering data capturing, preprocessing, analyzing, classification, and retrieval. Various techniques and algorithms in machine learning are illustrated and compared to the same dataset to facilitate ongoing research in the field.
Collapse
|
10
|
Riedemann T, Straub T, Sutor B. Two types of somatostatin-expressing GABAergic interneurons in the superficial layers of the mouse cingulate cortex. PLoS One 2018; 13:e0200567. [PMID: 30001424 PMCID: PMC6042774 DOI: 10.1371/journal.pone.0200567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 11/21/2022] Open
Abstract
Somatostatin-expressing (SOM+), inhibitory interneurons represent a heterogeneous group of cells and given their remarkable diversity, classification of SOM+ interneurons remains a challenging task. Electrophysiological, morphological and neurochemical classes of SOM+ interneurons have been proposed in the past but it remains unclear as to what extent these classes are congruent. We performed whole-cell patch-clamp recordings from 127 GFP-labeled SOM+ interneurons ('GIN') of the superficial cingulate cortex with subsequent biocytin-filling and immunocytochemical labeling. Principal component analysis followed by k-means clustering predicted two putative subtypes of SOM+ interneurons, which we designated as group I and group II GIN. A key finding of our study is the fact that these electrophysiologically and morphologically distinct groups of SOM+ interneurons can be correlated with two neurochemical subtypes of SOM+ interneurons described recently in our laboratory. In particular, all SOM+ interneurons expressing calbindin but no calretinin could be classified as group I GIN, whereas all but one neuropeptide Y- and calretinin-positive interneurons were found in group II.
Collapse
Affiliation(s)
- Therese Riedemann
- Ludwig-Maximilians-University, Biomedical Center, Physiological Genomics, Munich, Germany
- * E-mail:
| | - Tobias Straub
- Ludwig-Maximilians-University, Biomedical Center, Core Facility Bioinformatics, Munich, Germany
| | - Bernd Sutor
- Ludwig-Maximilians-University, Biomedical Center, Physiological Genomics, Munich, Germany
| |
Collapse
|
11
|
Li Y, Wang D, Ascoli GA, Mitra P, Wang Y. Metrics for comparing neuronal tree shapes based on persistent homology. PLoS One 2017; 12:e0182184. [PMID: 28809960 PMCID: PMC5557505 DOI: 10.1371/journal.pone.0182184] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/13/2017] [Indexed: 01/21/2023] Open
Abstract
As more and more neuroanatomical data are made available through efforts such as NeuroMorpho.Org and FlyCircuit.org, the need to develop computational tools to facilitate automatic knowledge discovery from such large datasets becomes more urgent. One fundamental question is how best to compare neuron structures, for instance to organize and classify large collection of neurons. We aim to develop a flexible yet powerful framework to support comparison and classification of large collection of neuron structures efficiently. Specifically we propose to use a topological persistence-based feature vectorization framework. Existing methods to vectorize a neuron (i.e, convert a neuron to a feature vector so as to support efficient comparison and/or searching) typically rely on statistics or summaries of morphometric information, such as the average or maximum local torque angle or partition asymmetry. These simple summaries have limited power in encoding global tree structures. Based on the concept of topological persistence recently developed in the field of computational topology, we vectorize each neuron structure into a simple yet informative summary. In particular, each type of information of interest can be represented as a descriptor function defined on the neuron tree, which is then mapped to a simple persistence-signature. Our framework can encode both local and global tree structure, as well as other information of interest (electrophysiological or dynamical measures), by considering multiple descriptor functions on the neuron. The resulting persistence-based signature is potentially more informative than simple statistical summaries (such as average/mean/max) of morphometric quantities-Indeed, we show that using a certain descriptor function will give a persistence-based signature containing strictly more information than the classical Sholl analysis. At the same time, our framework retains the efficiency associated with treating neurons as points in a simple Euclidean feature space, which would be important for constructing efficient searching or indexing structures over them. We present preliminary experimental results to demonstrate the effectiveness of our persistence-based neuronal feature vectorization framework.
Collapse
Affiliation(s)
- Yanjie Li
- Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, United States of America
| | - Dingkang Wang
- Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, United States of America
| | - Giorgio A. Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, United States of America
| | - Partha Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States of America
| | - Yusu Wang
- Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, United States of America
- * E-mail:
| |
Collapse
|
12
|
Vasques X, Vanel L, Villette G, Cif L. Morphological Neuron Classification Using Machine Learning. Front Neuroanat 2016; 10:102. [PMID: 27847467 PMCID: PMC5088188 DOI: 10.3389/fnana.2016.00102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 10/07/2016] [Indexed: 01/20/2023] Open
Abstract
Classification and quantitative characterization of neuronal morphologies from histological neuronal reconstruction is challenging since it is still unclear how to delineate a neuronal cell class and which are the best features to define them by. The morphological neuron characterization represents a primary source to address anatomical comparisons, morphometric analysis of cells, or brain modeling. The objectives of this paper are (i) to develop and integrate a pipeline that goes from morphological feature extraction to classification and (ii) to assess and compare the accuracy of machine learning algorithms to classify neuron morphologies. The algorithms were trained on 430 digitally reconstructed neurons subjectively classified into layers and/or m-types using young and/or adult development state population of the somatosensory cortex in rats. For supervised algorithms, linear discriminant analysis provided better classification results in comparison with others. For unsupervised algorithms, the affinity propagation and the Ward algorithms provided slightly better results.
Collapse
Affiliation(s)
- Xavier Vasques
- Laboratoire de Recherche en Neurosciences CliniquesSaint-André-de-Sangonis, France
- International Business Machines Corporation SystemsParis, France
| | - Laurent Vanel
- International Business Machines Corporation SystemsParis, France
| | | | - Laura Cif
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier
Régional Universitaire de MontpellierMontpellier, France
- Université de Montpellier 1Montpellier, France
| |
Collapse
|
13
|
Ramaswamy S, Courcol JD, Abdellah M, Adaszewski SR, Antille N, Arsever S, Atenekeng G, Bilgili A, Brukau Y, Chalimourda A, Chindemi G, Delalondre F, Dumusc R, Eilemann S, Gevaert ME, Gleeson P, Graham JW, Hernando JB, Kanari L, Katkov Y, Keller D, King JG, Ranjan R, Reimann MW, Rössert C, Shi Y, Shillcock JC, Telefont M, Van Geit W, Diaz JV, Walker R, Wang Y, Zaninetta SM, DeFelipe J, Hill SL, Muller J, Segev I, Schürmann F, Muller EB, Markram H. The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex. Front Neural Circuits 2015; 9:44. [PMID: 26500503 PMCID: PMC4597797 DOI: 10.3389/fncir.2015.00044] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/13/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Srikanth Ramaswamy
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Jean-Denis Courcol
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Marwan Abdellah
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Stanislaw R Adaszewski
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Nicolas Antille
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Selim Arsever
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Guy Atenekeng
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Ahmet Bilgili
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Yury Brukau
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Athanassia Chalimourda
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Giuseppe Chindemi
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Fabien Delalondre
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Raphael Dumusc
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Stefan Eilemann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Michael Emiel Gevaert
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Padraig Gleeson
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | - Joe W Graham
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Juan B Hernando
- CeSViMa, Centro de Supercomputación y Visualización de Madrid, Universidad Politécnica de Madrid Madrid, Spain
| | - Lida Kanari
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Yury Katkov
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - James G King
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Rajnish Ranjan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland ; Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Michael W Reimann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Christian Rössert
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Ying Shi
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland ; Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Julian C Shillcock
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Martin Telefont
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Werner Van Geit
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Jafet Villafranca Diaz
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Richard Walker
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Yun Wang
- Key Laboratory of Visual Science and National Ministry of Health, School of Optometry and Opthalmology, Wenzhou Medical College Wenzhou, China ; Caritas St. Elizabeth's Medical Center, Genesys Research Institute, Tufts University Boston, MA, USA
| | - Stefano M Zaninetta
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid Madrid, Spain ; Instituto Cajal (CSIC) and CIBERNED Madrid, Spain
| | - Sean L Hill
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Jeffrey Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Idan Segev
- Department of Neurobiology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel ; The Edmond and Lily Safra Centre for Brain Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Eilif B Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland ; Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
14
|
Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares L, Antille N, Arsever S, Kahou GAA, Berger TK, Bilgili A, Buncic N, Chalimourda A, Chindemi G, Courcol JD, Delalondre F, Delattre V, Druckmann S, Dumusc R, Dynes J, Eilemann S, Gal E, Gevaert ME, Ghobril JP, Gidon A, Graham JW, Gupta A, Haenel V, Hay E, Heinis T, Hernando JB, Hines M, Kanari L, Keller D, Kenyon J, Khazen G, Kim Y, King JG, Kisvarday Z, Kumbhar P, Lasserre S, Le Bé JV, Magalhães BRC, Merchán-Pérez A, Meystre J, Morrice BR, Muller J, Muñoz-Céspedes A, Muralidhar S, Muthurasa K, Nachbaur D, Newton TH, Nolte M, Ovcharenko A, Palacios J, Pastor L, Perin R, Ranjan R, Riachi I, Rodríguez JR, Riquelme JL, Rössert C, Sfyrakis K, Shi Y, Shillcock JC, Silberberg G, Silva R, Tauheed F, Telefont M, Toledo-Rodriguez M, Tränkler T, Van Geit W, Díaz JV, Walker R, Wang Y, Zaninetta SM, DeFelipe J, Hill SL, Segev I, Schürmann F. Reconstruction and Simulation of Neocortical Microcircuitry. Cell 2015; 163:456-92. [PMID: 26451489 DOI: 10.1016/j.cell.2015.09.029] [Citation(s) in RCA: 810] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/04/2015] [Accepted: 09/11/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Henry Markram
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland; Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland.
| | - Eilif Muller
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Srikanth Ramaswamy
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Michael W Reimann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Marwan Abdellah
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Carlos Aguado Sanchez
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Anastasia Ailamaki
- Data-Intensive Applications and Systems Lab, EPFL, 1015 Lausanne, Switzerland
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain; Instituto Cajal (CSIC) and CIBERNED, 28002 Madrid, Spain
| | - Nicolas Antille
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Selim Arsever
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Guy Antoine Atenekeng Kahou
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Thomas K Berger
- Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Ahmet Bilgili
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Nenad Buncic
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Athanassia Chalimourda
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Giuseppe Chindemi
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Jean-Denis Courcol
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Fabien Delalondre
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Vincent Delattre
- Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Shaul Druckmann
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Raphael Dumusc
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - James Dynes
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Stefan Eilemann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Eyal Gal
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael Emiel Gevaert
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Jean-Pierre Ghobril
- Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Albert Gidon
- Department of Neurobiology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Joe W Graham
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Anirudh Gupta
- Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Valentin Haenel
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Etay Hay
- Department of Neurobiology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Thomas Heinis
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland; Data-Intensive Applications and Systems Lab, EPFL, 1015 Lausanne, Switzerland; Imperial College London, London SW7 2AZ, UK
| | - Juan B Hernando
- CeSViMa, Centro de Supercomputación y Visualización de Madrid, Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Michael Hines
- Department of Neurobiology, Yale University, New Haven, CT 06510 USA
| | - Lida Kanari
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Daniel Keller
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - John Kenyon
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Georges Khazen
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Yihwa Kim
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - James G King
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Zoltan Kisvarday
- MTA-Debreceni Egyetem, Neuroscience Research Group, 4032 Debrecen, Hungary
| | - Pramod Kumbhar
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Sébastien Lasserre
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland; Laboratoire d'informatique et de visualisation, EPFL, 1015 Lausanne, Switzerland
| | - Jean-Vincent Le Bé
- Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Bruno R C Magalhães
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Angel Merchán-Pérez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain; Instituto Cajal (CSIC) and CIBERNED, 28002 Madrid, Spain
| | - Julie Meystre
- Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Benjamin Roy Morrice
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Jeffrey Muller
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Alberto Muñoz-Céspedes
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain; Instituto Cajal (CSIC) and CIBERNED, 28002 Madrid, Spain
| | - Shruti Muralidhar
- Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Keerthan Muthurasa
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Daniel Nachbaur
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Taylor H Newton
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Max Nolte
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Aleksandr Ovcharenko
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Juan Palacios
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Luis Pastor
- Modeling and Virtual Reality Group, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
| | - Rodrigo Perin
- Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Rajnish Ranjan
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland; Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Imad Riachi
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - José-Rodrigo Rodríguez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain; Instituto Cajal (CSIC) and CIBERNED, 28002 Madrid, Spain
| | - Juan Luis Riquelme
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Christian Rössert
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Konstantinos Sfyrakis
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Ying Shi
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland; Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Julian C Shillcock
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Ricardo Silva
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Farhan Tauheed
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland; Data-Intensive Applications and Systems Lab, EPFL, 1015 Lausanne, Switzerland
| | - Martin Telefont
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | | | - Thomas Tränkler
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Werner Van Geit
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Jafet Villafranca Díaz
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Richard Walker
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Yun Wang
- Key Laboratory of Visual Science and National Ministry of Health, School of Optometry and Opthalmology, Wenzhou Medical College, Wenzhou 325003, China; Caritas St. Elizabeth's Medical Center, Genesys Research Institute, Tufts University, Boston, MA 02111, USA
| | - Stefano M Zaninetta
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain; Instituto Cajal (CSIC) and CIBERNED, 28002 Madrid, Spain
| | - Sean L Hill
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| | - Idan Segev
- Department of Neurobiology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Felix Schürmann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland
| |
Collapse
|
15
|
Carrillo-Reid L, Lopez-Huerta VG, Garcia-Munoz M, Theiss S, Arbuthnott GW. Cell Assembly Signatures Defined by Short-Term Synaptic Plasticity in Cortical Networks. Int J Neural Syst 2015; 25:1550026. [PMID: 26173906 DOI: 10.1142/s0129065715500264] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cell assembly (CA) hypothesis has been used as a conceptual framework to explain how groups of neurons form memories. CAs are defined as neuronal pools with synchronous, recurrent and sequential activity patterns. However, neuronal interactions and synaptic properties that define CAs signatures have been difficult to examine because identities and locations of assembly members are usually unknown. In order to study synaptic properties that define CAs, we used optical and electrophysiological approaches to record activity of identified neurons in mouse cortical cultures. Population analysis and graph theory techniques allowed us to find sequential patterns that represent repetitive transitions between network states. Whole cell pair recordings of neurons participating in repeated sequences demonstrated that synchrony is exhibited by groups of neurons with strong synaptic connectivity (concomitant firing) showing short-term synaptic depression (STD), whereas alternation (sequential firing) is seen in groups of neurons with weaker synaptic connections showing short-term synaptic facilitation (STF). Decreasing synaptic weights of a network promoted the generation of sequential activity patterns, whereas increasing synaptic weights restricted state transitions. Thus in simple cortical networks of real neurons, basic signatures of CAs, the properties that underlie perception and memory in Hebb's original description, are already present.
Collapse
Affiliation(s)
| | - Violeta G Lopez-Huerta
- Brain Mechanisms for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| | - Marianela Garcia-Munoz
- Brain Mechanisms for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| | | | - Gordon W Arbuthnott
- Brain Mechanisms for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| |
Collapse
|
16
|
Towards the automatic classification of neurons. Trends Neurosci 2015; 38:307-18. [PMID: 25765323 DOI: 10.1016/j.tins.2015.02.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 11/23/2022]
Abstract
The classification of neurons into types has been much debated since the inception of modern neuroscience. Recent experimental advances are accelerating the pace of data collection. The resulting growth of information about morphological, physiological, and molecular properties encourages efforts to automate neuronal classification by powerful machine learning techniques. We review state-of-the-art analysis approaches and the availability of suitable data and resources, highlighting prominent challenges and opportunities. The effective solution of the neuronal classification problem will require continuous development of computational methods, high-throughput data production, and systematic metadata organization to enable cross-laboratory integration.
Collapse
|
17
|
Polavaram S, Gillette TA, Parekh R, Ascoli GA. Statistical analysis and data mining of digital reconstructions of dendritic morphologies. Front Neuroanat 2014; 8:138. [PMID: 25538569 PMCID: PMC4255610 DOI: 10.3389/fnana.2014.00138] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/06/2014] [Indexed: 11/21/2022] Open
Abstract
Neuronal morphology is diverse among animal species, developmental stages, brain regions, and cell types. The geometry of individual neurons also varies substantially even within the same cell class. Moreover, specific histological, imaging, and reconstruction methodologies can differentially affect morphometric measures. The quantitative characterization of neuronal arbors is necessary for in-depth understanding of the structure-function relationship in nervous systems. The large collection of community-contributed digitally reconstructed neurons available at NeuroMorpho.Org constitutes a “big data” research opportunity for neuroscience discovery beyond the approaches typically pursued in single laboratories. To illustrate these potential and related challenges, we present a database-wide statistical analysis of dendritic arbors enabling the quantification of major morphological similarities and differences across broadly adopted metadata categories. Furthermore, we adopt a complementary unsupervised approach based on clustering and dimensionality reduction to identify the main morphological parameters leading to the most statistically informative structural classification. We find that specific combinations of measures related to branching density, overall size, tortuosity, bifurcation angles, arbor flatness, and topological asymmetry can capture anatomically and functionally relevant features of dendritic trees. The reported results only represent a small fraction of the relationships available for data exploration and hypothesis testing enabled by sharing of digital morphological reconstructions.
Collapse
Affiliation(s)
- Sridevi Polavaram
- Department of Molecular Neuroscience, Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | - Todd A Gillette
- Department of Molecular Neuroscience, Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | - Ruchi Parekh
- Department of Molecular Neuroscience, Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | - Giorgio A Ascoli
- Department of Molecular Neuroscience, Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| |
Collapse
|
18
|
Mihaljević B, Bielza C, Benavides-Piccione R, DeFelipe J, Larrañaga P. Multi-dimensional classification of GABAergic interneurons with Bayesian network-modeled label uncertainty. Front Comput Neurosci 2014; 8:150. [PMID: 25505405 PMCID: PMC4243564 DOI: 10.3389/fncom.2014.00150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/03/2014] [Indexed: 12/03/2022] Open
Abstract
Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists' classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.
Collapse
Affiliation(s)
- Bojan Mihaljević
- Computational Intelligence Group, Departamento de Inteligencia Artificial, Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid Madrid, Spain
| | - Concha Bielza
- Computational Intelligence Group, Departamento de Inteligencia Artificial, Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid Madrid, Spain
| | - Ruth Benavides-Piccione
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid Madrid, Spain ; Instituto Cajal, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid Madrid, Spain ; Instituto Cajal, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Pedro Larrañaga
- Computational Intelligence Group, Departamento de Inteligencia Artificial, Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid Madrid, Spain
| |
Collapse
|