1
|
Teunissen MWA, Lewerissa E, van Hugte EJH, Wang S, Ockeloen CW, Koolen DA, Pfundt R, Marcelis CLM, Brilstra E, Howe JL, Scherer SW, Le Guillou X, Bilan F, Primiano M, Roohi J, Piton A, de Saint Martin A, Baer S, Seiffert S, Platzer K, Jamra RA, Syrbe S, Doering JH, Lakhani S, Nangia S, Gilissen C, Vermeulen RJ, Rouhl RPW, Brunner HG, Willemsen MH, Nadif Kasri N. ANK2 loss-of-function variants are associated with epilepsy, and lead to impaired axon initial segment plasticity and hyperactive network activity in hiPSC-derived neuronal networks. Hum Mol Genet 2023; 32:2373-2385. [PMID: 37195288 PMCID: PMC10321384 DOI: 10.1093/hmg/ddad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023] Open
Abstract
PURPOSE To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.
Collapse
Affiliation(s)
- Maria W A Teunissen
- Department of Neurology, Maastricht University Medical Center, Maastricht, HX 6229, The Netherlands
- Academic Center for Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze 5591 VE, The Netherlands
| | - Elly Lewerissa
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
| | - Eline J H van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
| | - Shan Wang
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - David A Koolen
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Carlo L M Marcelis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Eva Brilstra
- Department of Human Genetics, University Medical Center Utrecht, Utrecht, CX 3584, The Netherlands
| | - Jennifer L Howe
- The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3H7, Canada
| | - Xavier Le Guillou
- Department of Medical Genetics, Centre Hospitalier Universitaire de Poitiers, Poitiers 86000, France
| | - Frédéric Bilan
- Department of Medical Genetics, Centre Hospitalier Universitaire de Poitiers, Poitiers 86000, France
- Laboratory of Experimental and Clinical Neurosciences University of Poitiers, INSERM U1084, Poitiers 86000, France
| | - Michelle Primiano
- Department of Clinical Genetics, Morgan Stanley Children’s Hospital of New York-Presbytarian, New York, NY, 10032, USA
| | - Jasmin Roohi
- Department of Clinical Genetics, Morgan Stanley Children’s Hospital of New York-Presbytarian, New York, NY, 10032, USA
- Clinical Genetics, Kaiser Permanente Mid-Atlantic Permanente Medical Group, Rockville, MD 20852, USA
| | - Amelie Piton
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d’Alsace (IGMA), Hôspitaux Universitaire de Strasbourg, Strasbourg, BP 426 67091, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France
| | - Anne de Saint Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France
- Department of Pediatric Neurology, Strasbourg University Hospital, Hôspital de Hautepierre, Strasbourg, BP 426 67091, France
| | - Sarah Baer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France
- Department of Pediatric Neurology, Strasbourg University Hospital, Hôspital de Hautepierre, Strasbourg, BP 426 67091, France
| | - Simone Seiffert
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Tuebingen, 72076, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig 04103, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig 04103, Germany
| | - Steffen Syrbe
- Division of Paediatric Epileptology, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Jan H Doering
- Division of Paediatric Epileptology, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Shenela Lakhani
- Department of neurogenetics, Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY, 10065, USA
| | - Srishti Nangia
- Department of Pediatrics, Division of Child Neurology, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, 10032, USA
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - R Jeroen Vermeulen
- Department of Neurology, Maastricht University Medical Center, Maastricht, HX 6229, The Netherlands
| | - Rob P W Rouhl
- Department of Neurology, Maastricht University Medical Center, Maastricht, HX 6229, The Netherlands
- Academic Center for Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze 5591 VE, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands
| | - Han G Brunner
- Academic Center for Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze 5591 VE, The Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands
- Department of Clinical Genetics and GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, MD 6299, the Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
| |
Collapse
|
2
|
Terry AV, Jones K, Bertrand D. Nicotinic acetylcholine receptors in neurological and psychiatric diseases. Pharmacol Res 2023; 191:106764. [PMID: 37044234 DOI: 10.1016/j.phrs.2023.106764] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that are widely distributed both pre- and post-synaptically in the mammalian brain. By modulating cation flux across cell membranes, neuronal nAChRs regulate neuronal excitability and the release of a variety of neurotransmitters to influence multiple physiologic and behavioral processes including synaptic plasticity, motor function, attention, learning and memory. Abnormalities of neuronal nAChRs have been implicated in the pathophysiology of neurologic disorders including Alzheimer's disease, Parkinson's disease, epilepsy, and Tourette´s syndrome, as well as psychiatric disorders including schizophrenia, depression, and anxiety. The potential role of nAChRs in a particular illness may be indicated by alterations in the expression of nAChRs in relevant brain regions, genetic variability in the genes encoding for nAChR subunit proteins, and/or clinical or preclinical observations where specific ligands showed a therapeutic effect. Over the past 25 years, extensive preclinical and some early clinical evidence suggested that ligands at nAChRs might have therapeutic potential for neurologic and psychiatric disorders. However, to date the only approved indications for nAChR ligands are smoking cessation and the treatment of dry eye disease. It has been argued that progress in nAChR drug discovery has been limited by translational gaps between the preclinical models and the human disease as well as unresolved questions regarding the pharmacological goal (i.e., agonism, antagonism or receptor desensitization) depending on the disease.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912.
| | - Keri Jones
- Educational Innovation Institute, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912
| | - Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| |
Collapse
|
3
|
Muzzi L, Di Lisa D, Falappa M, Pepe S, Maccione A, Pastorino L, Martinoia S, Frega M. Human-Derived Cortical Neurospheroids Coupled to Passive, High-Density and 3D MEAs: A Valid Platform for Functional Tests. Bioengineering (Basel) 2023; 10:bioengineering10040449. [PMID: 37106636 PMCID: PMC10136157 DOI: 10.3390/bioengineering10040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
With the advent of human-induced pluripotent stem cells (hiPSCs) and differentiation protocols, methods to create in-vitro human-derived neuronal networks have been proposed. Although monolayer cultures represent a valid model, adding three-dimensionality (3D) would make them more representative of an in-vivo environment. Thus, human-derived 3D structures are becoming increasingly used for in-vitro disease modeling. Achieving control over the final cell composition and investigating the exhibited electrophysiological activity is still a challenge. Thence, methodologies to create 3D structures with controlled cellular density and composition and platforms capable of measuring and characterizing the functional aspects of these samples are needed. Here, we propose a method to rapidly generate neurospheroids of human origin with control over cell composition that can be used for functional investigations. We show a characterization of the electrophysiological activity exhibited by the neurospheroids by using micro-electrode arrays (MEAs) with different types (i.e., passive, C-MOS, and 3D) and number of electrodes. Neurospheroids grown in free culture and transferred on MEAs exhibited functional activity that can be chemically and electrically modulated. Our results indicate that this model holds great potential for an in-depth study of signal transmission to drug screening and disease modeling and offers a platform for in-vitro functional testing.
Collapse
Affiliation(s)
- Lorenzo Muzzi
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Donatella Di Lisa
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Matteo Falappa
- 3Brain AG, 8808 Pfäffikon, Switzerland
- Corticale Srl., 16145 Genoa, Italy
| | - Sara Pepe
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | | | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Monica Frega
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
4
|
Becchetti A, Grandi LC, Cerina M, Amadeo A. Nicotinic acetylcholine receptors and epilepsy. Pharmacol Res 2023; 189:106698. [PMID: 36796465 DOI: 10.1016/j.phrs.2023.106698] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Despite recent advances in understanding the causes of epilepsy, especially the genetic, comprehending the biological mechanisms that lead to the epileptic phenotype remains difficult. A paradigmatic case is constituted by the epilepsies caused by altered neuronal nicotinic acetylcholine receptors (nAChRs), which exert complex physiological functions in mature as well as developing brain. The ascending cholinergic projections exert potent control of forebrain excitability, and wide evidence implicates nAChR dysregulation as both cause and effect of epileptiform activity. First, tonic-clonic seizures are triggered by administration of high doses of nicotinic agonists, whereas non-convulsive doses have kindling effects. Second, sleep-related epilepsy can be caused by mutations on genes encoding nAChR subunits widely expressed in the forebrain (CHRNA4, CHRNB2, CHRNA2). Third, in animal models of acquired epilepsy, complex time-dependent alterations in cholinergic innervation are observed following repeated seizures. Heteromeric nAChRs are central players in epileptogenesis. Evidence is wide for autosomal dominant sleep-related hypermotor epilepsy (ADSHE). Studies of ADSHE-linked nAChR subunits in expression systems suggest that the epileptogenic process is promoted by overactive receptors. Investigation in animal models of ADSHE indicates that expression of mutant nAChRs can lead to lifelong hyperexcitability by altering i) the function of GABAergic populations in the mature neocortex and thalamus, ii) synaptic architecture during synaptogenesis. Understanding the balance of the epileptogenic effects in adult and developing networks is essential to plan rational therapy at different ages. Combining this knowledge with a deeper understanding of the functional and pharmacological properties of individual mutations will advance precision and personalized medicine in nAChR-dependent epilepsy.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Laura Clara Grandi
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Marta Cerina
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Alida Amadeo
- Department of Biosciences, University of Milano, Via Celoria 26, Milano 20133, Italy.
| |
Collapse
|
5
|
Knowles JK, Helbig I, Metcalf CS, Lubbers LS, Isom LL, Demarest S, Goldberg EM, George AL, Lerche H, Weckhuysen S, Whittemore V, Berkovic SF, Lowenstein DH. Precision medicine for genetic epilepsy on the horizon: Recent advances, present challenges, and suggestions for continued progress. Epilepsia 2022; 63:2461-2475. [PMID: 35716052 PMCID: PMC9561034 DOI: 10.1111/epi.17332] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 01/18/2023]
Abstract
The genetic basis of many epilepsies is increasingly understood, giving rise to the possibility of precision treatments tailored to specific genetic etiologies. Despite this, current medical therapy for most epilepsies remains imprecise, aimed primarily at empirical seizure reduction rather than targeting specific disease processes. Intellectual and technological leaps in diagnosis over the past 10 years have not yet translated to routine changes in clinical practice. However, the epilepsy community is poised to make impressive gains in precision therapy, with continued innovation in gene discovery, diagnostic ability, and bioinformatics; increased access to genetic testing and counseling; fuller understanding of natural histories; agility and rigor in preclinical research, including strategic use of emerging model systems; and engagement of an evolving group of stakeholders (including patient advocates, governmental resources, and clinicians and scientists in academia and industry). In each of these areas, we highlight notable examples of recent progress, new or persistent challenges, and future directions. The future of precision medicine for genetic epilepsy looks bright if key opportunities on the horizon can be pursued with strategic and coordinated effort.
Collapse
Affiliation(s)
- Juliet K. Knowles
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Cameron S. Metcalf
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Laura S. Lubbers
- Citizens United for Research in Epilepsy, Chicago, Illinois, USA
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Scott Demarest
- Department of Pediatrics and Neurology, University of Colorado, School of Medicine, Aurora, Colorado, USA
| | - Ethan M. Goldberg
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Sarah Weckhuysen
- Division of Neurology, University Hospital Antwerp, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Vlaams Instituut voor Biotechnologie Center for Molecular Neurology, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- μNEURO Research Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Vicky Whittemore
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Rockville, Maryland, USA
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel H. Lowenstein
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
6
|
Okada M. Can rodent models elucidate the pathomechanisms of genetic epilepsy? Br J Pharmacol 2021; 179:1620-1639. [PMID: 33689168 PMCID: PMC9291625 DOI: 10.1111/bph.15443] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/03/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
Autosomal dominant sleep-related hypermotor epilepsy (ADSHE; previously autosomal dominant nocturnal frontal lobe epilepsy, ADNFLE), originally reported in 1994, was the first distinct genetic epilepsy shown to be caused by CHNRA4 mutation. In the past two decades, we have identified several functional abnormalities of mutant ion channels and their associated transmissions using several experiments involving single-cell and genetic animal (rodent) models. Currently, epileptologists understand that functional abnormalities underlying epileptogenesis/ictogenesis in humans and rodents are more complicated than previously believed and that the function of mutant molecules alone cannot contribute to the development of epileptogenesis/ictogenesis but play important roles in the development of epileptogenesis/ictogenesis through formation of abnormalities in various other transmission systems before epilepsy onset. Based on our recent findings using genetic rat ADSHE models, harbouring Chrna4 mutant, corresponding to human S284L-mutant CRHNA4, this review proposes a hypothesis associated with tripartite synaptic transmission in ADSHE pathomechanisms induced by mutant ACh receptors.
Collapse
Affiliation(s)
- Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
7
|
Pereiro I, Aubert J, Kaigala GV. Micro-scale technologies propel biology and medicine. BIOMICROFLUIDICS 2021; 15:021302. [PMID: 33948133 PMCID: PMC8081554 DOI: 10.1063/5.0047196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 05/05/2023]
Abstract
Historically, technology has been central to new discoveries in biology and progress in medicine. Among various technologies, microtechnologies, in particular, have had a prominent role in the revolution experienced by the life sciences in the last few decades, which will surely continue in the years to come. In this Perspective, we illustrate how microtechnologies, with a focus on microfluidics, have evolved in trends/waves to tackle the boundary of knowledge in the life sciences. We provide illustrative examples of technology-enabled biological breakthroughs and their current and future use in clinics. Finally, we take a closer look at the translational process to understand why the incorporation of new micro-scale technologies in medicine has been comparatively slow so far.
Collapse
|
8
|
Abstract
Genetic mutations have long been implicated in epilepsy, particularly in genes that encode ion channels and neurotransmitter receptors. Among some of those identified are voltage-gated sodium, potassium and calcium channels, and ligand-gated gamma-aminobutyric acid (GABA), neuronal nicotinic acetylcholine (CHRN), and glutamate receptors, making them key therapeutic targets. In this chapter we discuss the use of automated electrophysiological technologies to examine the impact of gene defects in two potassium channels associated with different epilepsy syndromes. The hKCNC1 gene encodes the voltage-gated potassium channel hKV3.1, and mutations in this gene cause progressive myoclonus epilepsy (PME) and ataxia due to a potassium channel mutation (MEAK). The hKCNT1 gene encodes the weakly voltage-dependent sodium-activated potassium channel hKCNT1, and mutations in this gene cause a wide spectrum of seizure disorders, including severe autosomal dominant sleep-related hypermotor epilepsy (ADSHE) and epilepsy of infancy with migrating focal seizures (EIMFS), both conditions associated with drug-resistance. Importantly, both of these potassium channels play vital roles in regulating neuronal excitability. Since its discovery in the late nineteen seventies, the patch-clamp technique has been regarded as the bench-mark technology for exploring ion channel characteristics. In more recent times, innovations in automated patch-clamp technologies, of which there are many, are enabling the study of ion channels with much greater productivity that manual systems are capable of. Here we describe aspects of Nanion NPC-16 Patchliner, examining the effects of temperature on stably and transiently transfected mammalian cells, the latter of which for most automated systems on the market is quite challenging. Remarkable breakthroughs in the development of other automated electrophysiological technologies, such as multielectrode arrays that support extracellular signal recordings, provide additional features to examine network activity in the area of ion channel research, particularly epilepsy. Both of these automated technologies enable the acquisition of consistent, robust, and reproducible data. Numerous systems have been developed with very similar capabilities, however, not all the systems on the market are adapted to work with primary cells, particularly neurons that can be problematic. This chapter also showcases methods that demonstrate the versatility of Nanion NPC-16 Patchliner and the Multi Channel Systems (MCS) multielectrode array (MEA) assay for acutely dissociated murine primary cortical neurons, enabling the study of potassium channel mutations implicated in severe refractory epilepsies.
Collapse
|
9
|
Domínguez HJ, Cabrera-García D, Cuadrado C, Novelli A, Fernández-Sánchez MT, Fernández JJ, Daranas AH. Prorocentroic Acid, a Neuroactive Super-Carbon-Chain Compound from the Dinoflagellate Prorocentrum hoffmannianum. Org Lett 2020; 23:13-18. [DOI: 10.1021/acs.orglett.0c03437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Humberto J. Domínguez
- Instituto Universitario de Bio-Orgánica Antonio González, University of La Laguna, 38206, Tenerife, Spain
| | - David Cabrera-García
- Department of Biochemistry and Molecular Biology and University Institute of Biotechnology of Asturias (IUBA), Campus “El Cristo”, University of Oviedo, 33006 Oviedo, Oviedo, Spain
| | - Cristina Cuadrado
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC), La Laguna, 38206, Tenerife, Spain
| | - Antonello Novelli
- Department of Psychology and University Institute of Biotechnology of Asturias (IUBA), Campus “El Cristo”, University of Oviedo; Institute for Sanitary Research of the Princedom of Asturias (ISPA), 33006 Oviedo, Oviedo, Spain
| | - M. Teresa Fernández-Sánchez
- Department of Biochemistry and Molecular Biology and University Institute of Biotechnology of Asturias (IUBA), Campus “El Cristo”, University of Oviedo, 33006 Oviedo, Oviedo, Spain
| | - José J. Fernández
- Instituto Universitario de Bio-Orgánica Antonio González, University of La Laguna, 38206, Tenerife, Spain
| | - Antonio Hernández Daranas
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC), La Laguna, 38206, Tenerife, Spain
| |
Collapse
|
10
|
Maestrelli F, Landucci E, De Luca E, Nerli G, Bergonzi MC, Piazzini V, Pellegrini-Giampietro DE, Gullo F, Becchetti A, Tadini-Buoninsegni F, Francesconi O, Nativi C. Niosomal Formulation of a Lipoyl-Carnosine Derivative Targeting TRPA1 Channels in Brain. Pharmaceutics 2019; 11:E669. [PMID: 31835593 PMCID: PMC6956366 DOI: 10.3390/pharmaceutics11120669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/08/2023] Open
Abstract
The transient receptor potential akyrin type-1 (TRPA1) is a non-selective cation channel playing a pivotal role in pain sensation and neurogenic inflammation. TRPA1 channels expressed in the central nervous system (CNS) have a critical role in the modulation of cortical spreading depression (CSD), which is a key pathophysiological basis of migraine pain. ADM_09 is a recently developed lipoic acid-based TRPA1 antagonist that is able to revert oxaliplatin-induced neuropathic pain and inflammatory trigeminal allodynia. In this context, aiming at developing drugs that are able to target TRPA1 channels in the CNS and promote an antioxidant effect, permeability across the blood-brain barrier (BBB) represents a central issue. Niosomes are nanovesicles that can be functionalized with specific ligands selectively recognized by transporters expressed on the BBB. In this work, the activity of ADM_09 on neocortex cultures was studied, and an efficient formulation to cross the BBB was developed with the aim of increasing the concentration of ADM_09 into the brain and selectively delivering it to the CNS rapidly after parenteral administration.
Collapse
Affiliation(s)
- Francesca Maestrelli
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (E.D.L.); (G.N.); (M.C.B.); (V.P.); (F.T.-B.); (C.N.)
| | - Elisa Landucci
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, 50139 Florence, Italy; (E.L.); (D.E.P.-G.)
| | - Enrico De Luca
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (E.D.L.); (G.N.); (M.C.B.); (V.P.); (F.T.-B.); (C.N.)
| | - Giulia Nerli
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (E.D.L.); (G.N.); (M.C.B.); (V.P.); (F.T.-B.); (C.N.)
| | - Maria Camilla Bergonzi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (E.D.L.); (G.N.); (M.C.B.); (V.P.); (F.T.-B.); (C.N.)
| | - Vieri Piazzini
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (E.D.L.); (G.N.); (M.C.B.); (V.P.); (F.T.-B.); (C.N.)
| | - Domenico E. Pellegrini-Giampietro
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, 50139 Florence, Italy; (E.L.); (D.E.P.-G.)
| | - Francesca Gullo
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.G.); (A.B.)
| | - Andrea Becchetti
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.G.); (A.B.)
| | - Francesco Tadini-Buoninsegni
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (E.D.L.); (G.N.); (M.C.B.); (V.P.); (F.T.-B.); (C.N.)
| | - Oscar Francesconi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (E.D.L.); (G.N.); (M.C.B.); (V.P.); (F.T.-B.); (C.N.)
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (E.D.L.); (G.N.); (M.C.B.); (V.P.); (F.T.-B.); (C.N.)
| |
Collapse
|
11
|
Frimat JP, Luttge R. The Need for Physiological Micro-Nanofluidic Systems of the Brain. Front Bioeng Biotechnol 2019; 7:100. [PMID: 31134196 PMCID: PMC6514106 DOI: 10.3389/fbioe.2019.00100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/18/2019] [Indexed: 01/09/2023] Open
Abstract
In this article, we review brain-on-a-chip models and associated underlying technologies. Micro-nanofluidic systems of the brain can utilize the entire spectrum of organoid technology. Notably, there is an urgent clinical need for a physiologically relevant microfluidic platform that can mimic the brain. Brain diseases affect millions of people worldwide, and this number will grow as the size of elderly population increases, thus making brain disease a serious public health problem. Brain disease modeling typically involves the use of in vivo rodent models, which is time consuming, resource intensive, and arguably unethical because many animals are required for a single study. Moreover, rodent models may not accurately predict human diseases, leading to erroneous results, thus rendering animal models poor predictors of human responses to treatment. Various clinical researchers have highlighted this issue, showing that initial physiological descriptions of animal models rarely encompass all the desired human features, including how closely the model captures what is observed in patients. Consequently, such animal models only mimic certain disease aspects, and they are often inadequate for studying how a certain molecule affects various aspects of a disease. Thus, there is a great need for the development of the brain-on-a-chip technology based on which a human brain model can be engineered by assembling cell lines to generate an organ-level model. To produce such a brain-on-a-chip device, selection of appropriate cells lines is critical because brain tissue consists of many different neuronal subtypes, including a plethora of supporting glial cell types. Additionally, cellular network bio-architecture significantly varies throughout different brain regions, forming complex structures and circuitries; this needs to be accounted for in the chip design process. Compartmentalized microenvironments can also be designed within the microphysiological cell culture system to fulfill advanced requirements of a given application. On-chip integration methods have already enabled advances in Parkinson's disease, Alzheimer's disease, and epilepsy modeling, which are discussed herein. In conclusion, for the brain model to be functional, combining engineered microsystems with stem cell (hiPSC) technology is specifically beneficial because hiPSCs can contribute to the complexity of tissue architecture based on their level of differentiation and thereby, biology itself.
Collapse
Affiliation(s)
- Jean-Philippe Frimat
- Neuro-Nanoscale Engineering Group, Microsystems Section & ICMS Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, School for Mental Health and Neuroscience, Eindhoven, Netherlands
| | - Regina Luttge
- Neuro-Nanoscale Engineering Group, Microsystems Section & ICMS Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
12
|
Keller JM, Frega M. Past, Present, and Future of Neuronal Models In Vitro. ADVANCES IN NEUROBIOLOGY 2019; 22:3-17. [PMID: 31073930 DOI: 10.1007/978-3-030-11135-9_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past century, robust methods were developed that enable the isolation, culture, and dynamic observation of mammalian neuronal networks in vitro. But even if neuronal culture cannot yet fully recapitulate the normal brain, the knowledge that has been acquired from these surrogate in vitro models is invaluable. Indeed, neuronal culture has continued to propel basic neuroscience research, proving that in vitro systems have legitimacy when it comes to studying either the healthy or diseased human brain. Furthermore, scientific advancement typically parallels technical refinements in the field. A pertinent example is that a collective drive in the field of neuroscience to better understand the development, organization, and emergent properties of neuronal networks is being facilitated by progressive advances in micro-electrode array (MEA) technology. In this chapter, we briefly review the emergence of neuronal cell culture as a technique, the current trends in human stem cell-based modeling, and the technologies used to monitor neuronal communication. We conclude by highlighting future prospects that are evolving specifically out of the combination of human neuronal models and MEA technology.
Collapse
Affiliation(s)
- Jason M Keller
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Monica Frega
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands. .,Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
13
|
Abstract
The brain is the most complex organ of the body, and many pathological processes underlying various brain disorders are poorly understood. Limited accessibility hinders observation of such processes in the in vivo brain, and experimental freedom is often insufficient to enable informative manipulations. In vitro preparations (brain slices or cultures of dissociated neurons) offer much better accessibility and reduced complexity and have yielded valuable new insights into various brain disorders. Both types of preparations have their advantages and limitations with regard to lifespan, preservation of in vivo brain structure, composition of cell types, and the link to behavioral outcome is often unclear in in vitro models. While these limitations hamper general usage of in vitro preparations to study, e.g., brain development, in vitro preparations are very useful to study neuronal and synaptic functioning under pathologic conditions. This chapter addresses several brain disorders, focusing on neuronal and synaptic functioning, as well as network aspects. Recent progress in the fields of brain circulation disorders, excitability disorders, and memory disorders will be discussed, as well as limitations of current in vitro models.
Collapse
|
14
|
Gelfman S, Wang Q, Lu YF, Hall D, Bostick CD, Dhindsa R, Halvorsen M, McSweeney KM, Cotterill E, Edinburgh T, Beaumont MA, Frankel WN, Petrovski S, Allen AS, Boland MJ, Goldstein DB, Eglen SJ. meaRtools: An R package for the analysis of neuronal networks recorded on microelectrode arrays. PLoS Comput Biol 2018; 14:e1006506. [PMID: 30273353 PMCID: PMC6181426 DOI: 10.1371/journal.pcbi.1006506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/11/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022] Open
Abstract
Here we present an open-source R package 'meaRtools' that provides a platform for analyzing neuronal networks recorded on Microelectrode Arrays (MEAs). Cultured neuronal networks monitored with MEAs are now being widely used to characterize in vitro models of neurological disorders and to evaluate pharmaceutical compounds. meaRtools provides core algorithms for MEA spike train analysis, feature extraction, statistical analysis and plotting of multiple MEA recordings with multiple genotypes and treatments. meaRtools functionality covers novel solutions for spike train analysis, including algorithms to assess electrode cross-correlation using the spike train tiling coefficient (STTC), mutual information, synchronized bursts and entropy within cultured wells. Also integrated is a solution to account for bursts variability originating from mixed-cell neuronal cultures. The package provides a statistical platform built specifically for MEA data that can combine multiple MEA recordings and compare extracted features between different genetic models or treatments. We demonstrate the utilization of meaRtools to successfully identify epilepsy-like phenotypes in neuronal networks from Celf4 knockout mice. The package is freely available under the GPL license (GPL> = 3) and is updated frequently on the CRAN web-server repository. The package, along with full documentation can be downloaded from: https://cran.r-project.org/web/packages/meaRtools/.
Collapse
Affiliation(s)
- Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Quanli Wang
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
- Simcere Diagnostics Co, Ltd, Nanjing, China
| | - Yi-Fan Lu
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
- Department of Biology, Westmont College, Santa Barbara, CA, United States of America
| | - Diana Hall
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Christopher D. Bostick
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Ryan Dhindsa
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Matt Halvorsen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - K. Melodi McSweeney
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Ellese Cotterill
- Cambridge Computational Biology Institute, University of Cambridge, Cambridge, United Kingdom
| | - Tom Edinburgh
- Cambridge Computational Biology Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michael A. Beaumont
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Axion BioSystems, Inc., Atlanta, GA, United States of America
| | - Wayne N. Frankel
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Slavé Petrovski
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Medicine, Austin Health and Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Andrew S. Allen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States of America
| | - Michael J. Boland
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Neurology, Columbia University, New York, NY, United States of America
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Stephen J. Eglen
- Cambridge Computational Biology Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Soscia D, Belle A, Fischer N, Enright H, Sales A, Osburn J, Benett W, Mukerjee E, Kulp K, Pannu S, Wheeler E. Controlled placement of multiple CNS cell populations to create complex neuronal cultures. PLoS One 2017; 12:e0188146. [PMID: 29161298 PMCID: PMC5697820 DOI: 10.1371/journal.pone.0188146] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/01/2017] [Indexed: 11/24/2022] Open
Abstract
In vitro brain-on-a-chip platforms hold promise in many areas including: drug discovery, evaluating effects of toxicants and pathogens, and disease modelling. A more accurate recapitulation of the intricate organization of the brain in vivo may require a complex in vitro system including organization of multiple neuronal cell types in an anatomically-relevant manner. Most approaches for compartmentalizing or segregating multiple cell types on microfabricated substrates use either permanent physical surface features or chemical surface functionalization. This study describes a removable insert that successfully deposits neurons from different brain areas onto discrete regions of a microelectrode array (MEA) surface, achieving a separation distance of 100 μm. The regional seeding area on the substrate is significantly smaller than current platforms using comparable placement methods. The non-permanent barrier between cell populations allows the cells to remain localized and attach to the substrate while the insert is in place and interact with neighboring regions after removal. The insert was used to simultaneously seed primary rodent hippocampal and cortical neurons onto MEAs. These cells retained their morphology, viability, and function after seeding through the cell insert through 28 days in vitro (DIV). Co-cultures of the two neuron types developed processes and formed integrated networks between the different MEA regions. Electrophysiological data demonstrated characteristic bursting features and waveform shapes that were consistent for each neuron type in both mono- and co-culture. Additionally, hippocampal cells co-cultured with cortical neurons showed an increase in within-burst firing rate (p = 0.013) and percent spikes in bursts (p = 0.002), changes that imply communication exists between the two cell types in co-culture. The cell seeding insert described in this work is a simple but effective method of separating distinct neuronal populations on microfabricated devices, and offers a unique approach to developing the types of complex in vitro cellular environments required for anatomically-relevant brain-on-a-chip devices.
Collapse
Affiliation(s)
- D. Soscia
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - A. Belle
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - N. Fischer
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - H. Enright
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - A. Sales
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - J. Osburn
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - W. Benett
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - E. Mukerjee
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - K. Kulp
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - S. Pannu
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - E. Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| |
Collapse
|
16
|
Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy. Neurosci Bull 2017; 33:455-477. [PMID: 28488083 DOI: 10.1007/s12264-017-0134-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/20/2017] [Indexed: 01/29/2023] Open
Abstract
Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.
Collapse
|
17
|
Wanke E, Gullo F, Dossi E, Valenza G, Becchetti A. Neuron-glia cross talk revealed in reverberating networks by simultaneous extracellular recording of spikes and astrocytes' glutamate transporter and K+ currents. J Neurophysiol 2016; 116:2706-2719. [PMID: 27683885 PMCID: PMC5133298 DOI: 10.1152/jn.00509.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/22/2016] [Indexed: 01/11/2023] Open
Abstract
In neocortex networks, we simultaneously captured spikes and the slower astrocytes' K+and glutamate transporter (GluT) currents with the use of individual MEA electrodes. Inward and outward K+currents in different regions of the glial syncytium suggested that spatial buffering was operant. Moreover, in organotypic slices from ventral tegmental area and prefrontal cortex, the large GluT current amplitudes allowed to measure transporter currents with a single electrode. Our method allows direct study of the dynamic interplay of different cell types in excitable and nonexcitable tissue. Astrocytes uptake synaptically released glutamate with electrogenic transporters (GluT) and buffer the spike-dependent extracellular K+ excess with background K+ channels. We studied neuronal spikes and the slower astrocytic signals on reverberating neocortical cultures and organotypic slices from mouse brains. Spike trains and glial responses were simultaneously captured from individual sites of multielectrode arrays (MEA) by splitting the recorded traces into appropriate filters and reconstructing the original signal by deconvolution. GluT currents were identified by using dl-threo-β-benzyloxyaspartate (TBOA). K+ currents were blocked by 30 μM Ba2+, suggesting a major contribution of inwardly rectifying K+ currents. Both types of current were tightly correlated with the spike rate, and their astrocytic origin was tested in primary cultures by blocking glial proliferation with cytosine β-d-arabinofuranoside (AraC). The spike-related, time-locked inward and outward K+ currents in different regions of the astrocyte syncytium were consistent with the assumptions of the spatial K+ buffering model. In organotypic slices from ventral tegmental area and prefrontal cortex, the GluT current amplitudes exceeded those observed in primary cultures by several orders of magnitude, which allowed to directly measure transporter currents with a single electrode. Simultaneously measuring cell signals displaying widely different amplitudes and kinetics will help clarify the neuron-glia interplay and make it possible to follow the cross talk between different cell types in excitable as well as nonexcitable tissue.
Collapse
Affiliation(s)
- Enzo Wanke
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Francesca Gullo
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Elena Dossi
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Gaetano Valenza
- Research Centre "E. Piaggio" and Department of Information Engineering, School of Engineering, University of Pisa, Pisa, Italy
| | - Andrea Becchetti
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| |
Collapse
|
18
|
McSweeney KM, Gussow AB, Bradrick SS, Dugger SA, Gelfman S, Wang Q, Petrovski S, Frankel WN, Boland MJ, Goldstein DB. Inhibition of microRNA 128 promotes excitability of cultured cortical neuronal networks. Genome Res 2016; 26:1411-1416. [PMID: 27516621 PMCID: PMC5052052 DOI: 10.1101/gr.199828.115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 08/08/2016] [Indexed: 11/25/2022]
Abstract
Cultured neuronal networks monitored with microelectrode arrays (MEAs) have been used widely to evaluate pharmaceutical compounds for potential neurotoxic effects. A newer application of MEAs has been in the development of in vitro models of neurological disease. Here, we directly evaluated the utility of MEAs to recapitulate in vivo phenotypes of mature microRNA-128 (miR-128) deficiency, which causes fatal seizures in mice. We show that inhibition of miR-128 results in significantly increased neuronal activity in cultured neuronal networks derived from primary mouse cortical neurons. These results support the utility of MEAs in developing in vitro models of neuroexcitability disorders, such as epilepsy, and further suggest that MEAs provide an effective tool for the rapid identification of microRNAs that promote seizures when dysregulated.
Collapse
Affiliation(s)
- K Melodi McSweeney
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; University Program in Genetics and Genomics, Duke University, Durham, North Carolina 27708, USA
| | - Ayal B Gussow
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA
| | - Shelton S Bradrick
- Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Sarah A Dugger
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, USA
| | - Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | - Quanli Wang
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | - Slavé Petrovski
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Department of Medicine, The University of Melbourne, Austin Health and Royal Melbourne Hospital, Melbourne, Victoria 3052, Australia
| | - Wayne N Frankel
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, USA
| | - Michael J Boland
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Department of Neurology, Columbia University Medical Center, New York, New York 10032, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
19
|
Dhindsa RS, Goldstein DB. Genetic Discoveries Drive Molecular Analyses and Targeted Therapeutic Options in the Epilepsies. Curr Neurol Neurosci Rep 2016; 15:70. [PMID: 26319171 DOI: 10.1007/s11910-015-0587-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Epilepsy is a serious neurological disease with substantial genetic contribution. We have recently made major advances in understanding the genetics and etiology of the epilepsies. However, current antiepileptic drugs are ineffective in nearly one third of patients. Most of these drugs were developed without knowledge of the underlying causes of the epilepsy to be treated; thus, it seems reasonable to assume that further improvements require a deeper understanding of epilepsy pathophysiology. Although once the rate-limiting step, gene discovery is now occurring at an unprecedented rapid rate, especially in the epileptic encephalopathies. However, to place these genetic findings in a biological context and discover treatment options for patients, we must focus on developing an efficient framework for functional evaluation of the mutations that cause epilepsy. In this review, we discuss guidelines for gene discovery, emerging functional assays and models, and novel therapeutics to highlight the developing framework of precision medicine in the epilepsies.
Collapse
Affiliation(s)
- Ryan S Dhindsa
- Institute for Genomic Medicine, Columbia University, Hammer Building, 701 West 168th Street, Box 149, New York, NY, 10032, USA,
| | | |
Collapse
|
20
|
Boillot M, Baulac S. Genetic models of focal epilepsies. J Neurosci Methods 2016; 260:132-43. [DOI: 10.1016/j.jneumeth.2015.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2023]
|
21
|
Central Nervous System and its Disease Models on a Chip. Trends Biotechnol 2015; 33:762-776. [DOI: 10.1016/j.tibtech.2015.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/18/2015] [Accepted: 09/08/2015] [Indexed: 01/17/2023]
|
22
|
Baltz T, Voigt T. Interaction of electrically evoked activity with intrinsic dynamics of cultured cortical networks with and without functional fast GABAergic synaptic transmission. Front Cell Neurosci 2015; 9:272. [PMID: 26236196 PMCID: PMC4505148 DOI: 10.3389/fncel.2015.00272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/02/2015] [Indexed: 11/23/2022] Open
Abstract
The modulation of neuronal activity by means of electrical stimulation is a successful therapeutic approach for patients suffering from a variety of central nervous system disorders. Prototypic networks formed by cultured cortical neurons represent an important model system to gain general insights in the input–output relationships of neuronal tissue. These networks undergo a multitude of developmental changes during their maturation, such as the excitatory–inhibitory shift of the neurotransmitter GABA. Very few studies have addressed how the output properties to a given stimulus change with ongoing development. Here, we investigate input–output relationships of cultured cortical networks by probing cultures with and without functional GABAAergic synaptic transmission with a set of stimulation paradigms at various stages of maturation. On the cellular level, low stimulation rates (<15 Hz) led to reliable neuronal responses; higher rates were increasingly ineffective. Similarly, on the network level, lowest stimulation rates (<0.1 Hz) lead to maximal output rates at all ages, indicating a network wide refractory period after each stimulus. In cultures aged 3 weeks and older, a gradual recovery of the network excitability within tens of milliseconds was in contrast to an abrupt recovery after about 5 s in cultures with absent GABAAergic synaptic transmission. In these GABA deficient cultures evoked responses were prolonged and had multiple discharges. Furthermore, the network excitability changed periodically, with a very slow spontaneous change of the overall network activity in the minute range, which was not observed in cultures with absent GABAAergic synaptic transmission. The electrically evoked activity of cultured cortical networks, therefore, is governed by at least two potentially interacting mechanisms: A refractory period in the order of a few seconds and a very slow GABA dependent oscillation of the network excitability.
Collapse
Affiliation(s)
- Thomas Baltz
- Institut für Physiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg Germany
| | - Thomas Voigt
- Institut für Physiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg Germany ; Center for Behavioral Brain Sciences, Magdeburg Germany
| |
Collapse
|
23
|
Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol 2015; 6:22. [PMID: 25717303 PMCID: PMC4324070 DOI: 10.3389/fphys.2015.00022] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal epilepsy with attacks typically arising in the frontal lobe during non-rapid eye movement (NREM) sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs). This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel), DEPD5 (Disheveled, Egl-10 and Pleckstrin Domain-containing protein 5), and CRH (Corticotropin-Releasing Hormone). Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Patrizia Aracri
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Brusco
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Alida Amadeo
- Department of Biosciences, University of Milano Milano, Italy
| |
Collapse
|
24
|
Charlesworth P, Cotterill E, Morton A, Grant SGN, Eglen SJ. Quantitative differences in developmental profiles of spontaneous activity in cortical and hippocampal cultures. Neural Dev 2015; 10:1. [PMID: 25626996 PMCID: PMC4320829 DOI: 10.1186/s13064-014-0028-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neural circuits can spontaneously generate complex spatiotemporal firing patterns during development. This spontaneous activity is thought to help guide development of the nervous system. In this study, we had two aims. First, to characterise the changes in spontaneous activity in cultures of developing networks of either hippocampal or cortical neurons dissociated from mouse. Second, to assess whether there are any functional differences in the patterns of activity in hippocampal and cortical networks. RESULTS We used multielectrode arrays to record the development of spontaneous activity in cultured networks of either hippocampal or cortical neurons every 2 or 3 days for the first month after plating. Within a few days of culturing, networks exhibited spontaneous activity. This activity strengthened and then stabilised typically around 21 days in vitro. We quantified the activity patterns in hippocampal and cortical networks using 11 features. Three out of 11 features showed striking differences in activity between hippocampal and cortical networks: (1) interburst intervals are less variable in spike trains from hippocampal cultures; (2) hippocampal networks have higher correlations and (3) hippocampal networks generate more robust theta-bursting patterns. Machine-learning techniques confirmed that these differences in patterning are sufficient to classify recordings reliably at any given age as either hippocampal or cortical networks. CONCLUSIONS Although cultured networks of hippocampal and cortical networks both generate spontaneous activity that changes over time, at any given time we can reliably detect differences in the activity patterns. We anticipate that this quantitative framework could have applications in many areas, including neurotoxicity testing and for characterising the phenotype of different mutant mice. All code and data relating to this report are freely available for others to use.
Collapse
Affiliation(s)
- Paul Charlesworth
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Genome Campus, CB10 1SA, Hinxton, UK. .,Current address: Department of Physiology, Development and Neuroscience, Physiological Laboratory, Downing Street, Cambridge, CB2 3EG, UK.
| | - Ellese Cotterill
- Cambridge Computational Biology Institute, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK.
| | - Andrew Morton
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Genome Campus, CB10 1SA, Hinxton, UK. .,Current address: Centre for Integrative Physiology, University of Edinburgh School of Biomedical Sciences, EH8 9XD, Edinburgh, UK.
| | - Seth G N Grant
- Centre for Clinical Brain Sciences and Centre for Neuroregeneration, Chancellors Building, Edinburgh University, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Stephen J Eglen
- Cambridge Computational Biology Institute, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK.
| |
Collapse
|