1
|
Chen Z, Zhang Z, Li F, Zhao L, Bo Q, Zhou Y, Wang C. Decreased dynamic variability of the cerebellum in the euthymic patients with bipolar disorder. BMC Psychiatry 2024; 24:137. [PMID: 38373944 PMCID: PMC10877821 DOI: 10.1186/s12888-024-05596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a complex mental illness characterized by different mood states, including depression, mania/hypomania, and euthymia. This study aimed to comprehensively evaluate dynamic changes in intrinsic brain activity by using dynamic fractional amplitude of low-frequency fluctuations (dfALFF) and dynamic degree centrality (dDC) in patients with BD euthymia or depression and healthy individuals. METHODS The resting-state functional magnetic resonance imaging data were analyzed from 37 euthymic and 28 depressed patients with BD, as well as 85 healthy individuals. Using the sliding-window method, the dfALFF and dDC were calculated for each participant. These values were compared between the 3 groups using one-way analysis of variance (ANOVA). Additional analyses were conducted using different window lengths, step width, and window type to ensure the reliability of the results. RESULTS The euthymic group showed significantly lower dfALFF and dDC values of the left and right cerebellum posterior lobe compared with the depressed and control groups (cluster level PFWE < 0.05), while the latter two groups were comparable. Brain regions showing significant group differences in the dfALFF analysis overlapped with those with significant differences in the dDC analysis. These results were consistent across different window lengths, step width, and window type. CONCLUSIONS These findings suggested that patients with euthymic BD exhibit less flexibility of temporal functional activities in the cerebellum posterior lobes compared to either depressed patients or healthy individuals. These results could contribute to the development of neuropathological models of BD, ultimately leading to improved diagnosis and treatment of this complex illness.
Collapse
Affiliation(s)
- Zhenzhu Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
- Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
| | - Zhifang Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
| | - Feng Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
- Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
| | - Lei Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
- Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
| | - Qijing Bo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China.
- Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China.
| | - Yuan Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China.
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, 100101, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
- Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, 100088, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100069, Beijing, China
| |
Collapse
|
2
|
Nogami C, Kobayashi R, Yokoi K, Ohba M, Hashimoto R, Sakamoto K, Inoue K, Otani K, Hirayama K. Syntactic Impairment Associated with Hypoperfusion in the Left Middle and Inferior Frontal Gyri after Right Cerebellar Hemorrhage. Intern Med 2023; 62:3405-3412. [PMID: 37062736 DOI: 10.2169/internalmedicine.0023-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Cerebellar injuries can cause syntax impairments. Cortical dysfunction due to cerebello-cerebral diaschisis is assumed to play a role in this phenomenon. Functional magnetic resonance imaging studies have repeatedly shown the activation of Broca's area in response to syntactic tasks. However, there have been no reports of selective syntax impairment and hypoperfusion restricted to this area after cerebellar injury. We herein report a patient with right cerebellar hemorrhage that led to marked syntax impairment along with severe hypoperfusion confined to the Brodmann area (BA) 45 (anterior part of Broca's area) and BA46.
Collapse
Affiliation(s)
- Chihiro Nogami
- Department of Rehabilitation, Hitachi General Hospital, Japan
| | - Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Japan
| | - Kayoko Yokoi
- Department of Occupational Therapy, Yamagata Prefectural University of Health Science, Japan
| | - Makoto Ohba
- Department of Radiology, Yamagata University Hospital, Japan
| | - Ryusaku Hashimoto
- Department of Communication Disorders, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Japan
| | - Kazutaka Sakamoto
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical University, Japan
| | - Kaori Inoue
- Department of Occupational Therapy, Yamagata Prefectural University of Health Science, Japan
| | - Koichi Otani
- Department of Psychiatry, Yamagata University School of Medicine, Japan
| | - Kazumi Hirayama
- Department of Occupational Therapy, Yamagata Prefectural University of Health Science, Japan
| |
Collapse
|
3
|
Kaiser J, Nay K, Horne CR, McAloon LM, Fuller OK, Muller AG, Whyte DG, Means AR, Walder K, Berk M, Hannan AJ, Murphy JM, Febbraio MA, Gundlach AL, Scott JW. CaMKK2 as an emerging treatment target for bipolar disorder. Mol Psychiatry 2023; 28:4500-4511. [PMID: 37730845 PMCID: PMC10914626 DOI: 10.1038/s41380-023-02260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Current pharmacological treatments for bipolar disorder are inadequate and based on serendipitously discovered drugs often with limited efficacy, burdensome side-effects, and unclear mechanisms of action. Advances in drug development for the treatment of bipolar disorder remain incremental and have come largely from repurposing drugs used for other psychiatric conditions, a strategy that has failed to find truly revolutionary therapies, as it does not target the mood instability that characterises the condition. The lack of therapeutic innovation in the bipolar disorder field is largely due to a poor understanding of the underlying disease mechanisms and the consequent absence of validated drug targets. A compelling new treatment target is the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme. CaMKK2 is highly enriched in brain neurons and regulates energy metabolism and neuronal processes that underpin higher order functions such as long-term memory, mood, and other affective functions. Loss-of-function polymorphisms and a rare missense mutation in human CAMKK2 are associated with bipolar disorder, and genetic deletion of Camkk2 in mice causes bipolar-like behaviours similar to those in patients. Furthermore, these behaviours are ameliorated by lithium, which increases CaMKK2 activity. In this review, we discuss multiple convergent lines of evidence that support targeting of CaMKK2 as a new treatment strategy for bipolar disorder.
Collapse
Affiliation(s)
- Jacqueline Kaiser
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Kevin Nay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Luke M McAloon
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Oliver K Fuller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Abbey G Muller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Douglas G Whyte
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Anthony R Means
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ken Walder
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Andrew L Gundlach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia.
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
4
|
Stanca S, Rossetti M, Bongioanni P. The Cerebellum's Role in Affective Disorders: The Onset of Its Social Dimension. Metabolites 2023; 13:1113. [PMID: 37999209 PMCID: PMC10672979 DOI: 10.3390/metabo13111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Major Depressive Disorder (MDD) and Bipolar Disorder (BD) are the most frequent mental disorders whose indeterminate etiopathogenesis spurs to explore new aetiologic scenarios. In light of the neuropsychiatric symptoms characterizing Cerebellar Cognitive Affective Syndrome (CCAS), the objective of this narrative review is to analyze the involvement of the cerebellum (Cbm) in the onset of these conditions. It aims at detecting the repercussions of the Cbm activities on mood disorders based on its functional subdivision in vestibulocerebellum (vCbm), pontocerebellum (pCbm) and spinocerebellum (sCbm). Despite the Cbm having been, for decades, associated with somato-motor functions, the described intercellular pathways, without forgiving the molecular impairment and the alteration in the volumetric relationships, make the Cbm a new important therapeutic target for MDD and BD. Given that numerous studies have showed its activation during mnestic activities and socio-emotional events, this review highlights in the Cbm, in which the altered external space perception (vCbm) is strictly linked to the cognitive-limbic Cbm (pCbm and sCbm), a crucial role in the MDD and BD pathogenesis. Finally, by the analysis of the cerebellar activity, this study aims at underlying not only the Cbm involvement in affective disorders, but also its role in social relationship building.
Collapse
Affiliation(s)
- Stefano Stanca
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, 56100 Pisa, Italy
- Medical Specialties Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| |
Collapse
|
5
|
Saleem A, Harmata G, Jain S, Voss MW, Fiedorowicz JG, Williams AJ, Shaffer JJ, Richards JG, Barsotti EJ, Sathyaputri L, Schmitz SL, Christensen GE, Long JD, Xu J, Wemmie JA, Magnotta VA. Functional connectivity of the cerebellar vermis in bipolar disorder and associations with mood. Front Psychiatry 2023; 14:1147540. [PMID: 37215681 PMCID: PMC10196126 DOI: 10.3389/fpsyt.2023.1147540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Purpose Studies of the neural underpinnings of bipolar type I disorder have focused on the emotional control network. However, there is also growing evidence for cerebellar involvement, including abnormal structure, function, and metabolism. Here, we sought to assess functional connectivity of the cerebellar vermis with the cerebrum in bipolar disorder and to assess whether connectivity might depend on mood. Methods This cross-sectional study enrolled 128 participants with bipolar type I disorder and 83 control comparison participants who completed a 3 T magnetic resonance imaging (MRI) study, which included anatomical as well as resting state Blood Oxygenation Level Dependent (BOLD) imaging. Functional connectivity of the cerebellar vermis to all other brain regions was assessed. Based on quality control metrics of the fMRI data, 109 participants with bipolar disorder and 79 controls were included in the statistical analysis comparing connectivity of the vermis. In addition, the data was explored for the potential impacts of mood, symptom burden, and medication in those with bipolar disorder. Results Functional connectivity between the cerebellar vermis and the cerebrum was found to be aberrant in bipolar disorder. The connectivity of the vermis was found to be greater in bipolar disorder to regions involved in motor control and emotion (trending), while reduced connectivity was observed to a region associated with language production. In the participants with bipolar disorder, past depression symptom burden affected connectivity; however, no effects of medication were observed. Functional connectivity between the cerebellar vermis and all other regions revealed an inverse association with current mood ratings. Conclusion Together the findings may suggest that the cerebellum plays a compensatory role in bipolar disorder. The proximity of the cerebellar vermis to the skull may make this region a potential target for treatment with transcranial magnetic stimulation.
Collapse
Affiliation(s)
- Arshaq Saleem
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Gail Harmata
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Shivangi Jain
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Michelle W. Voss
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Jess G. Fiedorowicz
- The Ottawa Hospital, Ottawa Hospital Research Institute, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | | | - Joseph J. Shaffer
- Department of Radiology, University of Iowa, Iowa City, IA, United States
- Department of Biosciences, Kansas City University, Kansas City, MO, United States
| | | | | | - Leela Sathyaputri
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Embracing the World, Elburn, IL, United States
| | - Samantha L. Schmitz
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA, United States
| | - Gary E. Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States
| | - Jeffrey D. Long
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Biostatistics, University of Iowa, Iowa City, IA, United States
| | - Jia Xu
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Veterans Affairs Medical Center, Iowa City, IA, United States
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - Vincent A. Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA, United States
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
6
|
Saleem A, Harmata G, Jain S, Voss MW, Fiedorowicz JG, Williams A, Shaffer JJ, Richards JG, Barsotti EJ, Sathyaputri L, Schmitz SL, Christensen GE, Long JD, Xu J, Wemmie JA, Magnotta VA. Functional Connectivity of the Cerebellar Vermis in Bipolar Disorder and Associations with Mood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526878. [PMID: 36778335 PMCID: PMC9915674 DOI: 10.1101/2023.02.02.526878] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Purpose Studies of the neural underpinnings of bipolar type I disorder have focused on the emotional control network. However, there is also growing evidence for cerebellar involvement, including abnormal structure, function, and metabolism. Here, we sought to assess functional connectivity of the cerebellum with the cerebrum in bipolar disorder and to assess whether any effects might depend on mood. Methods This cross-sectional study enrolled 128 participants with bipolar type I disorder and 83 control comparison participants who completed a 3T MRI scan, which included anatomical imaging as well as resting state BOLD imaging. Functional connectivity of the cerebellar vermis to all other brain regions was assessed. Based on quality control metrics of the fMRI data, 109 participants with bipolar disorder and 79 controls were used to in the statistical analysis comparing connectivity of the vermis as well as associations with mood. Potential impacts of medications were also explored. Results Functional connectivity of the cerebellar vermis in bipolar disorder was found to differ significantly between brain regions known to be involved in the control of emotion, motor function, and language. While connections with emotion and motor control areas were significantly stronger in bipolar disorder, connection to a region associated language production was significantly weaker. In the participants with bipolar disorder, ratings of depression and mania were inversely associated with vermis functional connectivity. No effect of medications on these connections were observed. Conclusion Together the findings suggest cerebellum may play a compensatory role in bipolar disorder and when it can no longer fulfill this role, depression and mania develop. The proximity of the cerebellar vermis to the skull may make this region a potential target for treatment with transcranial magnetic stimulation.
Collapse
Affiliation(s)
- Arshaq Saleem
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242
| | - Gail Harmata
- Department of Radiology, University of Iowa, Iowa City, IA, 52242
| | - Shivangi Jain
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242
| | - Michelle W. Voss
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242
| | - Jess G. Fiedorowicz
- The Ottawa Hospital, Ottawa Hospital Research Institute, University of Ottawa Brain & Mind Research Institute, Ottawa ON Canada K1H 8L6
| | - Aislinn Williams
- Department of Psychiatry, University of Iowa, Iowa City, IA, 52242
| | | | | | | | - Leela Sathyaputri
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242
| | - Samantha L. Schmitz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242
| | - Gary E. Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52242,Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242
| | - Jeffrey D. Long
- Department of Psychiatry, University of Iowa, Iowa City, IA, 52242,Department of Biostatistics, University of Iowa, Iowa City, IA, 52242
| | - Jia Xu
- Department of Radiology, University of Iowa, Iowa City, IA, 52242
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, 52242,Veterans Affairs Medical Center, Iowa City, Iowa, USA,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA,Department of Neurosurgery, University of Iowa, Iowa City, IA, 52242
| | - Vincent A. Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA, 52242,Department of Psychiatry, University of Iowa, Iowa City, IA, 52242,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242
| |
Collapse
|
7
|
Saxena K, Simonetti A, Verrico CD, Janiri D, Di Nicola M, Catinari A, Kurian S, Saxena J, Mwangi B, Soares JC. Neurocognitive Correlates of Cerebellar Volumetric Alterations in Youth with Pediatric Bipolar Spectrum Disorders and Bipolar Offspring. Curr Neuropharmacol 2023; 21:1367-1378. [PMID: 36239717 PMCID: PMC10324334 DOI: 10.2174/1570159x21666221014120332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Emerging evidence points towards the involvement of the cerebellum in the processing of emotions and pathophysiology of mood disorders. However, cerebellar and related cognitive alterations in youth with pediatric bipolar disorder (PBD) and those at high risk to develop the disorder, such as bipolar offspring (BD-OFF) are not clearly defined. OBJECTIVE To investigate cerebellar gray and white matter volumes, cognition, and their relationship in youth with PBD and BD-OFF. METHODS Thirty youth (7 to 17 years, inclusive) with PBD, 30 BD-OFF and 40 healthy controls (HC) were recruited. Study participants underwent a computer-based cognitive battery assessing affective processing, executive function, attention, psychomotor speed, and learning. Three-tesla MRI scan was performed to assess cerebellar white and gray matter volumes. Cerebellar segmentation was performed with FreeSurfer. Statistical analyses include between-group differences in cognitive domains, cerebellar gray, and white matter volumes. Relationships between cerebellar volumes and cognitive domains were examined. RESULTS Youth with PBD showed greater cerebellar gray matter volumes than both BD-OFF and HC, whereas no differences were present between BD-OFF and HC. Both youth with PBD and BD-OFF showed altered processing of negative emotions and a bias towards positive emotions. In youth with PBD and BD-OFF, greater impairment in the processing of emotions correlated with greater cerebellar gray matter volumes. CONCLUSION The present findings corroborate hypotheses on cerebellar involvement in the processing of emotions and the pathophysiology of PBD. The presence of cerebellar dysfunction in BD-OFF is unclear.
Collapse
Affiliation(s)
- Kirti Saxena
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, TX, USA
- Department of Psychiatry, Texas Children’s Hospital, Houston, Texas, TX, USA
| | - Alessio Simonetti
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, TX, USA
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Christopher D. Verrico
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, TX, USA
| | - Delfina Janiri
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Marco Di Nicola
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonello Catinari
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sherin Kurian
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, TX, USA
- Department of Psychiatry, Texas Children’s Hospital, Houston, Texas, TX, USA
| | - Johanna Saxena
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, TX, USA
- Department of Psychiatry, Texas Children’s Hospital, Houston, Texas, TX, USA
| | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, Texas, TX, USA
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, Texas, TX, USA
| |
Collapse
|
8
|
Olivito G, Lupo M, Siciliano L, Gragnani A, Saettoni M, Pancheri C, Panfili M, Pignatelli F, Delle Chiaie R, Leggio M. Theory of mind profile and cerebellar alterations in remitted bipolar disorder 1 and 2: a comparison study. Front Behav Neurosci 2022; 16:971244. [PMID: 36160679 PMCID: PMC9492864 DOI: 10.3389/fnbeh.2022.971244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
The literature on social cognition abilities in bipolar disorder (BD) is controversial about the occurrence of theory of mind (ToM) alterations. In addition to other cerebral structures, such as the frontal and limbic areas, the processing of socially relevant stimuli has also been attributed to the cerebellum, which has been demonstrated to be involved in the above-mentioned disorder. Nevertheless, the cerebellar contribution to ToM deficits in bipolar patients needs to be elucidated further. To this aim, two tests assessing different components of ToM were used to evaluate the ability to appreciate affective and mental states of others in 17 individuals with a diagnosis of BD type 1 (BD1) and 13 with BD type 2 (BD2), both in the euthymic phase, compared to healthy matched controls. Cerebellar gray matter (GM) volumes were extracted and compared between BD1 and controls and BD2 and controls by using voxel-based morphometry. The results showed that BD1 patients were compromised in the cognitive and advanced components of ToM, while the BD2 ToM profile resulted in a more widespread compromise, also involving affective and automatic components. Both overlapping and differing areas of cerebellar GM reduction were found. The two groups of patients presented a pattern of GM reduction in cerebellar portions that are known to be involved in the affective and social domains, such as the vermis and Crus I and Crus II. Interestingly, in both BD1 and BD2, positive correlations were detected between lower ToM scores and decreased volumes in the cerebellum. Overall, BD2 patients showed a more compromised ToM profile and greater cerebellar impairment than BD1 patients. The different patterns of structural abnormalities may account for the different ToM performances evidenced, thus leading to divergent profiles between BD1 and BD2.
Collapse
Affiliation(s)
- Giusy Olivito
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- *Correspondence: Giusy Olivito
| | - Michela Lupo
- Servizio di Tutela della Salute Mentale e Riabilitazione dell’Età Evolutiva ASL, Rome, Italy
| | - Libera Siciliano
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Andrea Gragnani
- Scuola di Psicoterapia Cognitiva (SPC), Grosseto, Italy
- Associazione Psicologia Cognitiva (APC)/Scuola di Psicoterapia Cognitiva (SPC), Rome, Italy
| | - Marco Saettoni
- Scuola di Psicoterapia Cognitiva (SPC), Grosseto, Italy
- Unità Funzionale Salute Mentale Adulti ASL Toscana Nord-Ovest Valle del Serchio, Pisa, Italy
| | - Corinna Pancheri
- Department of Neuroscience and Mental Health–Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Matteo Panfili
- Department of Neuroscience and Mental Health–Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Roberto Delle Chiaie
- Department of Neuroscience and Mental Health–Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Maria Leggio
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Hasin N, Riggs LM, Shekhtman T, Ashworth J, Lease R, Oshone RT, Humphries EM, Badner JA, Thomson PA, Glahn DC, Craig DW, Edenberg HJ, Gershon ES, McMahon FJ, Nurnberger JI, Zandi PP, Kelsoe JR, Roach JC, Gould TD, Ament SA. Rare variants implicate NMDA receptor signaling and cerebellar gene networks in risk for bipolar disorder. Mol Psychiatry 2022; 27:3842-3856. [PMID: 35546635 DOI: 10.1038/s41380-022-01609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Bipolar disorder is an often-severe mental health condition characterized by alternation between extreme mood states of mania and depression. Despite strong heritability and the recent identification of 64 common variant risk loci of small effect, pathophysiological mechanisms remain unknown. Here, we analyzed genome sequences from 41 multiply-affected pedigrees and identified variants in 741 genes with nominally significant linkage or association with bipolar disorder. These 741 genes overlapped known risk genes for neurodevelopmental disorders and clustered within gene networks enriched for synaptic and nuclear functions. The top variant in this analysis - prioritized by statistical association, predicted deleteriousness, and network centrality - was a missense variant in the gene encoding D-amino acid oxidase (DAOG131V). Heterologous expression of DAOG131V in human cells resulted in decreased DAO protein abundance and enzymatic activity. In a knock-in mouse model of DAOG131, DaoG130V/+, we similarly found decreased DAO protein abundance in hindbrain regions, as well as enhanced stress susceptibility and blunted behavioral responses to pharmacological inhibition of N-methyl-D-aspartate receptors (NMDARs). RNA sequencing of cerebellar tissue revealed that DaoG130V resulted in decreased expression of two gene networks that are enriched for synaptic functions and for genes expressed, respectively, in Purkinje neurons or granule neurons. These gene networks were also down-regulated in the cerebellum of patients with bipolar disorder compared to healthy controls and were enriched for additional rare variants associated with bipolar disorder risk. These findings implicate dysregulation of NMDAR signaling and of gene expression in cerebellar neurons in bipolar disorder pathophysiology and provide insight into its genetic architecture.
Collapse
Affiliation(s)
- Naushaba Hasin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Robert Lease
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rediet T Oshone
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Humphries
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Molecular Epidemiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Judith A Badner
- Department of Psychiatry, Rush University Medical College, Chicago, IL, USA
| | - Pippa A Thomson
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David W Craig
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Howard J Edenberg
- Departments of Biochemistry and Molecular Biology and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elliot S Gershon
- Departments of Psychiatry and Human Genetics, University of Chicago, Chicago, IL, USA
| | - Francis J McMahon
- Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - John I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Departments of Pharmacology and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Seth A Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Integrity of cerebellar tracts associated with the risk of bipolar disorder. Transl Psychiatry 2022; 12:335. [PMID: 35977925 PMCID: PMC9385641 DOI: 10.1038/s41398-022-02097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
This study examined the structural brain differences across individuals of different BD stages and the risks of developing bipolar disorder (BD) associated with these brain differences. A total of 221 participants who were recruited from the Guangzhou Brain Hospital and the community were categorized into four groups: NC (healthy control) (N = 77), high risk (HR) (N = 42), ultra-high risk (UHR) (N = 38), and bipolar disorder (BD) (N = 64) based on a list of criteria. Their demographics, clinical characteristics, and diffusion magnetic resonance imaging (dMRI) data were collected. ANCOVA results showed that the HR group had significantly reduced mean diffusivity (MD) (p = 0.043) and radial diffusivity (RD) (p = 0.039) of the left portico-ponto-cerebellar tracts when compared with the BD group. Moreover, logistic regression results showed that the specific diffusivity measures of cerebellar tracts (e.g., cortico-ponto-cerebellar tract), particularly the RD and MD revealed differences between groups at different BD stages after controlling for the covariates. The findings suggested that specific diffusivity (RD and MD) of cerebellar tracts (e.g., cortico-ponto-cerebellar tract) revealed differences between groups at different BD stages which is helpful in detecting the trajectory changes in BD syndromes in the early stages of BD, particularly when the BD syndromes start from HR stage.
Collapse
|
11
|
Clausi S, Siciliano L, Olivito G, Leggio M. Cerebellum and Emotion in Social Behavior. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:235-253. [PMID: 35902475 DOI: 10.1007/978-3-030-99550-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Accumulating evidence suggests that the cerebellum plays a crucial role not only in the motor and cognitive domains but also in emotions and social behavior. In the present chapter, after a general introduction on the significance of the emotional components of social behavior, we describe recent efforts to understand the contributions of the cerebellum in social cognition focusing on the emotional and affective aspects. Specifically, starting from the description of the cerebello-cortical networks subtending the social-affective domains, we illustrate the most recent findings on the social cerebellum and the possible functional mechanisms by which the cerebellum modulate social-affective behavior. Finally, we discuss the possible consequences of cerebellar dysfunction in the social-affective domain, focusing on those neurological and psychopathological conditions in which emotional and social behavior difficulties have been described as being associated with cerebellar structural or functional alterations.
Collapse
Affiliation(s)
- Silvia Clausi
- Ataxia Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy. .,Psychology Department, Sapienza University, Rome, Italy.
| | - Libera Siciliano
- Ataxia Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy.,Psychology Department, Sapienza University, Rome, Italy
| | - Giusy Olivito
- Ataxia Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy.,Psychology Department, Sapienza University, Rome, Italy
| | - Maria Leggio
- Ataxia Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy.,Psychology Department, Sapienza University, Rome, Italy
| |
Collapse
|
12
|
Frazier MR, Hoffman LJ, Popal H, Sullivan-Toole H, Olino TM, Olson IR. A missing link in affect regulation: the cerebellum. Soc Cogn Affect Neurosci 2022; 17:1068-1081. [PMID: 35733348 PMCID: PMC9714429 DOI: 10.1093/scan/nsac042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 01/12/2023] Open
Abstract
The cerebellum is one-third the size of the cerebrum yet holds twice the number of neurons. Historically, its sole function was thought to be in the calibration of smooth movements through the creation and ongoing modification of motor programs. This traditional viewpoint has been challenged by findings showing that cerebellar damage can lead to striking changes in non-motor behavior, including emotional changes. In this manuscript, we review the literature on clinical and subclinical affective disturbances observed in individuals with lesions to the cerebellum. Disorders include pathological laughing and crying, bipolar disorder, depression and mixed mood changes. We propose a theoretical model based on cerebellar connectivity to explain how the cerebellum calibrates affect. We conclude with actionable steps for future researchers to test this model and improve upon the limitations of past literature.
Collapse
Affiliation(s)
| | - Linda J Hoffman
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Haroon Popal
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | | | - Thomas M Olino
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Ingrid R Olson
- Correspondence should be addressed to Ingrid R. Olson, Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA. E-mail:
| |
Collapse
|
13
|
Roybal DJ, Cosgrove VE, Kelley R, Smallwood Shoukry R, Larios RM, Novy B, Chang KD, Garrett AS. Aberrant Neural Response to Social Exclusion Without Significantly Greater Distress in Youth With Bipolar Disorder: Preliminary Findings. Front Psychiatry 2022; 13:687052. [PMID: 35432046 PMCID: PMC9011186 DOI: 10.3389/fpsyt.2022.687052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Little is known about the effects of social exclusion on youth with bipolar disorder (BD). Understanding these effects and the functional neural correlates of social exclusion in youth with BD may establish differences from healthy youth and help identify areas of intervention. METHODS We investigated brain function in 19 youth with BD and 14 age and gender matched healthy control (HC) participants while performing Cyberball, an fMRI social exclusion task. Whole brain activation, region-of-interest, and functional connectivity were compared between groups and examined with behavioral measures. RESULTS Compared with the HC group, youth with BD exhibited greater activation in the left fusiform gyrus (FFG) during social exclusion. Functional connectivity between the left FFG and the posterior cingulate/precuneus was significantly greater in the HC compared with the BD group. For the HC group only, age and subjective distress during Cyberball significantly predicted mean FFG activation. No significant differences in distress during social exclusion were found between groups. CONCLUSION Although preliminary due to small sample size, these data suggest that youth with BD process social exclusion in a manner that focuses on basic visual information while healthy youth make use of past experiences to interpret current social encounters. This difference may account for the social cognitive issues experienced by youth with BD, which can lead to more severe anxiety and mood symptoms.
Collapse
Affiliation(s)
- Donna J Roybal
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.,Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.,Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, United States.,Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, San Antonio, TX, United States
| | - Victoria E Cosgrove
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Ryan Kelley
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Rachel Smallwood Shoukry
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, United States
| | - Rose Marie Larios
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, United States.,Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, San Antonio, TX, United States
| | - Blake Novy
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, United States.,Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, San Antonio, TX, United States
| | - Kiki D Chang
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Amy S Garrett
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.,Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, United States.,Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
14
|
Combination of structural MRI, functional MRI and brain PET-CT provide more diagnostic and prognostic value in patients of cerebellar ataxia associated with anti-Tr/DNER: a case report. BMC Neurol 2021; 21:368. [PMID: 34560837 PMCID: PMC8461997 DOI: 10.1186/s12883-021-02403-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Background Brain magnetic resonance imaging (MRI) rarely reveals structural changes in patients with suspected anti-Tr/DNER encephalitis and thus provides very limited information. Here, we combined structural MRI, functional MRI, and positron emission tomography-computed tomography (PET-CT) findings to characterize this rare disorder in a patient. Case presentation A 43-year-old woman presented with progressive cerebellar ataxia, memory impairment, anxiety, and depression. Anti-Tr antibodies were detected in both her serum (1:10) and cerebrospinal fluid (1:10). A diagnosis of anti-Tr-positive autoimmune cerebellar ataxia was established. The patient’s symptoms were worse, but her brain MRI was normal. Meanwhile, voxel-based morphometry analysis showed bilateral reduced cerebellar volume, especially in the posterior lobe and uvula of the cerebellum and the middle of the left temporal lobe compared with 6 sex- and age-matched healthy subjects (6 females, 43 ± 2 years; p < 0.05). Using seed-based functional connectivity analysis, decreased connectivity between the posterior cingulate cortex/precuneus and left frontal lobe compared to the control group (p < 0.05) was detected. PET-CT revealed bilateral hypometabolism in the cerebellum and relative hypermetabolism in the cerebellar vermis and bilateral frontal lobe, but no malignant changes. Conclusions A combination of structural MRI, functional MRI, and brain PET-CT has higher diagnostic and prognostic value than conventional MRI in patients with suspected anti-Tr/DNER encephalitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02403-5.
Collapse
|
15
|
Olivito G, Lupo M, Gragnani A, Saettoni M, Siciliano L, Pancheri C, Panfili M, Cercignani M, Bozzali M, Chiaie RD, Leggio M. Aberrant Cerebello-Cerebral Connectivity in Remitted Bipolar Patients 1 and 2: New Insight into Understanding the Cerebellar Role in Mania and Hypomania. THE CEREBELLUM 2021; 21:647-656. [PMID: 34432230 PMCID: PMC9325834 DOI: 10.1007/s12311-021-01317-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 01/04/2023]
Abstract
Bipolar disorder (BD) is a major mental illness characterized by periods of (hypo) mania and depression with inter-episode remission periods. Functional studies in BD have consistently implicated a set of linked cortical and subcortical limbic regions in the pathophysiology of the disorder, also including the cerebellum. However, the cerebellar role in the neurobiology of BD still needs to be clarified. Seventeen euthymic patients with BD type1 (BD1) (mean age/SD, 38.64/13.48; M/F, 9/8) and 13 euthymic patients with BD type 2 (BD2) (mean age/SD, 41.42/14.38; M/F, 6/7) were compared with 37 sex- and age-matched healthy subjects (HS) (mean age/SD, 45.65/14.15; M/F, 15/22). T1 weighted and resting-state functional connectivity (FC) scans were acquired. The left and right dentate nucleus were used as seed regions for the seed based analysis. FC between each seed and the rest of the brain was compared between patients and HS. Correlations between altered cerebello-cerebral connectivity and clinical scores were then investigated. Different patterns of altered dentate-cerebral connectivity were found in BD1 and BD2. Overall, impaired dentate-cerebral connectivity involved regions of the anterior limbic network specifically related to the (hypo)manic states of BD. Cerebello-cerebral connectivity is altered in BD1 and BD2. Interestingly, the fact that these altered FC patterns persist during euthymia, supports the hypothesis that cerebello-cerebral FC changes reflect the neural correlate of subthreshold symptoms, as trait-based pathophysiology and/or compensatory mechanism to maintain a state of euthymia.
Collapse
Affiliation(s)
- Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy.,IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - Michela Lupo
- Servizio di Tutela della Salute Mentale e Riabilitazione dell'Età Evolutiva ASL, Roma 2, 00145, Rome, Italy
| | - Andrea Gragnani
- Scuola di Psicoterapia Cognitiva SPC, 58100, Grosseto, Italy.,Associazione Psicologia Cognitiva (APC)/Scuola di Psicoterapia Cognitiva (SPC), 00185, Rome, Italy
| | - Marco Saettoni
- Associazione Psicologia Cognitiva (APC)/Scuola di Psicoterapia Cognitiva (SPC), 00185, Rome, Italy.,Unità funzionale salute mentale adulti ASL, Toscana nord-ovest, Valle del Serchio, 55100, Pisa, Italy
| | - Libera Siciliano
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, 00185, Rome, Italy
| | - Corinna Pancheri
- Department of Neuroscience and Mental Health - Policlinico Umberto I Hospital, Sapienza University of Rome, 00161, Rome, Italy
| | - Matteo Panfili
- Department of Neuroscience and Mental Health - Policlinico Umberto I Hospital, Sapienza University of Rome, 00161, Rome, Italy
| | - Mara Cercignani
- Clinical Imaging Science Center, Brighton and Sussex Medical School, Brighton, East Sussex, BN1 9RR, UK
| | - Marco Bozzali
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10126, Turin, Italy.,Department of Neuroscience, Brighton & Sussex Medical School, University of Sussex, Brighton, East Sussex, BN1 9RR, UK
| | - Roberto Delle Chiaie
- Department of Neuroscience and Mental Health - Policlinico Umberto I Hospital, Sapienza University of Rome, 00161, Rome, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy. .,IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.
| |
Collapse
|
16
|
Ding JB, Hu K. Structural MRI Brain Alterations in Borderline Personality Disorder and Bipolar Disorder. Cureus 2021; 13:e16425. [PMID: 34422464 PMCID: PMC8369985 DOI: 10.7759/cureus.16425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 12/27/2022] Open
Abstract
Bipolar disorder (BD) and borderline personality disorder (BPD) share many behavioral features, such as periods of marked affective lability and instability. Although there is a symptomatic overlap, the two disorders may be differentiated based on longitudinal course, phenomenology, and treatment responsiveness. In addition, the emotional changes in BPD are generally influenced by interpersonal factors, whereas BD episodes tend to be more sustained. We performed a literature review on the structural MRI features of both disorders and compared the findings. There are differences in areas of white and gray matter volumes and thickness in BP and BPD. BPD primarily affects the fronto-limbic network, in particular, the amygdala, hippocampus, and orbitofrontal cortex, whereas BP affects both cortical and subcortical areas. There are a limited number of large studies, and many studies examined in this review did not adjust for confounding factors or motion artifacts, which limit the utility of current data.
Collapse
Affiliation(s)
- Jack B Ding
- Psychiatry, Royal Adelaide Hospital, Adelaide, AUS.,Psychiatry, University of Adelaide, Adelaide, AUS
| | - Kevin Hu
- Radiology, Lyell McEwin Hospital, Adelaide, AUS
| |
Collapse
|
17
|
Grey and white matter alteration in euthymic children with bipolar disorder: a combined source-based morphometry (SBM) and voxel-based morphometry (VBM) study. Brain Imaging Behav 2021; 16:22-30. [PMID: 33846953 DOI: 10.1007/s11682-021-00473-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/18/2021] [Indexed: 01/01/2023]
Abstract
Bipolar disorder (BPD) is a psychiatric condition driving frequent mood swings between periodic extremes of happiness and depression in patients. In this study, a source-based morphometry (SBM) and voxel-based morphometry (VBM) analysis was utilized to measure the differences in the white matter (WM) and grey matter (GM) between euthymic children with BPD and typically developing (TD) children. We adapted both multivariate (SBM) and univariate (VBM) analysis in 20 children with BPD euthymia /remission and compared to the same number of TD age-matched children. The VBM did not reveal any increase in GM and WM voxel values in children with BPD. However, a decrease in the GM voxel values in the bilateral middle frontal and WM voxels in the left hippocampus, left caudate, left orbitofrontal and right inferior parietal cortices was identified. Conversely, SBM analysis in BPD displayed a high GM value in bilateral angular gyrus, bilateral inferior temporal, left supplementary motor area and left middle temporal region, while a low value was observed in left inferior and middle occipital, cerebellum, thalamus, left premotor area and left lingual gyrus. These findings suggested a crucial GM and WM alteration in multiple neural regions in BPD children even during sustained and substantial remission.
Collapse
|
18
|
Peterburs J, Liang Y, Cheng DT, Desmond JE. Sensory acquisition functions of the cerebellum in verbal working memory. Brain Struct Funct 2021; 226:833-844. [PMID: 33481104 PMCID: PMC7981326 DOI: 10.1007/s00429-020-02212-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 12/30/2020] [Indexed: 11/03/2022]
Abstract
Several fMRI studies have shown that the superior cerebellum exhibits load-dependent activations during encoding of letters in a Sternberg verbal working memory (VWM) task. It has been hypothesized that the cerebellum regulates the acquisition of sensory data across all modalities, and thus, that VWM load activations may reflect high- vs low-load differences in sensory acquisition demands. Therefore, increased difficulty in sensory data acquisition should elicit greater activation in the cerebellum. The present fMRI study manipulated sensory acquisition in VWM by presenting visually degraded and non-degraded stimuli with high and low memory loads, thereby identifying load-dependent regions of interest in the cerebellum, and then testing if these regions showed greater activation for degraded stimuli. Results yielded partial support for the sensory acquisition hypothesis in a load-dependent region of the vermis, which showed significantly greater activation for degraded relative to non-degraded stimuli. Because eye movements did not differ for these stimulus types, and degradation-related activations were present after co-varying eye movements, this activation appears to be related to perceptual rather than oculomotor demands. In contrast to the vermis, load-sensitive regions of the cerebellar hemispheres did not show increased activation for degraded stimuli. These findings point to an overall function of association-based prediction that may underlie general cerebellar function, with perceptual prediction of stimuli from partial representations occurring in the vermis, and articulatory prediction occurring in the hemispheres.
Collapse
Affiliation(s)
- Jutta Peterburs
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Psychology, Heinrich-Heine-University, Institute of Experimental Psychology, Düsseldorf, Germany.
- Department of Medicine, Medical Psychology, MSH Medical School Hamburg, Hamburg, Germany.
| | - Yu Liang
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dominic T Cheng
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychology, Auburn University, Auburn, AL, USA
| | - John E Desmond
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Lupo M, Olivito G, Gragnani A, Saettoni M, Siciliano L, Pancheri C, Panfili M, Bozzali M, Delle Chiaie R, Leggio M. Comparison of Cerebellar Grey Matter Alterations in Bipolar and Cerebellar Patients: Evidence from Voxel-Based Analysis. Int J Mol Sci 2021; 22:ijms22073511. [PMID: 33805296 PMCID: PMC8036397 DOI: 10.3390/ijms22073511] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to compare the patterns of cerebellar alterations associated with bipolar disease with those induced by the presence of cerebellar neurodegenerative pathologies to clarify the potential cerebellar contribution to bipolar affective disturbance. Twenty-nine patients affected by bipolar disorder, 32 subjects affected by cerebellar neurodegenerative pathologies, and 37 age-matched healthy subjects underwent a 3T MRI protocol. A voxel-based morphometry analysis was used to show similarities and differences in cerebellar grey matter (GM) loss between the groups. We found a pattern of GM cerebellar alterations in both bipolar and cerebellar groups that involved the anterior and posterior cerebellar regions (p = 0.05). The direct comparison between bipolar and cerebellar patients demonstrated a significant difference in GM loss in cerebellar neurodegenerative patients in the bilateral anterior and posterior motor cerebellar regions, such as lobules I-IV, V, VI, VIIIa, VIIIb, IX, VIIb and vermis VI, while a pattern of overlapping GM loss was evident in right lobule V, right crus I and bilateral crus II. Our findings showed, for the first time, common and different alteration patterns of specific cerebellar lobules in bipolar and neurodegenerative cerebellar patients, which allowed us to hypothesize a cerebellar role in the cognitive and mood dysregulation symptoms that characterize bipolar disorder.
Collapse
Affiliation(s)
- Michela Lupo
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy; (G.O.); (M.L.)
- Correspondence: ; Tel.: +39-065-150-1115
| | - Giusy Olivito
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy; (G.O.); (M.L.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Gragnani
- Scuola di Psicoterapia Cognitiva SPC, 58100 Grosseto, Italy; (A.G.); (M.S.)
- Associazione Psicologia Cognitiva (APC)/Scuola di Psicoterapia Cognitiva (SPC), 00185 Rome, Italy
| | - Marco Saettoni
- Scuola di Psicoterapia Cognitiva SPC, 58100 Grosseto, Italy; (A.G.); (M.S.)
- Unità Funzionale Salute Mentale Adulti ASL Toscana Nord-Ovest Valle del Serchio, 56121 Pisa, Italy
| | - Libera Siciliano
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, 00185 Rome, Italy;
| | - Corinna Pancheri
- Departement of Neuroscience and Mental Health–Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (C.P.); (M.P.); (R.D.C.)
| | - Matteo Panfili
- Departement of Neuroscience and Mental Health–Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (C.P.); (M.P.); (R.D.C.)
| | - Marco Bozzali
- Clinical Imaging Science Center, Brighton and Sussex Medical School, Brighton BN1 9RR, UK;
| | - Roberto Delle Chiaie
- Departement of Neuroscience and Mental Health–Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (C.P.); (M.P.); (R.D.C.)
| | - Maria Leggio
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy; (G.O.); (M.L.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
20
|
Argyropoulos GD, Christidi F, Karavasilis E, Velonakis G, Antoniou A, Bede P, Seimenis I, Kelekis N, Douzenis A, Papakonstantinou O, Efstathopoulos E, Ferentinos P. Cerebro-cerebellar white matter connectivity in bipolar disorder and associated polarity subphenotypes. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110034. [PMID: 32710925 DOI: 10.1016/j.pnpbp.2020.110034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The cerebellum has a crucial role in mood regulation. While cerebellar grey matter (GM) alterations have been previously reported in bipolar disorder (BD), cerebro-cerebellar white matter (WM) connectivity alterations and cerebellar GM profiles have not been characterised in the context of predominant polarity (PP) and onset polarity (OP) subphenotypes of BD patients which is the aim of the present study. METHODS Forty-two euthymic BD patients stratified for PP and OP and 42 healthy controls (HC) were included in this quantitative neuroimaging study to evaluate cerebellar GM patterns and cerebro-cerebellar WM connections. Diffusion tensor tractography was used to characterise afferent and efferent cerebro-cerebellar tract integrity. False discovery rate corrections were applied in post-hoc comparisons. RESULTS BD patients exhibited higher fractional anisotropy (FA) in fronto-ponto-cerebellar tracts bilaterally compared to HC. Subphenotype-specific FA profiles were identified within the BD cohort. Regarding PP subgroups, we found FA changes in a) left contralateral fronto-ponto-cerebellar tract (depressive-PP > HC) and b) contralateral/ipsilateral fronto-ponto-cerebellar tracts bilaterally (manic-PP > HC). Regarding OP subgroups, we observed FA changes in a) left/right contralateral fronto-ponto-cerebellar tracts (depressive-OP > HC) and b) all fronto-ponto-cerebellar, most parieto-ponto-cerebellar and right contralateral occipito-ponto-cerebellar tracts (manic-OP>HC). In general, greater and more widespread cerebro-cerebellar changes were observed in manic-OP patients than in depressive-OP patients compared to HC. Manic-OP showed higher FA compared to depressive-OP patients in several afferent WM tracts. No GM differences were identified between BD and HC and across BD subgroups. CONCLUSIONS Our findings highlight fronto-ponto-cerebellar connectivity alterations in euthymic BD. Polarity-related subphenotypes have distinctive cerebro-cerebellar WM signatures with potential clinical and pathobiological implications.
Collapse
Affiliation(s)
- Georgios D Argyropoulos
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Christidi
- 2nd Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Efstratios Karavasilis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Antoniou
- 2nd Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter Bede
- Biomedical Imaging Laboratory, Sorbonne University, CNRS, INSERM, Paris, France; Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Ioannis Seimenis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Douzenis
- 2nd Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Olympia Papakonstantinou
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Efstathopoulos
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Ferentinos
- 2nd Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Lithium increases mitochondrial respiration in iPSC-derived neural precursor cells from lithium responders. Mol Psychiatry 2021; 26:6789-6805. [PMID: 34075196 PMCID: PMC8760072 DOI: 10.1038/s41380-021-01164-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Lithium (Li), valproate (VPA) and lamotrigine (LTG) are commonly used to treat bipolar disorder (BD). While their clinical efficacy is well established, the mechanisms of action at the molecular level are still incompletely understood. Here we investigated the molecular effects of Li, LTG and VPA treatment in induced pluripotent stem cell (iPSC)-derived neural precursor cells (NPCs) generated from 3 healthy controls (CTRL), 3 affective disorder Li responsive patients (Li-R) and 3 Li non-treated patients (Li-N) after 6 h and 1 week of exposure. Differential expression (DE) analysis after 6 h of treatment revealed a transcriptional signature that was associated with all three drugs and most significantly enriched for ribosome and oxidative phosphorylation (OXPHOS) pathways. In addition to the shared DE genes, we found that Li exposure was associated with 554 genes uniquely regulated in Li-R NPCs and enriched for spliceosome, OXPHOS and thermogenesis pathways. In-depth analysis of the treatment-associated transcripts uncovered a significant decrease in intron retention rate, suggesting that the beneficial influence of these drugs might partly be related to splicing. We examined the mitochondrial respiratory function of the NPCs by exploring the drugs' effects on oxygen consumption rate (OCR) and glycolytic rate (ECAR). Li improved OCR levels only in Li-R NPCs by enhancing maximal respiration and reserve capacity, while VPA enhanced maximal respiration and reserve capacity in Li-N NPCs. Overall, our findings further support the involvement of mitochondrial functions in the molecular mechanisms of mood stabilizers and suggest novel mechanisms related to the spliceosome, which warrant further investigation.
Collapse
|
22
|
Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, Gabrieli JDE, Guell X, Heleven E, Lupo M, Ma Q, Michelutti M, Olivito G, Pu M, Rice LC, Schmahmann JD, Siciliano L, Sokolov AA, Stoodley CJ, van Dun K, Vandervert L, Leggio M. Consensus Paper: Cerebellum and Social Cognition. CEREBELLUM (LONDON, ENGLAND) 2020; 19:833-868. [PMID: 32632709 PMCID: PMC7588399 DOI: 10.1007/s12311-020-01155-1] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions.
Collapse
Affiliation(s)
- Frank Van Overwalle
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mario Manto
- Mediathèque Jean Jacquy, Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, Mons, Belgium
| | - Zaira Cattaneo
- University of Milano-Bicocca, 20126 Milan, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Clausi
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - John D. E. Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, USA
| | - Xavier Guell
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, USA
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Elien Heleven
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Michela Lupo
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Qianying Ma
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marco Michelutti
- Service de Neurologie & Neuroscape@NeuroTech Platform, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Service de Neurologie Lausanne, Lausanne, Switzerland
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Giusy Olivito
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Min Pu
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Laura C. Rice
- Department of Psychology and Department of Neuroscience, American University, Washington, DC USA
| | - Jeremy D. Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Libera Siciliano
- Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Arseny A. Sokolov
- Service de Neurologie & Neuroscape@NeuroTech Platform, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Service de Neurologie Lausanne, Lausanne, Switzerland
- Department of Neurology, University Neurorehabilitation, University Hospital Inselspital, University of Bern, Bern, Switzerland
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London (UCL), London, UK
- Neuroscape Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA USA
| | - Catherine J. Stoodley
- Department of Psychology and Department of Neuroscience, American University, Washington, DC USA
| | - Kim van Dun
- Neurologic Rehabilitation Research, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium
| | - Larry Vandervert
- American Nonlinear Systems, 1529 W. Courtland Avenue, Spokane, WA 99205-2608 USA
| | - Maria Leggio
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Functional Changes of Mentalizing Network in SCA2 Patients: Novel Insights into Understanding the Social Cerebellum. THE CEREBELLUM 2020; 19:235-242. [PMID: 31925668 DOI: 10.1007/s12311-019-01081-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, increasing evidence of the cerebellar role in social cognition has emerged. The cerebellum has been shown to modulate cortical activity of social brain regions serving as a regulator of function-specific mentalizing and mirroring processes. In particular, a mentalizing area in the posterior cerebellum, specifically Crus II, is preferentially recruited for more complex and abstract forms of social processing, together with mentalizing cerebral areas including the dorsal medial prefrontal cortex (dmPFC), the temporo-parietal junction (TPJ), and the precuneus. In the present study, the network-based statistics approach was used to assess functional connectivity (FC) differences within this mentalizing cerebello-cerebral network associated with a specific cerebellar damage. To this aim, patients affected by spinocerebellar ataxia type 2 (SCA2), a neurodegenerative disease specifically affecting regions of the cerebellar cortex, and age-matched healthy subjects have been enrolled. The dmPFC, left and right TPJ, the precuneus, and the cerebellar Crus II were used as regions of interest to construct the mentalizing network to be analyzed and evaluate pairwise functional relations between them. When compared with controls, SCA2 patients showed altered internodal connectivity between dmPFC, left (L-) and right (R-) TPJ, and right posterior cerebellar Crus II.The present results indicate that FC changes affect a function-specific mentalizing network in patients affected by cerebellar damage. In particular, they allow to better clarify functional alteration mechanisms driven by the cerebellar damage associated with SCA2 suggesting that selective cortico-cerebellar functional disconnections may underlie patients' social impairment in domain-specific complex and abstract forms of social functioning.
Collapse
|
24
|
Matsumoto Y, Ayani N, Kitabayashi Y, Narumoto J. New-onset mania in an elderly patient five months after acoustic neuroma resection. Bipolar Disord 2020; 22:768-770. [PMID: 32615019 DOI: 10.1111/bdi.12970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yoshihiro Matsumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nobutaka Ayani
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
25
|
Gong J, Wang J, Qiu S, Chen P, Luo Z, Wang J, Huang L, Wang Y. Common and distinct patterns of intrinsic brain activity alterations in major depression and bipolar disorder: voxel-based meta-analysis. Transl Psychiatry 2020; 10:353. [PMID: 33077728 PMCID: PMC7573621 DOI: 10.1038/s41398-020-01036-5] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023] Open
Abstract
Identification of intrinsic brain activity differences and similarities between major depression (MDD) and bipolar disorder (BD) is necessary. However, results have not yet yielded consistent conclusions. A meta-analysis of whole-brain resting-state functional MRI (rs-fMRI) studies that explored differences in the amplitude of low-frequency fluctuation (ALFF) between patients (including MDD and BD) and healthy controls (HCs) was conducted using seed-based d mapping software. Systematic literature search identified 50 studies comparing 1399 MDD patients and 1332 HCs, and 15 studies comparing 494 BD patients and 593 HCs. MDD patients displayed increased ALFF in the right superior frontal gyrus (SFG) (including the medial orbitofrontal cortex, medial prefrontal cortex [mPFC], anterior cingulate cortex [ACC]), bilateral insula extending into the striatum and left supramarginal gyrus and decreased ALFF in the bilateral cerebellum, bilateral precuneus, and left occipital cortex compared with HCs. BD showed increased ALFF in the bilateral inferior frontal gyrus, bilateral insula extending into the striatum, right SFG, and right superior temporal gyrus (STG) and decreased ALFF in the bilateral precuneus, left cerebellum (extending to the occipital cortex), left ACC, and left STG. In addition, MDD displayed increased ALFF in the left lingual gyrus, left ACC, bilateral precuneus/posterior cingulate gyrus, and left STG and decreased ALFF in the right insula, right mPFC, right fusiform gyrus, and bilateral striatum relative to BD patients. Conjunction analysis showed increased ALFF in the bilateral insula, mPFC, and decreased ALFF in the left cerebellum in both disorders. Our comprehensive meta-analysis suggests that MDD and BD show a common pattern of aberrant regional intrinsic brain activity which predominantly includes the insula, mPFC, and cerebellum, while the limbic system and occipital cortex may be associated with spatially distinct patterns of brain function, which provide useful insights for understanding the underlying pathophysiology of brain dysfunction in affective disorders, and developing more targeted and efficacious treatment and intervention strategies.
Collapse
Affiliation(s)
- Jiaying Gong
- grid.412601.00000 0004 1760 3828Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630 China ,grid.488525.6Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655 China
| | - Junjing Wang
- grid.440718.e0000 0001 2301 6433Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, 510006 China
| | - Shaojuan Qiu
- grid.412601.00000 0004 1760 3828Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630 China
| | - Pan Chen
- grid.412601.00000 0004 1760 3828Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630 China
| | - Zhenye Luo
- grid.412601.00000 0004 1760 3828Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630 China
| | - Jurong Wang
- grid.412601.00000 0004 1760 3828Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630 China
| | - Li Huang
- grid.412601.00000 0004 1760 3828Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630 China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
26
|
Zhao L, Luo Z, Qiu S, Jia Y, Zhong S, Chen G, Lai S, Qi Z, Luo X, Huang G, Huang L, Wang Y. Abnormalities of aquaporin-4 in the cerebellum in bipolar II disorder: An ultra-high b-values diffusion weighted imaging study. J Affect Disord 2020; 274:136-143. [PMID: 32469796 DOI: 10.1016/j.jad.2020.05.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/03/2020] [Accepted: 05/10/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cumulative evidence indicated the cerebellum is involved in the pathophysiology of bipolar disorder (BD). It was reported that the apparent diffusion coefficient from ultra-high b-values (ADCuh) could reflect the function of aquaporin-4 (AQP4) which was involved in neurological disorders. However, no studies have reported the AQP4 alteration in the cerebellum in BD. Therefore, this study aimed to investigate the ADCuh and AQP4 in the cerebellum in BD-II. METHODS Fifty patients with BD-II as well as 43 healthy controls underwent enhance diffusion weighted imaging (eDWI) with ultra-high b-values. The eDWI parameters including ADCuh , pure water diffusion (D) and pseudodiffusion (D*) was measured using regions-of-interest analysis in the superior cerebellar peduncles (SCP), middle cerebellar peduncles (MCP) , cerebellar hemisphere, dentate nuclei, tonsil and vermis of the cerebellum. RESULTS BD-II exhibited increased ADCuh values in the bilateral SCP, cerebellar hemisphere, tonsil and right dentate nuclei, and increased D* and D in the bilateral SCP, and decreased D* in the tonsil. Additionally, there were positive correlations between Hamilton Rating Scale for Depression-24 scores and bilateral ADCuh values in the SCP and cerebellar hemisphere. CONCLUSIONS The alteration of the ADCuh values in the cerebellum may reflect the changes of the AQP4, especially the abnormality of eDWI parameters in the SCP may be a key neurobiological feature of BD-II. The current results provide a novel insight to look into the pathophysiology mechanisms underlying BD-II.
Collapse
Affiliation(s)
- Lianping Zhao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Radiology, Gansu Provincial Hospital, Gansu 730000, China
| | - Zhenye Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shaojuan Qiu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaomei Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Gansu 730000, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
27
|
Kim J, Cho H, Kim J, Kim A, Kang Y, Kang W, Choi KW, Ham BJ, Han KM, Tae WS. Changes in cortical thickness and volume of cerebellar subregions in patients with bipolar disorders. J Affect Disord 2020; 271:74-80. [PMID: 32479334 DOI: 10.1016/j.jad.2020.03.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/26/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Numerous studies have suggested that structural changes in the cerebellum are implicated in the pathophysiology of bipolar disorder (BD). We aimed to investigate differences in the volume and cortical thickness of the cerebellar subregions between patients with BD and healthy controls (HCs). METHODS Ninety patients with BD and one hundred sixty-six HCs participated in this study and underwent T1-weighted structural magnetic resonance imaging. We analyzed the volume and cortical thickness of each cerebellar hemisphere divided into 12 subregions using T1-weighted images of participants. One-way analysis of covariance was used to evaluate differences between the groups, with age, sex, medication, and total intracranial cavity volume used as covariates. RESULTS The BD group had significantly increased cortical thickness of the cerebellum in all cerebellar subregions compared to the HC group. The cortical thicknesses of the whole cerebellum and each hemisphere were also significantly thicker in the BD group than in the HC group. The volume of the left lobule IX was significantly lower in patients with BD than in HCs, whereas no significant differences in the volumes were observed in the other subregions. LIMITATIONS Our cross-sectional design cannot provide a causal relationship between the increased cortical thickness of the cerebellum and the risk of BD. CONCLUSIONS We observed widespread and significant cortical thickening in all the cerebellar subregions. Our results provide evidence for the involvement of the cerebellum in BD. Further studies are required to integrate neurobiological evidence and structural brain imaging to elucidate the pathophysiology of BD.
Collapse
Affiliation(s)
- Jooyeon Kim
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Heejoon Cho
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jinha Kim
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwan Woo Choi
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Barahona-Corrêa JB, Cotovio G, Costa RM, Ribeiro R, Velosa A, Silva VCE, Sperber C, Karnath HO, Senova S, Oliveira-Maia AJ. Right-sided brain lesions predominate among patients with lesional mania: evidence from a systematic review and pooled lesion analysis. Transl Psychiatry 2020; 10:139. [PMID: 32398699 PMCID: PMC7217919 DOI: 10.1038/s41398-020-0811-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 11/28/2022] Open
Abstract
Despite claims that lesional mania is associated with right-hemisphere lesions, supporting evidence is scarce, and association with specific brain areas has not been demonstrated. Here, we aimed to test whether focal brain lesions in lesional mania are more often right- than left-sided, and if lesions converge on areas relevant to mood regulation. We thus performed a systematic literature search (PROSPERO registration CRD42016053675) on PubMed and Web-Of-Science, using terms that reflect diagnoses and structures of interest, as well as lesional mechanisms. Two researchers reviewed the articles separately according to PRISMA Guidelines, selecting reports of adult-onset hypomania, mania or mixed state following a focal brain lesion, for pooled-analyses of individual patient data. Eligible lesion images were manually traced onto the corresponding MNI space slices, and lesion topography analyzed using standard brain atlases. Using this approach, data from 211 lesional mania patients was extracted from 114 reports. Among 201 cases with focal lesions, more patients had lesions involving exclusively the right (60.7%) than exclusively the left (11.4%) hemisphere. In further analyses of 56 eligible lesion images, while findings should be considered cautiously given the potential for selection bias of published lesion images, right-sided predominance of lesions was confirmed across multiple brain regions, including the temporal lobe, fusiform gyrus and thalamus. These, and several frontal lobe areas, were also identified as preferential lesion sites in comparisons with control lesions. Such pooled-analyses, based on the most comprehensive dataset of lesional mania available to date, confirm a preferential association with right-hemisphere lesions, while suggesting that several brain areas/circuits, relevant to mood regulation, are most frequently affected.
Collapse
Affiliation(s)
- J Bernardo Barahona-Corrêa
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1340-019, Lisboa, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
| | - Gonçalo Cotovio
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1340-019, Lisboa, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
| | - Rui M Costa
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Ricardo Ribeiro
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
| | - Ana Velosa
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1340-019, Lisboa, Portugal
| | - Vera Cruz E Silva
- Department of Neuroradiology, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1340-019, Lisboa, Portugal
- Department of Neuroradiology, Hospital de Braga, Sete Fontes - São Victor, 4710-243, Braga, Portugal
| | - Christoph Sperber
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hans-Otto Karnath
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Suhan Senova
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- Neurosurgery and PePsy Departments, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Henri-Mondor Albert-Chenevier, Créteil, France
- Equipe 14, U955 INSERM, Institut Mondor de Recherche Biomedicale and Faculté de Médecine, Université Paris Est, Créteil, France
| | - Albino J Oliveira-Maia
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal.
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal.
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1340-019, Lisboa, Portugal.
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| |
Collapse
|
29
|
Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, Molinari M, Stoodley CJ, Van Overwalle F, Ivry RB, Schmahmann JD. The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper. CEREBELLUM (LONDON, ENGLAND) 2020; 19:102-125. [PMID: 31522332 PMCID: PMC6978293 DOI: 10.1007/s12311-019-01068-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sporadically advocated over the last two centuries, a cerebellar role in cognition and affect has been rigorously established in the past few decades. In the clinical domain, such progress is epitomized by the "cerebellar cognitive affective syndrome" ("CCAS") or "Schmahmann syndrome." Introduced in the late 1990s, CCAS reflects a constellation of cerebellar-induced sequelae, comprising deficits in executive function, visuospatial cognition, emotion-affect, and language, over and above speech. The CCAS thus offers excellent grounds to investigate the functional topography of the cerebellum, and, ultimately, illustrate the precise mechanisms by which the cerebellum modulates cognition and affect. The primary objective of this task force paper is thus to stimulate further research in this area. After providing an up-to-date overview of the fundamental findings on cerebellar neurocognition, the paper substantiates the concept of CCAS with recent evidence from different scientific angles, promotes awareness of the CCAS as a clinical entity, and examines our current insight into the therapeutic options available. The paper finally identifies topics of divergence and outstanding questions for further research.
Collapse
Affiliation(s)
| | - Kim van Dun
- Rehabilitation Research Center REVAL, UHasselt, Hasselt, Belgium
| | - Michael Adamaszek
- Clinical and Cognitive Neurorehabilitation, Center of Neurology and Neurorehabilitation, Klinik Bavaria Kreischa, An der Wolfsschlucht 1-2, 01703 Kreischa, Germany
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, 6000 Charleroi, Belgium
- Department of Neurosciences, University of Mons, 7000 Mons, Belgium
| | - Marcella Masciullo
- SPInal REhabilitation Lab (SPIRE), IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Marco Molinari
- Neuro-Robot Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | | | | | - Richard B. Ivry
- Department of Psychology, University of California, Berkeley, CA USA
| | - Jeremy D. Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
30
|
Siciliano L, Clausi S. Implicit vs. Explicit Emotion Processing in Autism Spectrum Disorders: An Opinion on the Role of the Cerebellum. Front Psychol 2020; 11:96. [PMID: 32082228 PMCID: PMC7005590 DOI: 10.3389/fpsyg.2020.00096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/14/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
- Libera Siciliano
- PhD Program in Behavioral Neuroscience, "Sapienza" University of Rome, Rome, Italy
| | - Silvia Clausi
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
31
|
Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, Molinari M, Stoodley CJ, Van Overwalle F, Ivry RB, Schmahmann JD. The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper. CEREBELLUM (LONDON, ENGLAND) 2019. [PMID: 31522332 DOI: 10.1007/s12311‐019‐01068‐8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sporadically advocated over the last two centuries, a cerebellar role in cognition and affect has been rigorously established in the past few decades. In the clinical domain, such progress is epitomized by the "cerebellar cognitive affective syndrome" ("CCAS") or "Schmahmann syndrome." Introduced in the late 1990s, CCAS reflects a constellation of cerebellar-induced sequelae, comprising deficits in executive function, visuospatial cognition, emotion-affect, and language, over and above speech. The CCAS thus offers excellent grounds to investigate the functional topography of the cerebellum, and, ultimately, illustrate the precise mechanisms by which the cerebellum modulates cognition and affect. The primary objective of this task force paper is thus to stimulate further research in this area. After providing an up-to-date overview of the fundamental findings on cerebellar neurocognition, the paper substantiates the concept of CCAS with recent evidence from different scientific angles, promotes awareness of the CCAS as a clinical entity, and examines our current insight into the therapeutic options available. The paper finally identifies topics of divergence and outstanding questions for further research.
Collapse
Affiliation(s)
| | - Kim van Dun
- Rehabilitation Research Center REVAL, UHasselt, Hasselt, Belgium
| | - Michael Adamaszek
- Clinical and Cognitive Neurorehabilitation, Center of Neurology and Neurorehabilitation, Klinik Bavaria Kreischa, An der Wolfsschlucht 1-2, 01703, Kreischa, Germany
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, 6000, Charleroi, Belgium.,Department of Neurosciences, University of Mons, 7000, Mons, Belgium
| | - Marcella Masciullo
- SPInal REhabilitation Lab (SPIRE), IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Marco Molinari
- Neuro-Robot Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | | | | | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Lupo M, Siciliano L, Leggio M. From cerebellar alterations to mood disorders: A systematic review. Neurosci Biobehav Rev 2019; 103:21-28. [PMID: 31195001 DOI: 10.1016/j.neubiorev.2019.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/30/2019] [Accepted: 06/09/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Several studies have shown cerebellar abnormalities during depressive and manic states, although the specific cerebellar role in mood fluctuations remains poorly defined. Therefore, the study of pathologies characterized by frequent mood swings, such as bipolar disorder, is of great interest to investigate the relationship between the cerebellum and mood alterations. METHODS A systematic literature search on the occurrence of mood disorders in patients with cerebellar pathologies (1st research strategy) and on the presence of cerebellar alterations in mood disorders (2nd research strategy) was conducted using the PubMed electronic Internet database. For this systematic review all information was written based on the PRISMA-P statement. RESULTS The results of the 1st research strategy generated 9 articles, and in one of these, a direct correlation between cerebellar damage and the onset of mood disorder was reported. The 2nd research strategy generated 14 articles that were grouped according to the patient's mood phase (manic or depressive) or diagnosis (bipolar I or bipolar II). CONCLUSIONS The present review suggests that the cerebellum should be considered a key structure involved in the regulation of mood.
Collapse
Affiliation(s)
- Michela Lupo
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179, Rome, Italy.
| | - Libera Siciliano
- Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy.
| | - Maria Leggio
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179, Rome, Italy; Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy.
| |
Collapse
|
33
|
Gold AK, Toomey R. The role of cerebellar impairment in emotion processing: a case study. CEREBELLUM & ATAXIAS 2018; 5:11. [PMID: 30345063 PMCID: PMC6186118 DOI: 10.1186/s40673-018-0090-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
Background Though the cerebellum’s role in visuospatial and fine motor functioning has been well-established over the last several years, the role of the cerebellum in emotion has more recently been a focus of scientific inquiry. Cerebellar impairment has been associated with deficits in emotional processing and is linked to a wide range of clinical behaviors including social withdrawal, blunted emotional expression, and impulsivity. In addition, cerebellar impairments have been associated with the onset of psychiatric disorders including major depressive disorder and, more recently, obsessive-compulsive disorder. Case presentation We describe a 32-year-old patient who presented to our clinic for a neuropsychological evaluation with a childhood history of a cerebellar brain tumor and detail-oriented, perfectionistic tendencies. Neuropsychological assessment data revealed impairments in visuospatial processing and in fine motor skills, likely stemming from the cerebellar tumor. Clinical assessment led to a diagnosis of obsessive-compulsive personality disorder and also suggested impairments in socio-emotional processing. Conclusions Our findings lend support to recent data which has suggested the impact of cerebellar impairment on emotional processing and related domains. Unlike many previous studies, however, our report focuses on an individual who, despite having marked impairments in certain domains, demonstrates a high level of functioning. We believe that this report holds important clinical relevance for proper diagnosis of cerebellar-related impairment and for the necessity of early intervention.
Collapse
Affiliation(s)
- Alexandra K Gold
- Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Avenue, 2nd Floor, Boston, MA USA
| | - Rosemary Toomey
- Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Avenue, 2nd Floor, Boston, MA USA
| |
Collapse
|