1
|
Deng J, Sun C, Zheng Y, Gao J, Cui X, Wang Y, Zhang L, Tang P. In vivo imaging of the neuronal response to spinal cord injury: a narrative review. Neural Regen Res 2024; 19:811-817. [PMID: 37843216 PMCID: PMC10664102 DOI: 10.4103/1673-5374.382225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 10/17/2023] Open
Abstract
Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury (SCI). However, this subject has been neglected in part because appropriate tools are lacking. Emerging in vivo imaging and labeling methods offer great potential for observing dynamic neural processes in the central nervous system in conditions of health and disease. This review first discusses in vivo imaging of the mouse spinal cord with a focus on the latest imaging techniques, and then analyzes the dynamic biological response of spinal cord sensory and motor neurons to SCI. We then summarize and compare the techniques behind these studies and clarify the advantages of in vivo imaging compared with traditional neuroscience examinations. Finally, we identify the challenges and possible solutions for spinal cord neuron imaging.
Collapse
Affiliation(s)
- Junhao Deng
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chang Sun
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- Department of Orthopedics, Air Force Medical Center, PLA, Beijing, China
| | - Ying Zheng
- Medical School of Chinese PLA, Beijing, China
| | - Jianpeng Gao
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
2
|
Mora S, Allodi I. Neural circuit and synaptic dysfunctions in ALS-FTD pathology. Front Neural Circuits 2023; 17:1208876. [PMID: 37469832 PMCID: PMC10352654 DOI: 10.3389/fncir.2023.1208876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/08/2023] [Indexed: 07/21/2023] Open
Abstract
Action selection is a capital feature of cognition that guides behavior in processes that range from motor patterns to executive functions. Here, the ongoing actions need to be monitored and adjusted in response to sensory stimuli to increase the chances of reaching the goal. As higher hierarchical processes, these functions rely on complex neural circuits, and connective loops found within the brain and the spinal cord. Successful execution of motor behaviors depends, first, on proper selection of actions, and second, on implementation of motor commands. Thus, pathological conditions crucially affecting the integrity and preservation of these circuits and their connectivity will heavily impact goal-oriented motor behaviors. Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders known to share disease etiology and pathophysiology. New evidence in the field of ALS-FTD has shown degeneration of specific neural circuits and alterations in synaptic connectivity, contributing to neuronal degeneration, which leads to the impairment of motor commands and executive functions. This evidence is based on studies performed on animal models of disease, post-mortem tissue, and patient derived stem cells. In the present work, we review the existing evidence supporting pathological loss of connectivity and selective impairment of neural circuits in ALS and FTD, two diseases which share strong genetic causes and impairment in motor and executive functions.
Collapse
Affiliation(s)
- Santiago Mora
- Integrative Neuroscience Unit, Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ilary Allodi
- Integrative Neuroscience Unit, Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Neural Circuits of Disease Laboratory, School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
3
|
Yang L, Liu B, Zheng S, Xu L, Yao M. Understanding the initiation, delivery and processing of bone cancer pain from the peripheral to the central nervous system. Neuropharmacology 2023; 237:109641. [PMID: 37392821 DOI: 10.1016/j.neuropharm.2023.109641] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Bone cancer pain is a complex condition characterized by persistent, sudden, spontaneous pain accompanied by hyperalgesia that typically arises from bone metastases or primary bone tumors, causing severe discomfort and significantly diminishing cancer patients' quality of life and confidence in their ability to overcome the disease. It is widely known that peripheral nerves are responsible for detecting harmful stimuli, which are then transmitted to the brain via the spinal cord, resulting in the perception of pain. In the case of bone cancer, tumors and stromal cells within the bone marrow release various chemical signals, including inflammatory factors, colony-stimulating factors, chemokines, and hydrogen ions. Consequently, the nociceptors located at the nerve endings within the bone marrow sense these chemical signals, generating electrical signals that are then transmitted to the brain through the spinal cord. Subsequently, the brain processes these electrical signals in a complex manner to create the sensation of bone cancer pain. Numerous studies have investigated the transmission of bone cancer pain from the periphery to the spinal cord. However, the processing of pain information induced by bone cancer within the brain remains unclear. With the continuous advancements in brain science and technology, the brain mechanism of bone cancer pain would become more clearly understood. Herein, we focus on summarizing the peripheral nerve perception of the spinal cord transmission of bone cancer pain and provide a brief overview of the ongoing research regarding the brain mechanisms involved in bone cancer pain.
Collapse
Affiliation(s)
- Lei Yang
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Beibei Liu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Shang Zheng
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Longsheng Xu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| | - Ming Yao
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| |
Collapse
|
4
|
Akbar L, Castillo VCG, Olorocisimo JP, Ohta Y, Kawahara M, Takehara H, Haruta M, Tashiro H, Sasagawa K, Ohsawa M, Akay YM, Akay M, Ohta J. Multi-Region Microdialysis Imaging Platform Revealed Dorsal Raphe Nucleus Calcium Signaling and Serotonin Dynamics during Nociceptive Pain. Int J Mol Sci 2023; 24:ijms24076654. [PMID: 37047627 PMCID: PMC10094999 DOI: 10.3390/ijms24076654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
In this research, we combined our ultralight micro-imaging device for calcium imaging with microdialysis to simultaneously visualize neural activity in the dorsal raphe nucleus (DRN) and measure serotonin release in the central nucleus of the amygdala (CeA) and the anterior cingulate cortex (ACC). Using this platform, we observed brain activity following nociception induced by formalin injection in the mouse’s hind paw. Our device showed that DRN fluorescence intensity increased after formalin injection, and the increase was highly correlated with the elevation in serotonin release in both the CeA and ACC. The increase in calcium fluorescence intensity occurred during the acute and inflammatory phases, which suggests the biphasic response of nociceptive pain. Furthermore, we found that the increase in fluorescence intensity was positively correlated with mouse licking behavior. Lastly, we compared the laterality of pain stimulation and found that DRN fluorescence activity was higher for contralateral stimulation. Microdialysis showed that CeA serotonin concentration increased only after contralateral stimulation, while ACC serotonin release responded bilaterally. In conclusion, our study not only revealed the inter-regional serotonergic connection among the DRN, the CeA, and the ACC, but also demonstrated that our device is feasible for multi-site implantation in conjunction with a microdialysis system, allowing the simultaneous multi-modal observation of different regions in the brain.
Collapse
Affiliation(s)
- Latiful Akbar
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Virgil Christian Garcia Castillo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Joshua Philippe Olorocisimo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Yasumi Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Mamiko Kawahara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Hironari Takehara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Makito Haruta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Hiroyuki Tashiro
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kiyotaka Sasagawa
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Yasemin M. Akay
- Biomedical Engineering Department, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Metin Akay
- Biomedical Engineering Department, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Jun Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| |
Collapse
|
5
|
Tan S, Faull RLM, Curtis MA. The tracts, cytoarchitecture, and neurochemistry of the spinal cord. Anat Rec (Hoboken) 2023; 306:777-819. [PMID: 36099279 DOI: 10.1002/ar.25079] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/01/2022] [Accepted: 09/11/2022] [Indexed: 11/06/2022]
Abstract
The human spinal cord can be described using a range of nomenclatures with each providing insight into its structure and function. Here we have comprehensively reviewed the key literature detailing the general structure, configuration of tracts, the cytoarchitecture of Rexed's laminae, and the neurochemistry at the spinal segmental level. The purpose of this review is to detail current anatomical understanding of how the spinal cord is structured and to aid researchers in identifying gaps in the literature that need to be studied to improve our knowledge of the spinal cord which in turn will improve the potential of therapeutic intervention for disorders of the spinal cord.
Collapse
Affiliation(s)
- Sheryl Tan
- Centre for Brain Research and Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research and Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research and Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Yeo M, Zhang Q, Ding L, Shen X, Chen Y, Liedtke W. Spinal cord dorsal horn sensory gate in preclinical models of chemotherapy-induced painful neuropathy and contact dermatitis chronic itch becomes less leaky with Kcc2 gene expression-enhancing treatments. Front Mol Neurosci 2022; 15:911606. [PMID: 36504679 PMCID: PMC9731339 DOI: 10.3389/fnmol.2022.911606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Low intraneuronal chloride in spinal cord dorsal horn (SCDH) pain relay neurons is of critical relevance for physiological transmission of primary sensory afferents because low intraneuronal chloride dictates GABA-ergic and glycin-ergic neurotransmission to be inhibitory. If neuronal chloride rises to unphysiological levels, the primary sensory gate in the spinal cord dorsal horn becomes corrupted, with resulting behavioral hallmarks of hypersensitivity and allodynia, for example in pathological pain. Low chloride in spinal cord dorsal horn neurons relies on the robust gene expression of Kcc2 and sustained transporter function of the KCC2 chloride-extruding electroneutral transporter. Based on a recent report where we characterized the GSK3-inhibitory small molecule, kenpaullone, as a Kcc2 gene expression-enhancer that potently repaired diminished Kcc2 expression and KCC2 transporter function in SCDH pain relay neurons, we extend our recent findings by reporting (i) effective pain control in a preclinical model of taxol-induced painful peripheral neuropathy that was accomplished by topical application of a TRPV4/TRPA1 dual-inhibitory compound (compound 16-8), and was associated with the repair of diminished Kcc2 gene expression in the SCDH; and (ii) potent functioning of kenpaullone as an antipruritic in a DNFB contact dermatitis preclinical model. These observations suggest that effective peripheral treatment of chemotherapy-induced painful peripheral neuropathy impacts the pain-transmitting neural circuit in the SCDH in a beneficial manner by enhancing Kcc2 gene expression, and that chronic pruritus might be relayed in the primary sensory gate of the spinal cord, following similar principles as pathological pain, specifically relating to the critical functioning of Kcc2 gene expression and the KCC2 transporter function.
Collapse
Affiliation(s)
- Michele Yeo
- Departments of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Qiaojuan Zhang
- Departments of Neurology, Duke University Medical Center, Durham, NC, United States
| | - LeAnne Ding
- Departments of Neurology, Duke University Medical Center, Durham, NC, United States
| | - Xiangjun Shen
- Departments of Neurology, Duke University Medical Center, Durham, NC, United States
| | - Yong Chen
- Departments of Neurology, Duke University Medical Center, Durham, NC, United States,*Correspondence: Yong Chen
| | - Wolfgang Liedtke
- Departments of Neurology, Duke University Medical Center, Durham, NC, United States,Wolfgang Liedtke
| |
Collapse
|
7
|
Imado E, Sun S, Abawa AR, Tahara T, Kochi T, Huynh TNB, Asano S, Hasebe S, Nakamura Y, Hisaoka-Nakashima K, Kotake Y, Irifune M, Tsuga K, Takuma K, Morioka N, Kiguchi N, Ago Y. Prenatal exposure to valproic acid causes allodynia associated with spinal microglial activation. Neurochem Int 2022; 160:105415. [PMID: 36027995 DOI: 10.1016/j.neuint.2022.105415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and social interaction and the presence of restricted, repetitive behaviors. Additionally, difficulties in sensory processing commonly occur in ASD. Sensory abnormalities include heightened or reduced sensitivity to pain, but the mechanism underlying sensory phenotypes in ASD remain unknown. Emerging evidence suggests that microglia play an important role in forming and refining neuronal circuitry, and thus contribute to neuronal plasticity and nociceptive signaling. In the present study, we investigated the age-dependent tactile sensitivity in an animal model of ASD induced by prenatal exposure to valproic acid (VPA) and subsequently assessed the involvement of microglia in the spinal cord in pain processing. Pregnant ICR (CD1) mice were intraperitoneally injected with either saline or VPA (500 mg/kg) on embryonic day 12.5. Male offspring of VPA-treated mothers showed mechanical allodynia at both 4 and 8 weeks of age. In the spinal cord dorsal horn in prenatally VPA-treated mice, the numbers and staining intensities of ionized calcium-binding adapter molecule 1-positive cells were increased and the cell bodies became enlarged, indicating microglial activation. Treatment with PLX3397, a colony-stimulating factor 1 receptor inhibitor, for 10 days resulted in a decreased number of spinal microglia and attenuated mechanical allodynia in adult mice prenatally exposed to VPA. Additionally, intrathecal injection of Mac-1-saporin, a saporin-conjugated anti-CD11b antibody to deplete microglia, abolished mechanical allodynia. These findings suggest that prenatal VPA treatment causes allodynia and that spinal microglia contribute to the increased nociceptive responses.
Collapse
Affiliation(s)
- Eiji Imado
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Samnang Sun
- School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; Faculty of Odonto-Stomatology, University of Health Sciences, #73, Monivong Blvd., Sangkat Sras Chak, Khan Daun Penh, Phnom Penh, 12201, Cambodia
| | - Abrar Rizal Abawa
- School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No. 47, Surabaya, East Java, 60132, Indonesia
| | - Takeru Tahara
- Department of Neurochemistry and Environmental Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Takahiro Kochi
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Tran Ngoc Bao Huynh
- School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; Faculty of Odonto-Stomatology, Hong Bang International University, 215 Dien Bien Phu Street, Ward 15, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Shigeru Hasebe
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Yaichiro Kotake
- Department of Neurochemistry and Environmental Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Masahiro Irifune
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Kazuhiro Tsuga
- School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Kazuhiro Takuma
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Norikazu Kiguchi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Wakayama, 640-8156, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Yu H, Cranfill SL, Luo W. ErbB4 + spinal cord dorsal horn neurons process heat pain. Neuron 2022; 110:2206-2208. [PMID: 35863318 DOI: 10.1016/j.neuron.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
How the spinal cord transmits heat signals from the periphery to the brain remains unclear. In this issue of Neuron, Wang et al. (2022) identify a population of spinal cord neurons functioning in this pathway.
Collapse
Affiliation(s)
- Huasheng Yu
- Department of Neuroscience, 145 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Suna L Cranfill
- Department of Neuroscience, 145 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Wenqin Luo
- Department of Neuroscience, 145 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Harding EK, Zamponi GW. Central and peripheral contributions of T-type calcium channels in pain. Mol Brain 2022; 15:39. [PMID: 35501819 PMCID: PMC9063214 DOI: 10.1186/s13041-022-00923-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractChronic pain is a severely debilitating condition that reflects a long-term sensitization of signal transduction in the afferent pain pathway. Among the key players in this pathway are T-type calcium channels, in particular the Cav3.2 isoform. Because of their biophysical characteristics, these channels are ideally suited towards regulating neuronal excitability. Recent evidence suggests that T-type channels contribute to excitability of neurons all along the ascending and descending pain pathways, within primary afferent neurons, spinal dorsal horn neurons, and within pain-processing neurons in the midbrain and cortex. Here we review the contribution of T-type channels to neuronal excitability and function in each of these neuronal populations and how they are dysregulated in chronic pain conditions. Finally, we discuss their molecular pharmacology and the potential role of these channels as therapeutic targets for chronic pain.
Collapse
|
10
|
Bardoni R. Experimental Protocols and Analytical Procedures for Studying Synaptic Transmission in Rodent Spinal Cord Dorsal Horn. Curr Protoc 2022; 2:e409. [PMID: 35435326 DOI: 10.1002/cpz1.409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synaptic modulation and plasticity are key mechanisms underlying pain transmission in the spinal cord and supra-spinal centers. The study and understanding of these phenomena are fundamental to investigating both acute nociception and maladaptive changes occurring in chronic pain. This article describes experimental protocols and analytical methods utilized in electrophysiological studies to investigate synaptic modulation and plasticity at the first station of somatosensory processing, the spinal cord dorsal horn. Protocols useful for characterizing the nature of synaptic inputs, the site of modulation (pre- versus postsynaptic), and the presence of short-term synaptic plasticity are presented. These methods can be employed to study the physiology of acute nociception, the pathological mechanisms of persistent inflammatory and neuropathic pain, and the pharmacology of receptors and channels involved in pain transmission. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Spinal cord dissection and acute slice preparation Basic Protocol 2: Stimulation of the dorsal root and extracellular recording (compound action potentials and field potentials) Basic Protocol 3: Patch-clamp recording from dorsal horn neurons: action potential firing patterns and evoked synaptic inputs Basic Protocol 4: Analysis of parameters responsible for changes in synaptic efficacy Basic Protocol 5: Recording and analysis of currents mediated by astrocytic glutamate.
Collapse
Affiliation(s)
- Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi, Modena, Italy
| |
Collapse
|
11
|
Boinon L, Yu J, Madura CL, Chefdeville A, Feinstein DL, Moutal A, Khanna R. Conditional knockout of CRMP2 in neurons, but not astrocytes, disrupts spinal nociceptive neurotransmission to control the initiation and maintenance of chronic neuropathic pain. Pain 2022; 163:e368-e381. [PMID: 35029600 PMCID: PMC8760468 DOI: 10.1097/j.pain.0000000000002344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 02/03/2023]
Abstract
ABSTRACT Mechanistic studies principally focusing on primary afferent nociceptive neurons uncovered the upregulation of collapsin response mediator protein 2 (CRMP2)-a dual trafficking regulator of N-type voltage-gated calcium (Cav2.2) as well as Nav1.7 voltage-gated sodium channels-as a potential determinant of neuropathic pain. Whether CRMP2 contributes to aberrant excitatory synaptic transmission underlying neuropathic pain processing after peripheral nerve injury is unknown. Here, we interrogated CRMP2's role in synaptic transmission and in the initiation or maintenance of chronic pain. In rats, short-interfering RNA-mediated knockdown of CRMP2 in the spinal cord reduced the frequency and amplitude of spontaneous excitatory postsynaptic currents, but not spontaneous inhibitory postsynaptic currents, recorded from superficial dorsal horn neurons in acute spinal cord slices. No effect was observed on miniature excitatory postsynaptic currents and inhibitory postsynaptic currents. In a complementary targeted approach, conditional knockout of CRMP2 from mouse neurons using a calcium/calmodulin-dependent protein kinase II alpha promoter to drive Cre recombinase expression reduced the frequency and amplitude of spontaneous excitatory postsynaptic currents, but not miniature excitatory SCss. Conditional knockout of CRMP2 from mouse astrocytes using a glial fibrillary acidic protein promoter had no effect on synaptic transmission. Conditional knockout of CRMP2 in neurons reversed established mechanical allodynia induced by a spared nerve injury in both male and female mice. In addition, the development of spared nerve injury-induced allodynia was also prevented in these mice. Our data strongly suggest that CRMP2 is a key regulator of glutamatergic neurotransmission driving pain signaling and that it contributes to the transition of physiological pain into pathological pain.
Collapse
Affiliation(s)
- Lisa Boinon
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Jie Yu
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Cynthia L. Madura
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Douglas L. Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, Chicago, Illinois 60612, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, 60612, United States of America
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, 85724, United States of America
| |
Collapse
|
12
|
Fan W, Sullivan SJ, Sdrulla AD. Dorsal Column and Root Stimulation at Aβ-fiber Intensity Activate Superficial Dorsal Horn Glutamatergic and GABAergic Populations. Mol Pain 2022; 18:17448069221079559. [PMID: 35088625 PMCID: PMC8891844 DOI: 10.1177/17448069221079559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neurostimulation therapies are frequently used in patients with chronic pain conditions. They emerged from Gate Control Theory (GCT), which posits that Aβ-fiber activation recruits superficial dorsal horn (SDH) inhibitory networks to “close the gate” on nociceptive transmission, resulting in pain relief. However, the efficacy of current therapies is limited, and the underlying circuits remain poorly understood. For example, it remains unknown whether ongoing stimulation of Aβ-fibers is sufficient to drive activity in SDH neurons. We used multiphoton microscopy in spinal cords extracted from mice expressing the genetically encoded calcium indicator GCaMP6s in glutamatergic and GABAergic populations; activity levels were inferred from deconvolved calcium signals using CaImAn software. Sustained Aβ-fiber stimulation at the dorsal columns or dorsal roots drove robust yet transient activation of both SDH populations. Following the initial increase, activity levels decreased below baseline in glutamatergic neurons and were depressed after stimulation ceased in both populations. Surprisingly, only about half of GABAergic neurons responded to Aβ-fiber stimulation. This subset showed elevated activity for the entire duration of stimulation, while non-responders decreased with time. Our findings suggest that Aβ-fiber stimulation initially recruits both excitatory and inhibitory populations but has divergent effects on their activity, providing a foundation for understanding the analgesic effects of neurostimulation devices. Perspective: This article used microscopy to characterize the responses of mouse spinal cord cells to stimulation of non-painful nerve fibers. These findings deepen our understanding of how the spinal cord processes information and provide a foundation for improving pain-relieving therapies.
Collapse
Affiliation(s)
- Wei Fan
- Anesthesiology and Pain Management6684Oregon Health & Science University
| | - Steve J Sullivan
- Anesthesiology and Pain Management6684Oregon Health & Science University
| | - Andrei D Sdrulla
- Anesthesiology and Pain Management6684Oregon Health & Science University
| |
Collapse
|
13
|
Surgical implantation of wireless, battery-free optoelectronic epidural implants for optogenetic manipulation of spinal cord circuits in mice. Nat Protoc 2021; 16:3072-3088. [PMID: 34031611 PMCID: PMC9273129 DOI: 10.1038/s41596-021-00532-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/04/2021] [Indexed: 02/02/2023]
Abstract
The use of optogenetics to regulate neuronal activity has revolutionized the study of the neural circuitry underlying a number of complex behaviors in rodents. Advances have been particularly evident in the study of brain circuitry and related behaviors, while advances in the study of spinal circuitry have been less striking because of technical hurdles. We have developed and characterized a wireless and fully implantable optoelectronic device that enables optical manipulation of spinal cord circuitry in mice via a microscale light-emitting diode (µLED) placed in the epidural space (NeuroLux spinal optogenetic device). This protocol describes how to surgically implant the device into the epidural space and then analyze light-induced behavior upon µLED activation. We detail optimized optical parameters for in vivo stimulation and demonstrate typical behavioral effects of optogenetic activation of nociceptive spinal afferents using this device. This fully wireless spinal µLED system provides considerable versatility for behavioral assays compared with optogenetic approaches that require tethering of animals, and superior temporal and spatial resolution when compared with other methods used for circuit manipulation such as chemogenetics. The detailed surgical approach and improved functionality of these spinal optoelectronic devices substantially expand the utility of this approach for the study of spinal circuitry and behaviors related to mechanical and thermal sensation, pruriception and nociception. The surgical implantation procedure takes ~1 h. The time required for the study of behaviors that are modulated by the light-activated circuit is variable and will depend upon the nature of the study.
Collapse
|
14
|
Li J, Zain M, Bonin RP. Differential modulation of thermal preference after sensitization by optogenetic or pharmacological activation of heat-sensitive nociceptors. Mol Pain 2021; 17:17448069211000910. [PMID: 33719729 PMCID: PMC7960897 DOI: 10.1177/17448069211000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 01/24/2021] [Accepted: 02/10/2021] [Indexed: 11/22/2022] Open
Abstract
Common approaches to studying mechanisms of chronic pain and sensory changes in pre-clinical animal models involve measurement of acute, reflexive withdrawal responses evoked by noxious stimuli. These methods typically do not capture more subtle changes in sensory processing nor report on the consequent behavioral changes. In addition, data collection and analysis protocols are often labour-intensive and require direct investigator interactions, potentially introducing bias. In this study, we develop and characterize a low-cost, easily assembled behavioral assay that yields self-reported temperature preference from mice that is responsive to peripheral sensitization. This system uses a partially automated and freely available analysis pipeline to streamline the data collection process and enable objective analysis. We found that after intraplantar administration of the TrpV1 agonist, capsaicin, mice preferred to stay in cooler temperatures than saline injected mice. We further observed that gabapentin, a non-opioid analgesic commonly prescribed to treat chronic pain, reversed this aversion to higher temperatures. In contrast, optogenetic activation of the central terminals of TrpV1+ primary afferents via in vivo spinal light delivery did not induce a similar change in thermal preference, indicating a possible role for peripheral nociceptor activity in the modulation of temperature preference. We conclude that this easily produced and robust sensory assay provides an alternative approach to investigate the contribution of central and peripheral mechanisms of sensory processing that does not rely on reflexive responses evoked by noxious stimuli.
Collapse
Affiliation(s)
- Jerry Li
- Department of Human Biology: Neuroscience and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Maham Zain
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Robert P Bonin
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|