1
|
Singh R, Bharadwaj HM. Cortical temporal integration can account for limits of temporal perception: investigations in the binaural system. Commun Biol 2023; 6:981. [PMID: 37752215 PMCID: PMC10522716 DOI: 10.1038/s42003-023-05361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
The auditory system has exquisite temporal coding in the periphery which is transformed into a rate-based code in central auditory structures, like auditory cortex. However, the cortex is still able to synchronize, albeit at lower modulation rates, to acoustic fluctuations. The perceptual significance of this cortical synchronization is unknown. We estimated physiological synchronization limits of cortex (in humans with electroencephalography) and brainstem neurons (in chinchillas) to dynamic binaural cues using a novel system-identification technique, along with parallel perceptual measurements. We find that cortex can synchronize to dynamic binaural cues up to approximately 10 Hz, which aligns well with our measured limits of perceiving dynamic spatial information and utilizing dynamic binaural cues for spatial unmasking, i.e. measures of binaural sluggishness. We also find that the tracking limit for frequency modulation (FM) is similar to the limit for spatial tracking, demonstrating that this sluggish tracking is a more general perceptual limit that can be accounted for by cortical temporal integration limits.
Collapse
Affiliation(s)
- Ravinderjit Singh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Hari M Bharadwaj
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA.
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Liu X, Yang S, Yao Y, Wu S, Wu P, Zhai Z. Opsin1 regulates light-evoked avoidance behavior in Aedes albopictus. BMC Biol 2022; 20:110. [PMID: 35549721 PMCID: PMC9103082 DOI: 10.1186/s12915-022-01308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Mosquitoes locate a human host by integrating various sensory cues including odor, thermo, and vision. However, their innate light preference and its genetic basis that may predict the spatial distribution of mosquitoes, a prerequisite to encounter a potential host and initiate host-seeking behaviors, remains elusive. RESULTS Here, we first studied mosquito visual features and surprisingly uncovered that both diurnal (Aedes aegypti and Aedes albopictus) and nocturnal (Culex quinquefasciatus) mosquitoes significantly avoided stronger light when given choices. With consistent results from multiple assays, we found that such negative phototaxis maintained throughout development to adult stages. Notably, female mosquitoes significantly preferred to bite hosts in a shaded versus illuminated area. Furthermore, silencing Opsin1, a G protein-coupled receptor that is most enriched in compound eyes, abolished light-evoked avoidance behavior of Aedes albopictus and attenuated photonegative behavior in Aedes aegypti. Finally, we found that field-collected Aedes albopictus also prefers darker area in an Opsin1-dependent manner. CONCLUSIONS This study reveals that mosquitoes consistently prefer darker environment and identifies the first example of a visual molecule that modulates mosquito photobehavior.
Collapse
Affiliation(s)
- Xinyi Liu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Shuzhen Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yuan Yao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Si Wu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Pa Wu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zongzhao Zhai
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
3
|
Kemppainen J, Mansour N, Takalo J, Juusola M. High-speed imaging of light-induced photoreceptor microsaccades in compound eyes. Commun Biol 2022; 5:203. [PMID: 35241794 PMCID: PMC8894348 DOI: 10.1038/s42003-022-03142-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/09/2022] [Indexed: 11/09/2022] Open
Abstract
Inside compound eyes, photoreceptors contract to light changes, sharpening retinal images of the moving world in time. Current methods to measure these so-called photoreceptor microsaccades in living insects are spatially limited and technically challenging. Here, we present goniometric high-speed deep pseudopupil (GHS-DPP) microscopy to assess how the rhabdomeric insect photoreceptors and their microsaccades are organised across the compound eyes. This method enables non-invasive rhabdomere orientation mapping, whilst their microsaccades can be locally light-activated, revealing the eyes' underlying active sampling motifs. By comparing the microsaccades in wild-type Drosophila's open rhabdom eyes to spam-mutant eyes, reverted to an ancestral fused rhabdom state, and honeybee's fused rhabdom eyes, we show how different eye types sample light information. These results show different ways compound eyes initiate the conversion of spatial light patterns in the environment into temporal neural signals and highlight how this active sampling can evolve with insects' visual needs.
Collapse
Affiliation(s)
- Joni Kemppainen
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Neveen Mansour
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jouni Takalo
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mikko Juusola
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
4
|
Leibbrandt R, Nicholas S, Nordström K. The impulse response of optic flow-sensitive descending neurons to roll m-sequences. J Exp Biol 2021; 224:273641. [PMID: 34870706 PMCID: PMC8714074 DOI: 10.1242/jeb.242833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022]
Abstract
When animals move through the world, their own movements generate widefield optic flow across their eyes. In insects, such widefield motion is encoded by optic lobe neurons. These lobula plate tangential cells (LPTCs) synapse with optic flow-sensitive descending neurons, which in turn project to areas that control neck, wing and leg movements. As the descending neurons play a role in sensorimotor transformation, it is important to understand their spatio-temporal response properties. Recent work shows that a relatively fast and efficient way to quantify such response properties is to use m-sequences or other white noise techniques. Therefore, here we used m-sequences to quantify the impulse responses of optic flow-sensitive descending neurons in male Eristalis tenax hoverflies. We focused on roll impulse responses as hoverflies perform exquisite head roll stabilizing reflexes, and the descending neurons respond particularly well to roll. We found that the roll impulse responses were fast, peaking after 16.5–18.0 ms. This is similar to the impulse response time to peak (18.3 ms) to widefield horizontal motion recorded in hoverfly LPTCs. We found that the roll impulse response amplitude scaled with the size of the stimulus impulse, and that its shape could be affected by the addition of constant velocity roll or lift. For example, the roll impulse response became faster and stronger with the addition of excitatory stimuli, and vice versa. We also found that the roll impulse response had a long return to baseline, which was significantly and substantially reduced by the addition of either roll or lift. Summary: The impulse response of hoverfly optic flow-sensitive descending neurons to roll m-sequences reaches its time to peak within 20 ms and slowly returns to baseline over the next 100 ms.
Collapse
Affiliation(s)
- Richard Leibbrandt
- Neuroscience, Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, 5001 Adelaide, SA, Australia
| | - Sarah Nicholas
- Neuroscience, Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, 5001 Adelaide, SA, Australia
| | - Karin Nordström
- Neuroscience, Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, 5001 Adelaide, SA, Australia.,Department of Neuroscience, Uppsala University, Box 593, 751 24 Uppsala, Sweden
| |
Collapse
|
5
|
Salem W, Cellini B, Frye MA, Mongeau JM. Fly eyes are not still: a motion illusion in Drosophila flight supports parallel visual processing. J Exp Biol 2020; 223:jeb212316. [PMID: 32321749 PMCID: PMC7272343 DOI: 10.1242/jeb.212316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/12/2020] [Indexed: 02/05/2023]
Abstract
Most animals shift gaze by a 'fixate and saccade' strategy, where the fixation phase stabilizes background motion. A logical prerequisite for robust detection and tracking of moving foreground objects, therefore, is to suppress the perception of background motion. In a virtual reality magnetic tether system enabling free yaw movement, Drosophila implemented a fixate and saccade strategy in the presence of a static panorama. When the spatial wavelength of a vertical grating was below the Nyquist wavelength of the compound eyes, flies drifted continuously and gaze could not be maintained at a single location. Because the drift occurs from a motionless stimulus - thus any perceived motion stimuli are generated by the fly itself - it is illusory, driven by perceptual aliasing. Notably, the drift speed was significantly faster than under a uniform panorama, suggesting perceptual enhancement as a result of aliasing. Under the same visual conditions in a rigid-tether paradigm, wing steering responses to the unresolvable static panorama were not distinguishable from those to a resolvable static pattern, suggesting visual aliasing is induced by ego motion. We hypothesized that obstructing the control of gaze fixation also disrupts detection and tracking of objects. Using the illusory motion stimulus, we show that magnetically tethered Drosophila track objects robustly in flight even when gaze is not fixated as flies continuously drift. Taken together, our study provides further support for parallel visual motion processing and reveals the critical influence of body motion on visuomotor processing. Motion illusions can reveal important shared principles of information processing across taxa.
Collapse
Affiliation(s)
- Wael Salem
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Benjamin Cellini
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Mark A Frye
- Department of Integrative Biology and Physiology, University of California - Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Jean-Michel Mongeau
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Mongeau JM, Cheng KY, Aptekar J, Frye MA. Visuomotor strategies for object approach and aversion in Drosophila melanogaster. ACTA ACUST UNITED AC 2019; 222:jeb.193730. [PMID: 30559298 DOI: 10.1242/jeb.193730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/10/2018] [Indexed: 02/01/2023]
Abstract
Animals classify stimuli to generate appropriate motor actions. In flight, Drosophila melanogaster classify equidistant large and small objects with categorically different behaviors: a tall object evokes approach whereas a small object elicits avoidance. We studied visuomotor behavior in rigidly and magnetically tethered D. melanogaster to reveal strategies that generate aversion to a small object. We discovered that small-object aversion in tethered flight is enabled by aversive saccades and smooth movement, which vary with the stimulus type. Aversive saccades in response to a short bar had different dynamics from approach saccades in response to a tall bar and the distribution of pre-saccade error angles was more stochastic for a short bar. Taken together, we show that aversive responses in D. melanogaster are driven in part by processes that elicit signed saccades with distinct dynamics and trigger mechanisms. Our work generates new hypotheses to study brain circuits that underlie classification of objects in D. melanogaster.
Collapse
Affiliation(s)
- Jean-Michel Mongeau
- Department of Integrative Biology and Physiology, University of California - Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Karen Y Cheng
- Department of Integrative Biology and Physiology, University of California - Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Jacob Aptekar
- Department of Integrative Biology and Physiology, University of California - Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Mark A Frye
- Department of Integrative Biology and Physiology, University of California - Los Angeles, Los Angeles, CA 90095-7239, USA
| |
Collapse
|
7
|
Akin O, Bajar BT, Keles MF, Frye MA, Zipursky SL. Cell-type-Specific Patterned Stimulus-Independent Neuronal Activity in the Drosophila Visual System during Synapse Formation. Neuron 2019; 101:894-904.e5. [PMID: 30711355 DOI: 10.1016/j.neuron.2019.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/31/2018] [Accepted: 12/28/2018] [Indexed: 12/22/2022]
Abstract
Stereotyped synaptic connections define the neural circuits of the brain. In vertebrates, stimulus-independent activity contributes to neural circuit formation. It is unknown whether this type of activity is a general feature of nervous system development. Here, we report patterned, stimulus-independent neural activity in the Drosophila visual system during synaptogenesis. Using in vivo calcium, voltage, and glutamate imaging, we found that all neurons participate in this spontaneous activity, which is characterized by brain-wide periodic active and silent phases. Glia are active in a complementary pattern. Each of the 15 of over 100 specific neuron types in the fly visual system examined exhibited a unique activity signature. The activity of neurons that are synaptic partners in the adult was highly correlated during development. We propose that this cell-type-specific activity coordinates the development of the functional circuitry of the adult brain.
Collapse
Affiliation(s)
- Orkun Akin
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Bryce T Bajar
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mehmet F Keles
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark A Frye
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Zoccolan D, Cox DD, Benucci A. Editorial: What can simple brains teach us about how vision works. Front Neural Circuits 2015; 9:51. [PMID: 26483639 PMCID: PMC4586271 DOI: 10.3389/fncir.2015.00051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/14/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- Davide Zoccolan
- Visual Neuroscience Lab, International School for Advanced Studies Trieste, Italy
| | - David D Cox
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University Cambridge, MA, USA
| | - Andrea Benucci
- Laboratory for Neural Circuit and Behavior, RIKEN Brain Science Institute Wako City, Japan
| |
Collapse
|
9
|
Abstract
Many animals rely on visual figure-ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure-ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula--one of the four, primary neuropiles of the fly optic lobe--performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure-ground stimuli in a homologous manner to the behavior; "figure-like" stimuli are coded similar to one another and "ground-like" stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection.
Collapse
|
10
|
Spatio-temporal dynamics of impulse responses to figure motion in optic flow neurons. PLoS One 2015; 10:e0126265. [PMID: 25955416 PMCID: PMC4425674 DOI: 10.1371/journal.pone.0126265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/31/2015] [Indexed: 11/24/2022] Open
Abstract
White noise techniques have been used widely to investigate sensory systems in both vertebrates and invertebrates. White noise stimuli are powerful in their ability to rapidly generate data that help the experimenter decipher the spatio-temporal dynamics of neural and behavioral responses. One type of white noise stimuli, maximal length shift register sequences (m-sequences), have recently become particularly popular for extracting response kernels in insect motion vision. We here use such m-sequences to extract the impulse responses to figure motion in hoverfly lobula plate tangential cells (LPTCs). Figure motion is behaviorally important and many visually guided animals orient towards salient features in the surround. We show that LPTCs respond robustly to figure motion in the receptive field. The impulse response is scaled down in amplitude when the figure size is reduced, but its time course remains unaltered. However, a low contrast stimulus generates a slower response with a significantly longer time-to-peak and half-width. Impulse responses in females have a slower time-to-peak than males, but are otherwise similar. Finally we show that the shapes of the impulse response to a figure and a widefield stimulus are very similar, suggesting that the figure response could be coded by the same input as the widefield response.
Collapse
|