1
|
Zhou C, Jiang X, Chen Y, Ge C, Ao N, Du F. Brain-to-brain synchrony increased during interpersonal touch in romantic lovers: an EEG-based hyperscanning study. BMC Psychol 2024; 12:560. [PMID: 39415264 PMCID: PMC11481425 DOI: 10.1186/s40359-024-02051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Interpersonal touch is an essential element of human social life. It's unclear whether the neural patterns of interpersonal touch are specific to intimate relationships or generally apply to other social relationships. Romantic lovers are typically intimate and have a high level of interpersonal touch. Currently, researchers focused on the neurobiological basis and neural processes of romantic love. METHODS 110 participants finished two resting-state blocks, no-handholding and handholding conditions, with Electroencephalogram (EEG). We aimed to explore the differences in the brain-brain synchrony pattern of interpersonal touch between romantic lovers and strangers by calculating dynamic interpersonal functional connectivity (dIFC) via EEG-based hyperscanning. RESULTS Our results supported that the neural processing of interpersonal touch is a dynamic process. At first half, both groups tended to adapt, and then interpersonal touch increased the dIFC between romantic lovers and decreased the dIFC between strangers. Finally, we employed Support Vector Machine (SVM) to classify EEG signals into two different relationships. SVM recognized two relationships with an accuracy of 71% and 0.77 AUC of ROC at the first half, a 73% accuracy and 0.8 AUC of ROC at the second half. CONCLUSIONS Our study indicates that interpersonal touch may have different meanings between romantic lovers and strangers. Specifically, interpersonal touch enhances the dIFC between romantic lovers while reducing the dIFC between strangers. The research has important implications for planning touch-based interventions in social and medical care.
Collapse
Affiliation(s)
- Chenghao Zhou
- Institute of Psychology and Behavior, Henan University, Kaifeng, 475001, China
- Institute of Cognition, Brain and Health, Henan University, Kaifeng, 475001, China
- Department of Psychology, New York University, New York, NY, 10003, USA
| | - Xiaowei Jiang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104-6321, USA
| | - Yanan Chen
- Institute of Psychology and Behavior, Henan University, Kaifeng, 475001, China.
- Institute of Cognition, Brain and Health, Henan University, Kaifeng, 475001, China.
| | - Chunlei Ge
- Institute of Psychology and Behavior, Henan University, Kaifeng, 475001, China
| | - Na Ao
- Institute of Psychology and Behavior, Henan University, Kaifeng, 475001, China
| | - Feng Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
2
|
Gao C, Huang H, Zhan J, Li W, Li Y, Li J, Zhou J, Wang Y, Jiang Z, Chen W, Zhu Y, Zhuo Y, Wu K. Adaptive Changes in Neurovascular Properties With Binocular Accommodation Functions in Myopic Participants by 3D Visual Training: An EEG and fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2749-2758. [PMID: 39074027 DOI: 10.1109/tnsre.2024.3434492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Although three-dimensional visual training (3DVT) has been used for myopia intervention, its neural mechanisms remain largely unknown. In this study, visual function was examined before and after 3DVT, while resting-state EEG-fNIRS signals were recorded from 38 myopic participants. A graph theoretical analysis was applied to compute the neurovascular properties, including static brain networks (SBNs), dynamic brain networks (DBNs), and dynamic neurovascular coupling (DNC). Correlations between the changes in neurovascular properties and the changes in visual functions were calculated. After 3DVT, the local efficiency and node efficiency in the frontal lobes increased in the SBNs constructed from EEG δ -band; the global efficiency and node efficiency in the frontal-parietal lobes decreased in the DBNs variability constructed from EEG δ -band. For the DNC constructed with EEG α -band and oxyhemoglobin (HbO), the local efficiency decreased, for EEG α -band and deoxyhemoglobin (HbR), the node efficiency in the frontal-occipital lobes decreased. For the SBNs constructed from HbO, the functional connectivity (FC) between the frontal-occipital lobes increased. The DNC constructed between the FC of the frontal-parietal lobes from EEG β -band and the FC of the frontal-occipital lobes from HbO increased, and between the FC of the frontal-occipital lobes from EEG β -band and the FC of the inter-frontal lobes from HbR increased. The neurovascular properties were significantly correlated with the amplitude of accommodation and accommodative facility. The result indicated the positive effects of 3DVT on myopic participants, including improved efficiency of brain networks, increased FC of SBNs and DNC, and enhanced binocular accommodation functions.
Collapse
|
3
|
Matkovič A, Anticevic A, Murray JD, Repovš G. Static and dynamic fMRI-derived functional connectomes represent largely similar information. Netw Neurosci 2023; 7:1266-1301. [PMID: 38144686 PMCID: PMC10631791 DOI: 10.1162/netn_a_00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/06/2023] [Indexed: 12/26/2023] Open
Abstract
Functional connectivity (FC) of blood oxygen level-dependent (BOLD) fMRI time series can be estimated using methods that differ in sensitivity to the temporal order of time points (static vs. dynamic) and the number of regions considered in estimating a single edge (bivariate vs. multivariate). Previous research suggests that dynamic FC explains variability in FC fluctuations and behavior beyond static FC. Our aim was to systematically compare methods on both dimensions. We compared five FC methods: Pearson's/full correlation (static, bivariate), lagged correlation (dynamic, bivariate), partial correlation (static, multivariate), and multivariate AR model with and without self-connections (dynamic, multivariate). We compared these methods by (i) assessing similarities between FC matrices, (ii) by comparing node centrality measures, and (iii) by comparing the patterns of brain-behavior associations. Although FC estimates did not differ as a function of sensitivity to temporal order, we observed differences between the multivariate and bivariate FC methods. The dynamic FC estimates were highly correlated with the static FC estimates, especially when comparing group-level FC matrices. Similarly, there were high correlations between the patterns of brain-behavior associations obtained using the dynamic and static FC methods. We conclude that the dynamic FC estimates represent information largely similar to that of the static FC.
Collapse
Affiliation(s)
- Andraž Matkovič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - John D. Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Grega Repovš
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Delli Pizzi S, Chiacchiaretta P, Sestieri C, Ferretti A, Onofrj M, Della Penna S, Roseman L, Timmermann C, Nutt DJ, Carhart-Harris RL, Sensi SL. Spatial Correspondence of LSD-Induced Variations on Brain Functioning at Rest With Serotonin Receptor Expression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:768-776. [PMID: 37003409 DOI: 10.1016/j.bpsc.2023.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Lysergic acid diethylamide (LSD) is an atypical psychedelic compound that exerts its effects through pleiotropic actions, mainly involving 1A/2A serotoninergic (5-HT) receptor subtypes. However, the mechanisms by which LSD promotes a reorganization of the brain's functional activity and connectivity are still partially unknown. METHODS Our study analyzed resting-state functional magnetic resonance imaging data acquired from 15 healthy volunteers undergoing LSD single-dose intake. A voxelwise analysis investigated the alterations of the brain's intrinsic functional connectivity and local signal amplitude induced by LSD or by a placebo. Quantitative comparisons assessed the spatial overlap between these 2 indices of functional reorganization and the topography of receptor expression obtained from a publicly available collection of in vivo, whole-brain atlases. Finally, linear regression models explored the relationships between changes in resting-state functional magnetic resonance imaging and behavioral aspects of the psychedelic experience. RESULTS LSD elicited modifications of the cortical functional architecture that spatially overlapped with the distribution of serotoninergic receptors. Local signal amplitude and functional connectivity increased in regions belonging to the default mode and attention networks associated with high expression of 5-HT2A receptors. These functional changes correlate with the occurrence of simple and complex visual hallucinations. At the same time, a decrease in local signal amplitude and intrinsic connectivity was observed in limbic areas, which are dense with 5-HT1A receptors. CONCLUSIONS This study provides new insights into the neural processes underlying the brain network reconfiguration induced by LSD. It also identifies a topographical relationship between opposite effects on brain functioning and the spatial distribution of different 5-HT receptors.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom
| | - David J Nutt
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom; Psychedelics Division-Neuroscape, Neurology, University of California San Francisco, San Francisco, California
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
5
|
Matkovič A, Anticevic A, Murray JD, Repovš G. Static and dynamic functional connectomes represent largely similar information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525348. [PMID: 36747845 PMCID: PMC9900764 DOI: 10.1101/2023.01.24.525348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Functional connectivity (FC) of blood-oxygen-level-dependent (BOLD) fMRI time series can be estimated using methods that differ in sensitivity to the temporal order of time points (static vs. dynamic) and the number of regions considered in estimating a single edge (bivariate vs. multivariate). Previous research suggests that dynamic FC explains variability in FC fluctuations and behavior beyond static FC. Our aim was to systematically compare methods on both dimensions. We compared five FC methods: Pearson's/full correlation (static, bivariate), lagged correlation (dynamic, bivariate), partial correlation (static, multivariate) and multivariate AR model with and without self-connections (dynamic, multivariate). We compared these methods by (i) assessing similarities between FC matrices, (ii) by comparing node centrality measures, and (iii) by comparing the patterns of brain-behavior associations. Although FC estimates did not differ as a function of sensitivity to temporal order, we observed differences between the multivariate and bivariate FC methods. The dynamic FC estimates were highly correlated with the static FC estimates, especially when comparing group-level FC matrices. Similarly, there were high correlations between the patterns of brain-behavior associations obtained using the dynamic and static FC methods. We conclude that the dynamic FC estimates represent information largely similar to that of the static FC.
Collapse
Affiliation(s)
- Andraž Matkovič
- Department of Psychology, Faculty of Arts, University of Ljubljana
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| | - John D. Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Psychiatry, Yale University, New Haven, United States
| | - Grega Repovš
- Department of Psychology, Faculty of Arts, University of Ljubljana
| |
Collapse
|
6
|
Veldhuizen MG, Cecchetto C, Fjaeldstad AW, Farruggia MC, Hartig R, Nakamura Y, Pellegrino R, Yeung AWK, Fischmeister FPS. Future Directions for Chemosensory Connectomes: Best Practices and Specific Challenges. Front Syst Neurosci 2022; 16:885304. [PMID: 35707745 PMCID: PMC9190244 DOI: 10.3389/fnsys.2022.885304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 01/14/2023] Open
Abstract
Ecological chemosensory stimuli almost always evoke responses in more than one sensory system. Moreover, any sensory processing takes place along a hierarchy of brain regions. So far, the field of chemosensory neuroimaging is dominated by studies that examine the role of brain regions in isolation. However, to completely understand neural processing of chemosensation, we must also examine interactions between regions. In general, the use of connectivity methods has increased in the neuroimaging field, providing important insights to physical sensory processing, such as vision, audition, and touch. A similar trend has been observed in chemosensory neuroimaging, however, these established techniques have largely not been rigorously applied to imaging studies on the chemical senses, leaving network insights overlooked. In this article, we first highlight some recent work in chemosensory connectomics and we summarize different connectomics techniques. Then, we outline specific challenges for chemosensory connectome neuroimaging studies. Finally, we review best practices from the general connectomics and neuroimaging fields. We recommend future studies to develop or use the following methods we perceive as key to improve chemosensory connectomics: (1) optimized study designs, (2) reporting guidelines, (3) consensus on brain parcellations, (4) consortium research, and (5) data sharing.
Collapse
Affiliation(s)
- Maria G. Veldhuizen
- Department of Anatomy, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Cinzia Cecchetto
- Department of General Psychology, University of Padova, Padua, Italy
| | - Alexander W. Fjaeldstad
- Flavour Clinic, Department of Otorhinolaryngology, Regional Hospital West Jutland, Holstebro, Denmark
| | - Michael C. Farruggia
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Renée Hartig
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Functional and Comparative Neuroanatomy Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Yuko Nakamura
- The Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Andy W. K. Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Florian Ph. S. Fischmeister
- Institute of Psychology, University of Graz, Graz, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
7
|
Andrews-Hanna JR, Woo CW, Wilcox R, Eisenbarth H, Kim B, Han J, Reynolds Losin EA, Wager TD. The conceptual building blocks of everyday thought: Tracking the emergence and dynamics of ruminative and nonruminative thinking. J Exp Psychol Gen 2022; 151:628-642. [PMID: 34498906 PMCID: PMC8904643 DOI: 10.1037/xge0001096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
How do thoughts arise, unfold, and change over time? Are the contents and dynamics of everyday thought rooted in conceptual associations within one's semantic networks? To address these questions, we developed the Free Association Semantic task (FAST), whereby participants generate dynamic chains of conceptual associations in response to seed words that vary in valence. Ninety-four adults from a community sample completed the FAST task and additionally described and rated six of their most frequently occurring everyday thoughts. Text analysis and valence ratings revealed similarities in thematic and affective content between FAST concept chains and recurrent autobiographical thoughts. Dynamic analyses revealed that individuals higher in rumination were more strongly attracted to negative conceptual spaces and more likely to remain there longer. Overall, these findings provide quantitative evidence that conceptual associations may act as a semantic scaffold for more complex everyday thoughts, and that more negative and less dynamic conceptual associations in ruminative individuals mirror maladaptive repetitive thoughts in daily life. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Jessica R. Andrews-Hanna
- Department of Psychology, University of Arizona, Tucson, AZ, USA,Cognitive Science, University of Arizona, Tucson, AZ, USA
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea,Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, South Korea,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
| | - Ramsey Wilcox
- Department of Psychology, University of Illinois, Champaign, IL, USA
| | - Hedwig Eisenbarth
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Byeol Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Jihoon Han
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
| | | | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
8
|
Optimizing EEG Source Reconstruction with Concurrent fMRI-Derived Spatial Priors. Brain Topogr 2022; 35:282-301. [PMID: 35142957 PMCID: PMC9098592 DOI: 10.1007/s10548-022-00891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/31/2022] [Indexed: 02/01/2023]
Abstract
Reconstructing EEG sources involves a complex pipeline, with the inverse problem being the most challenging. Multiple inversion algorithms are being continuously developed, aiming to tackle the non-uniqueness of this problem, which has been shown to be partially circumvented by including prior information in the inverse models. Despite a few efforts, there are still current and persistent controversies regarding the inversion algorithm of choice and the optimal set of spatial priors to be included in the inversion models. The use of simultaneous EEG-fMRI data is one approach to tackle this problem. The spatial resolution of fMRI makes fMRI derived spatial priors very convenient for EEG reconstruction, however, only task activation maps and resting-state networks (RSNs) have been explored so far, overlooking the recent, but already accepted, notion that brain networks exhibit dynamic functional connectivity fluctuations. The lack of a systematic comparison between different source reconstruction algorithms, considering potentially more brain-informative priors such as fMRI, motivates the search for better reconstruction models. Using simultaneous EEG-fMRI data, here we compared four different inversion algorithms (minimum norm, MN; low resolution electromagnetic tomography, LORETA; empirical Bayes beamformer, EBB; and multiple sparse priors, MSP) under a Bayesian framework (as implemented in SPM), each with three different sets of priors consisting of: (1) those specific to the algorithm; (2) those specific to the algorithm plus fMRI task activation maps and RSNs; and (3) those specific to the algorithm plus fMRI task activation maps and RSNs and network modules of task-related dFC states estimated from the dFC fluctuations. The quality of the reconstructed EEG sources was quantified in terms of model-based metrics, namely the expectation of the posterior probability P(model|data) and variance explained of the inversion models, and the overlap/proportion of brain regions known to be involved in the visual perception tasks that the participants were submitted to, and RSN templates, with/within EEG source components. Model-based metrics suggested that model parsimony is preferred, with the combination MSP and priors specific to this algorithm exhibiting the best performance. However, optimal overlap/proportion values were found using EBB and priors specific to this algorithm and fMRI task activation maps and RSNs or MSP and considering all the priors (algorithm priors, fMRI task activation maps and RSNs and dFC state modules), respectively, indicating that fMRI spatial priors, including dFC state modules, might contain useful information to recover EEG source components reflecting neuronal activity of interest. Our main results show that providing fMRI spatial derived priors that reflect the dynamics of the brain might be useful to map neuronal activity more accurately from EEG-fMRI. Furthermore, this work paves the way towards a more informative selection of the optimal EEG source reconstruction approach, which may be critical in future studies.
Collapse
|
9
|
The Time Varying Networks of the Interoceptive Attention and Rest. eNeuro 2021; 8:ENEURO.0341-20.2021. [PMID: 33975858 PMCID: PMC8174797 DOI: 10.1523/eneuro.0341-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/09/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
Focused attention to spontaneous sensations is a dynamic process that demands interoceptive abilities. Failure to control it has been linked to neuropsychiatric disorders like illness-anxiety disorder. Regulatory strategies, such as focused attention meditation (FAM), may enhance the ability to control focused attention particularly to body sensations, which can be reflected on functional neuroanatomy. The functional connectivity (FC) related to focused attention has been described, however, the dynamic brain organization associated to this process and the differences to the resting state remains to be studied. To quantify the cerebral dynamic counterpart of focused attention to interoception, we examined fifteen experienced meditators while performing a 20-min attentional task to spontaneous sensations. Subjects underwent three scanning sessions obtaining a resting-state scan before and after the task. Sliding window dynamic FC (DFC) and k-means clustering identified five recurrent FC patterns along the dorsal attention network (DAN), default mode network (DMN), and frontoparietal network (FPN). Subjects remained longer in a low connectivity brain pattern during the resting conditions. By contrast, subjects spent a higher proportion of time in complex patterns during the task than rest. Moreover, a carry-over effect in FC was observed following the interoceptive task performance, suggestive of an active role in the learning process linked to cognitive training. Our results suggest that focused attention to interoceptive processes, demands a dynamic brain organization with specific features that distinguishes it from the resting condition. This approach may provide new insights characterizing the neural basis of the focused attention, an essential component for human adaptability.
Collapse
|
10
|
Abreu R, Jorge J, Leal A, Koenig T, Figueiredo P. EEG Microstates Predict Concurrent fMRI Dynamic Functional Connectivity States. Brain Topogr 2021; 34:41-55. [PMID: 33161518 DOI: 10.1007/s10548-020-00805-1/figures/5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/23/2020] [Indexed: 05/25/2023]
Abstract
Brain functional connectivity measured by resting-state fMRI varies over multiple time scales, and recurrent dynamic functional connectivity (dFC) states have been identified. These have been found to be associated with different cognitive and pathological states, with potential as disease biomarkers, but their neuronal underpinnings remain a matter of debate. A number of recurrent microstates have also been identified in resting-state EEG studies, which are thought to represent the quasi-simultaneous activity of large-scale functional networks reflecting time-varying brain states. Here, we hypothesized that fMRI-derived dFC states may be associated with these EEG microstates. To test this hypothesis, we quantitatively assessed the ability of EEG microstates to predict concurrent fMRI dFC states in simultaneous EEG-fMRI data collected from healthy subjects at rest. By training a random forests classifier, we found that the four canonical EEG microstates predicted fMRI dFC states with an accuracy of 90%, clearly outperforming alternative EEG features such as spectral power. Our results indicate that EEG microstates analysis yields robust signatures of fMRI dFC states, providing evidence of the electrophysiological underpinnings of dFC while also further supporting that EEG microstates reflect the dynamics of large-scale brain networks.
Collapse
Affiliation(s)
- Rodolfo Abreu
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), ICNAS, University of Coimbra, Coimbra, Portugal
| | - João Jorge
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Systems Division, Swiss Center for Electronics and Microtechnology (CSEM), Neuchâtel, Switzerland
| | - Alberto Leal
- Department of Neurophysiology, Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
11
|
Abreu R, Jorge J, Leal A, Koenig T, Figueiredo P. EEG Microstates Predict Concurrent fMRI Dynamic Functional Connectivity States. Brain Topogr 2020; 34:41-55. [PMID: 33161518 DOI: 10.1007/s10548-020-00805-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Brain functional connectivity measured by resting-state fMRI varies over multiple time scales, and recurrent dynamic functional connectivity (dFC) states have been identified. These have been found to be associated with different cognitive and pathological states, with potential as disease biomarkers, but their neuronal underpinnings remain a matter of debate. A number of recurrent microstates have also been identified in resting-state EEG studies, which are thought to represent the quasi-simultaneous activity of large-scale functional networks reflecting time-varying brain states. Here, we hypothesized that fMRI-derived dFC states may be associated with these EEG microstates. To test this hypothesis, we quantitatively assessed the ability of EEG microstates to predict concurrent fMRI dFC states in simultaneous EEG-fMRI data collected from healthy subjects at rest. By training a random forests classifier, we found that the four canonical EEG microstates predicted fMRI dFC states with an accuracy of 90%, clearly outperforming alternative EEG features such as spectral power. Our results indicate that EEG microstates analysis yields robust signatures of fMRI dFC states, providing evidence of the electrophysiological underpinnings of dFC while also further supporting that EEG microstates reflect the dynamics of large-scale brain networks.
Collapse
Affiliation(s)
- Rodolfo Abreu
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), ICNAS, University of Coimbra, Coimbra, Portugal
| | - João Jorge
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Systems Division, Swiss Center for Electronics and Microtechnology (CSEM), Neuchâtel, Switzerland
| | - Alberto Leal
- Department of Neurophysiology, Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
12
|
Iannotti GR, Preti MG, Grouiller F, Carboni M, De Stefano P, Pittau F, Momjian S, Carmichael D, Centeno M, Seeck M, Korff CM, Schaller K, De Ville DV, Vulliemoz S. Modulation of epileptic networks by transient interictal epileptic activity: A dynamic approach to simultaneous EEG-fMRI. NEUROIMAGE-CLINICAL 2020; 28:102467. [PMID: 33395963 PMCID: PMC7645285 DOI: 10.1016/j.nicl.2020.102467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 12/27/2022]
Abstract
EEG-fMRI has been instrumental in characterizing brain networks in epilepsy. Its value is documented in the pre-surgical assessment of drug-resistant epilepsy. The delineation of brain areas to resect is fundamental for the post-surgical outcome. Standard EEG-fMRI in epilepsy assesses static functional connectivity of the network. EEG-fMRI dynamic connectivity identifies transitory features of specific connections. We integrate dynamic fMRI connectivity and dynamic patterns of simultaneous scalp EEG. This allows to better characterize the spatiotemporal aspects of epileptic networks. This may help in more efficiently target the surgical intervention.
Epileptic networks, defined as brain regions involved in epileptic brain activity, have been mapped by functional connectivity in simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) recordings. This technique allows to define brain hemodynamic changes, measured by the Blood Oxygen Level Dependent (BOLD) signal, associated to the interictal epileptic discharges (IED), which together with ictal events constitute a signature of epileptic disease. Given the highly time-varying nature of epileptic activity, a dynamic functional connectivity (dFC) analysis of EEG-fMRI data appears particularly suitable, having the potential to identify transitory features of specific connections in epileptic networks. In the present study, we propose a novel method, defined dFC-EEG, that integrates dFC assessed by fMRI with the information recorded by simultaneous scalp EEG, in order to identify the connections characterised by a dynamic profile correlated with the occurrence of IED, forming the dynamic epileptic subnetwork. Ten patients with drug-resistant focal epilepsy were included, with different aetiology and showing a widespread (or multilobar) BOLD activation, defined as involving at least two distinct clusters, located in two different lobes and/or extended to the hemisphere contralateral to the epileptic focus. The epileptic focus was defined from the IED-related BOLD map. Regions involved in the occurrence of interictal epileptic activity; i.e., forming the epileptic network, were identified by a general linear model considering the timecourse of the fMRI-defined focus as main regressor. dFC between these regions was assessed with a sliding-window approach. dFC timecourses were then correlated with the sliding-window variance of the IED signal (VarIED), to identify connections whose dynamics related to the epileptic activity; i.e., the dynamic epileptic subnetwork. As expected, given the very different clinical picture of each individual, the extent of this subnetwork was highly variable across patients, but was but was reduced of at least 30% with respect to the initially identified epileptic network in 9/10 patients. The connections of the dynamic subnetwork were most commonly close to the epileptic focus, as reflected by the laterality index of the subnetwork connections, reported higher than the one within the original epileptic network. Moreover, the correlation between dFC timecourses and VarIED was predominantly positive, suggesting a strengthening of the dynamic subnetwork associated to the occurrence of IED. The integration of dFC and scalp IED offers a more specific description of the epileptic network, identifying connections strongly influenced by IED. These findings could be relevant in the pre-surgical evaluation for the resection or disconnection of the epileptogenic zone and help in reaching a better post-surgical outcome. This would be particularly important for patients characterised by a widespread pathological brain activity which challenges the surgical intervention.
Collapse
Affiliation(s)
- G R Iannotti
- EEG and Epilepsy, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland; Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Switzerland; Neurosurgery, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland.
| | - M G Preti
- Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - F Grouiller
- Swiss Center for Affective Sciences, University of Geneva, Switzerland; Laboratory of Behavioral Neurology and Imaging of Cognition, Department of Fundamental Neurosciences, University of Geneva, Switzerland
| | - M Carboni
- EEG and Epilepsy, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland; Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Switzerland
| | - P De Stefano
- EEG and Epilepsy, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland
| | - F Pittau
- EEG and Epilepsy, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland; Epilepsy Unit, Institution de Lavigny, Switzerland
| | - S Momjian
- Neurosurgery, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland
| | - D Carmichael
- Biomedical Engineering Department, Kings College London, United Kingdom; Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - M Centeno
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, United Kingdom; Epilepsy Unit, Neurology Department, Clinica Universidad de Pamplona, Navarra, Spain
| | - M Seeck
- EEG and Epilepsy, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland
| | - C M Korff
- Pediatric Neurology Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - K Schaller
- Neurosurgery, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland
| | - D Van De Ville
- Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - S Vulliemoz
- EEG and Epilepsy, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland
| |
Collapse
|
13
|
Abreu R, Simões M, Castelo-Branco M. Pushing the Limits of EEG: Estimation of Large-Scale Functional Brain Networks and Their Dynamics Validated by Simultaneous fMRI. Front Neurosci 2020; 14:323. [PMID: 32372908 PMCID: PMC7177188 DOI: 10.3389/fnins.2020.00323] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/19/2020] [Indexed: 01/12/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) is the technique of choice for detecting large-scale functional brain networks and to investigate their dynamics. Because fMRI measures brain activity indirectly, electroencephalography (EEG) has been recently considered a feasible tool for detecting such networks, particularly the resting-state networks (RSNs). However, a truly unbiased validation of such claims is still missing, which can only be accomplished by using simultaneously acquired EEG and fMRI data, due to the spontaneous nature of the activity underlying the RSNs. Additionally, EEG is still poorly explored for the purpose of mapping task-specific networks, and no studies so far have been focused on investigating networks' dynamic functional connectivity (dFC) with EEG. Here, we started by validating RSNs derived from the continuous reconstruction of EEG sources by directly comparing them with those derived from simultaneous fMRI data of 10 healthy participants, and obtaining an average overlap (quantified by the Dice coefficient) of 0.4. We also showed the ability of EEG to map the facial expressions processing network (FEPN), highlighting regions near the posterior superior temporal sulcus, where the FEPN is anchored. Then, we measured the dFC using EEG for the first time in this context, estimated dFC brain states using dictionary learning, and compared such states with those obtained from the fMRI. We found a statistically significant match between fMRI and EEG dFC states, and determined the existence of two matched dFC states which contribution over time was associated with the brain activity at the FEPN, showing that the dynamics of FEPN can be captured by both fMRI and EEG. Our results push the limits of EEG toward being used as a brain imaging tool, while supporting the growing literature on EEG correlates of (dynamic) functional connectivity measured with fMRI, and providing novel insights into the coupling mechanisms underlying the two imaging techniques.
Collapse
Affiliation(s)
- Rodolfo Abreu
- Faculty of Medicine, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Marco Simões
- Faculty of Medicine, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Center for Informatics and Systems (CISUC), University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Faculty of Medicine, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Chakravarty S, Threlkeld ZD, Bodien YG, Edlow BL, Brown EN. A state-space model for dynamic functional connectivity. CONFERENCE RECORD. ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS 2020; 2019:240-244. [PMID: 32801606 DOI: 10.1109/ieeeconf44664.2019.9048807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dynamic functional connectivity (DFC) analysis involves measuring correlated neural activity over time across multiple brain regions. Significant regional correlations among neural signals, such as those obtained from resting-state functional magnetic resonance imaging (fMRI), may represent neural circuits associated with rest. The conventional approach of estimating the correlation dynamics as a sequence of static correlations from sliding time-windows has statistical limitations. To address this issue, we propose a multivariate stochastic volatility model for estimating DFC inspired by recent work in econometrics research. This model assumes a state-space framework where the correlation dynamics of a multivariate normal observation sequence is governed by a positive-definite matrix-variate latent process. Using this statistical model within a sequential Bayesian estimation framework, we use blood oxygenation level dependent activity from multiple brain regions to estimate posterior distributions on the correlation trajectory. We demonstrate the utility of this DFC estimation framework by analyzing its performance on simulated data, and by estimating correlation dynamics in resting state fMRI data from a patient with a disorder of consciousness (DoC). Our work advances the state-of-the-art in DFC analysis and its principled use in DoC biomarker exploration.
Collapse
Affiliation(s)
- Sourish Chakravarty
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Boston, MA.,Center for Neurotechnology and Neurorecovery, Department of Neurology, MGH, Boston, MA
| | - Zachary D Threlkeld
- Dept. of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, MGH, Boston, MA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, MGH, Boston, MA
| | - Emery N Brown
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA.,Department of Brain and Cognitive Sciences, MIT, Cambridge, MA.,Institute of Medical Engineering and Science, MIT, Cambridge, MA.,Harvard-MIT Division of Health Science and Technology.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Boston, MA
| |
Collapse
|
15
|
Zarghami TS, Hossein-Zadeh GA, Bahrami F. Deep Temporal Organization of fMRI Phase Synchrony Modes Promotes Large-Scale Disconnection in Schizophrenia. Front Neurosci 2020; 14:214. [PMID: 32292324 PMCID: PMC7118690 DOI: 10.3389/fnins.2020.00214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/27/2020] [Indexed: 12/30/2022] Open
Abstract
Itinerant dynamics of the brain generates transient and recurrent spatiotemporal patterns in neuroimaging data. Characterizing metastable functional connectivity (FC) - particularly at rest and using functional magnetic resonance imaging (fMRI) - has shaped the field of dynamic functional connectivity (DFC). Mainstream DFC research relies on (sliding window) correlations to identify recurrent FC patterns. Recently, functional relevance of the instantaneous phase synchrony (IPS) of fMRI signals has been revealed using imaging studies and computational models. In the present paper, we identify the repertoire of whole-brain inter-network IPS states at rest. Moreover, we uncover a hierarchy in the temporal organization of IPS modes. We hypothesize that connectivity disorder in schizophrenia (SZ) is related to the (deep) temporal arrangement of large-scale IPS modes. Hence, we analyze resting-state fMRI data from 68 healthy controls (HC) and 51 SZ patients. Seven resting-state networks (and their sub-components) are identified using spatial independent component analysis. IPS is computed between subject-specific network time courses, using analytic signals. The resultant phase coupling patterns, across time and subjects, are clustered into eight IPS states. Statistical tests show that the relative expression and mean lifetime of certain IPS states have been altered in SZ. Namely, patients spend (45%) less time in a globally coherent state and a subcortical-centered state, and (40%) more time in states reflecting anticoupling within the cognitive control network, compared to the HC. Moreover, the transition profile (between states) reveals a deep temporal structure, shaping two metastates with distinct phase synchrony profiles. A metastate is a collection of states such that within-metastate transitions are more probable than across. Remarkably, metastate occupation balance is altered in SZ, in favor of the less synchronous metastate that promotes disconnection across networks. Furthermore, the trajectory of IPS patterns is less efficient, less smooth, and more restricted in SZ subjects, compared to the HC. Finally, a regression analysis confirms the diagnostic value of the defined IPS measures for SZ identification, highlighting the distinctive role of metastate proportion. Our results suggest that the proposed IPS features may be used for classification studies and for characterizing phase synchrony modes in other (clinical) populations.
Collapse
Affiliation(s)
- Tahereh S. Zarghami
- Bio-Electric Department, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Gholam-Ali Hossein-Zadeh
- Bio-Electric Department, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fariba Bahrami
- Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
16
|
Cury C, Maurel P, Gribonval R, Barillot C. A Sparse EEG-Informed fMRI Model for Hybrid EEG-fMRI Neurofeedback Prediction. Front Neurosci 2020; 13:1451. [PMID: 32076396 PMCID: PMC7006471 DOI: 10.3389/fnins.2019.01451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/30/2019] [Indexed: 01/06/2023] Open
Abstract
Measures of brain activity through functional magnetic resonance imaging (fMRI) or electroencephalography (EEG), two complementary modalities, are ground solutions in the context of neurofeedback (NF) mechanisms for brain rehabilitation protocols. While NF-EEG (in which real-time neurofeedback scores are computed from EEG signals) has been explored for a very long time, NF-fMRI (in which real-time neurofeedback scores are computed from fMRI signals) appeared more recently and provides more robust results and more specific brain training. Using fMRI and EEG simultaneously for bi-modal neurofeedback sessions (NF-EEG-fMRI, in which real-time neurofeedback scores are computed from fMRI and EEG) is very promising for the design of brain rehabilitation protocols. However, fMRI is cumbersome and more exhausting for patients. The original contribution of this paper concerns the prediction of bi-modal NF scores from EEG recordings only, using a training phase where EEG signals as well as the NF-EEG and NF-fMRI scores are available. We propose a sparse regression model able to exploit EEG only to predict NF-fMRI or NF-EEG-fMRI in motor imagery tasks. We compared different NF-predictors stemming from the proposed model. We showed that predicting NF-fMRI scores from EEG signals adds information to NF-EEG scores and significantly improves the correlation with bi-modal NF sessions compared to classical NF-EEG scores.
Collapse
Affiliation(s)
- Claire Cury
- University of Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, Empenn Team ERL U 1228, Rennes, France.,University of Rennes, CNRS, Inria, IRISA UMR 6074, PANAMA Team, Rennes, France
| | - Pierre Maurel
- University of Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, Empenn Team ERL U 1228, Rennes, France
| | - Rémi Gribonval
- University of Rennes, CNRS, Inria, IRISA UMR 6074, PANAMA Team, Rennes, France
| | - Christian Barillot
- University of Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, Empenn Team ERL U 1228, Rennes, France
| |
Collapse
|
17
|
Continuous reorganization of cortical information flow in multiple sclerosis: A longitudinal fMRI effective connectivity study. Sci Rep 2020; 10:806. [PMID: 31964982 PMCID: PMC6972853 DOI: 10.1038/s41598-020-57895-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/03/2020] [Indexed: 12/02/2022] Open
Abstract
Effective connectivity (EC) is able to explore causal effects between brain areas and can depict mechanisms that underlie repair and adaptation in chronic brain diseases. Thus, the application of EC techniques in multiple sclerosis (MS) has the potential to determine directionality of neuronal interactions and may provide an imaging biomarker for disease progression. Here, serial longitudinal structural and resting-state fMRI was performed at 12-week intervals over one year in twelve MS patients. Twelve healthy subjects served as controls (HC). Two approaches for EC quantification were used: Causal Bayesian Network (CBN) and Time-resolved Partial Directed Coherence (TPDC). The EC strength was correlated with the Expanded Disability Status Scale (EDSS) and Fatigue Scale for Motor and Cognitive functions (FSMC). Our findings demonstrated a longitudinal increase in EC between specific brain regions, detected in both the CBN and TPDC analysis in MS patients. In particular, EC from the deep grey matter, frontal, prefrontal and temporal regions showed a continuous increase over the study period. No longitudinal changes in EC were attested in HC during the study. Furthermore, we observed an association between clinical performance and EC strength. In particular, the EC increase in fronto-cerebellar connections showed an inverse correlation with the EDSS and FSMC. Our data depict continuous functional reorganization between specific brain regions indicated by increasing EC over time in MS, which is not detectable in HC. In particular, fronto-cerebellar connections, which were closely related to clinical performance, may provide a marker of brain plasticity and functional reserve in MS.
Collapse
|
18
|
Miller RL, Pearlson G, Calhoun VD. Whole brain polarity regime dynamics are significantly disrupted in schizophrenia and correlate strongly with network connectivity measures. PLoS One 2019; 14:e0224744. [PMID: 31825974 PMCID: PMC6905532 DOI: 10.1371/journal.pone.0224744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/21/2019] [Indexed: 11/18/2022] Open
Abstract
From a large clinical blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) study, we report several interrelated findings involving transient supra-network brainwide states characterized by a saturation phenomenon we are referring to as "polarization." These are whole-brain states in which the voxelwise-normalized BOLD (vn-BOLD) activation of a large proportion of voxels is simultaneously either very high or very low. The presence of such states during a resting-state fMRI (rs-fMRI) scan is significantly anti-correlated with diagnosed schizophrenia, significantly anti-correlated with connectivity between subcortical networks and auditory, visual and sensorimotor networks and also significantly anti-correlated with contemporaneous occupancy of transient functional network connectivity states featuring broad disconnectivity or strong inhibitory connections between the default mode and other networks. Conversely, the presence of highly polarized vn-BOLD states is significantly correlated with connectivity strength between auditory, visual and sensorimotor networks and with contemporaneous occupancy of transient whole-brain patterns of strongly modularized network connectivity and diffuse hyperconnectivity. Despite their consistency with well-documented effects of schizophrenia on static and time-varying functional network connectivity, the observed relationships between polarization and network connectivity are with very few exceptions unmediated by schizophrenia diagnosis. Many differences observed between patients and controls are echoed within the patient population itself in the effect patterns of positive symptomology (e.g. hallucinations, delusions, grandiosity). Our findings highlight a particular whole-brain spatiotemporal BOLD activation phenomenon that differs markedly between healthy subjects and schizophrenia patients, one that also strongly informs time-resolved network connectivity patterns that are associated with this serious clinical disorder.
Collapse
Affiliation(s)
- Robyn L. Miller
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State Univsersity, Georgia Institute of Technology, Emory University, Atlanta, GA, United States of America
- Georgia State University, Atlanta, GA, United States of America
- * E-mail:
| | - Godfrey Pearlson
- Yale University School of Medicine, New Haven, CT, United States of America
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State Univsersity, Georgia Institute of Technology, Emory University, Atlanta, GA, United States of America
- Georgia State University, Atlanta, GA, United States of America
| |
Collapse
|
19
|
Feng Q, He L, Yang W, Zhang Y, Wu X, Qiu J. Verbal Creativity Is Correlated With the Dynamic Reconfiguration of Brain Networks in the Resting State. Front Psychol 2019; 10:894. [PMID: 31068873 PMCID: PMC6491857 DOI: 10.3389/fpsyg.2019.00894] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/03/2019] [Indexed: 11/13/2022] Open
Abstract
Creativity is the foundation of human culture. All inventions and innovations in history rely upon us to break with the traditional thinking and create something novel. A number of neuroimaging studies have explored the neural mechanism of creativity. However, a majority of researches have focused only on the stationary functional connectivity in resting-state fMRI and task-related fMRI, neglecting the dynamic variation of brain networks. Here, we used dynamic network analysis to investigate the relation between the dynamic reorganization of brain networks and verbal creativity in 370 healthy subjects. We found that the integration of the left lingual gyrus and left middle temporal gyrus (MTG) in default mode network (DMN) and the integration of the DMN and cerebellum, frontoparietal task control network (FPTC) and auditory network (Aud) showed positive correlation with verbal creativity performance. In addition, the recruitment of the bilateral postcentral gyrus from the sensory/somatomotor network (SMN) and the recruitment of the SMN in general displayed a significant correlation with verbal creativity scores. Taken together, these results suggested that the dynamic reorganization among the brain networks involved multiple cognitive processes, such as memory retrieval, imaginative process, cognitive control - these are all important for verbal creativity. These findings provided direct evidence that verbal creativity was related to the dynamic variation of brain mechanism during resting-state, extending past research on the neural mechanism of creativity. Meanwhile, these results bought about new perspectives for verbal creative training and rehabilitation training of depression.
Collapse
Affiliation(s)
- Qiuyang Feng
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - Li He
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - Wenjing Yang
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - Yao Zhang
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - Xinran Wu
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| |
Collapse
|
20
|
Xie H, Zheng CY, Handwerker DA, Bandettini PA, Calhoun VD, Mitra S, Gonzalez-Castillo J. Efficacy of different dynamic functional connectivity methods to capture cognitively relevant information. Neuroimage 2019; 188:502-514. [PMID: 30576850 PMCID: PMC6401299 DOI: 10.1016/j.neuroimage.2018.12.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022] Open
Abstract
Given the dynamic nature of the human brain, there has been an increasing interest in investigating short-term temporal changes in functional connectivity, also known as dynamic functional connectivity (dFC), i.e., the time-varying inter-regional statistical dependence of blood oxygenation level-dependent (BOLD) signal within the constraints of a single scan. Numerous methodologies have been proposed to characterize dFC during rest and task, but few studies have compared them in terms of their efficacy to capture behavioral and clinically relevant dynamics. This is mostly due to lack of a well-defined ground truth, especially for rest scans. In this study, with a multitask dataset (rest, memory, video, and math) serving as ground truth, we investigated the efficacy of several dFC estimation techniques at capturing cognitively relevant dFC modulation induced by external tasks. We evaluated two framewise methods (dFC estimates for a single time point): dynamic conditional correlation (DCC) and jackknife correlation (JC); and five window-based methods: sliding window correlation (SWC), sliding window correlation with L1-regularization (SWC_L1), a combination of DCC and SWC called moving average DCC (DCC_MA), multiplication of temporal derivatives (MTD), and a variant of jackknife correlation called delete-d jackknife correlation (dJC). The efficacy is defined as each dFC metric's ability to successfully subdivide multitask scans into cognitively homogenous segments (even if those segments are not temporally continuous). We found that all window-based dFC methods performed well for commonly used window lengths (WL ≥ 30sec), with sliding window methods (SWC, SWC_L1) as well as the hybrid DCC_MA approach performing slightly better. For shorter window lengths (WL ≤ 15sec), DCC_MA and dJC produced the best results. Neither framewise method (i.e., DCC and JC) led to dFC estimates with high accuracy.
Collapse
Affiliation(s)
- Hua Xie
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA; Section on Functional Imaging Methods, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Charles Y Zheng
- Machine Learning Team, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Daniel A Handwerker
- Section on Functional Imaging Methods, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Functional MRI Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Sunanda Mitra
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Abreu R, Leal A, Figueiredo P. Identification of epileptic brain states by dynamic functional connectivity analysis of simultaneous EEG-fMRI: a dictionary learning approach. Sci Rep 2019; 9:638. [PMID: 30679773 PMCID: PMC6345787 DOI: 10.1038/s41598-018-36976-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Most fMRI studies of the brain's intrinsic functional connectivity (FC) have assumed that this is static; however, it is now clear that it changes over time. This is particularly relevant in epilepsy, which is characterized by a continuous interchange between epileptic and normal brain states associated with the occurrence of epileptic activity. Interestingly, recurrent states of dynamic FC (dFC) have been found in fMRI data using unsupervised learning techniques, assuming either their sparse or non-sparse combination. Here, we propose an l1-norm regularized dictionary learning (l1-DL) approach for dFC state estimation, which allows an intermediate and flexible degree of sparsity in time, and demonstrate its application in the identification of epilepsy-related dFC states using simultaneous EEG-fMRI data. With this l1-DL approach, we aim to accommodate a potentially varying degree of sparsity upon the interchange between epileptic and non-epileptic dFC states. The simultaneous recording of the EEG is used to extract time courses representative of epileptic activity, which are incorporated into the fMRI dFC state analysis to inform the selection of epilepsy-related dFC states. We found that the proposed l1-DL method performed best at identifying epilepsy-related dFC states, when compared with two alternative methods of extreme sparsity (k-means clustering, maximum; and principal component analysis, minimum), as well as an l0-norm regularization framework (l0-DL), with a fixed amount of temporal sparsity. We further showed that epilepsy-related dFC states provide novel insights into the dynamics of epileptic networks, which go beyond the information provided by more conventional EEG-correlated fMRI analysis, and which were concordant with the clinical profile of each patient. In addition to its application in epilepsy, our study provides a new dFC state identification method of potential relevance for studying brain functional connectivity dynamics in general.
Collapse
Affiliation(s)
- Rodolfo Abreu
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Alberto Leal
- Department of Neurophysiology, Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal
| | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
22
|
Cavanna F, Vilas MG, Palmucci M, Tagliazucchi E. Dynamic functional connectivity and brain metastability during altered states of consciousness. Neuroimage 2018; 180:383-395. [DOI: 10.1016/j.neuroimage.2017.09.065] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/01/2017] [Accepted: 09/29/2017] [Indexed: 11/16/2022] Open
|
23
|
Fast imaging for mapping dynamic networks. Neuroimage 2018; 180:547-558. [DOI: 10.1016/j.neuroimage.2017.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/21/2017] [Accepted: 08/09/2017] [Indexed: 01/22/2023] Open
|
24
|
Miller RL, Abrol A, Adali T, Levin-Schwarz Y, Calhoun VD. Resting-State fMRI Dynamics and Null Models: Perspectives, Sampling Variability, and Simulations. Front Neurosci 2018; 12:551. [PMID: 30237758 PMCID: PMC6135983 DOI: 10.3389/fnins.2018.00551] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
Studies of resting state functional MRI (rs-fRMI) are increasingly focused on “dynamics”, or on those properties of brain activation that manifest and vary on timescales shorter than the scan's full duration. This shift in focus has led to a flurry of interest in developing hypothesis testing frameworks and null models applicable to the dynamical setting. Thus far however, these efforts have been weakened by a number of crucial shortcomings that are outlined and discussed in this article. We focus here on aspects of recently proposed null models that, we argue, are poorly formulated relative to the hypotheses they are designed to test, i.e., their potential role in separating functionally relevant BOLD signal dynamics from noise or intermittent background and maintenance type processes is limited by factors that are fundamental rather than merely quantitative or parametric. In this short position paper, we emphasize that (1) serious care must be exercised in building null models for rs-fMRI dynamics from distributionally stationary univariate or multivariate timeseries, i.e., timeseries whose values are each independently drawn from one pre-specified probability distribution; and (2) measures such as kurtosis that quantify over-concentration of observed values in the far tails of some reference distribution may not be particularly suitable for capturing signal features most plausibly contributing to functionally relevant brain dynamics. Other metrics targeted, for example, at capturing the type of epochal signal variation that is often viewed as a signature of brain responsiveness to stimuli or experimental tasks, could play a more scientifically clarifying role. As we learn more about the phenomenon of functionally relevant brain dynamics and its imaging correlates, scientifically meaningful null hypotheses and well-tuned null models will naturally emerge. We also revisit the important concept of distributional stationarity, discuss how it manifests within realizations vs. across multiple realizations, and provide guidance on the benefits and limitations of employing this type of stationarity in modeling the absence of functionally relevant temporal dynamics in resting state fMRI. We hope that the discussions herein are useful, and promote thoughtful consideration of these important issues.
Collapse
Affiliation(s)
- Robyn L Miller
- The Mind Research Network, Albuquerque, NM, United States
| | - Anees Abrol
- The Mind Research Network, Albuquerque, NM, United States.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, United States
| | - Tulay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, United States
| | - Yuri Levin-Schwarz
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, United States
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, United States.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
25
|
Kottaram A, Johnston L, Ganella E, Pantelis C, Kotagiri R, Zalesky A. Spatio-temporal dynamics of resting-state brain networks improve single-subject prediction of schizophrenia diagnosis. Hum Brain Mapp 2018; 39:3663-3681. [PMID: 29749660 PMCID: PMC6866493 DOI: 10.1002/hbm.24202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 02/01/2023] Open
Abstract
Correlation in functional MRI activity between spatially separated brain regions can fluctuate dynamically when an individual is at rest. These dynamics are typically characterized temporally by measuring fluctuations in functional connectivity between brain regions that remain fixed in space over time. Here, dynamics in functional connectivity were characterized in both time and space. Temporal dynamics were mapped with sliding-window correlation, while spatial dynamics were characterized by enabling network regions to vary in size (shrink/grow) over time according to the functional connectivity profile of their constituent voxels. These temporal and spatial dynamics were evaluated as biomarkers to distinguish schizophrenia patients from controls, and compared to current biomarkers based on static measures of resting-state functional connectivity. Support vector machine classifiers were trained using: (a) static, (b) dynamic in time, (c) dynamic in space, and (d) dynamic in time and space characterizations of functional connectivity within canonical resting-state brain networks. Classifiers trained on functional connectivity dynamics mapped over both space and time predicted diagnostic status with accuracy exceeding 91%, whereas utilizing only spatial or temporal dynamics alone yielded lower classification accuracies. Static measures of functional connectivity yielded the lowest accuracy (79.5%). Compared to healthy comparison individuals, schizophrenia patients generally exhibited functional connectivity that was reduced in strength and more variable. Robustness was established with replication in an independent dataset. The utility of biomarkers based on temporal and spatial functional connectivity dynamics suggests that resting-state dynamics are not trivially attributable to sampling variability and head motion.
Collapse
Affiliation(s)
- Akhil Kottaram
- Department of Biomedical Engineering, The University of Melbourne, Victoria, 3010, Australia
| | - Leigh Johnston
- Department of Biomedical Engineering, The University of Melbourne, Victoria, 3010, Australia
- Department of Electrical and Electronic Engineering, The University of Melbourne, Victoria, 3010, Australia
- Florey Institute for Neurosciences and Mental health, Parkville, Victoria, 3052, Australia
| | - Eleni Ganella
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, 3010, Australia
- Cooperative Research Centre for Mental Health, Carlton, Victoria, 3053, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, 3010, Australia
- Department of Psychiatry, The University of Melbourne, Victoria, 3010, Australia
- Florey Institute for Neurosciences and Mental health, Parkville, Victoria, 3052, Australia
- North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Victoria, 3053, Australia
- Cooperative Research Centre for Mental Health, Carlton, Victoria, 3053, Australia
| | - Ramamohanarao Kotagiri
- Department of Computing and Information Systems, The University of Melbourne, Victoria, 3010, Australia
| | - Andrew Zalesky
- Department of Biomedical Engineering, The University of Melbourne, Victoria, 3010, Australia
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
26
|
d-Lysergic acid diethylamide, psilocybin, and other classic hallucinogens: Mechanism of action and potential therapeutic applications in mood disorders. PROGRESS IN BRAIN RESEARCH 2018; 242:69-96. [PMID: 30471683 DOI: 10.1016/bs.pbr.2018.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Depression and anxiety are psychiatric diagnoses commonly associated with low quality of life and low percentage of responsiveness by patients treated with currently available drugs. Thus, research into alternative compounds to treat these disorders is essential to guarantee a patient's remission. The last decade has witnessed a revamped interest for the application of psychedelic medicine for the treatment of mental disorders due to anecdotal reports and clinical studies which show that low doses of d-lysergic acid diethylamide (LSD) and psilocybin may have antidepressant effects. LSD and psilocybin have demonstrated mood-modulating properties likely due to their capacity to modulate serotonergic (5-HT), dopaminergic (DA) and glutamatergic systems. LSD, belonging to the category of "classic halluginogens," interacts with the 5-HT system through 5HT1A, and 5HT2A receptors, with the DA system through D2 receptors, and indirectly also the glutamatergic neurotransmission thought the recruitment of N-methyl-d-aspartate (NMDA) receptors. Randomized clinical studies have confirmed its antidepressant and anxiolytic effects in humans. Thus, in this chapter, we will review the pharmacology of psychedelic drugs, report the most striking clinical evidence which substantiate the therapeutic potentials of these fascinating compounds in mood disorders, and look into the horizon of where psychedelic medicine is heading.
Collapse
|
27
|
Abreu R, Leal A, Figueiredo P. EEG-Informed fMRI: A Review of Data Analysis Methods. Front Hum Neurosci 2018; 12:29. [PMID: 29467634 PMCID: PMC5808233 DOI: 10.3389/fnhum.2018.00029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/18/2018] [Indexed: 01/17/2023] Open
Abstract
The simultaneous acquisition of electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD) fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest.
Collapse
Affiliation(s)
- Rodolfo Abreu
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Alberto Leal
- Department of Neurophysiology, Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal
| | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
28
|
Boissoneault J, Letzen J, Lai S, Robinson ME, Staud R. Static and dynamic functional connectivity in patients with chronic fatigue syndrome: use of arterial spin labelling fMRI. Clin Physiol Funct Imaging 2018; 38:128-137. [PMID: 27678090 PMCID: PMC5373941 DOI: 10.1111/cpf.12393] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/24/2016] [Indexed: 11/30/2022]
Abstract
Studies using arterial spin labelling (ASL) have shown that individuals with chronic fatigue syndrome (CFS) have decreased regional cerebral blood flow, which may be associated with changes in functional neural networks. Indeed, recent studies indicate disruptions in functional connectivity (FC) at rest in chronically fatigued patients including perturbations in static FC (sFC), that is average FC at rest between several brain regions subserving neurocognitive, motor and affect-related networks. Whereas sFC often provides information of functional network reorganization in chronic illnesses, investigations of temporal changes in functional connectivity between multiple brain areas may shed light on the dynamic characteristics of brain network activation associated with such maladies. We used ASL fMRI in 19 patients with CFS and 15 healthy controls (HC) to examine both static and dynamic changes in FC among several a priori selected brain regions during a fatiguing cognitive task. HC showed greater increases than CFS in static FC (sFC) between insula and temporo-occipital structures and between precuneus and thalamus/striatum. Furthermore, inferior frontal gyrus connectivity to cerebellum, occipital and temporal structures declined in HC but increased in CFS. Patients also showed lower dynamic FC (dFC) between hippocampus and right superior parietal lobule. Both sFC and dFC correlated with task-related fatigue increases. These data provide the first evidence that perturbations in static and dynamic FC may underlie chronically fatigued patients' report of task-induced fatigue. Further research will determine whether such changes in sFC and dFC are also characteristic for other fatigued individuals, including patients with chronic pain, cancer and multiple sclerosis.
Collapse
Affiliation(s)
| | - Janelle Letzen
- Department of Clinical and Health Psychology, University of Florida
| | - Song Lai
- Department of Radiation Oncology, University of Florida
| | | | | |
Collapse
|
29
|
Yan CG, Yang Z, Colcombe SJ, Zuo XN, Milham MP. Concordance among indices of intrinsic brain function: Insights from inter-individual variation and temporal dynamics. Sci Bull (Beijing) 2017; 62:1572-1584. [PMID: 36659475 DOI: 10.1016/j.scib.2017.09.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/22/2017] [Accepted: 09/15/2017] [Indexed: 01/21/2023]
Abstract
Various resting-state fMRI (R-fMRI) measures have been developed to characterize intrinsic brain activity. While each of these measures has gained a growing presence in the literature, questions remain regarding the common and unique aspects these indices capture. The present work provided a comprehensive examination of inter-individual variation and intra-individual temporal variation for commonly used measures, including fractional amplitude of low frequency fluctuations, regional homogeneity, voxel-mirrored homotopic connectivity, network centrality and global signal correlation. Regardless of whether examining intra-individual or inter-individual variation, we found that these definitionally distinct R-fMRI indices tend to exhibit a relatively high degree of covariation, which doesn't exist in phase randomized surrogate data. As a measure of intrinsic brain function, concordance for R-fMRI indices was negatively correlated with age across individuals (i.e., concordance among functional indices decreased with age). To understand the functional significance of concordance, we noted that higher concordance was generally associated with higher strengths of R-fMRI indices, regardless of whether looking through the lens of inter-individual (i.e., high vs. low concordance participants) or intra-individual (i.e., high vs. low concordance states identified via temporal dynamic analyses) differences. We also noted a linear increase in functional concordance together with the R-fMRI indices through the scan, which may suggest a decrease in arousal. The current study demonstrated an enriched picture regarding the relationship among the R-fMRI indices, as well as provided new insights in examining dynamic states within and between individuals.
Collapse
Affiliation(s)
- Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Center for Lifespan Innovation of Mind and Brain, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Child and Adolescent Psychiatry, NYU Langone Medical Center School of Medicine, New York, NY 10016, USA.
| | - Zhen Yang
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Child Mind Institute, New York, NY 10022, USA
| | - Stanley J Colcombe
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Xi-Nian Zuo
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Center for Lifespan Innovation of Mind and Brain, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Michael P Milham
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Child Mind Institute, New York, NY 10022, USA
| |
Collapse
|
30
|
Giorgio A, Zhang J, Stromillo ML, Rossi F, Battaglini M, Nichelli L, Mortilla M, Portaccio E, Hakiki B, Amato MP, De Stefano N. Pronounced Structural and Functional Damage in Early Adult Pediatric-Onset Multiple Sclerosis with No or Minimal Clinical Disability. Front Neurol 2017; 8:608. [PMID: 29184534 PMCID: PMC5694464 DOI: 10.3389/fneur.2017.00608] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/31/2017] [Indexed: 12/29/2022] Open
Abstract
Pediatric-onset multiple sclerosis (POMS) may represent a model of vulnerability to damage occurring during a period of active maturation of the human brain. Whereas adaptive mechanisms seem to take place in the POMS brain in the short-medium term, natural history studies have shown that these patients reach irreversible disability, despite slower progression, at a significantly younger age than adult-onset MS (AOMS) patients. We tested for the first time whether significant brain alterations already occurred in POMS patients in their early adulthood and with no or minimal disability (n = 15) in comparison with age- and disability-matched AOMS patients (n = 14) and to normal controls (NC, n = 20). We used a multimodal MRI approach by modeling, using FSL, voxelwise measures of microstructural integrity of white matter tracts and gray matter volumes with those of intra- and internetwork functional connectivity (FC) (analysis of variance, p ≤ 0.01, corrected for multiple comparisons across space). POMS patients showed, when compared with both NC and AOMS patients, altered measures of diffusion tensor imaging (reduced fractional anisotropy and/or increased diffusivities) and higher probability of lesion occurrence in a clinically eloquent region for physical disability such as the posterior corona radiata. In addition, POMS patients showed, compared with the other two groups, reduced long-range FC, assessed from resting functional MRI, between default mode network and secondary visual network, whose interaction subserves important cognitive functions such as spatial attention and visual learning. Overall, this pattern of structural damage and brain connectivity disruption in early adult POMS patients with no or minimal clinical disability might explain their unfavorable clinical outcome in the long term.
Collapse
Affiliation(s)
- Antonio Giorgio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Jian Zhang
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Francesca Rossi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Lucia Nichelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | | | - Bahia Hakiki
- Department of Neurology, University of Florence, Florence, Italy
| | - Maria Pia Amato
- Department of Neurology, University of Florence, Florence, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
31
|
Cohen JR. The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity. Neuroimage 2017; 180:515-525. [PMID: 28942061 DOI: 10.1016/j.neuroimage.2017.09.036] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022] Open
Abstract
Recent advances in neuroimaging methods and analysis have led to an expanding body of research that investigates how large-scale brain network organization dynamically adapts to changes in one's environment, including both internal state changes and external stimulation. It is now possible to detect changes in functional connectivity that occur on the order of seconds, both during an unconstrained resting state and during the performance of constrained cognitive tasks. It is thought that these dynamic, time-varying changes in functional connectivity, often referred to as dynamic functional connectivity (dFC), include features that are relevant to behavior and cognition. This review summarizes four aspects of the nascent literature directly testing that assumption: 1) how changes in functional network organization on the order of task blocks relate to differences in task demands and to cognitive ability; 2) how differences in dFC variability between different contexts relate to cognitive demands and behavioral performance; 3) how ongoing fluctuations in dFC impact perception and attention; and 4) how different patterns of dFC correspond to individual differences in cognition. The review ends by discussing promising directions for future research in this field. First, it comments on how dFC analyses can help to elucidate the mechanisms of healthy cognition. Next, it describes how dFC processes may be disrupted in disease, and how probing such dysfunction can increase understanding of neural etiology, as well as behavioral and cognitive impairments, observed in psychiatric and neurologic populations. Last, it considers the potential for computational models to uncover neuronal mechanisms of dFC, and how both healthy cognition and disease emerge from network dynamics.
Collapse
Affiliation(s)
- Jessica R Cohen
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Ave., CB#3270, Chapel Hill, NC 27599, USA.
| |
Collapse
|
32
|
Thompson GJ. Neural and metabolic basis of dynamic resting state fMRI. Neuroimage 2017; 180:448-462. [PMID: 28899744 DOI: 10.1016/j.neuroimage.2017.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Resting state fMRI (rsfMRI) as a technique showed much initial promise for use in psychiatric and neurological diseases where diagnosis and treatment were difficult. To realize this promise, many groups have moved towards examining "dynamic rsfMRI," which relies on the assumption that rsfMRI measurements on short time scales remain relevant to the underlying neural and metabolic activity. Many dynamic rsfMRI studies have demonstrated differences between clinical or behavioral groups beyond what static rsfMRI measured, suggesting a neurometabolic basis. Correlative studies combining dynamic rsfMRI and other physiological measurements have supported this. However, they also indicate multiple mechanisms and, if using correlation alone, it is difficult to separate cause and effect. Hypothesis-driven studies are needed, a few of which have begun to illuminate the underlying neurometabolic mechanisms that shape observed differences in dynamic rsfMRI. While the number of potential noise sources, potential actual neurometabolic sources, and methodological considerations can seem overwhelming, dynamic rsfMRI provides a rich opportunity in systems neuroscience. Even an incrementally better understanding of the neurometabolic basis of dynamic rsfMRI would expand rsfMRI's research and clinical utility, and the studies described herein take the first steps on that path forward.
Collapse
Affiliation(s)
- Garth J Thompson
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
33
|
The dynamics of functional connectivity in neocortical focal epilepsy. NEUROIMAGE-CLINICAL 2017; 15:209-214. [PMID: 28529877 PMCID: PMC5429237 DOI: 10.1016/j.nicl.2017.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 01/09/2023]
Abstract
Focal epilepsy is characterised by paroxysmal events, reflecting changes in underlying local brain networks. To capture brain network activity at the maximal temporal resolution of the acquired functional magnetic resonance imaging (fMRI) data, we have previously developed a novel analysis framework called Dynamic Regional Phase Synchrony (DRePS). DRePS measures instantaneous mean phase coherence within neighbourhoods of brain voxels. We use it here to examine how the dynamics of the functional connections of regional brain networks are altered in neocortical focal epilepsy. Using task-free fMRI data from 21 subjects with focal epilepsy and 21 healthy controls, we calculated the power spectral density of DRePS, which is a measure of signal variability in local connectivity estimates. Whole-brain averaged power spectral density of DRePS, or signal variability of local connectivity, was significantly higher in epilepsy subjects compared to healthy controls. Maximal increase in DRePS spectral power was seen in bilateral inferior frontal cortices, ipsilateral mid-cingulate gyrus, superior temporal gyrus, caudate head, and contralateral cerebellum. Our results provide further evidence of common brain abnormalities across people with focal epilepsy. We postulate that dynamic changes in specific cortical brain areas may help maintain brain function in the presence of pathological epileptiform network activity in neocortical focal epilepsy. Focal epilepsy is a disease defined by its inherent paroxysmal brain changes. However, most fMRI connectivity methods do not capture dynamic brain network activity. We use our recently developed method, DRePS, to identify abnormal dynamic brain networks in focal epilepsy. Fluctuations of dynamic brain network activity were increased in the frontal-temporal cortex, cingulum and cerebellum, in focal epilepsy. These regions may be involved in (re-)gaining cortical homeostasis in an otherwise abnormal brain.
Collapse
|
34
|
Simultaneous Intracranial EEG-fMRI Shows Inter-Modality Correlation in Time-Resolved Connectivity Within Normal Areas but Not Within Epileptic Regions. Brain Topogr 2017; 30:639-655. [DOI: 10.1007/s10548-017-0551-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/24/2017] [Indexed: 12/11/2022]
|
35
|
Bähner F, Meyer-Lindenberg A. Hippocampal-prefrontal connectivity as a translational phenotype for schizophrenia. Eur Neuropsychopharmacol 2017; 27:93-106. [PMID: 28089652 DOI: 10.1016/j.euroneuro.2016.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 11/16/2016] [Accepted: 12/19/2016] [Indexed: 01/05/2023]
Abstract
Finding novel biological targets in psychiatry has been difficult, partly because current diagnostic categories are not defined by pathophysiology and difficult to model in animals. The study of species-conserved systems-level mechanisms implicated in psychiatric disease could be a promising strategy to address some of these difficulties. Altered hippocampal-prefrontal (HC-PFC) connectivity during working memory (WM) processing is a candidate for such a translational phenotype as it has been repeatedly associated with impaired cognition in schizophrenia patients and animal models for psychiatric risk factors. Specifically, persistent hippocampus-dorsolateral prefrontal cortex (HC-DLPFC) coupling during WM is an intermediate phenotype for schizophrenia that has been observed in patients, healthy relatives and carriers of two different risk polymorphisms identified in genome-wide association studies. Rodent studies report reduced coherence between HC and PFC during anesthesia, sleep and task performance in both genetic, environmental and neurodevelopmental models for schizophrenia. We discuss several challenges for translation including differences in anatomy, recording modalities and WM paradigms and suggest that a better understanding of HC-PFC coupling across species can be achieved if translational neuroimaging is used to control for task differences. The evidence for potential neurobiological substrates underlying HC-PFC dysconnectivity is evaluated and research strategies are proposed that aim to bridge the gap between findings from large-scale association studies and disease mechanisms.
Collapse
Affiliation(s)
- Florian Bähner
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany; Bernstein Center for Computational Neuroscience Heidelberg-Mannheim, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany; Bernstein Center for Computational Neuroscience Heidelberg-Mannheim, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| |
Collapse
|
36
|
Preti MG, Bolton TA, Van De Ville D. The dynamic functional connectome: State-of-the-art and perspectives. Neuroimage 2016; 160:41-54. [PMID: 28034766 DOI: 10.1016/j.neuroimage.2016.12.061] [Citation(s) in RCA: 784] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/09/2016] [Accepted: 12/20/2016] [Indexed: 12/22/2022] Open
Abstract
Resting-state functional magnetic resonance imaging (fMRI) has highlighted the rich structure of brain activity in absence of a task or stimulus. A great effort has been dedicated in the last two decades to investigate functional connectivity (FC), i.e. the functional interplay between different regions of the brain, which was for a long time assumed to have stationary nature. Only recently was the dynamic behaviour of FC revealed, showing that on top of correlational patterns of spontaneous fMRI signal fluctuations, connectivity between different brain regions exhibits meaningful variations within a typical resting-state fMRI experiment. As a consequence, a considerable amount of work has been directed to assessing and characterising dynamic FC (dFC), and several different approaches were explored to identify relevant FC fluctuations. At the same time, several questions were raised about the nature of dFC, which would be of interest only if brought back to a neural origin. In support of this, correlations with electroencephalography (EEG) recordings, demographic and behavioural data were established, and various clinical applications were explored, where the potential of dFC could be preliminarily demonstrated. In this review, we aim to provide a comprehensive description of the dFC approaches proposed so far, and point at the directions that we see as most promising for the future developments of the field. Advantages and pitfalls of dFC analyses are addressed, helping the readers to orient themselves through the complex web of available methodologies and tools.
Collapse
Affiliation(s)
- Maria Giulia Preti
- Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland.
| | - Thomas Aw Bolton
- Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| |
Collapse
|
37
|
Soares JM, Magalhães R, Moreira PS, Sousa A, Ganz E, Sampaio A, Alves V, Marques P, Sousa N. A Hitchhiker's Guide to Functional Magnetic Resonance Imaging. Front Neurosci 2016; 10:515. [PMID: 27891073 PMCID: PMC5102908 DOI: 10.3389/fnins.2016.00515] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
Functional Magnetic Resonance Imaging (fMRI) studies have become increasingly popular both with clinicians and researchers as they are capable of providing unique insights into brain functions. However, multiple technical considerations (ranging from specifics of paradigm design to imaging artifacts, complex protocol definition, and multitude of processing and methods of analysis, as well as intrinsic methodological limitations) must be considered and addressed in order to optimize fMRI analysis and to arrive at the most accurate and grounded interpretation of the data. In practice, the researcher/clinician must choose, from many available options, the most suitable software tool for each stage of the fMRI analysis pipeline. Herein we provide a straightforward guide designed to address, for each of the major stages, the techniques, and tools involved in the process. We have developed this guide both to help those new to the technique to overcome the most critical difficulties in its use, as well as to serve as a resource for the neuroimaging community.
Collapse
Affiliation(s)
- José M. Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Pedro S. Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Alexandre Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
- Department of Informatics, University of MinhoBraga, Portugal
| | - Edward Ganz
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Adriana Sampaio
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of MinhoBraga, Portugal
| | - Victor Alves
- Department of Informatics, University of MinhoBraga, Portugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
- Clinical Academic Center – BragaBraga, Portugal
| |
Collapse
|
38
|
Wirsich J, Perry A, Ridley B, Proix T, Golos M, Bénar C, Ranjeva JP, Bartolomei F, Breakspear M, Jirsa V, Guye M. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy. NEUROIMAGE-CLINICAL 2016; 11:707-718. [PMID: 27330970 PMCID: PMC4909094 DOI: 10.1016/j.nicl.2016.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/15/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022]
Abstract
The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.
Collapse
Key Words
- CSD, constrained spherical deconvolution
- CSF, cerebrospinal fluid
- FA, fractional anisotropy
- FCA, analytic functional connectivity
- FCD, functional connectivity dynamics
- FOD, fiber orientation distribution
- Functional connectivity
- NBS, network based statistics
- Network based statistics
- Network communication
- Rich club
- Structural connectivity
- Temporal lobe epilepsy
- dMRI, diffusion magnetic resonance imaging
- rTLE, right temporal lobe epilepsy
- rsfMRI, resting state functional magnetic resonance imaging
Collapse
Affiliation(s)
- Jonathan Wirsich
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385 Marseille, France; APHM, Hôpitaux de la Timone, Pôle d'imagerie Médicale, CEMEREM, 13005 Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France.
| | - Alistair Perry
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia; Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia.
| | - Ben Ridley
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385 Marseille, France; APHM, Hôpitaux de la Timone, Pôle d'imagerie Médicale, CEMEREM, 13005 Marseille, France.
| | - Timothée Proix
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France.
| | - Mathieu Golos
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France.
| | - Christian Bénar
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France.
| | - Jean-Philippe Ranjeva
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385 Marseille, France; APHM, Hôpitaux de la Timone, Pôle d'imagerie Médicale, CEMEREM, 13005 Marseille, France.
| | - Fabrice Bartolomei
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France; APHM, Hôpitaux de la Timone, Pôle de Neurosciences Cliniques, Service de Neurophysiologie Clinique, 13005 Marseille, France.
| | - Michael Breakspear
- School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia; Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia; Metro North Mental Health Services, Brisbane, QLD 4006, Australia.
| | - Viktor Jirsa
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France.
| | - Maxime Guye
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385 Marseille, France; APHM, Hôpitaux de la Timone, Pôle d'imagerie Médicale, CEMEREM, 13005 Marseille, France.
| |
Collapse
|
39
|
Otal B, Dutta A, Foerster Á, Ripolles O, Kuceyeski A, Miranda PC, Edwards DJ, Ilić TV, Nitsche MA, Ruffini G. Opportunities for Guided Multichannel Non-invasive Transcranial Current Stimulation in Poststroke Rehabilitation. Front Neurol 2016; 7:21. [PMID: 26941708 PMCID: PMC4764713 DOI: 10.3389/fneur.2016.00021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
Stroke is a leading cause of serious long-term disability worldwide. Functional outcome depends on stroke location, severity, and early intervention. Conventional rehabilitation strategies have limited effectiveness, and new treatments still fail to keep pace, in part due to a lack of understanding of the different stages in brain recovery and the vast heterogeneity in the poststroke population. Innovative methodologies for restorative neurorehabilitation are required to reduce long-term disability and socioeconomic burden. Neuroplasticity is involved in poststroke functional disturbances and also during rehabilitation. Tackling poststroke neuroplasticity by non-invasive brain stimulation is regarded as promising, but efficacy might be limited because of rather uniform application across patients despite individual heterogeneity of lesions, symptoms, and other factors. Transcranial direct current stimulation (tDCS) induces and modulates neuroplasticity, and has been shown to be able to improve motor and cognitive functions. tDCS is suited to improve poststroke rehabilitation outcomes, but effect sizes are often moderate and suffer from variability. Indeed, the location, extent, and pattern of functional network connectivity disruption should be considered when determining the optimal location sites for tDCS therapies. Here, we present potential opportunities for neuroimaging-guided tDCS-based rehabilitation strategies after stroke that could be personalized. We introduce innovative multimodal intervention protocols based on multichannel tDCS montages, neuroimaging methods, and real-time closed-loop systems to guide therapy. This might help to overcome current treatment limitations in poststroke rehabilitation and increase our general understanding of adaptive neuroplasticity leading to neural reorganization after stroke.
Collapse
Affiliation(s)
| | - Anirban Dutta
- INRIA (Sophia Antipolis), Université Montpellier, Montpellier, France
| | | | | | - Amy Kuceyeski
- Department of Radiology, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Pedro C. Miranda
- Institute of Biophysics and Biomedical Engineering (IBEB), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Dylan J. Edwards
- Non-Invasive Brain Stimulation and Human Motor Control Laboratory, Burke-Cornell Medical Research Institute, White Plains, NY, USA
| | - Tihomir V. Ilić
- Department of Clinical Neurophysiology, Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Giulio Ruffini
- Neuroelectrics Barcelona, Barcelona, Spain
- Starlab Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Abstract
Most accounts of human cognitive architectures have focused on computational accounts of cognition while making little contact with the study of anatomical structures and physiological processes. A renewed convergence between neurobiology and cognition is well under way. A promising area arises from the overlap between systems/cognitive neuroscience on the one side and the discipline of network science on the other. Neuroscience increasingly adopts network tools and concepts to describe the operation of collections of brain regions. Beyond just providing illustrative metaphors, network science offers a theoretical framework for approaching brain structure and function as a multi-scale system composed of networks of neurons, circuits, nuclei, cortical areas, and systems of areas. This paper views large-scale networks at the level of areas and systems, mostly on the basis of data from human neuroimaging, and how this view of network structure and function has begun to illuminate our understanding of the biological basis of cognitive architectures.
Collapse
Affiliation(s)
- Steven E Petersen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Indiana University Network Science Institute, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|