1
|
Basile GA, Nozais V, Quartarone A, Giustiniani A, Ielo A, Cerasa A, Milardi D, Abdallah M, Thiebaut de Schotten M, Forkel SJ, Cacciola A. Functional anatomy and topographical organization of the frontotemporal arcuate fasciculus. Commun Biol 2024; 7:1655. [PMID: 39702403 DOI: 10.1038/s42003-024-07274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024] Open
Abstract
Traditionally, the frontotemporal arcuate fasciculus (AF) is viewed as a single entity in anatomo-clinical models. However, it is unclear if distinct cortical origin and termination patterns within this bundle correspond to specific language functions. We use track-weighted dynamic functional connectivity, a hybrid imaging technique, to study the AF structure and function in two distinct datasets of healthy subjects. Here we show that the AF can be subdivided based on dynamic changes in functional connectivity at the streamline endpoints. An unsupervised parcellation algorithm reveals spatially segregated subunits, which are then functionally quantified through meta-analysis. This approach identifies three distinct clusters within the AF - ventral, middle, and dorsal frontotemporal AF - each linked to different frontal and temporal termination regions and likely involved in various language production and comprehension aspects. Our findings may have relevant implications for the understanding of the functional anatomy of the AF as well as its contribution to linguistic and non-linguistic functions.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Victor Nozais
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | | | | | - Augusto Ielo
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Antonio Cerasa
- Institute of Bioimaging and Complex Biological Systems (IBSBC CNR), Milan, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Majd Abdallah
- Bordeaux Bioinformatics Center (CBiB), IBGC, CNRS, University of Bordeaux, Bordeaux, France
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Donders Institute for Brain Cognition Behaviour, Radboud University, Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
2
|
Forrer S, Delavari F, Sandini C, Rafi H, Preti MG, Van De Ville D, Eliez S. Longitudinal Analysis of Brain Function-Structure Dependencies in 22q11.2 Deletion Syndrome and Psychotic Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:882-895. [PMID: 38849032 DOI: 10.1016/j.bpsc.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Compared with conventional unimodal analysis, understanding how brain function and structure relate to one another opens a new biologically relevant assessment of neural mechanisms. However, how function-structure dependencies (FSDs) evolve throughout typical and abnormal neurodevelopment remains elusive. The 22q11.2 deletion syndrome (22q11.2DS) offers an important opportunity to study the development of FSDs and their specific association with the pathophysiology of psychosis. METHODS Previously, we used graph signal processing to combine brain activity and structural connectivity measures in adults, quantifying FSD. Here, we combined FSD with longitudinal multivariate partial least squares correlation to evaluate FSD alterations across groups and among patients with and without mild to moderate positive psychotic symptoms. We assessed 391 longitudinally repeated resting-state functional and diffusion-weighted magnetic resonance images from 194 healthy control participants and 197 deletion carriers (ages 7-34 years, data collected over a span of 12 years). RESULTS Compared with control participants, patients with 22q11.2DS showed a persistent developmental offset from childhood, with regions of hyper- and hypocoupling across the brain. Additionally, a second deviating developmental pattern showed an exacerbation during adolescence, presenting hypocoupling in the frontal and cingulate cortices and hypercoupling in temporal regions for patients with 22q11.2DS. Interestingly, the observed aggravation during adolescence was strongly driven by the group with positive psychotic symptoms. CONCLUSIONS These results confirm a central role of altered FSD maturation in the emergence of psychotic symptoms in 22q11.2DS during adolescence. The FSD deviations precede the onset of psychotic episodes and thus offer a potential early indication for behavioral interventions in individuals at risk.
Collapse
Affiliation(s)
- Silas Forrer
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Farnaz Delavari
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Corrado Sandini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Halima Rafi
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Developmental Clinical Psychology Research Unit, University of Geneva Faculty of Psychology and Educational Sciences, Geneva, Switzerland
| | - Maria Giulia Preti
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Dimitri Van De Ville
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
3
|
Márquez-Franco R, Concha L, García-Gomar MG, Carrillo-Ruíz JD, Loução R, Barbe MT, Brandt GA, Visser-Vandewalle V, Andrade P, Velasco-Campos F. Validation of Tenths Stereotactic Coordinates Method Using Probabilistic Tractography of the Ansa Lenticularis in Parkinson's Disease Patients. World Neurosurg 2024:S1878-8750(24)01468-2. [PMID: 39209255 DOI: 10.1016/j.wneu.2024.08.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To evaluate the accuracy of stereotactic coordinates to target the ansa lenticularis (AL) using 2 surgical planning methods, the conventional millimeter method (MM) and the normalized Tenths method (TM), assessed through individualized probabilistic tractography. METHODS Stereotactic targeting of the AL was assessed in 2 groups: 16 patients with Parkinson's disease and 16 healthy controls from Group 1, and 39 Parkinson's disease patients from Group 2. Structural and diffusion magnetic resonance imaging probabilistic tractography identified the AL based on the Schaltenbrand-Wahren Atlas. The MM defined stereotactic coordinates in millimeters, while the TM refined the planning by dividing the intercommissural line (AC-PC) distance into 10 equal parts, normalizing the "X," "Y," and "Z" coordinates for each patient. We subsequently compared the percentage of structural connectivity (%conn) of the AL with predefined regions of interest (ROIs), including the frontopontine-corticothalamic tracts, globus pallidus internus-ventral oral anterior, and ventral oral posterior, and quantified the streamlines in 142 brain hemispheres using the MM and TM coordinates. RESULTS Despite anatomical variations in intercommissural (AC-PC) line lengths between both groups (22.5 ± 2.09 mm and 24.4 ± 2.56 mm, respectively; P = 0.002), as well as differences in magnetic resonance imaging acquisition parameters, we found that the TM significantly enhanced streamline identification and %conn compared to the MM. These enhancements were noted across ROIs: frontopontine-corticothalamic and globus pallidus internus-ventral oral anterior in both hemispheres, and globus pallidus internus-ventral oral posterior in the left (P < 0.001) and right hemispheres (P = 0.03). CONCLUSIONS TM surpasses MM in identifying the structural connectivity between the AL and predefined ROIs, underscoring the advantages of coordinate normalization. However, variations in AC-PC line lengths and Euclidean distances between methods could lead to inaccuracies in the coordinate settings, potentially affecting the precision of structural connectivity and the efficacy of therapeutic outcomes.
Collapse
Affiliation(s)
- René Márquez-Franco
- Service of Functional Neurosurgery and Stereotaxy, General Hospital of Mexico, Mexico City, Mexico; Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, México
| | - María Guadalupe García-Gomar
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| | - José Damián Carrillo-Ruíz
- Service of Functional Neurosurgery and Stereotaxy, General Hospital of Mexico, Mexico City, Mexico; Neuroscience Coordination, Psychology Faculty, Anahuac University, Mexico City, Mexico
| | - Ricardo Loução
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael T Barbe
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gregor A Brandt
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Pablo Andrade
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Francisco Velasco-Campos
- Service of Functional Neurosurgery and Stereotaxy, General Hospital of Mexico, Mexico City, Mexico.
| |
Collapse
|
4
|
Verschuur AS, King R, Tax CMW, Boomsma MF, van Wezel-Meijler G, Leemans A, Leijser LM. Methodological considerations on diffusion MRI tractography in infants aged 0-2 years: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03463-2. [PMID: 39143201 DOI: 10.1038/s41390-024-03463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Diffusion MRI (dMRI) enables studying the complex architectural organization of the brain's white matter (WM) through virtual reconstruction of WM fiber tracts (tractography). Despite the anticipated clinical importance of applying tractography to study structural connectivity and tract development during the critical period of rapid infant brain maturation, detailed descriptions on how to approach tractography in young infants are limited. Over the past two decades, tractography from infant dMRI has mainly been applied in research settings and focused on diffusion tensor imaging (DTI). Only few studies used techniques superior to DTI in terms of disentangling information on the brain's organizational complexity, including crossing fibers. While more advanced techniques may enhance our understanding of the intricate processes of normal and abnormal brain development and extensive knowledge has been gained from application on adult scans, their applicability in infants has remained underexplored. This may partially be due to the higher technical requirements versus the need to limit scan time in young infants. We review various previously described methodological practices for tractography in the infant brain (0-2 years-of-age) and provide recommendations to optimize advanced tractography approaches to enable more accurate reconstructions of the brain WM's complexity. IMPACT: Diffusion tensor imaging is the technique most frequently used for fiber tracking in the developing infant brain but is limited in capability to disentangle the complex white matter organization. Advanced tractography techniques allow for reconstruction of crossing fiber bundles to better reflect the brain's complex organization. Yet, they pose practical and technical challenges in the fast developing young infant's brain. Methods on how to approach advanced tractography in the young infant's brain have hardly been described. Based on a literature review, recommendations are provided to optimize tractography for the developing infant brain, aiming to advance early diagnosis and neuroprotective strategies.
Collapse
Affiliation(s)
- Anouk S Verschuur
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands.
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada.
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Regan King
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| | - Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Martijn F Boomsma
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerda van Wezel-Meijler
- Department of Neonatology, Isala Women and Children's Hospital Zwolle, Zwolle, The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lara M Leijser
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
Verschuur AS, Tax CMW, Boomsma MF, Carlson HL, van Wezel-Meijler G, King R, Leemans A, Leijser LM. Feasibility study to unveil the potential: considerations of constrained spherical deconvolution tractography with unsedated neonatal diffusion brain MRI data. FRONTIERS IN RADIOLOGY 2024; 4:1416672. [PMID: 39007078 PMCID: PMC11239519 DOI: 10.3389/fradi.2024.1416672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Purpose The study aimed to (1) assess the feasibility constrained spherical deconvolution (CSD) tractography to reconstruct crossing fiber bundles with unsedated neonatal diffusion MRI (dMRI), and (2) demonstrate the impact of spatial and angular resolution and processing settings on tractography and derived quantitative measures. Methods For the purpose of this study, the term-equivalent dMRIs (single-shell b800, and b2000, both 5 b0, and 45 gradient directions) of two moderate-late preterm infants (with and without motion artifacts) from a local cohort [Brain Imaging in Moderate-late Preterm infants (BIMP) study; Calgary, Canada] and one infant from the developing human connectome project with high-quality dMRI (using the b2600 shell, comprising 20 b0 and 128 gradient directions, from the multi-shell dataset) were selected. Diffusion tensor imaging (DTI) and CSD tractography were compared on b800 and b2000 dMRI. Varying image resolution modifications, (pre-)processing and tractography settings were tested to assess their impact on tractography. Each experiment involved visualizing local modeling and tractography for the corpus callosum and corticospinal tracts, and assessment of morphological and diffusion measures. Results Contrary to DTI, CSD enabled reconstruction of crossing fibers. Tractography was susceptible to image resolution, (pre-) processing and tractography settings. In addition to visual variations, settings were found to affect streamline count, length, and diffusion measures (fractional anisotropy and mean diffusivity). Diffusion measures exhibited variations of up to 23%. Conclusion Reconstruction of crossing fiber bundles using CSD tractography with unsedated neonatal dMRI data is feasible. Tractography settings affected streamline reconstruction, warranting careful documentation of methods for reproducibility and comparison of cohorts.
Collapse
Affiliation(s)
- Anouk S Verschuur
- Department of Radiology, Isala Hospital, Zwolle, Netherlands
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, AB, Canada
| | - Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Martijn F Boomsma
- Department of Radiology, Isala Hospital, Zwolle, Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Helen L Carlson
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Regan King
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, AB, Canada
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lara M Leijser
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Radwan AM, Emsell L, Vansteelandt K, Cleeren E, Peeters R, De Vleeschouwer S, Theys T, Dupont P, Sunaert S. Comparative validation of automated presurgical tractography based on constrained spherical deconvolution and diffusion tensor imaging with direct electrical stimulation. Hum Brain Mapp 2024; 45:e26662. [PMID: 38646998 PMCID: PMC11033921 DOI: 10.1002/hbm.26662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/27/2024] [Accepted: 03/08/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVES Accurate presurgical brain mapping enables preoperative risk assessment and intraoperative guidance. This cross-sectional study investigated whether constrained spherical deconvolution (CSD) methods were more accurate than diffusion tensor imaging (DTI)-based methods for presurgical white matter mapping using intraoperative direct electrical stimulation (DES) as the ground truth. METHODS Five different tractography methods were compared (three DTI-based and two CSD-based) in 22 preoperative neurosurgical patients undergoing surgery with DES mapping. The corticospinal tract (CST, N = 20) and arcuate fasciculus (AF, N = 7) bundles were reconstructed, then minimum distances between tractograms and DES coordinates were compared between tractography methods. Receiver-operating characteristic (ROC) curves were used for both bundles. For the CST, binary agreement, linear modeling, and posthoc testing were used to compare tractography methods while correcting for relative lesion and bundle volumes. RESULTS Distance measures between 154 positive (functional response, pDES) and negative (no response, nDES) coordinates, and 134 tractograms resulted in 860 data points. Higher agreement was found between pDES coordinates and CSD-based compared to DTI-based tractograms. ROC curves showed overall higher sensitivity at shorter distance cutoffs for CSD (8.5 mm) compared to DTI (14.5 mm). CSD-based CST tractograms showed significantly higher agreement with pDES, which was confirmed by linear modeling and posthoc tests (PFWE < .05). CONCLUSIONS CSD-based CST tractograms were more accurate than DTI-based ones when validated using DES-based assessment of motor and sensory function. This demonstrates the potential benefits of structural mapping using CSD in clinical practice.
Collapse
Affiliation(s)
- Ahmed Mohamed Radwan
- KU Leuven, Department of Imaging and PathologyTranslational MRILeuvenBelgium
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
| | - Louise Emsell
- KU Leuven, Department of Imaging and PathologyTranslational MRILeuvenBelgium
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- KU Leuven, Department of Neurosciences, NeuropsychiatryLeuvenBelgium
- KU Leuven, Department of Geriatric PsychiatryUniversity Psychiatric Center (UPC)LeuvenBelgium
| | - Kristof Vansteelandt
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- KU Leuven, Department of Neurosciences, NeuropsychiatryLeuvenBelgium
- KU Leuven, Department of Geriatric PsychiatryUniversity Psychiatric Center (UPC)LeuvenBelgium
| | - Evy Cleeren
- UZ Leuven, Department of NeurologyLeuvenBelgium
- UZ Leuven, Department of NeurosurgeryLeuvenBelgium
| | | | - Steven De Vleeschouwer
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- UZ Leuven, Department of NeurosurgeryLeuvenBelgium
- KU Leuven, Department of NeurosciencesResearch Group Experimental Neurosurgery and NeuroanatomyLeuvenBelgium
| | - Tom Theys
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- UZ Leuven, Department of NeurosurgeryLeuvenBelgium
- KU Leuven, Department of NeurosciencesResearch Group Experimental Neurosurgery and NeuroanatomyLeuvenBelgium
| | - Patrick Dupont
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- KU Leuven, Laboratory for Cognitive NeurologyDepartment of NeurosciencesLeuvenBelgium
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and PathologyTranslational MRILeuvenBelgium
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- UZ Leuven, Department of RadiologyLeuvenBelgium
| |
Collapse
|
7
|
Barnes-Davis ME, Williamson BJ, Kline JE, Kline-Fath BM, Tkach J, He L, Yuan W, Parikh NA. Structural connectivity at term equivalent age and language in preterm children at 2 years corrected. Brain Commun 2024; 6:fcae126. [PMID: 38665963 PMCID: PMC11043656 DOI: 10.1093/braincomms/fcae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/26/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
We previously reported interhemispheric structural hyperconnectivity bypassing the corpus callosum in children born extremely preterm (<28 weeks) versus term children. This increased connectivity was positively associated with language performance at 4-6 years of age in our prior work. In the present study, we aim to investigate whether this extracallosal connectivity develops in extremely preterm infants at term equivalent age by leveraging a prospective cohort study of 350 very and extremely preterm infants followed longitudinally in the Cincinnati Infant Neurodevelopment Early Prediction Study. For this secondary analysis, we included only children born extremely preterm and without significant brain injury (n = 95). We use higher-order diffusion modelling to assess the degree to which extracallosal pathways are present in extremely preterm infants and predictive of later language scores at 22-26 months corrected age. We compare results obtained from two higher-order diffusion models: generalized q-sampling imaging and constrained spherical deconvolution. Advanced MRI was obtained at term equivalent age (39-44 weeks post-menstrual age). For structural connectometry analysis, we assessed the level of correlation between white matter connectivity at the whole-brain level at term equivalent age and language scores at 2 years corrected age, controlling for post-menstrual age, sex, brain abnormality score and social risk. For our constrained spherical deconvolution analyses, we performed connectivity-based fixel enhancement, using probabilistic tractography to inform statistical testing of the hypothesis that fibre metrics at term equivalent age relate to language scores at 2 years corrected age after adjusting for covariates. Ninety-five infants were extremely preterm with no significant brain injury. Of these, 53 had complete neurodevelopmental and imaging data sets that passed quality control. In the connectometry analyses adjusted for covariates and multiple comparisons (P < 0.05), the following tracks were inversely correlated with language: bilateral cerebellar white matter and middle cerebellar peduncles, bilateral corticospinal tracks, posterior commissure and the posterior inferior fronto-occipital fasciculus. No tracks from the constrained spherical deconvolution/connectivity-based fixel enhancement analyses remained significant after correction for multiple comparisons. Our findings provide critical information about the ontogeny of structural brain networks supporting language in extremely preterm children. Greater connectivity in more posterior tracks that include the cerebellum and connections to the regions of the temporal lobes at term equivalent age appears to be disadvantageous for language development.
Collapse
Affiliation(s)
- Maria E Barnes-Davis
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brady J Williamson
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Julia E Kline
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Beth M Kline-Fath
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jean Tkach
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lili He
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Weihong Yuan
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Cincinnati Children’s Hospital Medical Center, Pediatric Neuroimaging Research Consortium, Cincinnati, OH, USA
| | - Nehal A Parikh
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
8
|
Kokkinos V, Chatzisotiriou A, Seimenis I. Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging-Tractography in Resective Brain Surgery: Lesion Coverage Strategies and Patient Outcomes. Brain Sci 2023; 13:1574. [PMID: 38002534 PMCID: PMC10670090 DOI: 10.3390/brainsci13111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Diffusion tensor imaging (DTI)-tractography and functional magnetic resonance imaging (fMRI) have dynamically entered the presurgical evaluation context of brain surgery during the past decades, providing novel perspectives in surgical planning and lesion access approaches. However, their application in the presurgical setting requires significant time and effort and increased costs, thereby raising questions regarding efficiency and best use. In this work, we set out to evaluate DTI-tractography and combined fMRI/DTI-tractography during intra-operative neuronavigation in resective brain surgery using lesion-related preoperative neurological deficit (PND) outcomes as metrics. We retrospectively reviewed medical records of 252 consecutive patients admitted for brain surgery. Standard anatomical neuroimaging protocols were performed in 127 patients, 69 patients had additional DTI-tractography, and 56 had combined DTI-tractography/fMRI. fMRI procedures involved language, motor, somatic sensory, sensorimotor and visual mapping. DTI-tractography involved fiber tracking of the motor, sensory, language and visual pathways. At 1 month postoperatively, DTI-tractography patients were more likely to present either improvement or preservation of PNDs (p = 0.004 and p = 0.007, respectively). At 6 months, combined DTI-tractography/fMRI patients were more likely to experience complete PND resolution (p < 0.001). Low-grade lesion patients (N = 102) with combined DTI-tractography/fMRI were more likely to experience complete resolution of PNDs at 1 and 6 months (p = 0.001 and p < 0.001, respectively). High-grade lesion patients (N = 140) with combined DTI-tractography/fMRI were more likely to have PNDs resolved at 6 months (p = 0.005). Patients with motor symptoms (N = 80) were more likely to experience complete remission of PNDs at 6 months with DTI-tractography or combined DTI-tractography/fMRI (p = 0.008 and p = 0.004, respectively), without significant difference between the two imaging protocols (p = 1). Patients with sensory symptoms (N = 44) were more likely to experience complete PND remission at 6 months with combined DTI-tractography/fMRI (p = 0.004). The intraoperative neuroimaging modality did not have a significant effect in patients with preoperative seizures (N = 47). Lack of PND worsening was observed at 6 month follow-up in patients with combined DTI-tractography/fMRI. Our results strongly support the combined use of DTI-tractography and fMRI in patients undergoing resective brain surgery for improving their postoperative clinical profile.
Collapse
Affiliation(s)
- Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | | | - Ioannis Seimenis
- Department of Medicine, School of Health Sciences, Democritus University of Thrace, 387479 Alexandroupolis, Greece;
| |
Collapse
|
9
|
Gerussi T, Graïc JM, Peruffo A, Behroozi M, Schlaffke L, Huggenberger S, Güntürkün O, Cozzi B. The prefrontal cortex of the bottlenose dolphin (Tursiops truncatus Montagu, 1821): a tractography study and comparison with the human. Brain Struct Funct 2023; 228:1963-1976. [PMID: 37660322 PMCID: PMC10517040 DOI: 10.1007/s00429-023-02699-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Cetaceans are well known for their remarkable cognitive abilities including self-recognition, sound imitation and decision making. In other mammals, the prefrontal cortex (PFC) takes a key role in such cognitive feats. In cetaceans, however, a PFC could up to now not be discerned based on its usual topography. Classical in vivo methods like tract tracing are legally not possible to perform in Cetacea, leaving diffusion-weighted imaging (DWI) as the most viable alternative. This is the first investigation focussed on the identification of the cetacean PFC homologue. In our study, we applied the constrained spherical deconvolution (CSD) algorithm on 3 T DWI scans of three formalin-fixed brains of bottlenose dolphins (Tursiops truncatus) and compared the obtained results to human brains, using the same methodology. We first identified fibres related to the medio-dorsal thalamic nuclei (MD) and then seeded the obtained putative PFC in the dolphin as well as the known PFC in humans. Our results outlined the dolphin PFC in areas not previously studied, in the cranio-lateral, ectolateral and opercular gyri, and furthermore demonstrated a similar connectivity pattern between the human and dolphin PFC. The antero-lateral rotation of the PFC, like in other areas, might be the result of the telescoping process which occurred in these animals during evolution.
Collapse
Affiliation(s)
- Tommaso Gerussi
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Legnaro, Italy.
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Legnaro, Italy
| | - Antonella Peruffo
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Legnaro, Italy
| | - Mehdi Behroozi
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
| | - Stefan Huggenberger
- Institute of Anatomy and Clinical Morphology, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448, Witten, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801, Bochum, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr-University Bochum, Bochum, Germany
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Legnaro, Italy
| |
Collapse
|
10
|
Lloyd EC, Foerde KE, Muratore AF, Aw N, Semanek D, Steinglass JE, Posner J. Large-Scale Exploration of Whole-Brain Structural Connectivity in Anorexia Nervosa: Alterations in the Connectivity of Frontal and Subcortical Networks. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:864-873. [PMID: 35714857 PMCID: PMC11060509 DOI: 10.1016/j.bpsc.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Anorexia nervosa (AN) is characterized by disturbances in cognition and behavior surrounding eating and weight. The severity of AN combined with the absence of localized brain abnormalities suggests distributed, systemic underpinnings that may be identified using diffusion-weighted magnetic resonance imaging and tractography to reconstruct white matter pathways. METHODS Diffusion-weighted magnetic resonance imaging data acquired from female patients with AN (n= 147) and female healthy control (HC) participants (n = 119), ages 12 to 40 years, were combined across 5 studies. Probabilistic tractography was completed, and full-cortex connectomes describing streamline counts between 84 brain regions were generated and harmonized. Graph theory methods were used to describe alterations in network organization in AN. The network-based statistic tested between-group differences in brain subnetwork connectivity. The metrics strength and efficiency indexed the connectivity of brain regions (network nodes) and were compared between groups using multiple linear regression. RESULTS Individuals with AN, relative to HC peers, had reduced connectivity in a network comprising subcortical regions and greater connectivity between frontal cortical regions (p < .05, familywise error corrected). Node-based analyses indicated reduced connectivity of the left hippocampus in patients relative to HC peers (p < .05, permutation corrected). Severity of illness, assessed by body mass index, was associated with subcortical connectivity (p < .05, uncorrected). CONCLUSIONS Analyses identified reduced structural connectivity of subcortical networks and regions, and stronger cortical network connectivity, among individuals with AN relative to HC peers. These findings are consistent with alterations in feeding, emotion, and executive control circuits in AN, and may direct hypothesis-driven research into mechanisms of persistent restrictive eating behavior.
Collapse
Affiliation(s)
- E Caitlin Lloyd
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York.
| | - Karin E Foerde
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Alexandra F Muratore
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York
| | - Natalie Aw
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York
| | - David Semanek
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York
| | - Joanna E Steinglass
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York
| | - Jonathan Posner
- Department of Psychiatry, Duke University, Durham, North Carolina
| |
Collapse
|
11
|
Zhou W, He J, Zhang C, Pan Y, Sang T, Qiu X. Fiber-specific white matter alterations in Parkinson's disease patients with freezing of gait. Brain Res 2023:148440. [PMID: 37271491 DOI: 10.1016/j.brainres.2023.148440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Freezing of gait (FOG) is a gait disorder that usually occurs in advanced stages of Parkinson's disease (PD). Understanding the underlying mechanism of FOG is important for treatment and prevention. Previous studies have investigated white matter (WM) structure to explore the pathology of FOG. However, the pathology is still unclear, possibly due to the methodological limitation in identifying specific fiber tracts. This study aimed to investigate tract-specific WM structural changes in FOG patients and their relationships with clinical characteristics. We enrolled 19 PD patients with FOG (PD-FOG), 19 without FOG (PD-woFOG) and 21 controls. Fixel-based analysis is a novel framework to avoid the effect of crossing fibers, which provides the metrics to assess WM morphology. By combining a method for segmenting fibers, we identified abnormalities in the specific fiber tracts. Compared to PD-woFOG, PD-FOG showed significant increased fiber-bundle cross-section (FC) in the corpus callosum (CC), fornix (FX), inferior longitudinal fasciculus (ILF), striato-premotor (ST_PREM), superior thalamic radiation (STR), thalamo-premotor (T_PREM), increased fiber density and cross-section (FDC) in the STR, and decreased fiber density (FD) in the CC and ILF. Additionally, the ILF was correlated with motor, cognition and memory, the CC was correlated with anxiety, and the T_PREM was also correlated with cognition. In conclusion, in addition to impairments of WM found in PD-FOG, we found enhancements in WM, which may imply compensatory mechanisms. Furthermore, multiple fiber tracts were correlated with clinical characteristics, especially the ILF, validating the involvement of transmission circuits of multiple distinct information in mechanisms of FOG.
Collapse
Affiliation(s)
- Wenyang Zhou
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Jianzhong He
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Chengzhe Zhang
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Yiang Pan
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Tian Sang
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Xiang Qiu
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China; Department of Automation, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China.
| |
Collapse
|
12
|
Almairac F, Isan P, Onno M, Papadopoulo T, Mondot L, Chanalet S, Fernandez C, Clerc M, Deriche R, Fontaine D, Filipiak P. Identifying subcortical connectivity during brain tumor surgery: a multimodal study. Brain Struct Funct 2023; 228:815-830. [PMID: 36840759 DOI: 10.1007/s00429-023-02623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
Bipolar direct electrical stimulation (DES) of an awake patient is the reference technique for identifying brain structures to achieve maximal safe tumor resection. Unfortunately, DES cannot be performed in all cases. Alternative surgical tools are, therefore, needed to aid identification of subcortical connectivity during brain tumor removal. In this pilot study, we sought to (i) evaluate the combined use of evoked potential (EP) and tractography for identification of white matter (WM) tracts under the functional control of DES, and (ii) provide clues to the electrophysiological effects of bipolar stimulation on neural pathways. We included 12 patients (mean age of 38.4 years) who had had a dMRI-based tractography and a functional brain mapping under awake craniotomy for brain tumor removal. Electrophysiological recordings of subcortical evoked potentials (SCEPs) were acquired during bipolar low frequency (2 Hz) stimulation of the WM functional sites identified during brain mapping. SCEPs were successfully triggered in 11 out of 12 patients. The median length of the stimulated fibers was 43.24 ± 19.55 mm, belonging to tracts of median lengths of 89.84 ± 24.65 mm. The electrophysiological (delay, amplitude, and speed of propagation) and structural (number and lengths of streamlines, and mean fractional anisotropy) measures were correlated. In our experimental conditions, SCEPs were essentially limited to a subpart of the bundles, suggesting a selectivity of action of the DES on the brain networks. Correlations between functional, structural, and electrophysiological measures portend the combined use of EPs and tractography as a potential intraoperative tool to achieve maximum safe resection in brain tumor surgery.
Collapse
Affiliation(s)
- Fabien Almairac
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 30 Avenue de La Voie Romaine, 06000, Nice, France.
- UR2CA PIN, Université Côte d'Azur, Nice, France.
| | - Petru Isan
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 30 Avenue de La Voie Romaine, 06000, Nice, France
- UR2CA PIN, Université Côte d'Azur, Nice, France
- Athena Team, Centre Inria d'Université Côte d'Azur, Sophia Antipolis, France
| | - Marie Onno
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 30 Avenue de La Voie Romaine, 06000, Nice, France
| | | | - Lydiane Mondot
- Neuroradiology Department, Pasteur 2 Hospital, University Hospital of Nice, Nice, France
- UR2CA URRIS, Université Côte d'Azur, Nice, France
| | - Stéphane Chanalet
- Neuroradiology Department, Pasteur 2 Hospital, University Hospital of Nice, Nice, France
| | - Charlotte Fernandez
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 30 Avenue de La Voie Romaine, 06000, Nice, France
| | - Maureen Clerc
- Athena Team, Centre Inria d'Université Côte d'Azur, Sophia Antipolis, France
| | - Rachid Deriche
- Athena Team, Centre Inria d'Université Côte d'Azur, Sophia Antipolis, France
| | - Denys Fontaine
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 30 Avenue de La Voie Romaine, 06000, Nice, France
- UR2CA PIN, Université Côte d'Azur, Nice, France
| | | |
Collapse
|
13
|
Chary K, Manninen E, Claessens J, Ramirez-Manzanares A, Gröhn O, Sierra A. Diffusion MRI approaches for investigating microstructural complexity in a rat model of traumatic brain injury. Sci Rep 2023; 13:2219. [PMID: 36755032 PMCID: PMC9908904 DOI: 10.1038/s41598-023-29010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Our study explores the potential of conventional and advanced diffusion MRI techniques including diffusion tensor imaging (DTI), and single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD) to investigate complex microstructural changes following severe traumatic brain injury in rats at a chronic phase. Rat brains after sham-operation or lateral fluid percussion (LFP) injury were scanned ex vivo in a 9.4 T scanner. Our region-of-interest-based approach of tensor-, and SS3T-CSD derived fixel-, 3-tissue signal fraction maps were sensitive to changes in both white matter (WM) and grey matter (GM) areas. Tensor-based measures, such as fractional anisotropy (FA) and radial diffusivity (RD), detected more changes in WM and GM areas as compared to fixel-based measures including apparent fiber density (AFD), peak FOD amplitude and primary fiber bundle density, while 3-tissue signal fraction maps revealed distinct changes in WM, GM, and phosphate-buffered saline (PBS) fractions highlighting the complex tissue microstructural alterations post-trauma. Track-weighted imaging demonstrated changes in track morphology including reduced curvature and average pathlength distal from the primary lesion in severe TBI rats. In histological analysis, changes in the diffusion MRI measures could be associated to decreased myelin density, loss of myelinated axons, and increased cellularity, revealing progressive microstructural alterations in these brain areas five months after injury. Overall, this study highlights the use of combined conventional and advanced diffusion MRI measures to obtain more precise insights into the complex tissue microstructural alterations in chronic phase of severe brain injury.
Collapse
Affiliation(s)
- Karthik Chary
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Neulaniementie 2, Kuopio, Finland
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Eppu Manninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Neulaniementie 2, Kuopio, Finland
| | - Jade Claessens
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Neulaniementie 2, Kuopio, Finland
| | | | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Neulaniementie 2, Kuopio, Finland
| | - Alejandra Sierra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Neulaniementie 2, Kuopio, Finland.
| |
Collapse
|
14
|
Tallus J, Mohammadian M, Kurki T, Roine T, Posti JP, Tenovuo O. A comparison of diffusion tensor imaging tractography and constrained spherical deconvolution with automatic segmentation in traumatic brain injury. Neuroimage Clin 2023; 37:103284. [PMID: 36502725 PMCID: PMC9758569 DOI: 10.1016/j.nicl.2022.103284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Detection of microstructural white matter injury in traumatic brain injury (TBI) requires specialised imaging methods, of which diffusion tensor imaging (DTI) has been extensively studied. Newer fibre alignment estimation methods, such as constrained spherical deconvolution (CSD), are better than DTI in resolving crossing fibres that are ubiquitous in the brain and may improve the ability to detect microstructural injuries. Furthermore, automatic tract segmentation has the potential to improve tractography reliability and accelerate workflow compared to the manual segmentation commonly used. In this study, we compared the results of deterministic DTI based tractography and manual tract segmentation with CSD based probabilistic tractography and automatic tract segmentation using TractSeg. 37 participants with a history of TBI (with Glasgow Coma Scale 13-15) and persistent symptoms, and 41 healthy controls underwent deterministic DTI-based tractography with manual tract segmentation and probabilistic CSD-based tractography with TractSeg automatic segmentation.Fractional anisotropy (FA) and mean diffusivity of corpus callosum and three bilateral association tracts were measured. FA and MD values derived from both tractography methods were generally moderately to strongly correlated. CSD with TractSeg differentiated the groups based on FA, while DTI did not. CSD and TractSeg-based tractography may be more sensitive in detecting microstructural changes associated with TBI than deterministic DTI tractography. Additionally, CSD with TractSeg was found to be applicable at lower b-value and number of diffusion-encoding gradients data than previously reported.
Collapse
Affiliation(s)
- Jussi Tallus
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Department of Radiology, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland.
| | - Mehrbod Mohammadian
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| | - Timo Kurki
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Department of Radiology, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| | - Timo Roine
- Turku Brain and Mind Center, University of Turku, Turku FI-20014, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Rakentajanaukio 2 C, Espoo 02150, Finland
| | - Jussi P Posti
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Neurocenter, Department of Neurosurgery, Turku University Hospital, University of Turku, Hämeentie 11, Turku FI-20521, Finland
| | - Olli Tenovuo
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| |
Collapse
|
15
|
Constrained spherical deconvolution -based tractography of major language tracts reveals post-stroke bilateral white matter changes correlated to aphasia. Magn Reson Imaging 2023; 95:19-26. [PMID: 36252694 DOI: 10.1016/j.mri.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Using constrained spherical deconvolution (CSD)-based tractography, we aimed to obtain conjoint analysis of diffusion measures of major language white matter (WM) tracts in post-stroke aphasic patients bilaterally, and to correlate the measures of each tract to the different language deficits. MATERIAL AND METHODS 17 aphasic patients with left hemispheric stroke, at the subacute stage, and ten age- matched controls underwent diffusion MRI examination. CSD-based tractography was performed. Diffusion measures [fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD)] were extracted after dissection of major language tracts bilaterally. Aphasia was assessed using language subset of hemispheric stroke scale. Comparisons of diffusion measures, for all tracts, between the two groups were performed. Partial correlations between the diffusion measures and different language components were obtained. RESULTS In the left hemisphere, significant lower FA and or higher MD with higher RD of patients' WM tracts compared to the control group. Significant differences of diffusion measures were also evident in the right hemisphere yet, less prominent. All changes reflected damage of the tracts' integrity. Significant correlations were found between comprehension and FA of the left arcuate fasciculus (AF) and left inferior longitudinal fasciculus. Additionally, a significant correlation was found between MD of the right AF and repetition. CONCLUSION Conjoint analysis of diffusion measures, based on CSD tractography, can provide important markers for the underlying WM changes bilaterally. Moreover, our findings emphasize that language processing can be mediated by both ventral and dorsal streams and further highlight the contribution of the right AF in repetition.
Collapse
|
16
|
Orientation dependence of R 2 relaxation in the newborn brain. Neuroimage 2022; 264:119702. [PMID: 36272671 DOI: 10.1016/j.neuroimage.2022.119702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/25/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
In MRI the transverse relaxation rate, R2 = 1/T2, shows dependence on the orientation of ordered tissue relative to the main magnetic field. In previous studies, orientation effects of R2 relaxation in the mature brain's white matter have been found to be described by a susceptibility-based model of diffusion through local magnetic field inhomogeneities created by the diamagnetic myelin sheaths. Orientation effects in human newborn white matter have not yet been investigated. The newborn brain is known to contain very little myelin and is therefore expected to exhibit a decrease in orientation dependence driven by susceptibility-based effects. We measured R2 orientation dependence in the white matter of human newborns. R2 data were acquired with a 3D Gradient and Spin Echo (GRASE) sequence and fiber orientation was mapped with diffusion tensor imaging (DTI). We found orientation dependence in newborn white matter that is not consistent with the susceptibility-based model and is best described by a model of residual dipolar coupling. In the near absence of myelin in the newborn brain, these findings suggest the presence of residual dipolar coupling between rotationally restricted water molecules. This has important implications for quantitative imaging methods such as myelin water imaging, and suggests orientation dependence of R2 as a potential marker in early brain development.
Collapse
|
17
|
Bruffaerts R, Schaeverbeke J, Radwan A, Grube M, Gabel S, De Weer AS, Dries E, Van Bouwel K, Griffiths TD, Sunaert S, Vandenberghe R. Left Frontal White Matter Links to Rhythm Processing Relevant to Speech Production in Apraxia of Speech. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:515-537. [PMID: 37215340 PMCID: PMC10158569 DOI: 10.1162/nol_a_00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/03/2022] [Indexed: 05/24/2023]
Abstract
Recent mechanistic models argue for a key role of rhythm processing in both speech production and speech perception. Patients with the non-fluent variant (NFV) of primary progressive aphasia (PPA) with apraxia of speech (AOS) represent a specific study population in which this link can be examined. Previously, we observed impaired rhythm processing in NFV with AOS. We hypothesized that a shared neurocomputational mechanism structures auditory input (sound and speech) and output (speech production) in time, a "temporal scaffolding" mechanism. Since considerable white matter damage is observed in NFV, we test here whether white matter changes are related to impaired rhythm processing. Forty-seven participants performed a psychoacoustic test battery: 12 patients with NFV and AOS, 11 patients with the semantic variant of PPA, and 24 cognitively intact age- and education-matched controls. Deformation-based morphometry was used to test whether white matter volume correlated to rhythmic abilities. In 34 participants, we also obtained tract-based metrics of the left Aslant tract, which is typically damaged in patients with NFV. Nine out of 12 patients with NFV displayed impaired rhythmic processing. Left frontal white matter atrophy adjacent to the supplementary motor area (SMA) correlated with poorer rhythmic abilities. The structural integrity of the left Aslant tract also correlated with rhythmic abilities. A colocalized and perhaps shared white matter substrate adjacent to the SMA is associated with impaired rhythmic processing and motor speech impairment. Our results support the existence of a temporal scaffolding mechanism structuring perceptual input and speech output.
Collapse
Affiliation(s)
- Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences & Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
- Computational Neurology, Experimental Neurobiology Unit (ENU), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jolien Schaeverbeke
- Laboratory for Cognitive Neurology, Department of Neurosciences & Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ahmed Radwan
- Translational MRI, Department of Imaging and Pathology & Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Manon Grube
- Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, UK
- BIFOLD, Technische Universität Berlin, Germany; Department of Psychology, Ashoka University, India
| | - Silvy Gabel
- Laboratory for Cognitive Neurology, Department of Neurosciences & Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - An-Sofie De Weer
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Eva Dries
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Karen Van Bouwel
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Timothy D. Griffiths
- Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, UK
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology & Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Radiology Department, University Hospitals Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences & Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Bortolin K, Delavari F, Preti MG, Sandini C, Mancini V, Mullier E, Van De Ville D, Eliez S. Neural substrates of psychosis revealed by altered dependencies between brain activity and white-matter architecture in individuals with 22q11 deletion syndrome. NEUROIMAGE: CLINICAL 2022; 35:103075. [PMID: 35717884 PMCID: PMC9218553 DOI: 10.1016/j.nicl.2022.103075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Function-structural dependency is altered in patients with 22q11 deletion syndrome. Stronger dependency in subcortical regions correlates with psychotic symptoms. Weaker dependency in cingulate cortex correlates with psychotic symptoms. Multimodal and not unimodal indexes were correlated with psychosis emergence.
Background Dysconnectivity has been consistently proposed as a major key mechanism in psychosis. Indeed, disruptions in large-scale structural and functional brain networks have been associated with psychotic symptoms. However, brain activity is largely constrained by underlying white matter pathways and the study of function-structure dependency, compared to conventional unimodal analysis, allows a biologically relevant assessment of neural mechanisms. The 22q11.2 deletion syndrome (22q11DS) constitutes a remarkable opportunity to study the pathophysiological processes of psychosis. Methods 58 healthy controls and 57 deletion carriers, aged from 16 to 32 years old, underwent resting-state functional and diffusion-weighted magnetic resonance imaging. Deletion carriers were additionally fully assessed for psychotic symptoms. Firstly, we used a graph signal processing method to combine brain activity and structural connectivity measures to obtain regional structural decoupling indexes (SDIs). We use SDI to assess the differences of functional structural dependency (FSD) across the groups. Subsequently we investigated how alterations in FSDs are associated with the severity of positive psychotic symptoms in participants with 22q11DS. Results In line with previous findings, participants in both groups showed a spatial gradient of FSD ranging from sensory-motor regions (stronger FSD) to regions involved in higher-order function (weaker FSD). Compared to controls, in participants with 22q11DS, and further in deletion carriers with more severe positive psychotic symptoms, the functional activity was more strongly dependent on the structure in parahippocampal gyrus and subcortical dopaminergic regions, while it was less dependent within the cingulate cortex. This analysis revealed group differences not otherwise detected when assessing the structural and functional nodal measures separately. Conclusions Our findings point toward a disrupted modulation of functional activity on the underlying structure, which was further associated to psychopathology for candidate critical regions in 22q11DS. This study provides the first evidence for the clinical relevance of function-structure dependency and its contribution to the emergence of psychosis.
Collapse
Affiliation(s)
- Karin Bortolin
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Medical Image Processing Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Farnaz Delavari
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Medical Image Processing Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Maria Giulia Preti
- Medical Image Processing Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
| | - Corrado Sandini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Emeline Mullier
- Autism Brain and Behavior Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Medical Image Processing Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland.
| |
Collapse
|
19
|
Bayrakçı A, Zorlu N, Karakılıç M, Gülyüksel F, Yalınçetin B, Oral E, Gelal F, Bora E. Negative symptoms are associated with modularity and thalamic connectivity in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2022; 273:565-574. [PMID: 35661912 DOI: 10.1007/s00406-022-01433-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/15/2022] [Indexed: 11/30/2022]
Abstract
Negative symptoms, including avolition, anhedonia, asociality, blunted affect and alogia are associated with poor long-term outcome and functioning. However, treatment options for negative symptoms are limited and neurobiological mechanisms underlying negative symptoms in schizophrenia are still poorly understood. Diffusion-weighted magnetic resonance imaging scans were acquired from 64 patients diagnosed with schizophrenia and 35 controls. Global and regional network properties and rich club organization were investigated using graph analytical methods. We found that the schizophrenia group had higher modularity, clustering coefficient and characteristic path length, and lower rich connections compared to controls, suggesting highly connected nodes within modules but less integrated with nodes in other modules in schizophrenia. We also found a lower nodal degree in the left thalamus and left putamen in schizophrenia relative to the control group. Importantly, higher modularity was associated with greater negative symptoms but not with cognitive deficits in patients diagnosed with schizophrenia suggesting an alteration in modularity might be specific to overall negative symptoms. The nodal degree of the left thalamus was associated with both negative and cognitive symptoms. Our findings are important for improving our understanding of abnormal white-matter network topology underlying negative symptoms in schizophrenia.
Collapse
Affiliation(s)
- Adem Bayrakçı
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Nabi Zorlu
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey.
| | - Merve Karakılıç
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Funda Gülyüksel
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Berna Yalınçetin
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Elif Oral
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Fazıl Gelal
- Department of Radiodiagnostics, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Emre Bora
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.,Faculty of Medicine, Department of Psychiatry, Dokuz Eylul University, Izmir, Turkey.,Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Australia
| |
Collapse
|
20
|
Radwan AM, Sunaert S, Schilling K, Descoteaux M, Landman BA, Vandenbulcke M, Theys T, Dupont P, Emsell L. An atlas of white matter anatomy, its variability, and reproducibility based on constrained spherical deconvolution of diffusion MRI. Neuroimage 2022; 254:119029. [PMID: 35231632 DOI: 10.1016/j.neuroimage.2022.119029] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
Virtual dissection of white matter (WM) using diffusion MRI tractography is confounded by its poor reproducibility. Despite the increased adoption of advanced reconstruction models, early region-of-interest driven protocols based on diffusion tensor imaging (DTI) remain the dominant reference for virtual dissection protocols. Here we bridge this gap by providing a comprehensive description of typical WM anatomy reconstructed using a reproducible automated subject-specific parcellation-based approach based on probabilistic constrained-spherical deconvolution (CSD) tractography. We complement this with a WM template in MNI space comprising 68 bundles, including all associated anatomical tract selection labels and associated automated workflows. Additionally, we demonstrate bundle inter- and intra-subject variability using 40 (20 test-retest) datasets from the human connectome project (HCP) and 5 sessions with varying b-values and number of b-shells from the single-subject Multiple Acquisitions for Standardization of Structural Imaging Validation and Evaluation (MASSIVE) dataset. The most reliably reconstructed bundles were the whole pyramidal tracts, primary corticospinal tracts, whole superior longitudinal fasciculi, frontal, parietal and occipital segments of the corpus callosum and middle cerebellar peduncles. More variability was found in less dense bundles, e.g., the fornix, dentato-rubro-thalamic tract (DRTT), and premotor pyramidal tract. Using the DRTT as an example, we show that this variability can be reduced by using a higher number of seeding attempts. Overall inter-session similarity was high for HCP test-retest data (median weighted-dice = 0.963, stdev = 0.201 and IQR = 0.099). Compared to the HCP-template bundles there was a high level of agreement for the HCP test-retest data (median weighted-dice = 0.747, stdev = 0.220 and IQR = 0.277) and for the MASSIVE data (median weighted-dice = 0.767, stdev = 0.255 and IQR = 0.338). In summary, this WM atlas provides an overview of the capabilities and limitations of automated subject-specific probabilistic CSD tractography for mapping white matter fasciculi in healthy adults. It will be most useful in applications requiring a reproducible parcellation-based dissection protocol, and as an educational resource for applied neuroimaging and clinical professionals.
Collapse
Affiliation(s)
- Ahmed M Radwan
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium.
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; UZ Leuven, Department of Radiology, Leuven, Belgium
| | - Kurt Schilling
- Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN, USA
| | | | - Bennett A Landman
- Vanderbilt University, Department of Electrical Engineering and Computer Engineering, Nashville, TN, USA
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; KU Leuven, Department of Geriatric Psychiatry, University Psychiatric Center (UPC), Leuven, Belgium
| | - Tom Theys
- KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, Leuven, Belgium; UZ Leuven, Department of Neurosurgery, Leuven, Belgium
| | - Patrick Dupont
- KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven, Belgium
| | - Louise Emsell
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; KU Leuven, Department of Geriatric Psychiatry, University Psychiatric Center (UPC), Leuven, Belgium
| |
Collapse
|
21
|
Milardi D, Antonio Basile G, Faskowitz J, Bertino S, Quartarone A, Anastasi G, Bramanti A, Ciurleo R, Cacciola A. Effects of diffusion signal modeling and segmentation approaches on subthalamic nucleus parcellation. Neuroimage 2022; 250:118959. [PMID: 35122971 DOI: 10.1016/j.neuroimage.2022.118959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/24/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
The subthalamic nucleus (STN) is commonly used as a surgical target for deep brain stimulation in movement disorders such as Parkinson's Disease. Tractography-derived connectivity-based parcellation (CBP) has been recently proposed as a suitable tool for non-invasive in vivo identification and pre-operative targeting of specific functional territories within the human STN. However, a well-established, accurate and reproducible protocol for STN parcellation is still lacking. The present work aims at testing the effects of different tractography-based approaches for the reconstruction of STN functional territories. We reconstructed functional territories of the STN on the high-quality dataset of 100 unrelated healthy subjects and on the test-retest dataset of the Human Connectome Project (HCP) repository. Connectivity-based parcellation was performed with a hypothesis-driven approach according to cortico-subthalamic connectivity, after dividing cortical areas into three groups: associative, limbic and sensorimotor. Four parcellation pipelines were compared, combining different signal modeling techniques (single-fiber vs multi-fiber) and different parcellation approaches (winner takes all parcellation vs fiber density thresholding). We tested these procedures on STN regions of interest obtained from three different, commonly employed, subcortical atlases. We evaluated the pipelines both in terms of between-subject similarity, assessed on the cohort of 100 unrelated healthy subjects, and of within-subject similarity, using a second cohort of 44 subjects with available test-retest data. We found that each parcellation provides converging results in terms of location of the identified parcels, but with significative variations in size and shape. All pipelines obtained very high within-subject similarity, with tensor-based approaches outperforming multi-fiber pipelines. On the other hand, higher between-subject similarity was found with multi-fiber signal modeling techniques combined with fiber density thresholding. We suggest that a fine-tuning of tractography-based parcellation may lead to higher reproducibility and aid the development of an optimized surgical targeting protocol.
Collapse
Affiliation(s)
- Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Joshua Faskowitz
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giuseppe Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alessia Bramanti
- Department of Medicine, Surgery and Dentistry "Medical School of Salerno"- University of Salerno, Italy
| | | | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| |
Collapse
|
22
|
Christiansen L, Siebner HR. Tools to explore neuroplasticity in humans: Combining interventional neurophysiology with functional and structural magnetic resonance imaging and spectroscopy. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:105-119. [PMID: 35034728 DOI: 10.1016/b978-0-12-819410-2.00032-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This chapter summarizes how brain imaging can be used in combination with non-invasive transcranial stimulation to probe and induce neuroplasticity in the human brain. We aim to give a conceptual account and highlight exemplary studies. We showcase the scientific and clinical potentials of studies focusing on the combination of transcranial magnetic stimulation (TMS) with Magnetic Resonance Imaging (MRI) or Magnetic Resonance Spectroscopy (MRS). MRI and MRS can be used before brain stimulation to identify target networks and loci but also to inform individual dosing. After a brain stimulation session, MRI and MRS can be used to pinpoint how the stimulation protocol alters brain function, structure, or metabolism and relate these after-effects to behavioral and clinical outcomes. Complementing these "offline" approaches, TMS can also be applied "online" during MRI or MRS to delineate how stimulation acutely engages the stimulated brain regions and networks. In this case, it is critical to account for confounds introduced by off-target stimulation of peripheral structures of the nervous system that may not only confound MR-based readouts but also induce neuroplastic phenomena.
Collapse
Affiliation(s)
- Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Doyen S, Nicholas P, Poologaindran A, Crawford L, Young IM, Romero-Garcia R, Sughrue ME. Connectivity-based parcellation of normal and anatomically distorted human cerebral cortex. Hum Brain Mapp 2021; 43:1358-1369. [PMID: 34826179 PMCID: PMC8837585 DOI: 10.1002/hbm.25728] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 12/29/2022] Open
Abstract
For over a century, neuroscientists have been working toward parcellating the human cortex into distinct neurobiological regions. Modern technologies offer many parcellation methods for healthy cortices acquired through magnetic resonance imaging. However, these methods are suboptimal for personalized neurosurgical application given that pathology and resection distort the cerebrum. We sought to overcome this problem by developing a novel connectivity‐based parcellation approach that can be applied at the single‐subject level. Utilizing normative diffusion data, we first developed a machine‐learning (ML) classifier to learn the typical structural connectivity patterns of healthy subjects. Specifically, the Glasser HCP atlas was utilized as a prior to calculate the streamline connectivity between each voxel and each parcel of the atlas. Using the resultant feature vector, we determined the parcel identity of each voxel in neurosurgical patients (n = 40) and thereby iteratively adjusted the prior. This approach enabled us to create patient‐specific maps independent of brain shape and pathological distortion. The supervised ML classifier re‐parcellated an average of 2.65% of cortical voxels across a healthy dataset (n = 178) and an average of 5.5% in neurosurgical patients. Our patient dataset consisted of subjects with supratentorial infiltrating gliomas operated on by the senior author who then assessed the validity and practical utility of the re‐parcellated diffusion data. We demonstrate a rapid and effective ML parcellation approach to parcellation of the human cortex during anatomical distortion. Our approach overcomes limitations of indiscriminately applying atlas‐based registration from healthy subjects by employing a voxel‐wise connectivity approach based on individual data.
Collapse
Affiliation(s)
- Stephane Doyen
- Omniscient Neurotechnology, Sydney, New South Wales, Australia
| | - Peter Nicholas
- Omniscient Neurotechnology, Sydney, New South Wales, Australia
| | - Anujan Poologaindran
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK.,The Alan Turing Institute, British Library, London, UK
| | - Lewis Crawford
- Omniscient Neurotechnology, Sydney, New South Wales, Australia
| | | | - Rafeael Romero-Garcia
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
24
|
Basile GA, Bertino S, Bramanti A, Ciurleo R, Anastasi GP, Milardi D, Cacciola A. Striatal topographical organization: Bridging the gap between molecules, connectivity and behavior. Eur J Histochem 2021; 65. [PMID: 34643358 PMCID: PMC8524362 DOI: 10.4081/ejh.2021.3284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
The striatum represents the major hub of the basal ganglia, receiving projections from the entire cerebral cortex and it is assumed to play a key role in a wide array of complex behavioral tasks. Despite being extensively investigated during the last decades, the topographical organization of the striatum is not well understood yet. Ongoing efforts in neuroscience are focused on analyzing striatal anatomy at different spatial scales, to understand how structure relates to function and how derangements of this organization are involved in various neuropsychiatric diseases. While being subdivided at the macroscale level into dorsal and ventral divisions, at a mesoscale level the striatum represents an anatomical continuum sharing the same cellular makeup. At the same time, it is now increasingly ascertained that different striatal compartments show subtle histochemical differences, and their neurons exhibit peculiar patterns of gene expression, supporting functional diversity across the whole basal ganglia circuitry. Such diversity is further supported by afferent connections which are heterogenous both anatomically, as they originate from distributed cortical areas and subcortical structures, and biochemically, as they involve a variety of neurotransmitters. Specifically, the cortico-striatal projection system is topographically organized delineating a functional organization which is maintained throughout the basal ganglia, subserving motor, cognitive and affective behavioral functions. While such functional heterogeneity has been firstly conceptualized as a tripartite organization, with sharply defined limbic, associative and sensorimotor territories within the striatum, it has been proposed that such territories are more likely to fade into one another, delineating a gradient-like organization along medio-lateral and ventro-dorsal axes. However, the molecular and cellular underpinnings of such organization are less understood, and their relations to behavior remains an open question, especially in humans. In this review we aimed at summarizing the available knowledge on striatal organization, especially focusing on how it links structure to function and its alterations in neuropsychiatric diseases. We examined studies conducted on different species, covering a wide array of different methodologies: from tract-tracing and immunohistochemistry to neuroimaging and transcriptomic experiments, aimed at bridging the gap between macroscopic and molecular levels.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Alessia Bramanti
- Department of Medicine, Surgery and Dentistry "Medical School of Salerno", University of Salerno.
| | | | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina.
| |
Collapse
|
25
|
Effects of tDCS on Language Recovery in Post-Stroke Aphasia: A Pilot Study Investigating Clinical Parameters and White Matter Change with Diffusion Imaging. Brain Sci 2021; 11:brainsci11101277. [PMID: 34679342 PMCID: PMC8534035 DOI: 10.3390/brainsci11101277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives: In this pilot study we investigated the effects of transcranial direct current stimulation (tDCS) on language recovery in the subacute stage of post-stroke aphasia using clinical parameters and diffusion imaging with constrained spherical deconvolution-based tractography. Methods: The study included 21 patients with subacute post-stroke aphasia. Patients were randomly classified into two groups with a ratio of 2:1 to receive real tDCS or sham tDCS as placebo control. Patients received 10 sessions (5/week) bi-hemispheric tDCS treatments over the left affected Broca's area (anodal electrode) and over the right unaffected Broca's area (cathodal stimulation). Aphasia score was assessed clinically using the language section of the Hemispheric Stroke Scale (HSS) before and after treatment sessions. Diffusion imaging and tractography were performed for seven patients of the real group, both before and after the 10th session. Dissection of language-related white matter tracts was achieved, and diffusion measures were extracted. A paired Student's t-test was used to compare the clinical recovery and diffusion measures of the dissected tracts both pre- and post- treatment. The partial correlation between changes in diffusion measures and the language improvements was calculated. Results: At baseline assessment, there were no significant differences between groups in demographic and clinical HSS language score. No significant clinical recovery in HSS was evident in the sham group. However, significant improvements in the different components of HSS were only observed in patients receiving real tDCS. Associated significant increase in the fractional anisotropy of the right uncinate fasciculus and a significant reduction in the mean diffusivity of the right frontal aslant tract were reported. A significant positive correlation was found between the changes in the right uncinate fasciculus and fluency improvement. Conclusions: Aphasia recovery after bi-hemispheric transcranial direct current stimulation was associated with contralesional right-sided white matter changes at the subacute stage. These changes probably reflect neuroplasticity that could contribute to the recovery. Both the right uncinate fasciculus and right frontal aslant tract seem to be involved in aphasia recovery.
Collapse
|
26
|
Zhang XY, Yu WY, Teng WJ, Song YC, Yang DG, Liu HW, Liu SH, Li XB, Wang WZ, Li JJ. Effect of vocal respiratory training on respiratory function and respiratory neural plasticity in patients with cervical spinal cord injury: a randomized controlled trial. Neural Regen Res 2021; 17:1065-1071. [PMID: 34558534 PMCID: PMC8552850 DOI: 10.4103/1673-5374.324856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In previous studies, researchers have used singing to treat respiratory function in patients with spinal cord injury. However, few studies have examined the way in which vocal training affects respiratory neural plasticity in patients with spinal cord injury. Vocal respiratory training (VRT) is a type of vocal muscle-related treatment that is often a component of music therapy (MT) and focuses on strengthening respiratory muscles and improving lung function. In this randomized controlled study, we analyzed the therapeutic effects of VRT on respiratory dysfunction at 3 months after cervical spinal cord injury. Of an initial group of 37 patients, 26 completed the music therapy intervention, which comprised five 30-minute sessions per week for 12 weeks. The intervention group (n = 13) received VRT training delivered by professional certified music therapists. The control group (n = 13) received respiratory physical therapy delivered by professional physical therapists. Compared with the control group, we observed a substantial increase in respiratory function in the intervention group after the 12-week intervention. Further, the nerve fiber bundles in the respiratory center in the medulla exhibited a trend towards increased diversification, with an increased number, path length, thickness, and density of nerve fiber bundles. These findings provide strong evidence for the effect of music therapeutic VRT on neural plasticity. This study was approved by the Ethics Committee of China Rehabilitation Research Center (approval No. 2020-013-1) on April 1, 2020, and was registered with the Chinese Clinical Trial Registry (registration No. ChiCTR2000037871) on September 2, 2020.
Collapse
Affiliation(s)
- Xiao-Ying Zhang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Music Therapy Center, Department of Psychology, China Rehabilitation Research Center, Beijing, China
| | - Wei-Yong Yu
- School of Rehabilitation Medicine, Capital Medical University; Department of Imaging, China Rehabilitation Research Center, Beijing, China
| | - Wen-Jia Teng
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Yi-Chuan Song
- School of Rehabilitation Medicine, Capital Medical University; Music Therapy Center, Department of Psychology, China Rehabilitation Research Center, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Hong-Wei Liu
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Song-Huai Liu
- School of Rehabilitation Medicine, Capital Medical University; Music Therapy Center, Department of Psychology, China Rehabilitation Research Center, Beijing, China
| | - Xiao-Bing Li
- Department of Music Artificial Intelligence and Music Scientific Technology, Central Conservatory of Music, Beijing, China
| | - Wen-Zhu Wang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
27
|
Yang JYM, Yeh CH, Poupon C, Calamante F. Diffusion MRI tractography for neurosurgery: the basics, current state, technical reliability and challenges. Phys Med Biol 2021; 66. [PMID: 34157706 DOI: 10.1088/1361-6560/ac0d90] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/22/2021] [Indexed: 01/20/2023]
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is currently the only imaging technique that allows for non-invasive delineation and visualisation of white matter (WM) tractsin vivo,prompting rapid advances in related fields of brain MRI research in recent years. One of its major clinical applications is for pre-surgical planning and intraoperative image guidance in neurosurgery, where knowledge about the location of WM tracts nearby the surgical target can be helpful to guide surgical resection and optimise post-surgical outcomes. Surgical injuries to these WM tracts can lead to permanent neurological and functional deficits, making the accuracy of tractography reconstructions paramount. The quality of dMRI tractography is influenced by many modifiable factors, ranging from MRI data acquisition through to the post-processing of tractography output, with the potential of error propagation based on decisions made at each and subsequent processing steps. Research over the last 25 years has significantly improved the anatomical accuracy of tractography. An updated review about tractography methodology in the context of neurosurgery is now timely given the thriving research activities in dMRI, to ensure more appropriate applications in the clinical neurosurgical realm. This article aims to review the dMRI physics, and tractography methodologies, highlighting recent advances to provide the key concepts of tractography-informed neurosurgery, with a focus on the general considerations, the current state of practice, technical challenges, potential advances, and future demands to this field.
Collapse
Affiliation(s)
- Joseph Yuan-Mou Yang
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Child and Adolescent Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Cyril Poupon
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fernando Calamante
- The University of Sydney, Sydney Imaging, Sydney, Australia.,The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| |
Collapse
|
28
|
Hoursan H, Farahmand F, Ahmadian MT. Effect of axonal fiber architecture on mechanical heterogeneity of the white matter-a statistical micromechanical model. Comput Methods Biomech Biomed Engin 2021; 25:27-39. [PMID: 33998911 DOI: 10.1080/10255842.2021.1927000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A diffusion tensor imaging (DTI) -based statistical micromechanical model was developed to study the effect of axonal fiber architecture on the inter- and intra-regional mechanical heterogeneity of the white matter. Three characteristic regions within the white matter, i.e., corpus callosum, brain stem, and corona radiata, were studied considering the previous observations of locations of diffuse axonal injury. The embedded element technique was used to create a fiber-reinforced model, where the fiber was characterized by a Holzapfel hyperelastic material model with variable dispersion of axonal orientations. A relationship between the fractional anisotropy and the dispersion parameter of the hyperelastic model was used to introduce the statistical DTI data into the representative volume element. The FA-informed statistical micromechanical models of three characteristic regions of white matter were developed by deriving the corresponding probabilistic measures of FA variations. Comparison of the model predictions and experimental data indicated a good agreement, suggesting that the model could reasonably capture the inter-regional heterogeneity of white matter. Moreover, the standard deviations of experimental results correlated well with the model predictions, suggesting that the model could capture the intra-regional mechanical heterogeneity for different regions of white matter.
Collapse
Affiliation(s)
- Hesam Hoursan
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Farzam Farahmand
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| | | |
Collapse
|
29
|
Dikmeer N, Besiroglu L, Di Biase MA, Zalesky A, Kasal MI, Bilge A, Durmaz E, Polat S, Gelal F, Zorlu N. White matter microstructure and connectivity in patients with obsessive-compulsive disorder and their unaffected siblings. Acta Psychiatr Scand 2021; 143:72-81. [PMID: 33029781 DOI: 10.1111/acps.13241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We aimed to examine white matter microstructure and connectivity in individuals with obsessive-compulsive disorder (OCD) and their unaffected siblings, relative to healthy controls. METHODS Diffusion-weighted magnetic resonance imaging (dMRI) scans were acquired in 30 patients with OCD, 21 unaffected siblings, and 31 controls. We examined white matter microstructure using measures of fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). Structural networks were examined using network-based statistic (NBS). RESULTS Compared to controls, OCD patients showed significantly reduced FA and increased RD in clusters traversing the left forceps minor, inferior fronto-occipital fasciculus, anterior thalamic radiation, and cingulum. Furthermore, the OCD group displayed significantly weaker connectivity (quantified by the streamline count) compared to controls in the right hemisphere, most notably in edges connecting subcortical structures to temporo-occipital cortical regions. The sibling group showed intermediate streamline counts, FA and RD values between OCD and healthy control groups in connections found to be abnormal in patients with OCD. However, these reductions did not significantly differ compared to controls. CONCLUSION Therefore, siblings of OCD patients display intermediate levels in dMRI measures of microstructure and connectivity, suggesting white matter abnormalities might be related to the familial predisposition for OCD.
Collapse
Affiliation(s)
- Nur Dikmeer
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Lutfullah Besiroglu
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Maria A Di Biase
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Andrew Zalesky
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.,Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Meltem I Kasal
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Aslıhan Bilge
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Ercan Durmaz
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Serap Polat
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Fazil Gelal
- Department of Radiodiagnostics, Katip Celebi University, Ataturk Education and Research Hospital, Ankara, Turkey
| | - Nabi Zorlu
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| |
Collapse
|
30
|
Giampiccolo D, Howells H, Bährend I, Schneider H, Raffa G, Rosenstock T, Vergani F, Vajkoczy P, Picht T. Preoperative transcranial magnetic stimulation for picture naming is reliable in mapping segments of the arcuate fasciculus. Brain Commun 2020; 2:fcaa158. [PMID: 33543136 PMCID: PMC7846168 DOI: 10.1093/braincomms/fcaa158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 11/14/2022] Open
Abstract
In preoperative planning for neurosurgery, both anatomical (diffusion imaging tractography) and functional tools (MR-navigated transcranial magnetic stimulation) are increasingly used to identify and preserve eloquent language structures specific to individuals. Using these tools in healthy adults shows that speech production errors occur mainly in perisylvian cortical sites that correspond to subject-specific terminations of the major language pathway, the arcuate fasciculus. It is not clear whether this correspondence remains in oncological patients with altered tissue. We studied a heterogeneous cohort of 30 patients (fourteen male, mean age 44), undergoing a first or second surgery for a left hemisphere brain tumour in a language-eloquent region, to test whether speech production errors induced by preoperative transcranial magnetic stimulation had consistent anatomical correspondence to the arcuate fasciculus. We used navigated repetitive transcranial magnetic stimulation during picture naming and recorded different perisylvian sites where transient interference to speech production occurred. Spherical deconvolution diffusion imaging tractography was performed to map the direct fronto-temporal and indirect (fronto-parietal and parieto-temporal) segments of the arcuate fasciculus in each patient. Speech production errors were reported in all patients when stimulating the frontal lobe, and in over 90% of patients in the parietal lobe. Errors were less frequent in the temporal lobe (54%). In all patients, at least one error site corresponded to a termination of the arcuate fasciculus, particularly in the frontal and parietal lobes, despite distorted anatomy due to a lesion and/or previous resection. Our results indicate that there is strong correspondence between terminations of the arcuate fasciculus and speech errors. This indicates that white matter anatomy may be a robust marker for identifying functionally eloquent cortex, particularly in the frontal and parietal lobe. This knowledge may improve targets for preoperative mapping of language in the neurosurgical setting.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Department of Neurosurgery, Verona University Hospital, University of Verona, Verona, Italy
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | | | - Ina Bährend
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Heike Schneider
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Giovanni Raffa
- Department of Neurosurgery, Messina University Hospital, Italy
| | - Tizian Rosenstock
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Francesco Vergani
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| |
Collapse
|
31
|
Arrigoni F, Peruzzo D, Mandelstam S, Amorosino G, Redaelli D, Romaniello R, Leventer R, Borgatti R, Seal M, Yang JYM. Characterizing White Matter Tract Organization in Polymicrogyria and Lissencephaly: A Multifiber Diffusion MRI Modeling and Tractography Study. AJNR Am J Neuroradiol 2020; 41:1495-1502. [PMID: 32732266 DOI: 10.3174/ajnr.a6646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Polymicrogyria and lissencephaly may be associated with abnormal organization of the undelying white matter tracts that have been rarely investigated so far. Our aim was to characterize white matter tract organization in polymicrogyria and lissencephaly using constrained spherical deconvolution, a multifiber diffusion MR imaging modeling technique for white matter tractography reconstruction. MATERIALS AND METHODS We retrospectively reviewed 50 patients (mean age, 8.3 ± 5.4 years; range, 1.4-21.2 years; 27 males) with different polymicrogyria (n = 42) and lissencephaly (n = 8) subtypes. The fiber direction-encoded color maps and 6 different white matter tracts reconstructed from each patient were visually compared with corresponding images reconstructed from 7 age-matched, healthy control WM templates. Each white matter tract was assessed by 2 experienced pediatric neuroradiologists and scored in consensus on the basis of the severity of the structural abnormality, ranging from the white matter tracts being absent to thickened. The results were summarized by different polymicrogyria and lissencephaly subgroups. RESULTS More abnormal-appearing white matter tracts were identified in patients with lissencephaly compared with those with polymicrogyria (79.2% versus 37.3%). In lissencephaly, structural abnormalities were identified in all studied white matter tracts. In polymicrogyria, the more frequently affected white matter tracts were the cingulum, superior longitudinal fasciculus, inferior longitudinal fasciculus, and optic radiation-posterior corona radiata. The severity of superior longitudinal fasciculus and cingulum abnormalities was associated with the polymicrogyria distribution and extent. A thickened superior fronto-occipital fasciculus was demonstrated in 3 patients. CONCLUSIONS We demonstrated a range of white matter tract structural abnormalities in patients with polymicrogyria and lissencephaly. The patterns of white matter tract involvement are related to polymicrogyria and lissencephaly subgroups, distribution, and, possibly, their underlying etiologies.
Collapse
Affiliation(s)
- F Arrigoni
- From the Scientific Institute, IRCCS E. Medea (F.A., D.P., G.A., D.R., R.R.), Bosisio Parini, Italy
| | - D Peruzzo
- From the Scientific Institute, IRCCS E. Medea (F.A., D.P., G.A., D.R., R.R.), Bosisio Parini, Italy
| | - S Mandelstam
- Murdoch Children's Research Institute (S.M., R.L., M.S., J.Y.-M.Y.), Parkville, Australia.,Royal Children's Hospital (S.M., R.L.), Parkville, Australia; Neuroscience Advanced Clinical Imaging Suite (NACIS) (J.Y.-M.Y.), Department of Neurosurgery, The Royal Children's Hospital, Victoria, Australia.,University of Melbourne (S.M., R.L., M.S., J.Y.-M.Y.), Parkville, Australia.,Florey Institute of Neuroscience and Mental Health (S.M.), Parkville, Australia
| | - G Amorosino
- From the Scientific Institute, IRCCS E. Medea (F.A., D.P., G.A., D.R., R.R.), Bosisio Parini, Italy.,Bruno Kessler Foundation (G.A.), Trento, Italy.,University of Trento, Center for Mind/Brain Sciences (G.A.), Rovereto, Italy
| | - D Redaelli
- From the Scientific Institute, IRCCS E. Medea (F.A., D.P., G.A., D.R., R.R.), Bosisio Parini, Italy
| | - R Romaniello
- From the Scientific Institute, IRCCS E. Medea (F.A., D.P., G.A., D.R., R.R.), Bosisio Parini, Italy
| | - R Leventer
- Murdoch Children's Research Institute (S.M., R.L., M.S., J.Y.-M.Y.), Parkville, Australia.,Royal Children's Hospital (S.M., R.L.), Parkville, Australia; Neuroscience Advanced Clinical Imaging Suite (NACIS) (J.Y.-M.Y.), Department of Neurosurgery, The Royal Children's Hospital, Victoria, Australia.,University of Melbourne (S.M., R.L., M.S., J.Y.-M.Y.), Parkville, Australia
| | - R Borgatti
- Istituto di ricovero e cura a carattere scientifico Mondino Foundation (R.B.), Pavia, Italy.,University of Pavia (R.B.), Pavia, Italy
| | - M Seal
- Murdoch Children's Research Institute (S.M., R.L., M.S., J.Y.-M.Y.), Parkville, Australia.,University of Melbourne (S.M., R.L., M.S., J.Y.-M.Y.), Parkville, Australia
| | - J Y-M Yang
- Murdoch Children's Research Institute (S.M., R.L., M.S., J.Y.-M.Y.), Parkville, Australia.,Royal Children's Hospital (S.M., R.L.), Parkville, Australia; Neuroscience Advanced Clinical Imaging Suite (NACIS) (J.Y.-M.Y.), Department of Neurosurgery, The Royal Children's Hospital, Victoria, Australia.,University of Melbourne (S.M., R.L., M.S., J.Y.-M.Y.), Parkville, Australia
| |
Collapse
|
32
|
Zur G, Lesman-Segev OH, Schlesinger I, Goldsher D, Sinai A, Zaaroor M, Assaf Y, Eran A, Kahn I. Tremor Relief and Structural Integrity after MRI-guided Focused US Thalamotomy in Tremor Disorders. Radiology 2020; 294:676-685. [DOI: 10.1148/radiol.2019191624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Track density imaging: A reliable method to assess white matter changes in Progressive Supranuclear Palsy with predominant parkinsonism. Parkinsonism Relat Disord 2019; 69:23-29. [DOI: 10.1016/j.parkreldis.2019.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/28/2019] [Accepted: 10/20/2019] [Indexed: 12/31/2022]
|
34
|
Milardi D, Quartarone A, Bramanti A, Anastasi G, Bertino S, Basile GA, Buonasera P, Pilone G, Celeste G, Rizzo G, Bruschetta D, Cacciola A. The Cortico-Basal Ganglia-Cerebellar Network: Past, Present and Future Perspectives. Front Syst Neurosci 2019; 13:61. [PMID: 31736719 PMCID: PMC6831548 DOI: 10.3389/fnsys.2019.00061] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022] Open
Abstract
Much of our present understanding of the function and operation of the basal ganglia rests on models of anatomical connectivity derived from tract-tracing approaches in rodents and primates. However, the last years have been characterized by promising step forwards in the in vivo investigation and comprehension of brain connectivity in humans. The aim of this review is to revise the current knowledge on basal ganglia circuits, highlighting similarities and differences across species, in order to widen the current perspective on the intricate model of the basal ganglia system. This will allow us to explore the implications of additional direct pathways running from cortex to basal ganglia and between basal ganglia and cerebellum recently described in animals and humans.
Collapse
Affiliation(s)
- Demetrio Milardi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Salvatore Bertino
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gianpaolo Antonio Basile
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | | | - Giuseppe Celeste
- I.S.A.S.I.E. Caianello, National Research Council, Messina, Italy
| | - Giuseppina Rizzo
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Daniele Bruschetta
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
35
|
The cortico-rubral and cerebello-rubral pathways are topographically organized within the human red nucleus. Sci Rep 2019; 9:12117. [PMID: 31431648 PMCID: PMC6702172 DOI: 10.1038/s41598-019-48164-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/11/2019] [Indexed: 02/03/2023] Open
Abstract
The Red Nucleus (RN) is a large nucleus located in the ventral midbrain: it is subdivided into a small caudal magnocellular part (mRN) and a large rostral parvocellular part (pRN). These distinct structural regions are part of functionally different networks and show distinctive connectivity features: the mRN is connected to the interposed nucleus, whilst the pRN is mainly connected to dentate nucleus, cortex and inferior olivary complex. Despite functional neuroimaging studies suggest RN involvement in complex motor and higher order functions, the pRN and mRN cannot be distinguished using conventional MRI. Herein, we employ high-quality structural and diffusion MRI data of 100 individuals from the Human Connectome Project repository and constrained spherical deconvolution tractography to perform connectivity-based segmentation of the human RN. In particular, we tracked connections of RN with the inferior olivary complex, the interposed nucleus, the dentate nucleus and the cerebral cortex. We found that the RN can be subdivided according to its connectivity into two clusters: a large ventrolateral one, mainly connected with the cerebral cortex and the inferior olivary complex, and a smaller dorsomedial one, mainly connected with the interposed nucleus. This structural topography strongly reflects the connectivity patterns of pRN and mRN respectively. Structural connectivity-based segmentation could represent a useful tool for the identification of distinct subregions of the human red nucleus on 3T MRI thus allowing a better evaluation of this subcortical structure in healthy and pathological conditions.
Collapse
|
36
|
Cacciola A, Bertino S, Basile GA, Di Mauro D, Calamuneri A, Chillemi G, Duca A, Bruschetta D, Flace P, Favaloro A, Calabrò RS, Anastasi G, Milardi D. Mapping the structural connectivity between the periaqueductal gray and the cerebellum in humans. Brain Struct Funct 2019; 224:2153-2165. [PMID: 31165919 PMCID: PMC6591182 DOI: 10.1007/s00429-019-01893-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
The periaqueductal gray is a mesencephalic structure involved in modulation of responses to stressful stimuli. Structural connections between the periaqueductal gray and the cerebellum have been described in animals and in a few diffusion tensor imaging studies. Nevertheless, these periaqueductal gray–cerebellum connectivity patterns have yet to be fully investigated in humans. The objective of this study was to qualitatively and quantitatively characterize such pathways using high-resolution, multi-shell data of 100 healthy subjects from the open-access Human Connectome Project repository combined with constrained spherical deconvolution probabilistic tractography. Our analysis revealed robust connectivity density profiles between the periaqueductal gray and cerebellar nuclei, especially with the fastigial nucleus, followed by the interposed and dentate nuclei. High-connectivity densities have been observed between vermal (Vermis IX, Vermis VIIIa, Vermis VIIIb, Vermis VI, Vermis X) and hemispheric cerebellar regions (Lobule IX). Our in vivo study provides for the first time insights on the organization of periaqueductal gray–cerebellar pathways thus opening new perspectives on cognitive, visceral and motor responses to threatening stimuli in humans.
Collapse
Affiliation(s)
- Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| | - Salvatore Bertino
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gianpaolo Antonio Basile
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Debora Di Mauro
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | | | - Antonio Duca
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Daniele Bruschetta
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Paolo Flace
- School of Medicine, University of Bari 'Aldo Moro', Bari, Italy
| | - Angelo Favaloro
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
- School of Medicine, University of Bari 'Aldo Moro', Bari, Italy
| | | | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| |
Collapse
|
37
|
Maffei C, Sarubbo S, Jovicich J. A Missing Connection: A Review of the Macrostructural Anatomy and Tractography of the Acoustic Radiation. Front Neuroanat 2019; 13:27. [PMID: 30899216 PMCID: PMC6416820 DOI: 10.3389/fnana.2019.00027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 02/15/2019] [Indexed: 12/13/2022] Open
Abstract
The auditory system of mammals is dedicated to encoding, elaborating and transporting acoustic information from the auditory nerve to the auditory cortex. The acoustic radiation (AR) constitutes the thalamo-cortical projection of this system, conveying the auditory signals from the medial geniculate nucleus (MGN) of the thalamus to the transverse temporal gyrus on the superior temporal lobe. While representing one of the major sensory pathways of the primate brain, the currently available anatomical information of this white matter bundle is quite limited in humans, thus constituting a notable omission in clinical and general studies on auditory processing and language perception. Tracing procedures in humans have restricted applications, and the in vivo reconstruction of this bundle using diffusion tractography techniques remains challenging. Hence, a more accurate and reliable reconstruction of the AR is necessary for understanding the neurobiological substrates supporting audition and language processing mechanisms in both health and disease. This review aims to unite available information on the macroscopic anatomy and topography of the AR in humans and non-human primates. Particular attention is brought to the anatomical characteristics that make this bundle difficult to reconstruct using non-invasive techniques, such as diffusion-based tractography. Open questions in the field and possible future research directions are discussed.
Collapse
Affiliation(s)
- Chiara Maffei
- Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Center for Mind/Brain Sciences - CIMeC, University of Trento, Trento, Italy
| | - Silvio Sarubbo
- Division of Neurosurgery, Structural and Functional Connectivity Lab Project, S. Chiara Hospital, Trento Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Trento, Italy.,Department of Psychology and Cognitive Sciences, University of Trento, Trento, Italy
| |
Collapse
|
38
|
Nigro S, Bianco MG, Arabia G, Morelli M, Nisticò R, Novellino F, Salsone M, Augimeri A, Quattrone A. Track density imaging in progressive supranuclear palsy: A pilot study. Hum Brain Mapp 2018; 40:1729-1737. [PMID: 30474903 DOI: 10.1002/hbm.24484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/27/2022] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disorder characterized by white matter (WM) changes in different supra- and infratentorial brain structures. We used track density imaging (TDI) to characterize WM microstructural alterations in patients with PSP-Richardson's Syndrome (PSP-RS). Moreover, we investigated the diagnostic utility of TDI in distinguishing patients with PSP-RS from those with Parkinson's disease and healthy controls (HC). Twenty PSP-RS patients, 21 PD patients, and 23 HC underwent a 3 T MRI diffusion-weighted (DW) imaging. Then, we combined constrained spherical deconvolution and WM probabilistic tractography to reconstruct track density maps by calculating the number of WM streamlines traversing each voxel. Voxel-wise analysis was performed to assess group differences in track density maps. A support vector machine (SVM) approach was also used to evaluate the performance of TDI for discriminating between groups. Relative to PD patients, decreases in track density in PSP-RS patients were found in brainstem, cerebellum, thalamus, corpus callosum, and corticospinal tract. Similar findings were obtained between PSP-RS patients and HC. No differences in TDI were observed between PD and HC. SVM approach based on whole-brain analysis differentiated PD patients from PSP-RS with an area under the curve (AUC) of 0.82. The AUC reached a value of 0.98 considering only the voxels belonging to the superior cerebellar peduncle. This study shows that TDI may represent a useful approach for characterizing WM alterations in PSP-RS patients. Moreover, track density decrease in PSP could be considered a new feature for the differentiation of patients with PSP-RS from those with PD.
Collapse
Affiliation(s)
- Salvatore Nigro
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | | | - Gennarina Arabia
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, Catanzaro, Italy
| | - Maurizio Morelli
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, Catanzaro, Italy
| | - Rita Nisticò
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | - Fabiana Novellino
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | - Maria Salsone
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | | | - Aldo Quattrone
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, Catanzaro, Italy.,Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy.,Neuroscience Center, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|