1
|
Mei T, Chen Y, Gao Y, Zhao H, Lyu X, Lin J, Niu T, Han H, Tong Z. Formaldehyde initiates memory and motor impairments under weightlessness condition. NPJ Microgravity 2024; 10:100. [PMID: 39468074 PMCID: PMC11519943 DOI: 10.1038/s41526-024-00441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
During space flight, prolonged weightlessness stress exerts a range of detrimental impacts on the physiology and psychology of astronauts. These manifestations encompass depressive symptoms, anxiety, and impairments in both short-term memory and motor functions, albeit the precise underlying mechanisms remain elusive. Recent studies have revealed that hindlimb unloading (HU) animal models, which simulate space weightlessness, exhibited a disorder in memory and motor function associated with endogenous formaldehyde (FA) accumulation in the hippocampus and cerebellum, disruption of brain extracellular space (ECS), and blockage of interstitial fluid (ISF) drainage. Notably, the impairment of the blood-brain barrier (BBB) caused by space weightlessness elicits the infiltration of albumin and hemoglobin from the blood vessels into the brain ECS. However, excessive FA has the potential to form cross-links between these two proteins and amyloid-beta (Aβ), thereby obstructing ECS and inducing neuron death. Moreover, FA can inhibit N-methyl-D-aspartate (NMDA) currents by crosslinking NR1 and NR2B subunits, thus impairing memory. Additionally, FA has the ability to modulate the levels of certain microRNAs (miRNAs) such as miRNA-29b, which can affect the expression of aquaporin-4 (AQP4) so as to regulate ECS structure and ISF drainage. Especially, the accumulation of FA may inactivate the ataxia telangiectasia-mutated (ATM) protein kinase by forming cross-linking, a process that is associated with ataxia. Hence, this review presents that weightlessness stress-derived FA may potentially serve as a crucial catalyst in the deterioration of memory and motor abilities in the context of microgravity.
Collapse
Affiliation(s)
- Tianhao Mei
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hang Zhao
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingzhou Lyu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Lin
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, China.
- University of Science and Technology of China, Anhui, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Gros A, Furlan FM, Rouglan V, Favereaux A, Bontempi B, Morel JL. Physical exercise restores adult neurogenesis deficits induced by simulated microgravity. NPJ Microgravity 2024; 10:69. [PMID: 38906877 PMCID: PMC11192769 DOI: 10.1038/s41526-024-00411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
Cognitive impairments have been reported in astronauts during spaceflights and documented in ground-based models of simulated microgravity (SMG) in animals. However, the neuronal causes of these behavioral effects remain largely unknown. We explored whether adult neurogenesis, known to be a crucial plasticity mechanism supporting memory processes, is altered by SMG. Adult male Long-Evans rats were submitted to the hindlimb unloading model of SMG. We studied the proliferation, survival and maturation of newborn cells in the following neurogenic niches: the subventricular zone (SVZ)/olfactory bulb (OB) and the dentate gyrus (DG) of the hippocampus, at different delays following various periods of SMG. SMG exposure for 7 days, but not shorter periods of 6 or 24 h, resulted in a decrease of newborn cell proliferation restricted to the DG. SMG also induced a decrease in short-term (7 days), but not long-term (21 days), survival of newborn cells in the SVZ/OB and DG. Physical exercise, used as a countermeasure, was able to reverse the decrease in newborn cell survival observed in the SVZ and DG. In addition, depending on the duration of SMG periods, transcriptomic analysis revealed modifications in gene expression involved in neurogenesis. These findings highlight the sensitivity of adult neurogenesis to gravitational environmental factors during a transient period, suggesting that there is a period of adaptation of physiological systems to this new environment.
Collapse
Affiliation(s)
- Alexandra Gros
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
- Centre National d'Etudes Spatiales, F-75001, Paris, France
| | - Fandilla Marie Furlan
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
- Department of Genetics & Evolution, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Vanessa Rouglan
- CNRS, IINS, UMR 5297, University Bordeaux, F-33000, Bordeaux, France
| | | | - Bruno Bontempi
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
| | - Jean-Luc Morel
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France.
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France.
| |
Collapse
|
3
|
Abhishek K, Mallick BN. Sleep loss disrupts decision-making ability and neuronal cytomorphology in zebrafish and the effects are mediated by noradrenaline acting on α1-adrenoceptor. Neuropharmacology 2024; 247:109861. [PMID: 38331315 DOI: 10.1016/j.neuropharm.2024.109861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Sleep is an instinct behavior, and its significance and functions are still an enigma. It is expressed throughout one's life and its loss affects psycho-somatic and physiological processes. We had proposed that it might maintain a fundamental property of the neurons and the brain. In that context, it was shown that sleep, rapid eye movement sleep (REMS) in particular, by regulating noradrenaline (NA), maintains the brain excitability. It was also reported that sleep-loss affected memory, reaction time and decision-making ability among others. However, as there was lack of clarity on the cause-and-effect relationship as to how the sleep-loss could affect these basic behaviors, their association was questioned and it was difficult to propose a cure or at least ways and means to ameliorate the symptoms. Also, we wanted to conduct the studies in a simpler model system so that conducting future molecular studies might be easier. Hence, using zebrafish as a model we evaluated if sleep-loss affected the basic decision-making ability, a cognitive process and if the effect was induced by NA. Indeed, our findings confirmed that upon sleep-deprivation, the cognitive decision-making ability of the prey zebrafish was compromised to protect itself by running away from the reach of the exposed predator Tiger Oscar (TO) fish. Also, we observed that upon sleep-loss the axonal arborization of the prey zebrafish brain was reduced. Interestingly, the effects were prevented by prazosin (PRZ), an α1-adrenoceptor (AR) antagonist and when the zebrafish recovered from the lost sleep.
Collapse
Affiliation(s)
- Kumar Abhishek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Birendra Nath Mallick
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Amity Institute of Neuropsychology & Neurosciences, Amity University Uttar Pradesh, Sector 125, NOIDA, 201313, India.
| |
Collapse
|
4
|
Yarmohammadi-Samani P, Vatanparast J. Sex-specific dendritic morphology of hippocampal pyramidal neurons in the adolescent and young adult rats. Int J Dev Neurosci 2024; 84:47-63. [PMID: 37933732 DOI: 10.1002/jdn.10307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
CA1 and CA3 pyramidal neurons are the major sources of hippocampal efferents. The structural features of these neurons are presumed to be involved in various normal/abnormal cognitive and emotional outcomes by influencing the pattern of synaptic inputs and neuronal signal processing. Although many studies have described hippocampal structure differences between males and females, these reports mainly focused on gross anatomical features in adult or aged models, and such distinctions on neuronal morphology and dendritic spine density during adolescence, a period of high vulnerability to neurodevelopmental disorders, have received much less attention. In this work, we analyzed dendritic architecture and density of spines in CA1 and CA3 neurons of male and female rats in early adolescence (postnatal day, PND 40) and compared them with those in late adolescence/young adulthood (PND 60). On PND 40, CA1 neurons of male rats showed more Sholl intersections and spine density in apical and basal dendrites compared to those in females. The Sholl intersections in basal dendrites of CA3 neurons were also more in males, whereas the number of apical dendrite intersections was not significantly different between sexes. In male rats, there was a notable decrease in the number of branch and terminal points in the basal dendrite of CA1 neurons of young adults when compared to their sex-matched adolescent rats. On the other hand, CA1 neurons in young adult females also showed more Sholl intersections in apical and basal dendrites compared to adolescent females. Meanwhile, the total cable length, the number of branches, and terminal points of apical dendrites in CA3 neurons also exhibited a significant reduction in young adult male rats compared to their sex-matched adolescents. In young adult rats, both apical and basal dendrites of CA3 neurons in males showed fewer intersections with Sholl circles, but there were no significant differences in dendritic spine density or count estimation between males and females. On the other hand, young adult female rats had more Sholl intersections and dendritic spine count on the basal dendrites of CA3 neurons compared to adolescent females. Although no significant sex- and age-dependent difference in neuronal density was detected in CA1 and CA3 subareas, CA3 pyramidal neurons of both male and female rats showed reduced soma area compared to adolescent rats. Our findings show that the sex differences in the dendritic structure of CA1 and CA3 neurons vary by age and also by the compartments of dendritic arbors. Such variations in the morphology of hippocampal pyramidal neurons may take part as a basis for normal cognitive and affective differences between the sexes, as well as distinct sensitivity to interfering factors and the prevalence of neuropsychological diseases.
Collapse
Affiliation(s)
| | - Jafar Vatanparast
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran
| |
Collapse
|
5
|
Kazmi S, Farajdokht F, Meynaghizadeh-Zargar R, Sadigh-Eteghad S, Pasokh A, Farzipour M, Farazi N, Hamblin MR, Mahmoudi J. Transcranial photobiomodulation mitigates learning and memory impairments induced by hindlimb unloading in a mouse model of microgravity exposure by suppression of oxidative stress and neuroinflammation signaling pathways. Brain Res 2023; 1821:148583. [PMID: 37717889 DOI: 10.1016/j.brainres.2023.148583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Prolonged microgravity exposure causes cognitive impairment. Evidence shows that oxidative stress and neuroinflammation are involved in the causation. Here, we explore the effectiveness of transcranial near-infrared photobiomodulation (PBM) on cognitive deficits in a mouse model of simulated microgravity. 24 adult male C57BL/6 mice were assigned into three groups (8 in each); control, hindlimb unloading (HU), and HU + PBM groups. After surgery to fit the suspension fixing, the animals were housed either in HU cages or in their normal cage for 14 days. The mice in the HU + PBM group received PBM (810 nm laser, 10 Hz, 8 J/cm2) once per day for 14 days. Spatial learning and memory were assessed in the Lashley III maze and hippocampus tissue samples were collected to assess oxidative stress markers and protein expression of brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2), Sirtuin 1 (Sirt1), and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Behavioral testing showed that the PBM-treated animals had a shorter latency time to find the target and fewer errors than the HU group. PBM decreased hippocampal lipid peroxidation while increasing antioxidant defense systems (glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to HU mice. PBM increased protein expression of Sirt1, Nrf2, and BDNF while decreasing NF-κB compared to HU mice. Our findings suggested that the protective effect of PBM against HU-induced cognitive impairment involved the activation of the Sirt1/Nrf2 signaling pathway, up-regulation of BDNF, and reduction of neuroinflammation and oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Sareh Kazmi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Pasokh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Mohammad Farzipour
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narmin Farazi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Yin Y, Liu J, Fan Q, Zhao S, Wu X, Wang J, Liu Y, Li Y, Lu W. Long-term spaceflight composite stress induces depression and cognitive impairment in astronauts-insights from neuroplasticity. Transl Psychiatry 2023; 13:342. [PMID: 37938258 PMCID: PMC10632511 DOI: 10.1038/s41398-023-02638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
The environment on the space station is quite unique compared to Earth, which is a composite of multiple stressors, such as microgravity, isolation, confinement, noise, circadian rhythm disturbance, and so on. During prolonged space missions, astronauts have to stay in such extreme environments for long periods, which could induce adverse effects on both their physical and mental health. In some circumstances, this kind of long-term spaceflight composite stress (LSCS) could also induce depression and cognitive impairment in various ways, including dysregulating the neuroplasticity of the brains of astronauts, which should be attached to great importance. Here, we have comprehensively reviewed the impact of individual and combined stressors on depression and cognitive function during long-term spaceflight, explained the underlying mechanisms of those effects from the perspective of neuroplasticity, and current countermeasures for mitigating these challenges. This review provides insights into LSCS and potential neuroplasticity mechanisms, current with potentially great impact for understanding and mitigating the mental health risks and traumas of career astronauts and space tourists.
Collapse
Affiliation(s)
- Yishu Yin
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin, 150001, China
| | - Junlian Liu
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Quanchun Fan
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shuang Zhao
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaorui Wu
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Jiaping Wang
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yu Liu
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China.
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin, 150001, China.
- The Intelligent Equipment Research Center for the Exploitation of Characteristic Food & Medicine Resources, Chongqing Research Institute, Harbin Institute of Technology, Chongqing, 401135, China.
| |
Collapse
|
7
|
Liang R, Wang L, Yang Q, Xu Q, Sun S, Zhou H, Zhao M, Gao J, Zheng C, Yang J, Ming D. Time-course adaptive changes in hippocampal transcriptome and synaptic function induced by simulated microgravity associated with cognition. Front Cell Neurosci 2023; 17:1275771. [PMID: 37868195 PMCID: PMC10585108 DOI: 10.3389/fncel.2023.1275771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction The investigation of cognitive function in microgravity, both short-term and long-term, remains largely descriptive. And the underlying mechanisms of the changes over time remain unclear. Methods Behavioral tests, electrophysiological recording, and RNA sequencing were used to observe differences in behavior, synaptic plasticity, and gene expression. Results Initially, we measured the performance of spatial cognition exposed to long-term simulated microgravity (SM). Both working memory and advanced cognitive abilities were enhanced. Somewhat surprisingly, the synaptic plasticity of the hippocampal CA3-CA1 synapse was impaired. To gain insight into the mechanism of changing regularity over time, transcriptome sequencing in the hippocampus was performed. The analysis identified 20 differentially expressed genes (DEGs) in the hippocampus after short-term modeling, 19 of which were up-regulated. Gene Ontology (GO) analysis showed that these up-regulated genes were mainly enriched in synaptic-related processes, such as Stxbp5l and Epha6. This might be related to the enhancement of working memory performance under short-term SM exposure. Under exposure to long-term SM, 7 DEGs were identified in the hippocampus, all of which were up-regulated and related to oxidative stress and metabolism, such as Depp1 and Lrg1. Compensatory effects occurred with increased modeling time. Discussion To sum up, our current research indicates that the cognitive function under SM exposure is consistently maintained or potentially even being enhanced over both short and long durations. The underlying mechanisms are intricate and potentially linked to the differential expression of hippocampal-associated genes and alterations in synaptic function, with these effects being time-dependent. The present study will lay the experimental and theoretical foundation of the multi-level mechanism of cognitive function under space flight.
Collapse
Affiliation(s)
- Rong Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ling Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Qing Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qing Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shufan Sun
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Haichen Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Meiling Zhao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jing Gao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chenguang Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Jiajia Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| |
Collapse
|
8
|
Kumar H, Garg V, Kaur K, Kaur R. Role of Spirulina in Structural Remodeling of Synapse in Telencephalon of Chronic Unpredictable Stress Model of Zebrafish. Ann Neurosci 2023; 30:236-241. [PMID: 38020403 PMCID: PMC10662278 DOI: 10.1177/09727531231166202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 12/01/2023] Open
Abstract
Background Stress can affect the morphology and synaptic organization of the telencephalon. These structural changes at the cellular level can lead to the development of various psychopathologies. Purpose Given that the telencephalon plays a major role in stress responses, the current study aimed to investigate the role of Spirulina platensis as a neuroprotectant supplement in the early life of zebrafish in averting the alteration of synapse morphology in the telencephalon caused by chronic unpredictable stress (CUS) in the later stage. Methods 5dpf larvae were divided into two groups: one group was fed with a commercial fish diet and a second group with a 1% Spirulina-supplemented diet for 90 days. After 90 days, the adult zebrafish were exposed to CUS with different chronic stressors for 15 days. The synaptic plasticity was evaluated by morphometric analysis of synapse in telencephalon of zebrafish by transmission electron microscopy. Results The ultrastructural study demonstrated the protective role of Spirulina in the CUS model as no significant alterations in the length of the active zone, postsynaptic density, and synaptic cleft were observed as compared to the control group in the CUS model. Conclusion Thus, suggesting that the Spirulina supplementation can avert the remodeling effect of stress on synapse ultrastructure.
Collapse
Affiliation(s)
- Harender Kumar
- Department of Zoology, Panjab University, Chandigarh, Punjab, India
| | - Vincy Garg
- Department of Zoology, Panjab University, Chandigarh, Punjab, India
| | - Kawalpreet Kaur
- Department of Botany, SGGS College, Chandigarh, Punjab, India
| | - Ravneet Kaur
- Department of Zoology, Panjab University, Chandigarh, Punjab, India
| |
Collapse
|
9
|
Mhatre SD, Iyer J, Petereit J, Dolling-Boreham RM, Tyryshkina A, Paul AM, Gilbert R, Jensen M, Woolsey RJ, Anand S, Sowa MB, Quilici DR, Costes SV, Girirajan S, Bhattacharya S. Artificial gravity partially protects space-induced neurological deficits in Drosophila melanogaster. Cell Rep 2022; 40:111279. [PMID: 36070701 PMCID: PMC10503492 DOI: 10.1016/j.celrep.2022.111279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/16/2022] [Accepted: 08/05/2022] [Indexed: 02/03/2023] Open
Abstract
Spaceflight poses risks to the central nervous system (CNS), and understanding neurological responses is important for future missions. We report CNS changes in Drosophila aboard the International Space Station in response to spaceflight microgravity (SFμg) and artificially simulated Earth gravity (SF1g) via inflight centrifugation as a countermeasure. While inflight behavioral analyses of SFμg exhibit increased activity, postflight analysis displays significant climbing defects, highlighting the sensitivity of behavior to altered gravity. Multi-omics analysis shows alterations in metabolic, oxidative stress and synaptic transmission pathways in both SFμg and SF1g; however, neurological changes immediately postflight, including neuronal loss, glial cell count alterations, oxidative damage, and apoptosis, are seen only in SFμg. Additionally, progressive neuronal loss and a glial phenotype in SF1g and SFμg brains, with pronounced phenotypes in SFμg, are seen upon acclimation to Earth conditions. Overall, our results indicate that artificial gravity partially protects the CNS from the adverse effects of spaceflight.
Collapse
Affiliation(s)
- Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA; COSMIAC Research Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Janani Iyer
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA; Universities Space Research Association, Mountain View, CA 94043, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA
| | - Roberta M Dolling-Boreham
- Department of Electrical and Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada; Blue Marble Space Institute of Science, Seattle, WA 94035, USA
| | - Anastasia Tyryshkina
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Universities Space Research Association, Mountain View, CA 94043, USA; Blue Marble Space Institute of Science, Seattle, WA 94035, USA; NASA Postdoctoral Program, Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA 94035, USA; Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL 32114, USA
| | - Rachel Gilbert
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; NASA Postdoctoral Program, Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Matthew Jensen
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Sulekha Anand
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - David R Quilici
- Nevada Proteomics Center, University of Nevada, Reno, NV 89557, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Santhosh Girirajan
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Biological and Physical Sciences Division, NASA Headquarters, Washington DC 20024, USA.
| |
Collapse
|
10
|
Long-lasting Postnatal Sensory Deprivation Alters Dendritic Morphology of Pyramidal Neurons in the Rat Hippocampus: Behavioral Correlates. Neuroscience 2022; 480:79-96. [PMID: 34785272 DOI: 10.1016/j.neuroscience.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022]
Abstract
The role of normal sensory inputs in the development of sensory cortices is well known, however, their impacts on the hippocampus, an integrator of sensory modalities with important roles in cognitive functions, has received much less attention. Here, we applied a long-term sensory deprivation paradigm by trimming the rats' whiskers bilaterally, from postnatal day 3 to 59. Female sensory-deprived (SD) rats showed more on-wall rearing and visits to the center of the open-field box, shorter periods of grooming, less defecation and less anxiety-like behaviors in the elevated plus-maze compared to controls, who had their intact whiskers brushed. Passive avoidance memory retention was sex-dependently impaired in the female SD rats. In the radial arm maze, however, reference spatial memory was impaired only in the male SD rats. Nonetheless, working memory errors increased in both sexes of SD rats. Besides depletion of CA1 and CA3 pyramidal neurons in SD rats, Sholl analysis of Golgi-Cox stained neurons revealed that prolonged sensory deprivation has retracted the arborization of CA1 basal dendrites in SD group, while solely female SD rats had diminished CA1 apical dendrites. Sholl analysis of CA3 neurons in SD animals also disclosed significantly more branched apical dendrites in males and basal dendrites in females. Sensory deprivation also led to a considerable spine loss and variation of different spine types in a sex-dependent manner. Our findings suggest that experience-dependent structural plasticity is capable of spreading far beyond the manipulated sensory zones and the inevitable functional alterations can be expressed in a multifactorial sex-dependent manner.
Collapse
|
11
|
Mhatre SD, Iyer J, Puukila S, Paul AM, Tahimic CGT, Rubinstein L, Lowe M, Alwood JS, Sowa MB, Bhattacharya S, Globus RK, Ronca AE. Neuro-consequences of the spaceflight environment. Neurosci Biobehav Rev 2021; 132:908-935. [PMID: 34767877 DOI: 10.1016/j.neubiorev.2021.09.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
As human space exploration advances to establish a permanent presence beyond the Low Earth Orbit (LEO) with NASA's Artemis mission, researchers are striving to understand and address the health challenges of living and working in the spaceflight environment. Exposure to ionizing radiation, microgravity, isolation and other spaceflight hazards pose significant risks to astronauts. Determining neurobiological and neurobehavioral responses, understanding physiological responses under Central Nervous System (CNS) control, and identifying putative mechanisms to inform countermeasure development are critically important to ensuring brain and behavioral health of crew on long duration missions. Here we provide a detailed and comprehensive review of the effects of spaceflight and of ground-based spaceflight analogs, including simulated weightlessness, social isolation, and ionizing radiation on humans and animals. Further, we discuss dietary and non-dietary countermeasures including artificial gravity and antioxidants, among others. Significant future work is needed to ensure that neural, sensorimotor, cognitive and other physiological functions are maintained during extended deep space missions to avoid potentially catastrophic health and safety outcomes.
Collapse
Affiliation(s)
- Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; COSMIAC Research Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Janani Iyer
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Stephanie Puukila
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA; Flinders University, Adelaide, Australia
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Linda Rubinstein
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Moniece Lowe
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Blue Marble Space Institute of Science, Seattle, WA, 98154, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Wake Forest Medical School, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
12
|
Overexpression of catalase in mitochondria mitigates changes in hippocampal cytokine expression following simulated microgravity and isolation. NPJ Microgravity 2021; 7:24. [PMID: 34230490 PMCID: PMC8260663 DOI: 10.1038/s41526-021-00152-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Isolation on Earth can alter physiology and signaling of organs systems, including the central nervous system. Although not in complete solitude, astronauts operate in an isolated environment during spaceflight. In this study, we determined the effects of isolation and simulated microgravity solely or combined, on the inflammatory cytokine milieu of the hippocampus. Adult female wild-type mice underwent simulated microgravity by hindlimb unloading for 30 days in single or social (paired) housing. In hippocampus, simulated microgravity and isolation each regulate a discrete repertoire of cytokines associated with inflammation. Their combined effects are not additive. A model for mitochondrial reactive oxygen species (ROS) quenching via targeted overexpression of the human catalase gene to the mitochondria (MCAT mice), are protected from isolation- and/or simulated microgravity-induced changes in cytokine expression. These findings suggest a key role for mitochondrial ROS signaling in neuroinflammatory responses to spaceflight and prolonged bedrest, isolation, and confinement on Earth.
Collapse
|
13
|
Giri S, Ranjan A, Kumar A, Amar M, Mallick BN. Rapid eye movement sleep deprivation impairs neuronal plasticity and reduces hippocampal neuronal arborization in male albino rats: Noradrenaline is involved in the process. J Neurosci Res 2021; 99:1815-1834. [PMID: 33819353 DOI: 10.1002/jnr.24838] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/22/2022]
Abstract
Rapid eye movement sleep (REMS) favors brain development and memory, while it is decreased in neurodegenerative diseases. REMS deprivation (REMSD) affects several physiological processes including memory consolidation; however, its detailed mechanism(s) of action was unknown. REMS reduces, while REMSD elevates noradrenaline (NA) level in the brain; the latter induces several deficiencies and disorders, including changes in neuronal cytomorphology and apoptosis. Therefore, we proposed that REMS- and REMSD-associated modulation of NA level might affect neuronal plasticity and affect brain functions. Male albino rats were REMS deprived by flower-pot method for 6 days, and its effects were compared with home cage and large platform controls as well as post-REMSD recovered and REMS-deprived prazosin (α1-adrenoceptor antagonist)-treated rats. We observed that REMSD reduced CA1 and CA3 neuronal dendritic length, branching, arborization, and spine density, while length of active zone and expressions of pre- as well as post-synaptic proteins were increased as compared to controls; interestingly, prazosin prevented most of the effects in vivo. Studies on primary culture of neurons from chick embryo brain confirmed that NA at lower concentration(s) induced neuronal branching and arborization, while higher doses were destructive. The findings support our contention that REMSD adversely affects neuronal plasticity, branching, and synaptic scaffold, which explain the underlying cytoarchitectural basis of REMSD-associated patho-physio-behavioral changes. Consolidation of findings of this study along with that of our previous reports suggest that the neuronal disintegration could be due to either withdrawal of direct protective and proliferative role of low dose of NA or indirect effect of high dose of NA or both.
Collapse
Affiliation(s)
- Shatrunjai Giri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amit Ranjan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Awanish Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Megha Amar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | |
Collapse
|
14
|
Malek A, Daghighi MH, Pourisa M, Pourmohammadi T, Dastgiri S, Nezami N, Mirza-Aghazadeh-Attari M, Arasteh A, Zarrintan A. Changes in brain MRI under different lunar cycles: a cross-sectional study. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2020.1871546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ayyoub Malek
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Masoud Pourisa
- Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Pourmohammadi
- Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Dastgiri
- Department of Community Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nariman Nezami
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mohammad Mirza-Aghazadeh-Attari
- Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Radiation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Arasteh
- Medical Radiation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Zarrintan
- Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Radiation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Wang Q, Dong L, Wang M, Chen S, Li S, Chen Y, He W, Zhang H, Zhang Y, Pires Dias AC, Yang S, Liu X. Dammarane Sapogenins Improving Simulated Weightlessness-Induced Depressive-Like Behaviors and Cognitive Dysfunction in Rats. Front Psychiatry 2021; 12:638328. [PMID: 33841208 PMCID: PMC8032884 DOI: 10.3389/fpsyt.2021.638328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/18/2021] [Indexed: 01/26/2023] Open
Abstract
Background: Our studies demonstrated that the space environment has an impact on the brain function of astronauts. Numerous ground-based microgravity and social isolation showed that the space environment can induce brain function damages in humans and animals. Dammarane sapogenins (DS), an active fraction from oriental ginseng, possesses neuropsychic protective effects and has been shown to improve depression and memory. This study aimed to explore the effects and mechanisms of DS in attenuating depressive-like behaviors and cognitive deficiency induced by simulated weightlessness and isolation [hindlimb suspension and isolation (HLSI)] in rats. Methods: Male rats were orally administered with two different doses of DS (37.5, 75 mg/kg) for 14 days, and huperzine-A (1 mg/kg) served as positive control. Rats were subjected to HLSI for 14 days except the control group during drug administration. The depressive-like behaviors were then evaluated by the open-field test, the novel object recognition test, and the forced swimming test. The spatial memory and working memory were evaluated by the Morris water maze (MWM) test, and the related mechanism was further explored by analyzing the activity of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and superoxide dismutase (SOD) in the hippocampus of rats. Results: The results showed that DS treatment significantly reversed the HLSI-induced depressive-like behaviors in the open-field test, the novel object recognition test, and the forced swimming test and improved the HLSI-induced cognitive impairment in the MWM test. Furthermore, after DS treatment, the ChAT and SOD activities of HLSI rats were increased while AChE activity was significantly suppressed. Conclusions: These findings clearly demonstrated that DS might exert a significant neuropsychic protective effect induced by spaceflight environment, driven in part by the modulation of cholinergic system and anti-oxidation in the hippocampus.
Collapse
Affiliation(s)
- Qiong Wang
- Affiliated (T.C.M) Hospital, Sino-Portugal Traditional Chinese Medicine (TCM) International Cooperation Center, Southwest Medical University, Luzhou, China.,Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Li Dong
- Affiliated (T.C.M) Hospital, Sino-Portugal Traditional Chinese Medicine (TCM) International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Mengdi Wang
- Affiliated (T.C.M) Hospital, Sino-Portugal Traditional Chinese Medicine (TCM) International Cooperation Center, Southwest Medical University, Luzhou, China.,Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shanguang Chen
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Shanshan Li
- Affiliated (T.C.M) Hospital, Sino-Portugal Traditional Chinese Medicine (TCM) International Cooperation Center, Southwest Medical University, Luzhou, China.,Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yongbing Chen
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenlu He
- Affiliated (T.C.M) Hospital, Sino-Portugal Traditional Chinese Medicine (TCM) International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Hong Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yongliang Zhang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Alberto Carlos Pires Dias
- Affiliated (T.C.M) Hospital, Sino-Portugal Traditional Chinese Medicine (TCM) International Cooperation Center, Southwest Medical University, Luzhou, China.,Department of Biology, University of Mihno, Braga, Portugal
| | - Sijin Yang
- Affiliated (T.C.M) Hospital, Sino-Portugal Traditional Chinese Medicine (TCM) International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Xinmin Liu
- Affiliated (T.C.M) Hospital, Sino-Portugal Traditional Chinese Medicine (TCM) International Cooperation Center, Southwest Medical University, Luzhou, China.,Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Shukla V, Rani S, Malik S, Kumar V, Sadananda M. Neuromorphometric changes associated with photostimulated migratory phenotype in the Palaearctic-Indian male redheaded bunting. Exp Brain Res 2020; 238:2245-2256. [PMID: 32719907 DOI: 10.1007/s00221-020-05888-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Neural substrates, including brain areas, differential gene expression and neuroendocrine basis, of migration are known. However, very little is known about structural changes in the brain that underlie the development and cessation of migration in long-distance avian migrants. Towards this, we investigated neuromorphological changes in the higher-order associative areas in male redheaded bunting (Emberiza bruniceps), which is a Palaearctic-Indian night migrant with wintering grounds in India. Photosensitive birds (8L:16D; SD) were exposed to stimulatory long days (16L:8D; LD), with controls retained on non-stimulatory short days. LD birds depicted shifts to, and sustained night-time activity as recorded by actograms. LD birds demonstrated increased body mass, fat deposition and testicular volume in keeping with the migratory phenotype. When LD birds had exhibited 10.0 ± 2.4 cycles of Zugunruhe (intense nighttime activity in captives, akin to night migratory flight in the wild), bird brains were fixed by transcardial perfusion, and changes in the neuronal morphometry of pallial, sub-pallial and hypothalamic brain regions studied using rapid Golgi technique with modifications, as used and validated in our laboratory. There were significant differences in both area and perimeter of soma in the visual hyperpallium apicale implicated in migratory orientation and the neuroendocrine control region for timing of migration, the mediobasal hypothalamus. We attribute these neuromorphometric changes in the soma area and perimeter to the photostimulated changes associated with the development of migration and reproductive phenotypes in redheaded buntings. It is suggested that changes in the neuronal plasticity in brain control regions parallel photoperiod-induced physiological responses.
Collapse
Affiliation(s)
- Vidya Shukla
- Brain Research Laboratory, Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri, 574199, Karnataka, India
| | - Sangeeta Rani
- Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shalie Malik
- Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Monika Sadananda
- Brain Research Laboratory, Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri, 574199, Karnataka, India.
| |
Collapse
|
17
|
Lee J, Jang D, Jeong H, Kim KS, Yang S. Impairment of synaptic plasticity and novel object recognition in the hypergravity-exposed rats. Sci Rep 2020; 10:15813. [PMID: 32978417 PMCID: PMC7519067 DOI: 10.1038/s41598-020-72639-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/24/2020] [Indexed: 01/03/2023] Open
Abstract
The gravity is necessary for living organisms to operate various biological events including hippocampus-related functions of learning and memory. Until now, it remains inconclusive how altered gravity is associated with hippocampal functions. It is mainly due to the difficulties in generating an animal model experiencing altered gravity. Here, we demonstrate the effects of hypergravity on hippocampus-related functions using an animal behavior and electrophysiology with our hypergravity animal model. The hypergravity (4G, 4 weeks) group showed impaired synaptic efficacy and long-term potentiation in CA1 neurons of the hippocampus along with the poor performance of a novel object recognition task. Our studies suggest that altered gravity affects hippocampus-related cognitive functions, presumably through structural and functional adaptation to various conditions of gravity shift.
Collapse
Affiliation(s)
- Jinho Lee
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Doohyeong Jang
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Hyerin Jeong
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Kyu-Sung Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University, College of Medicine, Incheon, South Korea. .,Inha Institute of Aerospace Medicine, Incheon, South Korea.
| | - Sunggu Yang
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea.
| |
Collapse
|
18
|
rTMS pre-treatment effectively protects against cognitive and synaptic plasticity impairments induced by simulated microgravity in mice. Behav Brain Res 2019; 359:639-647. [DOI: 10.1016/j.bbr.2018.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/16/2022]
|
19
|
Involvement of Cholinergic Dysfunction and Oxidative Damage in the Effects of Simulated Weightlessness on Learning and Memory in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2547532. [PMID: 29581965 PMCID: PMC5822892 DOI: 10.1155/2018/2547532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 11/17/2022]
Abstract
The present study aimed to determine how the learning and memory gradually change with the prolonged hindlimb unloading (HU) treatment in rats. Different HU durations (7 d, 14 d, 21 d, and 28 d) in Sprague-Dawley (SD) rats were implemented. Cognitive function was assessed using the Morris water maze (MWM) and the shuttle box test. Additionally, parameters about cholinergic activity and oxidative stress were tested. Results showed that longer-than-14 d HU led to the inferior performances in the behavioral tasks. Besides, acetylcholine esterase (AChE) activity, malondialdehyde (MDA) level in brain, reactive oxygen species (ROS), and 8-hydroxy-2-deoxyguanosine (8-OHdG) concentrations of HU rats were significantly increased. Furthermore, choline acetyltransferase (ChAT), superoxide dismutase (SOD), and catalase (CAT) activity in brain were notably attenuated. Most of these effects were more pronounced after longer exposure (21 d and 28 d) to HU, although some indicators had their own characteristics of change. These results indicate that cholinergic dysfunction and oxidative damage were involved in the learning and memory impairments induced by longer-than-14 d HU. Moreover, the negative effects of HU tend to be augmented as the HU duration becomes longer. The results may be helpful to present possible biochemical targets for countermeasures development regarding the memory deficits under extreme environmental conditions.
Collapse
|
20
|
Aseyev N, Vinarskaya AK, Roshchin M, Korshunova TA, Malyshev AY, Zuzina AB, Ierusalimsky VN, Lemak MS, Zakharov IS, Novikov IA, Kolosov P, Chesnokova E, Volkova S, Kasianov A, Uroshlev L, Popova Y, Boyle RD, Balaban PM. Adaptive Changes in the Vestibular System of Land Snail to a 30-Day Spaceflight and Readaptation on Return to Earth. Front Cell Neurosci 2017; 11:348. [PMID: 29163058 PMCID: PMC5672023 DOI: 10.3389/fncel.2017.00348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/19/2017] [Indexed: 12/28/2022] Open
Abstract
The vestibular system receives a permanent influence from gravity and reflexively controls equilibrium. If we assume gravity has remained constant during the species' evolution, will its sensory system adapt to abrupt loss of that force? We address this question in the land snail Helix lucorum exposed to 30 days of near weightlessness aboard the Bion-M1 satellite, and studied geotactic behavior of postflight snails, differential gene expressions in statocyst transcriptome, and electrophysiological responses of mechanoreceptors to applied tilts. Each approach revealed plastic changes in the snail's vestibular system assumed in response to spaceflight. Absence of light during the mission also affected statocyst physiology, as revealed by comparison to dark-conditioned control groups. Readaptation to normal tilt responses occurred at ~20 h following return to Earth. Despite the permanence of gravity, the snail responded in a compensatory manner to its loss and readapted once gravity was restored.
Collapse
Affiliation(s)
- Nikolay Aseyev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Alia Kh. Vinarskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Matvey Roshchin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | | | - Aleksey Yu. Malyshev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Alena B. Zuzina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Victor N. Ierusalimsky
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Maria S. Lemak
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Peter Kolosov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Chesnokova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana Volkova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Artem Kasianov
- Vavilov Institute of General Genetics, Russia Academy of Sciences, Moscow, Russia
| | - Leonid Uroshlev
- Vavilov Institute of General Genetics, Russia Academy of Sciences, Moscow, Russia
| | - Yekaterina Popova
- Space Biosciences Research of NASA Ames Research Center, Moffett Field, CA, United States
| | - Richard D. Boyle
- Space Biosciences Research of NASA Ames Research Center, Moffett Field, CA, United States
| | - Pavel M. Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
iTRAQ-based proteomics analysis of hippocampus in spatial memory deficiency rats induced by simulated microgravity. J Proteomics 2017; 160:64-73. [PMID: 28341594 DOI: 10.1016/j.jprot.2017.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/02/2017] [Accepted: 03/17/2017] [Indexed: 01/27/2023]
Abstract
It has been demonstrated that simulated microgravity (SM) may lead to cognitive dysfunction. However, the underlying mechanism remains unclear. In present study, tail-suspension (30°) rat was employed to explore the effects of 28 days of SM on hippocampus-dependent learning and memory capability and the underlying mechanisms. We found that 28-day tail-suspension rats displayed decline of learning and memory ability in Morris water maze (MWM) test. Using iTRAQ-based proteomics analysis, a total of 4774 proteins were quantified in hippocampus. Of these identified proteins, 147 proteins were differentially expressed between tail-suspension and control group. Further analysis showed these differentially expressed proteins (DEPs) involved in different molecular function categories, and participated in many biological processes. Based on the results of PANTHER pathway analysis and further western blot verification, we observed the expression of glutamate receptor 1 (GluR1) and glutamate receptor 4 (GluR4) which involved in metabotropic glutamate receptor group III pathway and ionotropic glutamate receptor pathway were significantly induced by SM. Moreover, an increased concentration of glutamic acid (Glu) was also found in hippocampus while the concentrations of 5-hydroxytryptamine (5-HT), dopamine (DA), γ-amino acid butyric acid (GABA) and epinephrine (E) were decreased. Our finding confirms that 28-day SM exposure can cause degrading of the spatial learning and memory capability and the possible mechanisms might be related with glutamate excitotoxicity and imbalances in specific neurotransmitters. BIOLOGICAL SIGNIFICANCE The goal of sending astronauts farther into space and extending the duration of spaceflight missions from months to years will challenge the current capabilities of bioastronautics. The investigation of the physiological and pathological changes induced by spaceflight will be critical in developing countermeasures to ensure astronauts to complete spaceflight mission accurately and effectively and return to earth safely. It has been demonstrated that spaceflight may lead to impairments in cognitive function which is crucial for mission success. Here we show that long-term simulated microgravity, the most potent environment risk factor during spaceflight, impairs the spatial learning and memory of rats and the underlying mechanism may be involved in glutamate excitotoxicity and imbalances in specific neurotransmitters release in hippocampus, which may provide new insight for the countermeasures of cognitive impairment during spaceflight.
Collapse
|
22
|
Wang T, Chen H, Lv K, Ji G, Liang F, Zhang Y, Wang Y, Liu X, Cao H, Kan G, Xiong J, Li Y, Qu L. Activation of HIF-1α and its downstream targets in rat hippocampus after long-term simulated microgravity exposure. Biochem Biophys Res Commun 2016; 485:591-597. [PMID: 27988334 DOI: 10.1016/j.bbrc.2016.12.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/11/2016] [Indexed: 01/22/2023]
Abstract
Microgravity has many detrimental impact on brain functions, however the underlying mechanism remain unclear. In present study, 28 days of tail-suspension (30°) was used to simulate microgravity in rats. We showed that oxidative stress in hippocampus was increased after 28 days of simulated microgravity in consideration of the decreased expression of NF-E2-related factor 2 (Nrf2) and the declined activities of total superoxide dismutase (T-SOD), CuZn-SOD, glutathione peroxidase (GSH-PX) and total antioxidant capacity (T-AOC). Using RNA-seq, we further investigated the effect of simulated microgravity on the expression of genes in hippocampus, and 849 genes were found to be differentially expressed. According to pathway analysis, the differentially expressed genes involved in cytoskeleton, metabolism, immunity, transcription regulation, etc. It is interesting to note that the differentially expressed genes were involved in hypoxia-associated pathway. In agreement with this, the expression of hypoxia induced factor-1α (HIF-1α), the master regulator of oxygen homeostasis, was significantly increased. Meanwhile, HIF-2α, a HIF-1α paralog, was elevated compared with the control group. The expression of pyruvate dehydrogenase kinase 1 (PDK1), lactate dehydrogenase A (LDHA) and vascular endothelial growth factor (VEGF), three well-defined downstream targets of HIF-1α, were up-regulated in hippocampus after 28 days of simulated microgravity exposure. Additionally, brain oxygen saturation (SO2) and blood flow analyzed by the tissue oxygen analysis system were also significantly reduced. These findings indicate that simulated microgravity might cause an alteration in oxygen homeostasis, providing novel insight into better understanding of how simulated microgravity affects the function of hippocampus and a new direction to the development of countermeasure for brain dysfunction during spaceflight (actual microgravity).
Collapse
Affiliation(s)
- Tingmei Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Hailong Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China; Space Institute of Southern China (Shenzhen), Shamiao Road 4#, Pingdi Street, Longgang District, Shenzhen, 518117, China
| | - Ke Lv
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Guohua Ji
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Fengji Liang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yongliang Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yanli Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Hongqing Cao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Jianghui Xiong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yinghui Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| |
Collapse
|
23
|
Risk of defeats in the central nervous system during deep space missions. Neurosci Biobehav Rev 2016; 71:621-632. [DOI: 10.1016/j.neubiorev.2016.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 02/04/2023]
|
24
|
Feng L, Yue XF, Chen YX, Liu XM, Wang LS, Cao FR, Wang Q, Liao YH, Pan RL, Chang Q. LC/MS-based metabolomics strategy to assess the amelioration effects of ginseng total saponins on memory deficiency induced by simulated microgravity. J Pharm Biomed Anal 2016; 125:329-38. [DOI: 10.1016/j.jpba.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 01/24/2023]
|
25
|
Patel B, Das SK, Das S, Das L, Patri M. Neonatal exposure to benzo[a]pyrene induces oxidative stress causing altered hippocampal cytomorphometry and behavior during early adolescence period of male Wistar rats. Int J Dev Neurosci 2016; 50:7-15. [DOI: 10.1016/j.ijdevneu.2016.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/10/2016] [Accepted: 01/26/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Bhupesh Patel
- Department of ZoologySchool of Life SciencesRavenshaw UniversityOdishaIndia
| | - Saroj Kumar Das
- Department of ZoologySchool of Life SciencesRavenshaw UniversityOdishaIndia
- Defence Institute of High Altitude Research, DRDOJammu and KashmirIndia
| | - Swagatika Das
- Department of ZoologySchool of Life SciencesRavenshaw UniversityOdishaIndia
| | - Lipsa Das
- Department of ZoologySchool of Life SciencesRavenshaw UniversityOdishaIndia
| | - Manorama Patri
- Department of ZoologySchool of Life SciencesRavenshaw UniversityOdishaIndia
| |
Collapse
|
26
|
Wang Y, Iqbal J, Liu Y, Su R, Lu S, Peng G, Zhang Y, Qing H, Deng Y. Effects of simulated microgravity on the expression of presynaptic proteins distorting the GABA/glutamate equilibrium - A proteomics approach. Proteomics 2015; 15:3883-91. [DOI: 10.1002/pmic.201500302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/28/2015] [Accepted: 09/07/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Yun Wang
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| | - Javed Iqbal
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| | - Yahui Liu
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| | - Rui Su
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| | - Song Lu
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| | - Guang Peng
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| | - Yongqian Zhang
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| | - Hong Qing
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| | - Yulin Deng
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| |
Collapse
|
27
|
Hypergravity stimulation enhances PC12 neuron-like cell differentiation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:748121. [PMID: 25785273 PMCID: PMC4345237 DOI: 10.1155/2015/748121] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/08/2015] [Accepted: 01/27/2015] [Indexed: 01/12/2023]
Abstract
Altered gravity is a strong physical cue able to elicit different cellular responses, representing a largely uninvestigated opportunity for tissue engineering/regenerative medicine applications. Our recent studies have shown that both proliferation and differentiation of C2C12 skeletal muscle cells can be enhanced by hypergravity treatment; given these results, PC12 neuron-like cells were chosen to test the hypothesis that hypergravity stimulation might also affect the behavior of neuronal cells, in particular promoting an enhanced differentiated phenotype. PC12 cells were thus cultured under differentiating conditions for either 12 h or 72 h before being stimulated with different values of hypergravity (50 g and 150 g). Effects of hypergravity were evaluated at transcriptional level 1 h and 48 h after the stimulation, and at protein level 48 h from hypergravity exposure, to assess its influence on neurite development over increasing differentiation times. PC12 differentiation resulted strongly affected by the hypergravity treatments; in particular, neurite length was significantly enhanced after exposure to high acceleration values. The achieved results suggest that hypergravity might induce a faster and higher neuronal differentiation and encourage further investigations on the potential of hypergravity in the preparation of cellular constructs for regenerative medicine and tissue engineering purposes.
Collapse
|