1
|
Li J, Xiao F, Wang S, Fan X, He Z, Yan T, Zhang J, Yang M, Yang D. LncRNAs are involved in regulating ageing and age-related disease through the adenosine monophosphate-activated protein kinase signalling pathway. Genes Dis 2024; 11:101042. [PMID: 38966041 PMCID: PMC11222807 DOI: 10.1016/j.gendis.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/15/2023] [Indexed: 07/06/2024] Open
Abstract
A long noncoding RNA (lncRNA) is longer than 200 bp. It regulates various biological processes mainly by interacting with DNA, RNA, or protein in multiple kinds of biological processes. Adenosine monophosphate-activated protein kinase (AMPK) is activated during nutrient starvation, especially glucose starvation and oxygen deficiency (hypoxia), and exposure to toxins that inhibit mitochondrial respiratory chain complex function. AMPK is an energy switch in organisms that controls cell growth and multiple cellular processes, including lipid and glucose metabolism, thereby maintaining intracellular energy homeostasis by activating catabolism and inhibiting anabolism. The AMPK signalling pathway consists of AMPK and its upstream and downstream targets. AMPK upstream targets include proteins such as the transforming growth factor β-activated kinase 1 (TAK1), liver kinase B1 (LKB1), and calcium/calmodulin-dependent protein kinase β (CaMKKβ), and its downstream targets include proteins such as the mechanistic/mammalian target of rapamycin (mTOR) complex 1 (mTORC1), hepatocyte nuclear factor 4α (HNF4α), and silencing information regulatory 1 (SIRT1). In general, proteins function relatively independently and cooperate. In this article, a review of the currently known lncRNAs involved in the AMPK signalling pathway is presented and insights into the regulatory mechanisms involved in human ageing and age-related diseases are provided.
Collapse
Affiliation(s)
- Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jia Zhang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610017, China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
2
|
Khoshnam SE, Moalemnia A, Anbiyaee O, Farzaneh M, Ghaderi S. LncRNA MALAT1 and Ischemic Stroke: Pathogenesis and Opportunities. Mol Neurobiol 2024; 61:4369-4380. [PMID: 38087169 DOI: 10.1007/s12035-023-03853-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/21/2023] [Indexed: 07/11/2024]
Abstract
Ischemic stroke (IS) stands as a prominent cause of mortality and long-term disability around the world. It arises primarily from a disruption in cerebral blood flow, inflicting severe neural injuries. Hence, there is a pressing need to comprehensively understand the intricate mechanisms underlying IS and identify novel therapeutic targets. Recently, long noncoding RNAs (lncRNAs) have emerged as a novel class of regulatory molecules with the potential to attenuate pathogenic mechanisms following IS. Among these lncRNAs, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) has been extensively studied due to its involvement in the pathophysiological processes of IS. In this review, we provide an in-depth analysis of the essential role of MALAT1 in the development and progression of both pathogenic and protective mechanisms following IS. These mechanisms include oxidative stress, neuroinflammation, cell death signaling, blood brain barrier dysfunction, and angiogenesis. Furthermore, we summarize the impact of MALAT1 on the susceptibility and severity of IS. This review highlights the potential risks associated with the therapeutic use of MALAT1 for IS, which are attributable to the stimulatory action of MALAT1 on ischemia/reperfusion injury. Ultimately, this review sheds light on the potential molecular mechanisms and associated signaling pathways underlying MALAT1 expression post-IS, with the aim of uncovering potential therapeutic targets.
Collapse
Affiliation(s)
- Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Omid Anbiyaee
- School of Medicine, Cardiovascular Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Pan X, Dai W, Wang Z, Li S, Sun T, Miao N. PIWI-Interacting RNAs: A Pivotal Regulator in Neurological Development and Disease. Genes (Basel) 2024; 15:653. [PMID: 38927589 PMCID: PMC11202748 DOI: 10.3390/genes15060653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs), a class of small non-coding RNAs (sncRNAs) with 24-32 nucleotides (nt), were initially identified in the reproductive system. Unlike microRNAs (miRNAs) or small interfering RNAs (siRNAs), piRNAs normally guide P-element-induced wimpy testis protein (PIWI) families to slice extensively complementary transposon transcripts without the seed pairing. Numerous studies have shown that piRNAs are abundantly expressed in the brain, and many of them are aberrantly regulated in central neural system (CNS) disorders. However, the role of piRNAs in the related developmental and pathological processes is unclear. The elucidation of piRNAs/PIWI would greatly improve the understanding of CNS development and ultimately lead to novel strategies to treat neural diseases. In this review, we summarized the relevant structure, properties, and databases of piRNAs and their functional roles in neural development and degenerative disorders. We hope that future studies of these piRNAs will facilitate the development of RNA-based therapeutics for CNS disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China; (X.P.); (W.D.); (Z.W.); (S.L.); (T.S.)
| |
Collapse
|
4
|
Zhang KL, Li SM, Hou JY, Hong YH, Chen XX, Zhou CQ, Wu H, Zheng GH, Zeng CT, Wu HD, Fu JY, Wang T. Elabela, a Novel Peptide, Exerts Neuroprotective Effects Against Ischemic Stroke Through the APJ/miR-124-3p/CTDSP1/AKT Pathway. Cell Mol Neurobiol 2023:10.1007/s10571-023-01352-6. [PMID: 37106272 DOI: 10.1007/s10571-023-01352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Elabela (ELA), which is the second endogenous peptide ligand of the apelin receptor (APJ) to be discovered, has been widely studied for potential use as a therapeutic peptide. However, its role in ischemic stroke (IS), which is a leading cause of disability and death worldwide and has limited therapeutic options, is uncertain. The aim of the present study was to investigate the beneficial effects of ELA on neuron survival after ischemia and the underlying molecular mechanisms. Primary cortical neurons were isolated from the cerebral cortex of pregnant C57BL/6J mice. Flow cytometry and immunofluorescence showed that ELA inhibited oxygen-glucose deprivation (OGD) -induced apoptosis and axonal damage in vitro. Additionally, analysis of the Gene Expression Omnibus database revealed that the expression of microRNA-124-3p (miR-124-3p) was decreased in blood samples from patients with IS, while the expression of C-terminal domain small phosphatase 1 (CTDSP1) was increased. These results indicated that miR-124-3p and CTDSP1 were related to ischemic stroke, and there might be a negative regulatory relationship between them. Then, we found that ELA significantly elevated miR-124-3p expression, suppressed CTDSP1 expression, and increased p-AKT expression by binding to the APJ receptor under OGD in vitro. A dual-luciferase reporter assay confirmed that CTDSP1 was a direct target of miR-124-3p. Furthermore, adenovirus-mediated overexpression of CTDSP1 exacerbated neuronal apoptosis and axonal damage and suppressed AKT phosphorylation, while treatment with ELA or miR-124-3p mimics reversed these effects. In conclusion, these results indicated that ELA could alleviate neuronal apoptosis and axonal damage by upregulating miR-124-3p and activating the CTDSP1/AKT signaling pathway. This study, for the first time, verified the protective effect of ELA against neuronal injury after ischemia and revealed the underlying mechanisms. We demonstrated the potential for the use of ELA as a therapeutic agent in the treatment of ischemic stroke.
Collapse
Grants
- No. JCYJ20190808101405466, JCYJ20210324115003008, JCYJ20220530144404009 the Shenzhen Fundamental Research Program
- No. JCYJ20190808101405466, JCYJ20210324115003008, JCYJ20220530144404009 the Shenzhen Fundamental Research Program
- No. FTWS2019001, FTWS2021016, FTWS2022018 the Futian District Health and Public Welfare Research Project of Shenzhen City
- No. FTWS2019001, FTWS2021016, FTWS2022018 the Futian District Health and Public Welfare Research Project of Shenzhen City
- No. 81070125, 81270213, 81670306 National Natural Science Foundation of China
- No. 2010B031600032, 2014A020211002 the Science and Technology Foundation in Guangdong Province
- No. 2017A030313503 the National Natural Science Foundation of Guangdong Province
- No. 201806020084 the Science and Technology Foundation in Guangzhou City
- No. 13ykzd16, 17ykjc18 the Fundamental Research Funds for the Central Universities
Collapse
Affiliation(s)
- Kang-Long Zhang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Shuang-Mei Li
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Jing-Yu Hou
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Ying-Hui Hong
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Xu-Xiang Chen
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Chang-Qing Zhou
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Hao Wu
- Department of Emergency, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Guang-Hui Zheng
- Department of Emergency, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Chao-Tao Zeng
- Department of Emergency, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hai-Dong Wu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Jia-Ying Fu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Tong Wang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Yan F, Wang P, Yang X, Wang F. Long non-coding RNA HOXA11-AS regulates ischemic neuronal death by targeting miR-337-3p/YBX1 signaling pathway: protective effect of dexmedetomidine. Aging (Albany NY) 2023; 15:2797-2811. [PMID: 37059588 PMCID: PMC10120896 DOI: 10.18632/aging.204648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/24/2023] [Indexed: 04/16/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) is a common neurological disease. Homeobox A11 antisense RNA (HOXA11-AS), a long non-coding RNA (lncRNA), has been demonstrated as an important regulator in diverse human cancers. However, its function and regulatory mechanism in ischemic stroke remains largely unknown. Dexmedetomidine (Dex) have received wide attraction because of its neuroprotective effects. This study aimed to explore the possible link between Dex and HOXA11-AS in protecting neuronal cells from by ischemia/reperfusion-induced apoptosis. We used oxygen-glucose deprivation and reoxygenation (OGD/R) in mouse neuroblastoma Neuro-2a cells and middle cerebral artery occlusion (MACO) mouse model to test the link. We found that Dex significantly alleviated OGD/R-induced DNA fragmentation, cell viability and apoptosis, and rescued the decreased HOXA11-AS expression after ischemic damage in Neuro-2a cells. Gain-/loss-of-function studies revealed that HOXA11-AS promoted proliferation, inhibited apoptosis in Neuro-2a cells exposed to OGD/R. Knockdown of HOXA11-AS decreased the protective effect of Dex on OGD/R cells. HOXA11-AS was found to transcriptionally regulate microRNA-337-3p (miR-337-3p) expression as evidenced by luciferase reporter assay, while miR-337-3p expression was upregulated following ischemia in vitro and in vivo. Besides, knockdown of miR-337-3p protected OGD/R-induced apoptotic death of Neuro-2a cells. Furthermore, HOXA11-AS functioned as a competing endogenous RNA (ceRNA) and competed with Y box protein 1 (Ybx1) mRNA for directly binding to miR-337-3p, which protected ischemic neuronal death. Dex treatment protected against ischemic damage and improved overall neurological functions in vivo. Our data suggest a novel mechanism of Dex neuroprotection for ischemic stroke through regulating lncRNA HOXA11-AS by targeting the miR-337-3p/Ybx1 signaling pathway, which might help develop new strategies for the therapeutic interventions in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Fei Yan
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710115, China
| | - Pinxiao Wang
- Department of Urology, Xi’an Medical University, Xi’an, Shaanxi 710068, China
| | - Xiaojian Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710000, China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710000, China
| |
Collapse
|
6
|
Li F, Ichinose K, Ishibashi S, Yamamoto S, Iwasawa E, Suzuki M, Yoshida-Tanaka K, Yoshioka K, Nagata T, Hirabayashi H, Mogushi K, Yokota T. Preferential delivery of lipid-ligand conjugated DNA/RNA heteroduplex oligonucleotide to ischemic brain in hyperacute stage. Mol Ther 2023; 31:1106-1122. [PMID: 36694463 PMCID: PMC10124084 DOI: 10.1016/j.ymthe.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Antisense oligonucleotide (ASO) is a major tool used for silencing pathogenic genes. For stroke in the hyperacute stage, however, the ability of ASO to regulate genes is limited by its poor delivery to the ischemic brain owing to sudden occlusion of the supplying artery. Here we show that, in a mouse model of permanent ischemic stroke, lipid-ligand conjugated DNA/RNA heteroduplex oligonucleotide (lipid-HDO) was unexpectedly delivered 9.6 times more efficiently to the ischemic area of the brain than to the contralateral non-ischemic brain and achieved robust gene knockdown and change of stroke phenotype, despite a 90% decrease in cerebral blood flow in the 3 h after occlusion. This delivery to neurons was mediated via receptor-mediated transcytosis by lipoprotein receptors in brain endothelial cells, the expression of which was significantly upregulated after ischemia. This study provides proof-of-concept that lipid-HDO is a promising gene-silencing technology for stroke treatment in the hyperacute stage.
Collapse
Affiliation(s)
- Fuying Li
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pathology, Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, China
| | - Keiko Ichinose
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Ishibashi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Internal Medicine, Fukaya Red Cross Hospital, Saitama, Japan
| | - Syunsuke Yamamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Eri Iwasawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motohiro Suzuki
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kie Yoshida-Tanaka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kotaro Yoshioka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideki Hirabayashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Kaoru Mogushi
- Innovative Human Resource Development Division, Institute of Education, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
7
|
Zhao Y, Liu Y, Zhang Q, Liu H, Xu J. The Mechanism Underlying the Regulation of Long Non-coding RNA MEG3 in Cerebral Ischemic Stroke. Cell Mol Neurobiol 2023; 43:69-78. [PMID: 34988760 DOI: 10.1007/s10571-021-01176-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/27/2021] [Indexed: 01/07/2023]
Abstract
Cerebral ischemic stroke is one of the leading causes of morbidity and mortality worldwide, and rapidly increasing annually with no more effective therapeutic measures. Thus, the novel diagnostic and prognostic biomarkers are urgent to be identified for prevention and therapy of ischemic stroke. Recently, long noncoding RNAs (lncRNAs), a major family of noncoding RNAs with more than 200 nucleotides, have been considered as new targets for modulating pathological process of ischemic stroke. In this review, we summarized that the lncRNA-maternally expressed gene 3 (MEG3) played a critical role in promotion of neuronal cell death and inhibition of angiogenesis in response to hypoxia or ischemia condition, and further described the challenge of overcrossing blood-brain barrier (BBB) and determination of optimal carrier for delivering lncRNA' drugs into the specific brain regions. In brief, MEG3 will be a potential diagnostic biomarker and drug target in treatment and therapy of ischemic stroke in the future.
Collapse
Affiliation(s)
- Yanfang Zhao
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.
| | - Yingying Liu
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qili Zhang
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Hongliang Liu
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Jianing Xu
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
8
|
Wang D, Zhu N, Xie F, Qin M, Wang Y. Long non-coding RNA IGFBP7-AS1 accelerates the odontogenic differentiation of stem cells from human exfoliated deciduous teeth by regulating IGFBP7 expression. Hum Cell 2022; 35:1697-1707. [PMID: 36038801 PMCID: PMC9515061 DOI: 10.1007/s13577-022-00763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) are attractive seed cells for dental tissue engineering. We identified the effect of the long noncoding RNA insulin-like growth factor-binding protein 7 antisense RNA 1 (lncRNA IGFBP7-AS1) in vivo and its underlying mechanism during SHED odontogenic differentiation. IGFBP7-AS1 and insulin-like growth factor-binding protein 7 (IGFBP7) were overexpressed using lentiviruses. IGFBP7 expression was knocked down with small interfering RNA. The effect of IGFBP7-AS1 in vivo was confirmed by animal experiments. The effect of IGFBP7 on SHED odontogenic differentiation was assessed with alkaline phosphatase staining, alizarin red S staining, quantitative reverse transcription-PCR, and western blotting. The relationship between IGFBP7-AS1 and IGFBP7 was confirmed by quantitative reverse transcription–PCR and western blotting. IGFBP7-AS1 promoted SHED odontogenesis in vivo, and regulated the expression of the coding gene IGFBP7 positively. Inhibiting IGFBP7 led to suppress SHED odontogenic differentiation while IGFBP7 overexpression had the opposite effect. IGFBP7-AS1 enhanced the stability of IGFBP7. IGFBP7-AS1 promoted SHED odontogenic differentiation in vivo. The underlying mechanism may involve the enhancement of IGFBP7 stability. This may provide novel potential targets for dental tissue engineering.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China
| | - Ningxin Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China
| | - Fei Xie
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China
| | - Man Qin
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China.
| |
Collapse
|
9
|
Yu Z, Wen Y, Jiang N, Li Z, Guan J, Zhang Y, Deng C, Zhao L, Zheng SG, Zhu Y, Su W, Zhuo Y. TNF-α stimulation enhances the neuroprotective effects of gingival MSCs derived exosomes in retinal ischemia-reperfusion injury via the MEG3/miR-21a-5p axis. Biomaterials 2022; 284:121484. [DOI: 10.1016/j.biomaterials.2022.121484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022]
|
10
|
Long Noncoding RNA IGFBP7-AS1 Promotes Odontogenesis of Stem Cells from Human Exfoliated Deciduous Teeth via the p38 MAPK Pathway. Stem Cells Int 2022; 2022:9227248. [PMID: 35469296 PMCID: PMC9034958 DOI: 10.1155/2022/9227248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) are attractive seed cells for dental tissue engineering. Epigenetics refers to heritable changes in gene expression patterns that do not alter DNA sequences. Long noncoding RNAs (lncRNAs) are one of the main methods of epigenetic regulation and participate in cell differentiation; however, little is known regarding the role of lncRNAs during SHED odontogenic differentiation. In this study, RNA sequencing (RNA-seq) was used to obtain the expression profile of lncRNAs and mRNAs during the odontogenic differentiation of SHED. The effect of IGFBP7-AS1 on odontogenic differentiation of SHED was assessed by alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining, quantitative reverse transcription PCR (qRT-PCR), Western blot, and in vivo. The level of p38 and p-p38 protein expression was examined by Western blot, and the result was verified by adding the p38 inhibitor, SB203580. The expression profiles of lncRNAs and mRNAs were identified by RNA-seq analysis, which help us to further understand the mechanism in odontogenesis epigenetically. IGFBP7-AS1 expression was increased during odontogenic differentiation on days 7 and 14. The ALP staining, ARS staining, and expression of odontogenic markers were upregulated by overexpressing IGFBP7-AS1 in vitro, whereas the expression of osteogenesis markers was not significantly changed on mRNA level. The effect of IGFBP7-AS1 was also verified in vivo. IGFBP7-AS1 could further positively regulate odontogenic differentiation through the p38 MAPK pathway. This may provide novel targets for dental tissue engineering.
Collapse
|
11
|
Abbasi-Habashi S, Jickling GC, Winship IR. Immune Modulation as a Key Mechanism for the Protective Effects of Remote Ischemic Conditioning After Stroke. Front Neurol 2021; 12:746486. [PMID: 34956045 PMCID: PMC8695500 DOI: 10.3389/fneur.2021.746486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Remote ischemic conditioning (RIC), which involves a series of short cycles of ischemia in an organ remote to the brain (typically the limbs), has been shown to protect the ischemic penumbra after stroke and reduce ischemia/reperfusion (IR) injury. Although the exact mechanism by which this protective signal is transferred from the remote site to the brain remains unclear, preclinical studies suggest that the mechanisms of RIC involve a combination of circulating humoral factors and neuronal signals. An improved understanding of these mechanisms will facilitate translation to more effective treatment strategies in clinical settings. In this review, we will discuss potential protective mechanisms in the brain and cerebral vasculature associated with RIC. We will discuss a putative role of the immune system and circulating mediators of inflammation in these protective processes, including the expression of pro-and anti-inflammatory genes in peripheral immune cells that may influence the outcome. We will also review the potential role of extracellular vesicles (EVs), biological vectors capable of delivering cell-specific cargo such as proteins and miRNAs to cells, in modulating the protective effects of RIC in the brain and vasculature.
Collapse
Affiliation(s)
- Sima Abbasi-Habashi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen C Jickling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Neurology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Lopez MS, Morris-Blanco KC, Ly N, Maves C, Dempsey RJ, Vemuganti R. MicroRNA miR-21 Decreases Post-stroke Brain Damage in Rodents. Transl Stroke Res 2021; 13:483-493. [PMID: 34796453 DOI: 10.1007/s12975-021-00952-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Due to their role in controlling translation, microRNAs emerged as novel therapeutic targets to modulate post-stroke outcomes. We previously reported that miR-21 is the most abundantly induced microRNA in the brain of rodents subjected to preconditioning-induced cerebral ischemic tolerance. We currently show that intracerebral administration of miR-21 mimic decreased the infarct volume and promoted better motor function recovery in adult male and female C57BL/6 mice subjected to transient middle cerebral artery occlusion. The miR-21 mimic treatment is also efficacious in aged mice of both sexes subjected to focal ischemia. Mechanistically, miR-21 mimic treatment decreased the post-ischemic levels of several pro-apoptotic and pro-inflammatory RNAs, which might be responsible for the observed neuroprotection. We further observed post-ischemic neuroprotection in adult mice administered with miR-21 mimic intravenously. Overall, the results of this study implicate miR-21 as a promising candidate for therapeutic translation after stroke.
Collapse
Affiliation(s)
- Mary S Lopez
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA.,Cell & Molecular Pathology Training Program, University of Wisconsin, Madison, WI, 53792, USA
| | | | - Nancy Ly
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Carly Maves
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA. .,Cell & Molecular Pathology Training Program, University of Wisconsin, Madison, WI, 53792, USA. .,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
13
|
Pignataro G. Emerging Role of microRNAs in Stroke Protection Elicited by Remote Postconditioning. Front Neurol 2021; 12:748709. [PMID: 34744984 PMCID: PMC8567963 DOI: 10.3389/fneur.2021.748709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 12/27/2022] Open
Abstract
Remote ischemic conditioning (RIC) represents an innovative and attractive neuroprotective approach in brain ischemia. The purpose of this intervention is to activate endogenous tolerance mechanisms by inflicting a subliminal ischemia injury to the limbs, or to another “remote” region, leading to a protective systemic response against ischemic brain injury. Among the multiple candidates that have been proposed as putative mediators of the protective effect generated by the subthreshold peripheral ischemic insult, it has been hypothesized that microRNAs may play a vital role in the infarct-sparing effect of RIC. The effect of miRNAs can be exploited at different levels: (1) as transducers of protective messages to the brain or (2) as effectors of brain protection. The purpose of the present review is to summarize the most recent evidence supporting the involvement of microRNAs in brain protection elicited by remote conditioning, highlighting potential and pitfalls in their exploitation as diagnostic and therapeutic tools. The understanding of these processes could help provide light on the molecular pathways involved in brain protection for the future development of miRNA-based theranostic agents in stroke.
Collapse
Affiliation(s)
- Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
14
|
Chavda V, Madhwani K, Chaurasia B. PiWi RNA in Neurodevelopment and Neurodegenerative disorders. Curr Mol Pharmacol 2021; 15:517-531. [PMID: 34212832 DOI: 10.2174/1874467214666210629164535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Shedding light on the mysterious dark matter of the genome gears up the knowledge of modern biology. Beyond the genome, epigenome layers an untraveled path of fundamental biological and functional roles of gene regulation. Extraordinary character- P element wimpy testis-induced (PiWi)-interacting RNA (piRNA) is a type of small non-coding RNA that serves as a defender that imposes genomic and cellular defense by silencing nucleic and structural invaders. PIWI proteins and piRNAs appear in both reproductive and somatic cells, though germ line richness is partially unraveled more as it was originally discovered. The foremost function is to suppress invasive DNA sequences, which move within genomic DNA referred to as transposon elements (TEs) and downstream target genes via Transcriptional gene silencing (TGS) and Post-translational gene silencing (PTGS). Germline piRNAs maintain genomic integrity, stability, sternness, and impact imprinting expression. Somatic tissue-specific piRNAs have been surprised by their novel roles. piRNA regulates neurodevelopmental processes in metazoans, including humans. Neural heterogeneity, neurogenesis, neural plasticity, and transgenerational inheritance of adaptive and long-term memory are governed by the PIWI pathway. Neuro-developmental, neurodegenerative or psychiatric illness are the outcome of dysregulated piRNA. Aberrant piRNA signature causes inappropriate switching on or off genes by activation of TEs, incorrect epigenetic tags on DNA, and or histones. Defective piRNA regulation leads to abnormal brain development and neurodegenerative etiology, promoting life-threatening disorders. Exemplification of exciting roles of piRNA is in infancy, so future investigation may expand on these observations using innovative techniques and launch them as impending biomarkers for diagnostics and therapeutics. In this current review, we have summarized the possible gene molecular role of piRNAs regulating neurobiology and contributing as uncharted biomarkers and therapeutic targets for life-threatening diseases.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, India
| | - Kajal Madhwani
- Department of Microbiology, Nirma University, Ahmadabad, Gujarat, India
| | | |
Collapse
|
15
|
Sung HY, Choi EN, Han J, Chae YJ, Im SW, Kim HS, Park EM, Ahn JH. Protective role of ABCA1 in ischemic preconditioning is mediated by downregulation of miR-33-5p and miR-135-5p. Sci Rep 2021; 11:12511. [PMID: 34131232 PMCID: PMC8206355 DOI: 10.1038/s41598-021-91982-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/03/2021] [Indexed: 11/22/2022] Open
Abstract
Ischemic preconditioning (IPC) significantly reduces ischemia–reperfusion injury in the brain by inducing ischemic tolerance. Although emerging evidence suggests that microRNAs (miRNAs) contribute to the pathogenesis of brain ischemia and IPC-induced neuroprotection, the role of miRNAs and their underlying mechanisms are still unclear. IPC was induced in male C57BL/6 mice by brief bilateral common carotid artery occlusion. After 24 h, mice underwent transient middle cerebral artery occlusion followed by 3 h of reperfusion. Expression levels of messenger RNAs (mRNAs) and proteins were examined in the ipsilateral cortex, and mimics and inhibitors of selective miRNAs were transfected into Neuro-2a cells before oxygen–glucose deprivation (OGD). Post-IPC miRNA expression profiling identified neuroprotection-associated changes in miRNA expression in the ipsilateral cortex after ischemic stroke. Among them, miR-33-5p and miR-135b-5p were significantly downregulated by IPC. Inhibition of miR-33-5p and miR-135b-5p expression protected Neuro-2a cells from OGD-induced apoptosis. Inhibition of these two miRNAs significantly increased mRNA and protein levels of ATP-binding cassette subfamily A member 1 (ABCA1), and a binding assay showed that these two miRNAs showed specificity for Abca1 mRNA. Overexpression of ABCA1 decreased the Bax/Bcl2 mRNA ratio and activation of caspase-9 and caspase-3, whereas knockdown of ABCA1 expression increased the Bax/Bcl2 mRNA ratio and the percentage of Neuro-2a cells with a loss of mitochondrial membrane potential after OGD-treatment. In conclusion, ABCA1 expression is regulated by miR-33-5p and miR-135b-5p. Increased ABCA1 expression following IPC exerts a protective influence against cerebral ischemia via suppression of a mitochondria-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Hye Youn Sung
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
| | - Eun Nam Choi
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
| | - Jihye Han
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
| | - Yun Ju Chae
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
| | - Sun-Wha Im
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea.
| | - Jung-Hyuck Ahn
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea.
| |
Collapse
|
16
|
Yang D, Tan Y, Li H, Zhang X, Li X, Zhou F. Upregulation of miR-20b Protects Against Cerebral Ischemic Stroke by Targeting Thioredoxin Interacting Protein (TXNIP). Exp Neurobiol 2021; 30:170-182. [PMID: 33972468 PMCID: PMC8118756 DOI: 10.5607/en20046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) is involved in abnormal development and pathophysiology in the brain. Although miR-20b plays essential roles in various human diseases, its function in cerebral ischemic stroke remains unclear. A cell model of oxygen glucose deprivation/reoxygenation (OGD/R) and A rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) were constructed. qRT-PCR and western blot were used to evaluate the expression of miR-20b and TXNIP. Cell viability was detected by MTT assay, and cell apoptosis was evaluated by flow cytometry. Targetscan and Starbase were used to predict the potential targets of miR-20b. Luciferase reporter assay was applied to determine the interaction between miR-20b and TXNIP. Rescue experiments were conducted to confirm the functions of miR-20b/TXNIP axis in cerebral ischemic stroke. MiR-20b was significantly downregulated after I/R both in vitro and in vivo. Upregulation of miR-20b inhibited OGD/R-induced neurons apoptosis and attenuated ischemic brain injury in rat model. Bioinformatic prediction suggested that TXNIP might be a target of miR-20b, and luciferase reporter assay revealed that miR-20b negatively regulated TXNIP expression by directly binding to the 3’-UTR of TXNIP. Downregulation of TXNIP inhibited OGD/R-induced neurons apoptosis in vitro and ischemic brain injury in vivo. Rescue experiments indicated that downregulation of TXNIP effectively reversed the effect of miR-20b inhibitor in neurons apoptosis after OGD/R-treatment and ischemic brain injury in a mouse model after MCAO/R-treatment. Our study demonstrated that upregulation of miR-20b protected the brain from ischemic brain injury by targeting TXNIP, extending our understanding of miRNAs in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Dejiang Yang
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Yu Tan
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Huanhuan Li
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Xiaowei Zhang
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Xinming Li
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Feng Zhou
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR. China
| |
Collapse
|
17
|
Xu Q, Guohui M, Li D, Bai F, Fang J, Zhang G, Xing Y, Zhou J, Guo Y, Kan Y. lncRNA C2dat2 facilitates autophagy and apoptosis via the miR-30d-5p/DDIT4/mTOR axis in cerebral ischemia-reperfusion injury. Aging (Albany NY) 2021; 13:11315-11335. [PMID: 33833132 PMCID: PMC8109078 DOI: 10.18632/aging.202824] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is an important pathophysiological process of ischemic stroke associated with various physiological and pathological processes, including autophagy and apoptosis. In this study, we examined the role and mechanism of long noncoding RNA CAMK2D-associated transcript 2 (C2dat2) in regulating CIRI in vivo and in vitro. C2dat2 up-regulation facilitated neuronal autophagy and apoptosis induced by CIRI. Mechanistically, C2dat2 acts as a competing endogenous RNA (ceRNA) to negatively regulate miR-30d-5p expression. More specifically, miR-30d-5p targeted the 3′-untranslated region of DNA damage-inducible transcript 4 (DDIT4) and silenced its target mRNA DDIT4. Additionally, C2dat2 binding with heat shock cognate 70/heat shock protein 90 blocked RNA-induced silencing complex assembly to abolish the miR-30d-5p targeting of DDIT4 and inhibited miR-30d-5p to silence its target mRNA DDIT4. Further analysis showed that C2dat2 knockdown conspicuously inhibited the up-regulation of DDIT4 and Beclin-1 levels and LC3B II/I ratio and the down-regulation of P62 and phosphorylated mammalian target of rapamycin (mTOR)/mTOR and phosphorylated-P70S6K/P70S6K ratio in Neuro-2a cells after oxygen-glucose deprivation/reoxygenation. This study first revealed that C2dat2/miR-30d-5p/DDIT4/mTOR forms a novel signaling pathway to facilitate autophagy and apoptosis induced by CIRI, contributing to the better understanding of the mechanisms of CIRI and enriching the ceRNA hypothesis in CIRI.
Collapse
Affiliation(s)
- Qian Xu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| | - Ma Guohui
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| | - Dandan Li
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| | - Fanghui Bai
- Henan Provincial Nanyang Central Hospital, Nanyang 473000, China
| | - Jintao Fang
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| | - Gui Zhang
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China.,School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473000, China
| | - Yuxin Xing
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China.,School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473000, China
| | - Jiawei Zhou
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China.,School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473000, China
| | - Yugang Guo
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| |
Collapse
|
18
|
Filippenkov IB, Dergunova LV, Limborska SA, Myasoedov NF. Neuroprotective Effects of Peptides in the Brain: Transcriptome Approach. BIOCHEMISTRY (MOSCOW) 2021; 85:279-287. [PMID: 32564732 DOI: 10.1134/s0006297920030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The importance of studying the action mechanisms of drugs based on natural regulatory peptides is commonly recognized. Particular attention is paid to the peptide drugs that contribute to the restoration of brain functions after acute cerebrovascular accidents (stroke), which for many years continues to be one of the main problems and threats to human health. However, molecular genetic changes in the brain in response to ischemia, as well as the mechanisms of protective effects of peptides, have not been sufficiently studied. This limits the use of neuroprotective peptides and makes it difficult to develop new, more efficient drugs with targeted action on brain functions. Transcriptome analysis is a promising approach for studying the mechanisms of the damaging effects of cerebral ischemia and neuroprotective action of peptide drugs. Beside investigating the role of mRNAs in protein synthesis, the development of new neuroprotection strategies requires studying the involvement of regulatory RNAs in ischemia. Of greatest interest are microRNAs (miRNAs) and circular RNAs (circRNAs), which are expressed predominantly in the brain. CircRNAs can interact with miRNAs and diminish their activity, thereby inhibiting miRNA-mediated repression of mRNAs. It has become apparent that analysis of the circRNA/miRNA/mRNA system is essential for deciphering the mechanisms of brain damage and repair. Here, we present the results of studies on the ischemia-induced changes in the activity of genes and peptide-mediated alterations in the transcriptome profiles in experimental ischemia and formulate the basic principles of peptide regulation in the ischemia-induced damage.
Collapse
Affiliation(s)
- I B Filippenkov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - L V Dergunova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - S A Limborska
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - N F Myasoedov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| |
Collapse
|
19
|
Vinciguerra A, Cepparulo P, Anzilotti S, Cuomo O, Valsecchi V, Amoroso S, Annunziato L, Pignataro G. Remote postconditioning ameliorates stroke damage by preventing let-7a and miR-143 up-regulation. Theranostics 2020; 10:12174-12188. [PMID: 33204336 PMCID: PMC7667695 DOI: 10.7150/thno.48135] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
Remote limb ischemic postconditioning (RLIP) is a well-established neuroprotective strategy able to protect the brain from a previous harmful ischemic insult through a sub-lethal occlusion of the femoral artery. Neural and humoral mechanisms have been proposed as mediators required to transmit the peripheral signal from limb to brain. Moreover, different studies suggest that protection observed at brain level is associated to a general genetic reprogramming involving also microRNAs (miRNAs) intervention. Methods: Brain ischemia was induced in male rats by transient occlusion of the middle cerebral artery (tMCAO), whereas RLIP was achieved by one cycle of temporary occlusion of the ipsilateral femoral artery after tMCAO. The expression profile of 810 miRNAs was evaluated in ischemic brain samples from rats subjected either to tMCAO or to RLIP. Among all analyzed miRNAs, there were four whose expression were upregulated after stroke and returned to basal level after RLIP, thus suggesting a possible involvement in RLIP-induced neuroprotection. These selected miRNAs were intracerebroventricularly infused in rats subjected to remote ischemic postconditioning, and their effect was evaluated in terms of brain damage, neurological deficit scores and expression of putative targets. Results: Twenty-one miRNAs, whose expression was significantly affected by tMCAO and by tMCAO plus RLIP, were selected based on microarray microfluidic profiling. Our data showed that: (1) stroke induced an up-regulation of let-7a and miR-143 (2) these two miRNAs were involved in the protective effects induced by RLIP and (3) HIF1-α contributes to their protective effect. Indeed, their expression was reduced after RLIP and the exogenous intracerebroventricularly infusion of let-7a and miR-143 mimics prevented neuroprotection and HIF1-α overexpression induced by RLIP. Conclusions: Prevention of cerebral let-7a and miR-143 overexpression induced by brain ischemia emerges as new potential strategy in stroke intervention.
Collapse
|
20
|
Wen Y, Zhang X, Liu X, Huo Y, Gao Y, Yang Y. Suppression of lncRNA SNHG15 protects against cerebral ischemia-reperfusion injury by targeting miR-183-5p/FOXO1 axis. Am J Transl Res 2020; 12:6250-6263. [PMID: 33194027 PMCID: PMC7653613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) injury is a severe complication during the treatment of patients with stroke. It has been shown that the expression of SNHG15 was increased in patients with ischemic stroke (IS). However, the function and regulatory mechanism of SNHG15 in IS remains unclear. METHODS An oxygen glucose deprivation/reoxygenation (OGD/R) cell model was use to establish an in vitro model of I/R injury. RT-qPCR assay was used to detect the level of SNHG15 in OGD/R-treated SH-SY5Y cells. Meanwhile, middle cerebral artery occlusion (MCAO) was used to establish an in vivo model of cerebral I/R injury. RESULTS The expression of SNHG15 was upregulated in OGD/R-treated SH-SY5Y cells. Downregulation of SNHG15 during reperfusion reduced cell death in OGD/R-treated SH-SY5Y cells. In addition, SNHG15 knockdown suppressed OGD/R-induced apoptosis in SY-SY5Y cells by attenuating intracellular ROS generation and reducing mitochondrial membrane potential (MMP) lost. In addition, SNHG15 knockdown promoted cell cycle transition in SY-SY5Y cells after OGD/R insult accompany with PI3K/Akt signaling activation. Meanwhile, mechanism investigations suggested SNHG15 knockdown downregulated the expression of FOXO1 through acting as a competitive 'sponge' of miR-183-5p. Most importantly, knockdown of SNHG15 expression in vivo inhibited neuronal apoptosis and decreased infarct area in MCAO rats. CONCLUSION Thus, the present study indicated that SNHG15 knockdown protected against cerebral I/R injury via targeting miR-183-5p/FOXO1 axis, which may represent a potential therapeutic option for the treatment of cerebral IS.
Collapse
Affiliation(s)
- Ya Wen
- Department of Neurology, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of NeurologyShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of Vascular HomeostasisShijiazhuang 050000, Hebei, P. R. China
| | - Xiangjian Zhang
- Department of Neurology, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of NeurologyShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of Vascular HomeostasisShijiazhuang 050000, Hebei, P. R. China
| | - Xiaoyun Liu
- Department of Neurology, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of NeurologyShijiazhuang 050000, Hebei, P. R. China
| | - Yinghao Huo
- Department of Neurology, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of NeurologyShijiazhuang 050000, Hebei, P. R. China
| | - Yuxiao Gao
- Department of Neurology, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of NeurologyShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of Vascular HomeostasisShijiazhuang 050000, Hebei, P. R. China
| | - Yi Yang
- Department of Neurology, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of NeurologyShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of Vascular HomeostasisShijiazhuang 050000, Hebei, P. R. China
| |
Collapse
|
21
|
Zhang S, Sun WC, Liang ZD, Yin XR, Ji ZR, Chen XH, Wei MJ, Pei L. LncRNA SNHG4 Attenuates Inflammatory Responses by Sponging miR-449c-5p and Up-Regulating STAT6 in Microglial During Cerebral Ischemia-Reperfusion Injury. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3683-3695. [PMID: 32982175 PMCID: PMC7494233 DOI: 10.2147/dddt.s245445] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
Background Inflammatory response mediated by microglia plays a key role in cerebral ischemia-reperfusion injury. This study intends to probe the role of lncRNA SNHG4 in regulating the inflammatory response of the microglia during cerebral ischemia reperfusion. Materials and Methods Blood samples and cerebrospinal fluid samples were collected from acute cerebral infarction (ACI) patients and healthy controls. The middle cerebral artery occlusion (MCAO) models were constructed with rats. LPS induction and oxygen-glucose deprivation methods were respectively applied to simulate the activation of microglia in vitro. qRT-PCR was employed to determine the expressions of SNHG4, miR-449c-5p and related inflammatory factors in vivo and in vitro. The inflammatory responses of the microglia subject to the varied expressions of SNHG4 and miR-449c-5p were detected. Luciferase assays were conducted to verify the crosstalk involving SNHG4, miR-449c-5p and STAT6. Results Compared with the control group, the expression of SNHG4 derived from the samples of ACI patients and the microglia of MCAO group were remarkably down-regulated, but the expression of miR-449c-5p was dramatically up-regulated. Overexpression of SNHG4 and knock-down of miR-449c-5p could inhibit the expression of pro-inflammatory cytokine in the microglia and promote the expression of anti-inflammatory factors. Meanwhile, the phospho-STAT6 was up-regulated, whereas the knock-down of SNHG4 and over-expression of miR-449c-5p in microglia had the opposite effects. Luciferase assay confirmed that SNHG4 could target miR-449c-5p, while miR-449c-5p could target STAT6. Conclusion SNHG4 can regulate STAT6 and repress inflammation by adsorbing miR-449c-5p in microglia during cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, People's Republic of China.,Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Wen-Chong Sun
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Zuo-di Liang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Xiu-Ru Yin
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Zhen-Rong Ji
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Xiao-Huan Chen
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Min-Jie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Ling Pei
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
22
|
Gao Q, Wang Y. Long noncoding RNA MALAT1 regulates apoptosis in ischemic stroke by sponging miR-205-3p and modulating PTEN expression. Am J Transl Res 2020; 12:2738-2748. [PMID: 32655805 PMCID: PMC7344059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/30/2019] [Indexed: 06/11/2023]
Abstract
Ischemic stroke has been considered to be one of the major causes of disability worldwide which related to multiple pathological processes including apoptosis. Metastasis associated lung adenocarcinoma transcript 1 (MALAT1), is one of the long non-coding RNA (lncRNA) know as a regulator for cell apoptosis. However, further and deeper cellular and molecular mechanism in stroke model remains unclear. The results showed MALAT1 was down-regulated in OGD-induced apoptosis and related with miR-205-3p expression. Knockdown of MALAT1 promote OGD-induced apoptosis, decreased the cell viability, inhibit the caspase-3 activation. Moreover, MALAT1 acts as a competing endogenous RNA (ceRNA) for miR-205-3p and further regulate PTEN expression protect OGD-induced apoptosis. Altogether, these results suggest that MALAT1 may suppress the apoptosis in ischemic stroke and function as a ceRNA for miR-205-3p to modulate PTEN expression. These findings may provide a novel therapeutic target for treating ischemic stroke.
Collapse
Affiliation(s)
- Qi Gao
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University Huai'an 223300, Jiangsu, China
| | - Yanfeng Wang
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University Huai'an 223300, Jiangsu, China
| |
Collapse
|
23
|
Knock down of lncRNA H19 promotes axon sprouting and functional recovery after cerebral ischemic stroke. Brain Res 2020; 1732:146681. [PMID: 31991123 DOI: 10.1016/j.brainres.2020.146681] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
Abstract
Ischemic stroke is a leading cause of irreversible brain damages and disabilities. In the past decade, much attention has been focused on exploring effective strategies to promote circuit reorganization and functional recovery post injury. Here, we showed that the expression level of a long non-coding RNA (lncRNA H19) is bilaterally increased in the sensorimotor cortex after a cerebral ischemia induced by middle cerebral artery occlusion (MCAO). Knock down of contralaterally elevated H19 robustly enhanced the midline-crossing sprouting of the intact corticospinal axons in the spinal cord. Furthermore, H19 knockdown mice showed significant improvement on the performance of the food pellet retrieval assay, a skilled, cortical dependent motor task. Mechanistically, lncRNA H19 inhibition increased IGF1R expression and activated IGF1 mediated mTOR pathway. Our research thereby provided novel insights into identifying therapeutic targets for ischemic stroke.
Collapse
|
24
|
Hu L, Fang R, Guo M. Knockdown of lncRNA SNHG1 alleviates oxygen-glucose deprivation/reperfusion-induced cell death by serving as a ceRNA for miR-424 in SH-SY5Y cells. Neurol Res 2020; 42:47-54. [PMID: 31900069 DOI: 10.1080/01616412.2019.1672389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lixun Hu
- Department of Pathophysiology, Jining Medical University, Jining City, Shandong Province, China
| | - Ruihuan Fang
- Department of Neurology, Jining No.1 People’s Hospital, Jining City, Shandong Province, China
| | - Miao Guo
- Department of Neurology, Jining No.1 People’s Hospital, Jining City, Shandong Province, China
| |
Collapse
|
25
|
Gao S, Gu T, Shi E, Tang R, Liu J, Shi J. Inhibition of long noncoding RNA growth arrest–specific 5 attenuates cerebral injury induced by deep hypothermic circulatory arrest in rats. J Thorac Cardiovasc Surg 2020; 159:50-59. [PMID: 30824348 DOI: 10.1016/j.jtcvs.2019.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/29/2023]
Abstract
OBJECTIVE We sought to investigate cerebroprotection by targeting long noncoding RNA growth arrest-specific 5 in a rat model of prolonged deep hypothermic circulatory arrest. METHODS Deep hypothermic circulatory arrest was conducted for 60 minutes when the pericranial temperature was cooled to 18°C in rats. Dual luciferase assay was used to detect the binding relationship between growth arrest-specific 5 and putative target microRNAs. Adeno-associated viral vectors containing growth arrest-specific 5 small interfering RNA or negative control small interfering RNA were administered by intracerebroventricular injection 14 days before deep hypothermic circulatory arrest. Expressions of growth arrest-specific 5, microRNA-23a, phosphate and tension homology, Bcl-2-associated X protein, Bcl-2, phospho-protein kinase B, protein kinase B, and cleaved caspase-3 in the hippocampus were measured by quantitative reverse transcription polymerase chain reaction and Western blot. Spatial learning and memory functions were evaluated by the Morris water maze test. The hippocampus was harvested for histologic examinations and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling staining. RESULTS Luciferase assay showed that growth arrest-specific 5 targeted and inhibited microRNA-23a expression. After deep hypothermic circulatory arrest, hippocampal growth arrest-specific 5 expression was significantly enhanced with a robust decrease of hippocampal microRNA-23a expression. Small interfering RNA growth arrest-specific 5 significantly inhibited growth arrest-specific 5 expression and enhanced microRNA-23a expression in the hippocampus, accompanied with decreases of phosphate and tension homology and Bcl-2-associated X protein expression, and increases of Bcl-2 expression and phospho-protein kinase B/protein kinase B ratio. Growth arrest-specific 5 knockdown inhibited neuronal apoptosis, attenuated histologic damages, and increased the number of surviving neurons in the hippocampus. Spatial learning and memory functions after deep hypothermic circulatory arrest were also markedly improved by growth arrest-specific 5 inhibition. CONCLUSIONS Inhibition of large noncoding RNA growth arrest-specific 5 can provide a powerful cerebroprotection against deep hypothermic circulatory arrest, which may be mediated through microRNA-23a/phosphate and tension homology pathway.
Collapse
|
26
|
Ren Y, Gao XP, Liang H, Zhang H, Hu CY. LncRNA KCNQ1OT1 contributes to oxygen-glucose-deprivation/reoxygenation-induced injury via sponging miR-9 in cultured neurons to regulate MMP8. Exp Mol Pathol 2019; 112:104356. [PMID: 31837324 DOI: 10.1016/j.yexmp.2019.104356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/24/2023]
Abstract
Our study proposed to investigate the function of potassium voltage-gated channel sub-family Q member 1 opposite strand 1 (KCNQ1OT1) in cerebral ischemia-reperfusion (I/R) injury and the underlying mechanism. We constructed an oxygen-glucose-deprivation/reoxygenation (OGD/R) model using the primary cortical neurons to mimic the cerebral I/R injury in vitro. Small inference RNA (siRNA) was used to silencing KCNQ1OT1. Dual luciferase assay was conducted to verify the interaction between KCNQ1OT1 and miR-9 and interaction between miR-9 and MMP8. CCK8 assay and flow cytometry analysis were applied for determing the viability and apoptosis of neurons, accordingly. QPCR and Western blot were performed to determine the RNA and protein expression. Our outcomes revealed that the expression of KCNQ1OT1 in cultured neurons was notably enhanced after suffered to OGD/R. Knockdown of KCNQ1OT1 weakened OGD/R-induced injury in neurons. Moreover, depletion of KCNQ1OT1 lead to the up-regulation of miR-9 and down-regulation of MMP8. Dual luciferase target validation assays demonstrated that KCNQ1OT1 directly interact with miR-9 and MMP8 is a direct target of miR-9, suggesting that KCNQ1OT1/miR-9/MMP8 might constitute the competing endogenous RNA (ceRNA) mechanism. Knockdown of MMP8 or up-regulation of miR-9 also could weaken OGD/R-induced injury. Furthermore, cells co-transfected with si-KCNQ1OT1, miR-9 mimic and si-MMP8 could significantly abolish the injury on neurons caused by OGD/R. Taken together, our data manifested that KCNQ1OT1 possibly acts as a facilitator in cerebral I/R injury through modulating miR-9/MMP8 axis as a ceRNA.
Collapse
Affiliation(s)
- Yi Ren
- Department of Neurology, The People's Hospital of Hunan Province, Changsha 410000, PR China
| | - Xiao-Ping Gao
- Department of Neurology, The People's Hospital of Hunan Province, Changsha 410000, PR China.
| | - Hui Liang
- Department of Neurology, The People's Hospital of Hunan Province, Changsha 410000, PR China
| | - Huan Zhang
- Department of Neurology, The People's Hospital of Hunan Province, Changsha 410000, PR China
| | - Chong-Yu Hu
- Department of Neurology, The People's Hospital of Hunan Province, Changsha 410000, PR China
| |
Collapse
|
27
|
Chen F, Li X, Li Z, Qiang Z, Ma H. Altered expression of MiR-186-5p and its target genes after spinal cord ischemia-reperfusion injury in rats. Neurosci Lett 2019; 718:134669. [PMID: 31805371 DOI: 10.1016/j.neulet.2019.134669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/21/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Spinal cord ischemia-reperfusion (I/R) injury remains an unresolved problem, and the mechanism is not fully elaborated. In a rat model of spinal cord I/R injury, we performed microarray analysis to examine the altered expression of microRNAs (miRs) at 24 h after the modelling. miR-186-5p was chosen for further study. An miR mimic or anti-miR oligonucleotide was intrathecally infused before the surgical procedure. The participation of miR-186-5p and its potential target genes based on bioinformatics analysis were analysed next. Pre-treatment with the miR-186-5p mimic improved neurological function and histological assessment scores; reduced Evans Blue extravasation; attenuated spinal cord oedema; and decreased interleukin 15 (IL-15), IL-6, IL-1β, and tumour necrosis factor-α (TNF-α) expression at 24 h after the modelling. KEGG analysis showed that the group of potential target genes of miR-186-5p was notably enriched in several signalling cascades, such as the Wnt, Hippo, and PI3K-AKT pathways. Gene Ontology (GO) analysis revealed that the group of potential target genes of miR-186-5p was significantly enriched in several biological processes, such as 'Wnt signalling pathway', 'regulation of inflammatory response', and 'Toll-like receptor signalling pathway'. We further found that Wnt5a, TLR3, and chemokine (C-X-C motif) ligand 13 (CXCL13) were upregulated after the modelling and the miR-186-5p mimic reduced the induction of the aforementioned target genes. These data provide evidence that upregulation of miR-186-5p improves neurological outcomes induced by spinal cord I/R injury and may inhibit neuroinflammation through Wnt5a-, TLR3-, or CXCL13-mediated signal pathway in spinal cord I/R injury.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Xiaoqian Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Zhe Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Ziyun Qiang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Hong Ma
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
28
|
Wu Q, Li T, Zhu D, Lv F, Qin X. Altered expression of long noncoding RNAs in peripheral blood mononuclear cells in patients with impaired leptomeningeal collaterals after acute anterior large vessel occlusions. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:523. [PMID: 31807505 DOI: 10.21037/atm.2019.10.02] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background In the event of acute ischemic stroke (AIS) due to anterior large vessel occlusion (aLVO), leptomeningeal collaterals (LMCs) status is a key factor to define the severity and functional prognosis of this disease. However, the extent of LMCs exhibits substantial variability among the patients, which is genetic determined. Long non-coding RNAs (lncRNAs) expression profiles in human peripheral blood have been found to be altered after AIS. But whether there are specific lncRNAs correlated with LMC status in aLVO has not yet been investigated. Methods Differential lncRNA expression panels in peripheral blood mononuclear cells (PBMCs) were assessed by microarray analysis and individual quantitative real-time polymerase chain reaction (RT-PCR) in three independent sets consist of 134 patients with aLVO and 73 healthy controls (HCs). LMCs Status in those patients was assessed based on baseline computed tomographic angiography (CTA). Results Microarray analysis showed 23 differentially expressed lncRNAs in patients with poor LMCs status. After independent validations by RT-PCR, lncRNA ENST00000422956 was found to be significantly downregulated in patients with poor LMCs status. Receiver-operating characteristic (ROC) analysis revealed the area under the ROC curve (AUC) for ENST00000422956 to predict poor LMCs status was 0.749. Moreover, ENST00000422956 expression level and baseline National Institutes of Health Stroke Scale (NIHSS) score were identified as independent predictors for impaired LMCs, and a significantly positive correlation was observed between ENST00000422956 expression level and LMCs status. Via cis-regulatory analysis, paired box 8 (Pax8) was identified as the target gene for ENST00000422956. Conclusions The dysregulated lncRNA ENST00000422956 in PBMCs was associated with impairment of LMCs in patients with aLVO, suggesting that measurement of circulatory lncRNAs might be included as possible biomarkers for evaluation of LMCs status in AIS. More importantly, this might be the foundation for understand the potential roles of lncRNAs in LMCs formation after ischemic stroke.
Collapse
Affiliation(s)
- Qisi Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ting Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Dan Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
29
|
Xiang B, Zhong P, Fang L, Wu X, Song Y, Yuan H. miR-183 inhibits microglia activation and expression of inflammatory factors in rats with cerebral ischemia reperfusion via NF-κB signaling pathway. Exp Ther Med 2019; 18:2540-2546. [PMID: 31572505 PMCID: PMC6755485 DOI: 10.3892/etm.2019.7827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke represents 87% of all strokes, and is the third leading cause of disability and mortality worldwide. The cause of ischemic stroke is the obstruction of blood flow through the artery that supplies oxygen-rich blood to the brain, with ischemia-reperfusion injury as its major cause. microRNAs (miRNA) are small non-coding RNAs, which serve important roles in the regulation of gene expression at the post-transcription level. The aim of the present study was to investigate the effect of miRNA-183 (miR-183) on microglia activation in rats with cerebral ischemia-reperfusion injury. To this end, a rat cerebral ischemia-reperfusion injury model was established. The results indicated that miR-183 expression was decreased by cerebral ischemia-reperfusion. In addition, treatment using miR-183 agomir significantly reduced the neurological function scores, percentage of cerebral infarction volume, and ionized calcium-binding adapter molecule-1 (IBA-1)-positive cells in the CA1 area of the hippocampus in rats subjected to cerebral ischemia-reperfusion injury, implicating a neuroprotective role for miR-183. MiR-183 agomir treatment also decreased the expression of pro-inflammatory-associated proteins interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α. Finally, the expression of the nuclear factor (NF)-κB p65 and IκBα was decreased and increased by miR-183 agomir treatment, respectively, indicating inhibition of the NF-κB signaling pathway. These observations suggest that miR-183 regulates the activation of microglia in rats with cerebral ischemia-reperfusion injury by inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bo Xiang
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Ping Zhong
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Lei Fang
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Xianxian Wu
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Yuqiang Song
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Haicheng Yuan
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| |
Collapse
|
30
|
Wang L, Niu Y, He G, Wang J. Down-regulation of lncRNA GAS5 attenuates neuronal cell injury through regulating miR-9/FOXO3 axis in cerebral ischemic stroke. RSC Adv 2019; 9:16158-16166. [PMID: 35521373 PMCID: PMC9064354 DOI: 10.1039/c9ra01544b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/07/2019] [Indexed: 11/21/2022] Open
Abstract
Cerebral ischemic stroke is a leading cause of neurological disability worldwide. Previous study reported that long noncoding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) was highly expressed in ischemic stroke. However, the mechanism underlying GAS5 in an inflammatory injury during an ischemic stroke remains poorly understood. An in vivo mouse model of middle cerebral artery occlusion (MCAO) and an in vitro cell model of oxygen-glucose deprivation (OGD) were established to induce cerebral ischemic stroke condition. The expressions of GAS5, microRNA-9 (miR-9) and forkhead box O3 (FOXO3) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot analysis, respectively. The neurological injury in vivo was investigated by neurological score and TTC staining. Cell apoptosis and inflammatory injury were analyzed by western blot, flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. The interaction between miR-9 and GAS5 or FOXO3 was explored by luciferase activity, RNA pull-down and RNA immunoprecipitation (RIP) assays. GAS5 expression was enhanced in the cerebral ischemic stroke model. Knockdown of GAS5 attenuated the cerebral infarct, neurological injury, apoptosis and inflammatory injury in the mouse MCAO model. miR-9 was bound to GAS5 and its overexpression inhibited cell apoptosis and inflammatory response in OGD-treated bEnd.3 cells, which was attenuated by GAS5. FOXO3 was a target of miR-9 and its restoration reversed the miR-9-mediated suppression of apoptosis and inflammation. Moreover, GAS5 promoted FOXO3 expression by competitively sponging miR-9. GAS5 knockdown alleviated neuronal cell injury by regulating miR-9/FOXO3, providing a new theoretical foundation for cerebral ischemic stroke. Cerebral ischemic stroke is a leading cause of neurological disability worldwide.![]()
Collapse
Affiliation(s)
- Lijun Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University No. 3, Kangfu Street, Erqi District Zhengzhou 450000 China +86-0317-66916091
| | - Yanliang Niu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University No. 3, Kangfu Street, Erqi District Zhengzhou 450000 China +86-0317-66916091
| | - Gangrui He
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University No. 3, Kangfu Street, Erqi District Zhengzhou 450000 China +86-0317-66916091
| | - Jianping Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University No. 3, Kangfu Street, Erqi District Zhengzhou 450000 China +86-0317-66916091
| |
Collapse
|
31
|
LncRNA SNHG12 inhibits miR-199a to upregulate SIRT1 to attenuate cerebral ischemia/reperfusion injury through activating AMPK signaling pathway. Neurosci Lett 2019; 690:188-195. [DOI: 10.1016/j.neulet.2018.08.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 01/01/2023]
|
32
|
Zhong W, Huang Q, Zeng L, Hu Z, Tang X. Caveolin-1 and MLRs: A potential target for neuronal growth and neuroplasticity after ischemic stroke. Int J Med Sci 2019; 16:1492-1503. [PMID: 31673241 PMCID: PMC6818210 DOI: 10.7150/ijms.35158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide. Thrombolytic therapy, the only established treatment to reduce the neurological deficits caused by ischemic stroke, is limited by time window and potential complications. Therefore, it is necessary to develop new therapeutic strategies to improve neuronal growth and neurological function following ischemic stroke. Membrane lipid rafts (MLRs) are crucial structures for neuron survival and growth signaling pathways. Caveolin-1 (Cav-1), the main scaffold protein present in MLRs, targets many neural growth proteins and promotes growth of neurons and dendrites. Targeting Cav-1 may be a promising therapeutic strategy to enhance neuroplasticity after cerebral ischemia. This review addresses the role of Cav-1 and MLRs in neuronal growth after ischemic stroke, with an emphasis on the mechanisms by which Cav-1/MLRs modulate neuroplasticity via related receptors, signaling pathways, and gene expression. We further discuss how Cav-1/MLRs may be exploited as a potential therapeutic target to restore neuroplasticity after ischemic stroke. Finally, several representative pharmacological agents known to enhance neuroplasticity are discussed in this review.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Liuwang Zeng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
33
|
Zhou Y, Fan RG, Qin CL, Jia J, Wu XD, Zha WZ. LncRNA-H19 activates CDC42/PAK1 pathway to promote cell proliferation, migration and invasion by targeting miR-15b in hepatocellular carcinoma. Genomics 2018; 111:1862-1872. [PMID: 30543848 DOI: 10.1016/j.ygeno.2018.12.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/30/2018] [Accepted: 12/09/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the main causes of cancer-related death. This study aims to explore the role and underlying mechanism of H19 in HCC. METHODS qRT-PCR detected miR-15b-5p and H19 expression, as well as the mRNA level of EMT-associated genes. Western blotting detected protein level of EMT-associated genes. Immunohistochemistry (IHC) examined CDC42 in HCC tissues. Dual luciferase reporter assay verified the regulatory mechanism among H19, miR-15b and CDC42. Colony formation, wound healing assay, transwell, flow cytometry measured proliferation, migration, invasion and apoptosis, respectively. RESULTS H19 and CDC42 were up-regulated while miR-15b was down-regulated in HCC cells and tissues. miR-15b interacted with H19 and CDC42 3'-UTR. H19 knockdown inhibited proliferation, migration and invasion, and increased apoptosis, which was rescued by miR-15b inhibitor. H19 knockdown suppressed CDC42/PAK1 pathway and EMT progress. CONCLUSION H19 knockdown inhibited proliferation, migration and invasion, and promoted apoptosis of HCC cells via targeting miR-15b/CDC42/PAK1 axis.
Collapse
Affiliation(s)
- Yong Zhou
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng 224005, PR China
| | - Ren-Gen Fan
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng 224005, PR China
| | - Cheng-Lin Qin
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng 224005, PR China
| | - Jing Jia
- Department of Nephrology, Yancheng City No.1 People's Hospital, Yancheng 224005, PR China
| | - Xu-Dong Wu
- Department of Gastroenterology, Yancheng City No.1 People's Hospital, Yancheng 224005, PR China.
| | - Wen-Zhang Zha
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng 224005, PR China.
| |
Collapse
|
34
|
Wang XX, Guo GC, Qian XK, Dou DW, Zhang Z, Xu XD, Duan X, Pei XH. miR-506 attenuates methylation of lncRNA MEG3 to inhibit migration and invasion of breast cancer cell lines via targeting SP1 and SP3. Cancer Cell Int 2018; 18:171. [PMID: 30386180 PMCID: PMC6203274 DOI: 10.1186/s12935-018-0642-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Background Breast cancer has been the first death cause of cancer in women all over the world. Metastasis is believed to be the most important process for treating breast cancer. There is evidence that lncRNA MEG3 functions as a tumor suppressor in breast cancer metastasis. However, upstream regulation of MEG3 in breast cancer remain elusive. Therefore, it is critical to elucidate the underlying mechanism upstream MEG3 to regulate breast cancer metastasis. Methods We employed RT-qPCR and Western blot to examine expression level of miR-506, DNMT1, SP1, SP3 and MEG3. Besides, methylation-specific PCR was used to determine the methylation level of MEG3 promoter. Wound healing assay and transwell invasion assay were utilized to measure migration and invasion ability of breast cancer cells, respectively. Results SP was upregulated while miR-506 and MEG3 were downregulated in breast tumor tissue compared to adjacent normal breast tissues. In addition, we found that miR-506 regulated DNMT1 expression in an SP1/SP3-dependent manner, which reduced methylation level of MEG3 promoter and upregulated MEG3 expression. SP3 knockdown or miR-506 mimic suppressed migration and invasion of MCF-7 and MDA-MB-231 cells whereas overexpression of SP3 compromised miR-506-inhibited migration and invasion. Conclusions Our data reveal a novel axis of miR-506/SP3/SP1/DNMT1/MEG3 in regulating migration and invasion of breast cancer cell lines, which provide rationales for developing effective therapies to treating metastatic breast cancers.
Collapse
Affiliation(s)
- Xin-Xing Wang
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan People's Republic of China
| | - Guang-Cheng Guo
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan People's Republic of China
| | - Xue-Ke Qian
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan People's Republic of China
| | - Dong-Wei Dou
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan People's Republic of China
| | - Zhe Zhang
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan People's Republic of China
| | - Xiao-Dong Xu
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan People's Republic of China
| | - Xin Duan
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan People's Republic of China
| | - Xin-Hong Pei
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan People's Republic of China
| |
Collapse
|
35
|
Differential long noncoding RNA expressions in peripheral blood mononuclear cells for detection of acute ischemic stroke. Clin Sci (Lond) 2018; 132:1597-1614. [PMID: 29997237 DOI: 10.1042/cs20180411] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been highlighted to be involved in the pathological process of ischemic stroke (IS). The purpose of the present study was to investigate the expression profile of lncRNAs in peripheral blood mononuclear cells (PBMCs) of acute IS patients and to explore their utility as biomarkers of IS. Distinctive expression patterns of PBMC lncRNAs were identified by an lncRNA microarray and individual quantitative real-time PCR (qRT-PCR) in four independent sets for 206 IS, 179 healthy controls (HCs), and 55 patients with transient ischemic attack (TIA). A biomarker panel (lncRNA-based combination index) was established using logistic regression. LncRNA microarray analysis showed 70 up-regulated and 128 down-regulated lncRNAs in IS patients. Individual qRT-PCR validation demonstrated that three lncRNAs (linc-DHFRL1-4, SNHG15, and linc-FAM98A-3) were significantly up-regulated in IS patients compared with HCs and TIA patients. Longitudinal analysis of lncRNA expression up to 90 days after IS showed that linc-FAM98A-3 normalized to control levels by day 7, while SNHG15 remained increased, indicating the ability of lncRNAs to monitor IS dynamics. Receiver-operating characteristic (ROC) curve analysis showed that the lncRNA-based combination index outperformed serum brain-derived neurotrophic factor (BDNF) and neurone-specific enolase (NSE) in distinguishing IS patients from TIA patients and HCs with areas under ROC curve of more than 0.84. Furthermore, the combination index increased significantly after treatment and was correlated with neurological deficit severity of IS. The panel of these altered lncRNAs was associated with acute IS and could serve as a novel diagnostic method.
Collapse
|
36
|
Abstract
Central nervous system (CNS) injuries, such as stroke, traumatic brain injury (TBI) and spinal cord injury (SCI), are important causes of death and long-term disability worldwide. MicroRNA (miRNA), small non-coding RNA molecules that negatively regulate gene expression, can serve as diagnostic biomarkers and are emerging as novel therapeutic targets for CNS injuries. MiRNA-based therapeutics include miRNA mimics and inhibitors (antagomiRs) to respectively decrease and increase the expression of target genes. In this review, we summarize current miRNA-based therapeutic applications in stroke, TBI and SCI. Administration methods, time windows and dosage for effective delivery of miRNA-based drugs into CNS are discussed. The underlying mechanisms of miRNA-based therapeutics are reviewed including oxidative stress, inflammation, apoptosis, blood-brain barrier protection, angiogenesis and neurogenesis. Pharmacological agents that protect against CNS injuries by targeting specific miRNAs are presented along with the challenges and therapeutic potential of miRNA-based therapies.
Collapse
Affiliation(s)
- Ping Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Da Zhi Liu
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, CA, USA
| | - Glen C Jickling
- Department of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Frank R Sharp
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, CA, USA
| | - Ke-Jie Yin
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Ke-Jie Yin, Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, BST S514, Pittsburgh, PA 15213, USA. Da Zhi Liu, Department of Neurology, University of California at Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
37
|
Zhou Z, Lu J, Liu WW, Manaenko A, Hou X, Mei Q, Huang JL, Tang J, Zhang JH, Yao H, Hu Q. Advances in stroke pharmacology. Pharmacol Ther 2018; 191:23-42. [PMID: 29807056 DOI: 10.1016/j.pharmthera.2018.05.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stroke occurs when a cerebral blood vessel is blocked or ruptured, and it is the major cause of death and adult disability worldwide. Various pharmacological agents have been developed for the treatment of stroke either through interrupting the molecular pathways leading to neuronal death or enhancing neuronal survival and regeneration. Except for rtPA, few of these agents have succeeded in clinical trials. Recently, with the understanding of the pathophysiological process of stroke, there is a resurrection of research on developing neuroprotective agents for stroke treatment, and novel molecular targets for neuroprotection and neurorestoration have been discovered to predict or offer clinical benefits. Here we review the latest major progress of pharmacological studies in stroke, especially in ischemic stroke; summarize emerging potential therapeutic mechanisms; and highlight recent clinical trials. The aim of this review is to provide a panorama of pharmacological interventions for stroke and bridge basic and translational research to guide the clinical management of stroke therapy.
Collapse
Affiliation(s)
- Zhenhua Zhou
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Jianfei Lu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, the Second Military Medical University, Shanghai 200433, China
| | - Anatol Manaenko
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Xianhua Hou
- Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, the Second Military Medical University, Shanghai 200003, China
| | - Jun-Long Huang
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China.
| | - Qin Hu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
38
|
Filippenkov IB, Stavchansky VV, Denisova AE, Ivanova KA, Limborska SA, Dergunova LV. Experimental Cerebral Ischemia Affects the Expression of Circular RNA Genes of Metabotropic Glutamate Receptors mGluR3 and mGluR5 in Rat Brain. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018030044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, Vemuganti R, Luo Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog Neurobiol 2018; 163-164:59-78. [DOI: 10.1016/j.pneurobio.2017.08.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
|
40
|
Gillet V, Hunting DJ, Takser L. Turing Revisited: Decoding the microRNA Messages in Brain Extracellular Vesicles for Early Detection of Neurodevelopmental Disorders. Curr Environ Health Rep 2018; 3:188-201. [PMID: 27301443 DOI: 10.1007/s40572-016-0093-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The prevention of neurodevelopmental disorders (NDD) of prenatal origin suffers from the lack of objective tools for early detection of susceptible individuals and the long time lag, usually in years, between the neurotoxic exposure and the diagnosis of mental dysfunction. Human data on the effects of alcohol, lead, and mercury and experimental data from animals on developmental neurotoxins and their long-term behavioral effects have achieved a critical mass, leading to the concept of the Developmental Origin of Health and Disease (DOHaD). However, there is currently no way to evaluate the degree of brain damage early after birth. We propose that extracellular vesicles (EVs) and particularly exosomes, released by brain cells into the fetal blood, may offer us a non-invasive means of assessing brain damage by neurotoxins. We are inspired by the strategy applied by Alan Turing (a cryptanalyst working for the British government), who created a first computer to decrypt German intelligence communications during World War II. Given the growing evidence that microRNAs (miRNAs), which are among the molecules carried by EVs, are involved in cell-cell communication, we propose that decrypting messages from EVs can allow us to detect damage thus offering an opportunity to cure, reverse, or prevent the development of NDD. This review summarizes recent findings on miRNAs associated with selected environmental toxicants known to be involved in the pathophysiology of NDD.
Collapse
Affiliation(s)
- Virginie Gillet
- Département Pédiatrie, Faculté de Médecine et Sciences de la Santé de l'Université de Sherbrooke, 3001, 12ème avenue Nord, Sherbrooke, Québec, Canada, J1H 5N4
| | - Darel John Hunting
- Département Radiobiologie, Faculté de Médecine et Sciences de la Santé de l'Université de Sherbrooke, 3001, 12ème avenue Nord, Sherbrooke, Québec, Canada, J1H 5N4
| | - Larissa Takser
- Département Pédiatrie, Faculté de Médecine et Sciences de la Santé de l'Université de Sherbrooke, 3001, 12ème avenue Nord, Sherbrooke, Québec, Canada, J1H 5N4.
| |
Collapse
|
41
|
KLF4 protects brain microvascular endothelial cells from ischemic stroke induced apoptosis by transcriptionally activating MALAT1. Biochem Biophys Res Commun 2018; 495:2376-2382. [DOI: 10.1016/j.bbrc.2017.11.205] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 11/30/2017] [Indexed: 02/05/2023]
|
42
|
Yan H, Rao J, Yuan J, Gao L, Huang W, Zhao L, Ren J. Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate ischemic neuronal death by targeting miR-21/PDCD4 signaling pathway. Cell Death Dis 2017; 8:3211. [PMID: 29238035 PMCID: PMC5870589 DOI: 10.1038/s41419-017-0047-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
Abstract
Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been demonstrated as an important regulator in diverse human cancers. However, its function and regulatory mechanism in ischemic stroke remains largely unknown. Here, we report that MEG3 is physically associated with microRNA-21 (miR-21), while miR-21 is downregulated following ischemia in the ischemic core in vitro and in vivo, which is opposite to MEG3. Besides, overexpression of miR-21 protects oxygen–glucose deprivation and reoxygenation (OGD/R)-induced apoptotic cell death. Furthermore, MEG3 functions as a competing endogenous RNAs (ceRNAs) and competes with programmed cell death 4 (PDCD4) mRNA for directly binding to miR-21, which mediates ischemic neuronal death. Knockdown of MEG3 protects against ischemic damage and improves overall neurological functions in vivo. Thus, our data uncovers a novel mechanism of lncRNA MEG3 as a ceRNA by targeting miR-21/PDCD4 signaling pathway in regulating ischemic neuronal death, which may help develop new strategies for the therapeutic interventions in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Rao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Likun Gao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenxian Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lina Zhao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiacai Ren
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
43
|
Liu X, Wu D, Wen S, Zhao S, Xia A, Li F, Ji X. Mild therapeutic hypothermia protects against cerebral ischemia/reperfusion injury by inhibiting miR-15b expression in rats. Brain Circ 2017; 3:219-226. [PMID: 30276328 PMCID: PMC6057705 DOI: 10.4103/bc.bc_15_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Mild hypothermia has a protective effect on ischemic stroke, but the mechanisms remain elusive. Here, we investigated microRNA (miRNA) profiles and the specific role of miRNAs in ischemic stroke treated with mild hypothermia. MATERIALS AND METHODS Male adult Sprague Dawley rats were subjected to focal transient cerebral ischemia. Mild hypothermia was induced by applying ice packs around the neck and head of the animals. miRNAs expression profiles were detected in ischemic stroke treated with mild therapeutic hypothermia through miRNA chips. Reverse transcription-polymerase chain reaction (RT-PCR) was used to verify the change of miRNA array. Western blot and adenosine triphosphate (ATP) assay kits were used to detect the changes of protein expression and ATP levels, respectively. miR-15b mimic and its control were injected into the right lateral ventricle 60 min before the induction of ischemia. RESULTS The results showed that mild hypothermia affected miRNAs profiles expression. We verified the expression of miR-15b and miR-598-3p by miRNA RT-PCR. miR-15b mimic inhibited the expression of its target, ADP ribosylation factor-like 2 (Arl2) protein, and decreased ATP levels in PC12 cells. Compared with the control, miR-15b mimic increased the infarct volume and aggravated the neurological function under normothermia or hypothermia treatment. Furthermore, the expression of Arl2 was decreased in the miR-15b mimic group under normothermia or hypothermia treatment. CONCLUSIONS Mild therapeutic hypothermia affected miRNA profiles and protected against cerebral ischemia/reperfusion by inhibiting miR-15b expression in rats. miR-15b may be a potential target for therapeutic intervention in stroke.
Collapse
Affiliation(s)
- Xiangrong Liu
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, PR China
- China-America Joint Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, PR China
| | - Di Wu
- China-America Joint Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, PR China
| | - Shaohong Wen
- China-America Joint Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, PR China
| | - Shunying Zhao
- China-America Joint Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, PR China
| | - Ao Xia
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, PR China
- China-America Joint Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Fang Li
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, PR China
- China-America Joint Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, PR China
- China-America Joint Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, PR China
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, PR China
| |
Collapse
|
44
|
Abstract
This article highlights the emerging therapeutic potential of specific epigenetic modulators as promising antiepileptogenic or disease-modifying agents for curing epilepsy. Currently, there is an unmet need for antiepileptogenic agents that truly prevent the development of epilepsy in people at risk. There is strong evidence that epigenetic signaling, which exerts high fidelity regulation of gene expression, plays a crucial role in the pathophysiology of epileptogenesis and chronic epilepsy. These modifications are not hard-wired into the genome and are constantly reprogrammed by environmental influences. The potential epigenetic mechanisms, including histone modifications, DNA methylation, microRNA-based transcriptional control, and bromodomain reading activity, can drastically alter the neuronal gene expression profile by exerting their summative effects in a coordinated fashion. Such an epigenetic intervention appears more rational strategy for preventing epilepsy because it targets the primary pathway that initially triggers the numerous downstream cellular and molecular events mediating epileptogenesis. Among currently approved epigenetic drugs, the majority are anticancer drugs with well-established profiles in clinical trials and practice. Evidence from preclinical studies supports the premise that these drugs may be applied to a wide range of brain disorders. Targeting histone deacetylation by inhibiting histone deacetylase enzymes appears to be one promising epigenetic therapy since certain inhibitors have been shown to prevent epileptogenesis in animal models. However, developing neuronal specific epigenetic modulators requires rational, pathophysiology-based optimization to efficiently intercept the upstream pathways in epileptogenesis. Overall, epigenetic agents have been well positioned as new frontier tools towards the national goal of curing epilepsy.
Collapse
Affiliation(s)
- Iyan Younus
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
45
|
Zheng Y, Wang L, Chen M, Pei A, Xie L, Zhu S. Upregulation of miR-130b protects against cerebral ischemic injury by targeting water channel protein aquaporin 4 (AQP4). Am J Transl Res 2017; 9:3452-3461. [PMID: 28804561 PMCID: PMC5527259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Altered microRNA regulation has been implicated in the pathogenesis of various disorders, including cerebral ischemia/reperfusion injury (I/RI). However, the regulatory mechanism of miR-130b in cerebral ischemia injury has not been reported. In this study, we explored the role of miR-130b in cerebral ischemia injury and investigated its potential mechanism. Levels of miR-130b were quantified by real-time PCR, and the protein level of AQP4 was detected by Western blotting. Cell apoptosis was detected by flow cytometry. In vitro, miR-130b levels in astrocytes were found significantly downregulated after OGD. Overexpression of miR-130b by miR-130b mimic decreased LDH release and apoptosis, but promoted cell health of astrocytes with OGD, thus playing a protective role in astrocyte I/RI. The level of miR-130b was also downregulated in ischemic tissues in MCAO model compared with the sham group, and the expression of miR-130b was gradually downregulated over time after reperfusion. AQP4 was upregulated both in two models, and as the reperfusion went on, AQP4 expression gradually upregulated. Our results indicated knockdown of AQP4 could ameliorate astrocyte injury induced by OGD. Finally, we found that miR-130b regulated astrocyte expression of AQP4, and rescue experiments further proved the protective role of miR-130b was mediated by AQP4 downregulation. Our study demonstrated that miR-130b might exert a neuroprotective effect following cerebral I/RI by regulating AQP4 expression at the post-transcriptional level. Therefore, miR-130b may be a potential therapeutic target for stroke treatment.
Collapse
Affiliation(s)
- Yueying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang Province, People's Republic of China
| | - Liqing Wang
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang Province, People's Republic of China
| | - Manli Chen
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang Province, People's Republic of China
| | - Aijie Pei
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang Province, People's Republic of China
| | - Liwei Xie
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang Province, People's Republic of China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
46
|
Abstract
Preconditioning is a paradigm in which sublethal stress-prior to a more injurious insult-induces protection against injury. In the central nervous system (CNS), preconditioning against ischemic stroke is induced by short durations of ischemia, brief seizures, exposure to anesthetics, and other stresses. Increasing evidence supports the contribution of microRNAs (miRNAs) to the pathogenesis of cerebral ischemia and ischemic tolerance induced by preconditioning. Studies investigating miRNA changes induced by preconditioning have to date identified 562 miRNAs that change expression levels after preconditioning, and 15% of these changes were reproduced in at least one additional study. Of miRNAs assessed as changed by preconditioning in more than one study, about 40% changed in the same direction in more than one study. Most of the studies to assess the role of specific miRNAs in the neuroprotective mechanism of preconditioning were performed in vitro, with fewer studies manipulating individual miRNAs in vivo. Thus, while many miRNAs change in response to preconditioning stimuli, the mechanisms underlying their effects are not well understood. The data does suggest that miRNAs may play significant roles in preconditioning-induced neuroprotection. This review focuses on the current state of knowledge of the possible role of miRNAs in preconditioning-induced cerebral protection.
Collapse
Affiliation(s)
- Josh D Bell
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Jang-Eun Cho
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Anesthesiology and Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Rona G Giffard
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
47
|
Clossen BL, Reddy DS. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1519-1538. [PMID: 28179120 PMCID: PMC5474195 DOI: 10.1016/j.bbadis.2017.02.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 11/16/2022]
Abstract
This article describes the recent advances in epileptogenesis and novel therapeutic approaches for the prevention of epilepsy, with a special emphasis on the pharmacological basis of disease-modification of epileptogenesis for curing epilepsy. Here we assess animal studies and human clinical trials of epilepsy spanning 1982-2016. Epilepsy arises from a number of neuronal factors that trigger epileptogenesis, which is the process by which a brain shifts from a normal physiologic state to an epileptic condition. The events precipitating these changes can be of diverse origin, including traumatic brain injury, cerebrovascular damage, infections, chemical neurotoxicity, and emergency seizure conditions such as status epilepticus. Expectedly, the molecular and system mechanisms responsible for epileptogenesis are not well defined or understood. To date, there is no approved therapy for the prevention of epilepsy. Epigenetic dysregulation, neuroinflammation, and neurodegeneration appear to trigger epileptogenesis. Targeted drugs are being identified that can truly prevent the development of epilepsy in at-risk people. The promising agents include rapamycin, COX-2 inhibitors, TRK inhibitors, epigenetic modulators, JAK-STAT inhibitors, and neurosteroids. Recent evidence suggests that neurosteroids may play a role in modulating epileptogenesis. A number of promising drugs are under investigation for the prevention or modification of epileptogenesis to halt the development of epilepsy. Some drugs in development appear rational for preventing epilepsy because they target the initial trigger or related signaling pathways as the brain becomes progressively more prone to seizures. Additional research into the target validity and clinical investigation is essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Bryan L Clossen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
48
|
Huang F, Yi J, Zhou T, Gong X, Jiang H, Yao X. Toward Understanding Non-coding RNA Roles in Intracranial Aneurysms and Subarachnoid Hemorrhage. Transl Neurosci 2017; 8:54-64. [PMID: 28729919 PMCID: PMC5516590 DOI: 10.1515/tnsci-2017-0010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a common and frequently life-threatening cerebrovascular disease, which is mostly related with a ruptured intracranial aneurysm. Its complications include rebleeding, early brain injury, cerebral vasospasm, delayed cerebral ischemia, chronic hydrocephalus, and also non neurological problems. Non-coding RNAs (ncRNAs), comprising of microRNAs (miRNAs), small interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs), play an important role in intracranial aneurysms and SAH. Here, we review the non-coding RNAs expression profile and their related mechanisms in intracranial aneurysms and SAH. Moreover, we suggest that these non-coding RNAs function as novel molecular biomarkers to predict intracranial aneurysms and SAH, and may yield new therapies after SAH in the future.
Collapse
Affiliation(s)
- Fengzhen Huang
- Department of Neurology, the First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R.China
| | - Jiping Yi
- Department of Neurology, the First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R.China
| | - Tieqiao Zhou
- Department of Laboratory Medicine, the First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R.China
| | - Xiaoxiang Gong
- Pediatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011 P. R.China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R.China.,State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan, 410078, P. R.China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, P. R.China
| | - Xiaoxi Yao
- Department of Neurology, the First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R.China
| |
Collapse
|
49
|
Wang X, Suofu Y, Akpinar B, Baranov SV, Kim J, Carlisle DL, Zhang Y, Friedlander RM. Systemic antimiR-337-3p delivery inhibits cerebral ischemia-mediated injury. Neurobiol Dis 2017; 105:156-163. [PMID: 28461247 DOI: 10.1016/j.nbd.2017.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 11/15/2022] Open
Abstract
Modulation of miRNA expression has been shown to be beneficial in the context of multiple diseases. The purpose of this study was to determine if an inhibitor of miR-337-3p is neuroprotective for hypoxic injury after tail vein injection. We evaluated miR-337-3p expression levels and in brain tissue in vivo before and after permanent middle cerebral artery occlusion (pMCAO) in mice. Subsequently, a custom locked nucleic acid (LNA) antimir-337-3p oligonucleotide was developed and tested in vitro after induction of oxygen glucose-deprivation (OGD) and in vivo by injection into the mouse tail vein for 3 consecutive days before pMCAO. Ischemic lesion volume was measured by TTC staining. We show that systemically administered LNA antimir-337-3p crosses the blood brain-brain-barrier (BBB), penetrates into neurosn, downregulates endogenous miR-337-3p expression and reduces ischemic brain injury. The findings support the use of similar antimir-LNA constructs as novel therapies in neurological disease.
Collapse
Affiliation(s)
- Xiaomin Wang
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Yalikun Suofu
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Berkcan Akpinar
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Sergei V Baranov
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Jinho Kim
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Diane L Carlisle
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Yu Zhang
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States.
| | - Robert M Friedlander
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States.
| |
Collapse
|
50
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|