1
|
Godoy DA, Fossi F, Robba C. Neuroworsening in Moderate Traumatic Brain Injury. Neurol Clin 2025; 43:51-63. [PMID: 39547741 DOI: 10.1016/j.ncl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Patients with moderate traumatic brain injury (TBI) are at high risk for developing intracerebral complications and in particular neuroworsening (NW). NW can be unpredictable and may be an important risk factor for poor neurologic outcome and for increased mortality. NW is often a medical and surgical emergency, and it is, therefore, fundamental to identify patients at risk early because they require strict neuromonitoring and repeated neuroimaging. So far, there is no standardized and validated definition of NW. In this review, we aim to discuss the definition, risk factors, and management of patients with moderate TBI at high risk of NW.
Collapse
Affiliation(s)
- Daniel Agustin Godoy
- Neurointensive Care Unit, Sanatorio Pasteur Medical Center, Catamarca, Argentina
| | - Francesca Fossi
- Neurointensive Care Unit, Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Italy; Neurological and General Intensive Care, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, Genova 16100, Italy.
| |
Collapse
|
2
|
Wofford KL, Browne KD, Loane DJ, Meaney DF, Cullen DK. Peripheral immune cell dysregulation following diffuse traumatic brain injury in pigs. J Neuroinflammation 2024; 21:324. [PMID: 39696519 DOI: 10.1186/s12974-024-03317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Traumatic brain injury (TBI) is a global health problem affecting millions of individuals annually, potentially resulting in persistent neuropathology, chronic neurological deficits, and death. However, TBI not only affects neural tissue, but also affects the peripheral immune system's homeostasis and physiology. TBI disrupts the balanced signaling between the brain and the peripheral organs, resulting in immunodysregulation and increasing infection susceptibility. Indeed, secondary infections following TBI worsen neurological outcomes and are a major source of mortality and morbidity. Despite the compelling link between the damaged brain and peripheral immune functionality, little is known about how injury severity affects the peripheral immune system in closed-head diffuse TBI, the most common clinical presentation including all concussions. Therefore, we characterized peripheral blood mononuclear cells (PBMCs) and plasma changes over time and across injury severity using an established large-animal TBI model of closed-head, non-impact diffuse rotational acceleration in pigs. Across all timepoints and injury levels, we did not detect any changes to plasma cytokine concentrations. However, changes to the PBMCs were detectable and much more robust. We observed the concentration and physiology of circulating PBMCs changed in an injury severity-dependent manner, with most cellular changes occurring within the first 10 days following a high rotational velocity injury. Here, we report changes in the concentrations of myeloid and T cells, changes in PBMC composition, and changes in phagocytic clearance over time. Together, these data suggest that following a diffuse brain injury in a clinically relevant large-animal TBI model, the immune system exhibits perturbations that are detectable into the subacute timeframe. These findings invite future investigations into therapeutic interventions targeting peripheral immunity and the potential for peripheral blood cellular characterization as a diagnostic tool.
Collapse
Affiliation(s)
- Kathryn L Wofford
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Kevin D Browne
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - David J Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA, 19104, USA.
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Kurt ŞZE. Comments on "The role of serum adropin in determining the clinical outcomes of patients with traumatic brain injury: a case-control study". REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20240999. [PMID: 39383397 PMCID: PMC11460608 DOI: 10.1590/1806-9282.20240999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 10/11/2024]
Affiliation(s)
- Şebnem Zeynep Eke Kurt
- University of Health Sciences, Taksim Training and Research Hospital, Department of Emergency Medicine – İstanbul, Turkey
| |
Collapse
|
4
|
Collazos KSG, Alvarez G, Alamian A, Behar-Zusman V, Downs CA. Neuroinflammatory Biomarkers and Their Associations With Cognitive, Affective, and Functional Outcomes 3 to 12 Months After a Traumatic Brain Injury: A Pilot Study. J Head Trauma Rehabil 2024:00001199-990000000-00197. [PMID: 39293076 DOI: 10.1097/htr.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
BACKGROUND Neuroinflammation is an important feature of traumatic brain injury (TBI) that remains poorly understood in the 3- to 12-month period post-TBI. OBJECTIVE The purpose of our pilot study was to examine the relationships between biomarkers of neuroinflammation and functional outcomes in TBI patients 3 to 12 months postinjury. METHODS TBI patients (n = 36) 3 to 12 months post-TBI were recruited from a South Florida TBI clinic from May 2022 to June 2023. The Disability Rating Scale, Satisfaction with Life Scale, NIH Toolbox Sorting Working Memory, Neuro-Quality of Life Cognitive Function, Anxiety, Depression, and Sleep assessments were performed. Multiple plasma biomarkers were assayed. Analysis of variance was used to compare between-group results. Linear regression was performed to analyze relationships between biomarkers and outcomes. RESULTS Brain-derived neurotrophic factor concentrations were higher as postinjury time interval increased and were associated with cognitive battery outcomes. S-100β and glial fibrillary acidic protein were associated with anxiety score and hospital length of stay; S-100β was also associated with depression. Interleukin 6 was associated with cognitive function score and time since injury. CONCLUSIONS We found S-100β, glial fibrillary acidic protein, Interleukin 6, and brain-derived neurotrophic factor to play a larger role in the TBI recovery period than other biomarkers examined. Clinicians should continue to monitor for symptoms post-TBI, as the neuroinflammatory process continues to persist even into the later rehabilitation stage.
Collapse
Affiliation(s)
- Kathryn S G Collazos
- Author Affiliations: Department of Nursing, School of Nursing and Health Studies, University of Miami, Coral Gables, Florida (Dr Collazos, Dr Alamian, Dr Victoria, and Dr Downs); and Department of Physical Medicine & Rehabilitation, Miller School of Medicine, University of Miami, Miami, Florida (Dr Alvarez)
| | | | | | | | | |
Collapse
|
5
|
Nessel I, Whiley L, Dyall SC, Michael-Titus AT. A plasma lipid signature in acute human traumatic brain injury: Link with neuronal injury and inflammation markers. J Cereb Blood Flow Metab 2024:271678X241276951. [PMID: 39188133 PMCID: PMC11572080 DOI: 10.1177/0271678x241276951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
Traumatic brain injury (TBI) leads to major membrane lipid breakdown. We investigated plasma lipids over 3 days post-TBI, to identify a signature of acute human TBI and assess its correlation with neuronal injury and inflammation. Plasma from patients with TBI (Abbreviated Injury Scale (AIS)3 - serious injury, n = 5; AIS4 - severe injury, n = 8), and controls (n = 13) was analysed for lipidomic profile, neurofilament light (NFL) and cytokines, and the omega-3 index was measured in red blood cells. A lipid signature separated TBI from controls, at 24 and 72 h. Major species driving the separation were: lysophosphatidylcholine (LPC), phosphatidylcholine (PC) and hexosylceramide (HexCer). Docosahexaenoic acid (DHA, 22:6) and LPC (0:0/22:6) decreased post-injury. NFL levels were increased at 24 and 72 h post-injury in AIS4 TBI vs. controls. Interleukin (IL-)6, IL-2 and IL-13 were elevated at 24 h in AIS4 patients vs. controls. NFL and IL-6 were negatively correlated with several lipids. The omega-3 index at admission was low in all patients (controls: 4.3 ± 1.1% and TBI: 4.0 ± 1.1%) and did not change significantly over 3 days post-injury. We have identified specific lipid changes, correlated with markers of injury and inflammation in acute TBI. These observations could inform future lipid-based therapeutic approaches.
Collapse
Affiliation(s)
- Isabell Nessel
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Luke Whiley
- Health Futures Institute, Murdoch University, Murdoch, Australia
| | - Simon C Dyall
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Shu X, Cai F, Li W, Shen H. Copeptin as a diagnostic and prognostic biomarker in pediatric diseases. Clin Chem Lab Med 2024; 0:cclm-2024-0839. [PMID: 39165044 DOI: 10.1515/cclm-2024-0839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Arginine vasopressin (AVP) plays a main role in maintaining the homeostasis of fluid balance and vascular tone and in regulating the endocrine stress response in response to osmotic, hemodynamic and stress stimuli. However, the difficulty in measuring AVP limits its clinical application. Copeptin, the C-terminal part of the AVP precursor, is released in an equimolar concentration mode with AVP from the pituitary but is more stable and simple to measure. Therefore, copeptin has emerged as a promising surrogate marker of AVP with excellent potential for the diagnosis, differentiation and prognosis of various diseases in recent decades. However, its application requires further validation, especially in the pediatric population. This review focuses on the clinical value of copeptin in different pediatric diseases and the prospects for its application as a potential biomarker.
Collapse
Affiliation(s)
- Xiaoli Shu
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Fengqing Cai
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Wei Li
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Hongqiang Shen
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| |
Collapse
|
7
|
Martin FP, Goronflot T, Moyer JD, Huet O, Asehnoune K, Cinotti R, Gourraud PA, Roquilly A. Predictive Models of Long-Term Outcome in Patients with Moderate to Severe Traumatic Brain Injury are Biased Toward Mortality Prediction. Neurocrit Care 2024:10.1007/s12028-024-02082-3. [PMID: 39138720 DOI: 10.1007/s12028-024-02082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND The prognostication of long-term functional outcomes remains challenging in patients with traumatic brain injury (TBI). Our aim was to demonstrate that intensive care unit (ICU) variables are not efficient to predict 6-month functional outcome in survivors with moderate to severe TBI (msTBI) but are mostly associated with mortality, which leads to a mortality bias for models predicting a composite outcome of mortality and severe disability. METHODS We analyzed the data from the multicenter randomized controlled Continuous Hyperosmolar Therapy in Traumatic Brain-Injured Patients trial and developed predictive models using machine learning methods and baseline characteristics and predictors collected during ICU stay. We compared our models' predictions of 6-month binary Glasgow Outcome Scale extended (GOS-E) score in all patients with msTBI (unfavorable GOS-E 1-4 vs. favorable GOS-E 5-8) with mortality (GOS-E 1 vs. GOS-E 2-8) and binary functional outcome in survivors with msTBI (severe disability GOS-E 2-4 vs. moderate to no disability GOS-E 5-8). We investigated the link between ICU variables and long-term functional outcomes in survivors with msTBI using predictive modeling and factor analysis of mixed data and validated our hypotheses on the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) model. RESULTS Based on data from 370 patients with msTBI and classically used ICU variables, the prediction of the 6-month outcome in survivors was inefficient (mean area under the receiver operating characteristic 0.52). Using factor analysis of mixed data graph, we demonstrated that high-variance ICU variables were not associated with outcome in survivors with msTBI (p = 0.15 for dimension 1, p = 0.53 for dimension 2) but mostly with mortality (p < 0.001 for dimension 1), leading to a mortality bias for models predicting a composite outcome of mortality and severe disability. We finally identified this mortality bias in the IMPACT model. CONCLUSIONS We demonstrated using machine learning-based predictive models that classically used ICU variables are strongly associated with mortality but not with 6-month outcome in survivors with msTBI, leading to a mortality bias when predicting a composite outcome of mortality and severe disability.
Collapse
Affiliation(s)
- Florian P Martin
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1064, Center for Research in Transplantation and Translational Immunology (CR2TI), 22 Boulevard Bénoni Goullin, 44200, Nantes, France.
- Department of Anesthesiology and Surgical Intensive Care Unit, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France.
| | - Thomas Goronflot
- CHU Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique Des Données, INSERM, Nantes Université, Nantes, France
| | - Jean D Moyer
- Department of Anesthesia and Critical Care, Départements Médico-Universitaires Parabol, Assistance Publique-Hôpitaux de Paris Nord, Beaujon Hospital, Paris, France
| | - Olivier Huet
- Anesthesia and Intensive Care Unit, CHU Brest, Brest, France
| | - Karim Asehnoune
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1064, Center for Research in Transplantation and Translational Immunology (CR2TI), 22 Boulevard Bénoni Goullin, 44200, Nantes, France
- Department of Anesthesiology and Surgical Intensive Care Unit, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Raphaël Cinotti
- Department of Anesthesiology and Surgical Intensive Care Unit, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
- Methods in Patient-Centered Outcomes and Healthy Research (SPHERE), INSERM, UMR 1246, Nantes Université, Université de Tours, Nantes, France
| | - Pierre A Gourraud
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1064, Center for Research in Transplantation and Translational Immunology (CR2TI), 22 Boulevard Bénoni Goullin, 44200, Nantes, France
- CHU Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique Des Données, INSERM, Nantes Université, Nantes, France
| | - Antoine Roquilly
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1064, Center for Research in Transplantation and Translational Immunology (CR2TI), 22 Boulevard Bénoni Goullin, 44200, Nantes, France
- Department of Anesthesiology and Surgical Intensive Care Unit, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| |
Collapse
|
8
|
Beard K, Gauff AK, Pennington AM, Marion DW, Smith J, Sloley S. Biofluid, Imaging, Physiological, and Functional Biomarkers of Mild Traumatic Brain Injury and Subconcussive Head Impacts. J Neurotrauma 2024. [PMID: 38943278 DOI: 10.1089/neu.2024.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
Post-concussive symptoms are frequently reported by individuals who sustain mild traumatic brain injuries (mTBIs) and subconcussive head impacts, even when evidence of intracranial pathology is lacking. Current strategies used to evaluate head injuries, which primarily rely on self-report, have a limited ability to predict the incidence, severity, and duration of post-concussive symptoms that will develop in an individual patient. In addition, these self-report measures have little association with the underlying mechanisms of pathology that may contribute to persisting symptoms, impeding advancement in precision treatment for TBI. Emerging evidence suggests that biofluid, imaging, physiological, and functional biomarkers associated with mTBI and subconcussive head impacts may address these shortcomings by providing more objective measures of injury severity and underlying pathology. Interest in the use of biomarker data has rapidly accelerated, which is reflected by the recent efforts of organizations such as the National Institute of Neurological Disorders and Stroke and the National Academies of Sciences, Engineering, and Medicine to prioritize the collection of biomarker data during TBI characterization in acute-care settings. Thus, this review aims to describe recent progress in the identification and development of biomarkers of mTBI and subconcussive head impacts and to discuss important considerations for the implementation of these biomarkers in clinical practice.
Collapse
Affiliation(s)
- Kryshawna Beard
- General Dynamics Information Technology Fairfax, Falls Church, Virginia, USA
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Amina K Gauff
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Xynergie Federal, LLC, San Juan, United States Minor Outlying Islands
| | - Ashley M Pennington
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Xynergie Federal, LLC, San Juan, United States Minor Outlying Islands
| | - Donald W Marion
- General Dynamics Information Technology Fairfax, Falls Church, Virginia, USA
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Johanna Smith
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Stephanie Sloley
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| |
Collapse
|
9
|
Karimova D, Rostami E, Chubarev VN, Tarasov VV, Schiöth HB, Rask-Andersen M. Advances in development of biomarkers for brain damage and ischemia. Mol Biol Rep 2024; 51:803. [PMID: 39001884 PMCID: PMC11246271 DOI: 10.1007/s11033-024-09708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/06/2024] [Indexed: 07/15/2024]
Abstract
Acquired brain injury is an urgent situation that requires rapid diagnosis and treatment. Magnetic resonance imaging (MRI) and computed tomography (CT) are required for accurate diagnosis. However, these methods are costly and require substantial infrastructure and specialized staff. Circulatory biomarkers of acute brain injury may help in the management of patients with acute cerebrovascular events and prevent poor outcome and mortality. The purpose of this review is to provide an overview of the development of potential biomarkers of brain damage to increase diagnostic possibilities. For this purpose, we searched the PubMed database of studies on the diagnostic potential of brain injury biomarkers. We also accessed information from Clinicaltrials.gov to identify any clinical trials of biomarker measurements for the diagnosis of brain damage. In total, we present 41 proteins, enzymes and hormones that have been considered as biomarkers for brain injury, of which 20 have been studied in clinical trials. Several microRNAs have also emerged as potential clinical biomarkers for early diagnosis. Combining multiple biomarkers in a panel, along with other parameters, is yielding promising outcomes.
Collapse
Affiliation(s)
- Diana Karimova
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala, University, Uppsala, Sweden
| | - Elham Rostami
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Vladimir N Chubarev
- Advanced Molecular Technology, Limited Liable Company (LLC), Moscow, 354340, Russia
| | - Vadim V Tarasov
- Advanced Molecular Technology, Limited Liable Company (LLC), Moscow, 354340, Russia
| | - Helgi B Schiöth
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala, University, Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Kaaber IA, Lesbo M, Wichmann TO, Olsen DA, Rasmussen MM, Brink O, Borris LC, Hviid CVB. Admission levels of serum biomarkers have additive and cumulative prognostic value in traumatic brain injury. Sci Rep 2024; 14:14139. [PMID: 38898030 PMCID: PMC11187066 DOI: 10.1038/s41598-024-64125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Elevated levels of CNS-derived serum proteins are associated with poor outcome in traumatic brain injury (TBI), but the value of adding acute serum biomarker levels to common clinical outcome predictors lacks evaluation. We analyzed admission serum samples for Total-Tau (T-Tau), Neurofilament light chain (Nfl), Glial fibrillary acidic protein (GFAP), and Ubiquitin C-terminal hydrolase L1 (UCHL1) in a cohort of 396 trauma patients including 240 patients with TBI. We assessed the independent association of biomarkers with 1-year mortality and 6-12 months Glasgow Outcome Scale Extended (GOSE) score, as well as the additive and cumulative value of biomarkers on Glasgow Coma Scale (GCS) and Marshall Score for outcome prediction. Nfl and T-Tau levels were independently associated with outcome (OR: Nfl = 1.65, p = 0.01; T-Tau = 1.99, p < 0.01). Nfl or T-Tau improved outcome prediction by GCS (Wald Chi, Nfl = 6.8-8.8, p < 0.01; T-Tau 7.2-11.3, p < 0.01) and the Marshall score (Wald Chi, Nfl = 16.2-17.5, p < 0.01; T-Tau 8.7-12.4, p < 0.01). Adding T-Tau atop Nfl further improved outcome prediction in majority of tested models (Wald Chi range 3.8-9.4, p ≤ 0.05). Our data suggest that acute levels of serum biomarkers are independently associated with outcome after TBI and add outcome predictive value to commonly used clinical scores.
Collapse
Affiliation(s)
- Ida A Kaaber
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maj Lesbo
- Department of Ortopedic Surgery, Viborg Regional Hospital, Viborg, Denmark
| | - Thea O Wichmann
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Dorte Aa Olsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Mikkel M Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Brink
- Department of Ortopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Lars C Borris
- Department of Ortopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Claus V B Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark.
| |
Collapse
|
11
|
Kocik VI, Dengler BA, Rizzo JA, Ma Moran M, Willis AM, April MD, Schauer SG. A Narrative Review of Existing and Developing Biomarkers in Acute Traumatic Brain Injury for Potential Military Deployed Use. Mil Med 2024; 189:e1374-e1380. [PMID: 37995274 DOI: 10.1093/milmed/usad433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Indexed: 11/25/2023] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in both adult civilian and military populations. Currently, diagnostic and prognostic methods are limited to imaging and clinical findings. Biomarker measurements offer a potential method to assess head injuries and help predict outcomes, which has a potential benefit to the military, particularly in the deployed setting where imaging modalities are limited. We determine how biomarkers such as ubiquitin C-terminal hydrolase-L1 (UCH-L1), glial fibrillary acidic protein (GFAP), S100B, neurofilament light chain (NFL), and tau proteins can offer important information to guide the diagnosis, acute management, and prognosis of TBI, specifically in military personnel. MATERIALS AND METHODS We performed a narrative review of peer-reviewed literature using online databases of Google Scholar and PubMed. We included articles published between 1988 and 2022. RESULTS We screened a total of 73 sources finding a total of 39 original research studies that met inclusion for this review. We found five studies that focused on GFAP, four studies that focused on UCH-L1, eight studies that focused on tau proteins, six studies that focused on NFL, and eight studies that focused on S100B. The remainder of the studies included more than one of the biomarkers of interest. CONCLUSIONS TBI occurs frequently in the military and civilian settings with limited methods to diagnose and prognosticate outcomes. We highlighted several promising biomarkers for these purposes including S100B, UCH-L1, NFL, GFAP, and tau proteins. S100B and UCH-L1 appear to have the strongest data to date, but further research is necessary. The robust data that explain the optimal timing and, more importantly, trending of these biomarker measurements are necessary before widespread application.
Collapse
Affiliation(s)
| | - Bradley A Dengler
- Walter Reed National Military Medical Center, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Julie A Rizzo
- Brooke Army Medical Center, JBSA Fort Sam Houston, TX, USA
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | - Michael D April
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- 14th Field Hospital, Fort Stewart, GA 31314, USA
| | - Steven G Schauer
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Departments of Anesthesiology and Emergency Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Center for Combat and Battlefield (COMBAT) Research, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Lange RT, Gill JM, Lippa SM, Hungerford L, Walker T, Kennedy J, Brickell TA, French LM. Elevated Serum Tau and UCHL-1 Concentrations Within 12 Months of Injury Predict Neurobehavioral Functioning 2 or More Years Following Traumatic Brain Injury: A Longitudinal Study. J Head Trauma Rehabil 2024; 39:196-206. [PMID: 37335195 DOI: 10.1097/htr.0000000000000877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
OBJECTIVE Blood-based biomarkers have received considerable attention for their diagnostic and prognostic value in the acute and postacute period following traumatic brain injury (TBI). The purpose of this study was to examine whether blood-based biomarker concentrations within the first 12 months of TBI can predict neurobehavioral outcome in the chronic phase of the recovery trajectory. SETTING Inpatient and outpatient wards from 3 military medical treatment facilities. PARTICIPANTS A total of 161 service members and veterans classified into 3 groups: ( a ) uncomplicated mild TBI (MTBI; n = 37), ( b ) complicated mild, moderate, severe, penetrating TBI combined (STBI; n = 46), and ( c ) controls (CTRL; n = 78). DESIGN Prospective longitudinal. MAIN MEASURES Participants completed 6 scales from the Traumatic Brain Injury Quality of Life (ie, Anger, Anxiety, Depression, Fatigue, Headaches, and Cognitive Concerns) within 12 months (baseline) and at 2 or more years (follow-up) post-injury. Serum concentrations of tau, neurofilament light, glial fibrillary acidic protein, and UCHL-1 at baseline were measured using SIMOA. RESULTS Baseline tau was associated with worse anger, anxiety, and depression in the STBI group at follow-up ( R2 = 0.101-0.127), and worse anxiety in the MTBI group ( R2 = 0.210). Baseline ubiquitin carboxyl-terminal hydrolase L1 (UCHL-1) was associated with worse anxiety and depression at follow-up in both the MTBI and STBI groups ( R2 Δ = 0.143-0.207), and worse cognitive concerns in the MTBI group ( R2 Δ = 0.223). CONCLUSIONS A blood-based panel including these biomarkers could be a useful tool for identifying individuals at risk of poor outcome following TBI.
Collapse
Affiliation(s)
- Rael T Lange
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland (Drs Lange, Hungerford, Kennedy, Brickell, and French and Mr Walker); Walter Reed National Military Medical Center, Bethesda, Maryland (Drs Lange, Lippa, Brickell, and French); National Intrepid Center of Excellence, Bethesda, Maryland (Drs Lange, Lippa, Brickell, and French); General Dynamics Information Technology, Falls Church, Virginia (Drs Lange, Hungerford, Kennedy, and Brickell); Department of Psychiatry, University of British Columbia, Vancouver, Canada (Dr Lange); Department of Physical Medicine and Rehabilitation, University of the Health Sciences, Bethesda, Maryland (Drs Lange, Brickell, and French); Department of Neuroscience, University of the Health Sciences, Bethesda, Maryland (Dr Lippa); San Antonio Military Medical Center, San Antonio, Texas (Dr Kennedy); Naval Medical Center San Diego, San Diego, California (Dr Hungerford and Mr Walker); and Johns Hopkins University, Baltimore, Maryland (Dr Gill)
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Silvestro S, Raffaele I, Quartarone A, Mazzon E. Innovative Insights into Traumatic Brain Injuries: Biomarkers and New Pharmacological Targets. Int J Mol Sci 2024; 25:2372. [PMID: 38397046 PMCID: PMC10889179 DOI: 10.3390/ijms25042372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
A traumatic brain injury (TBI) is a major health issue affecting many people across the world, causing significant morbidity and mortality. TBIs often have long-lasting effects, disrupting daily life and functionality. They cause two types of damage to the brain: primary and secondary. Secondary damage is particularly critical as it involves complex processes unfolding after the initial injury. These processes can lead to cell damage and death in the brain. Understanding how these processes damage the brain is crucial for finding new treatments. This review examines a wide range of literature from 2021 to 2023, focusing on biomarkers and molecular mechanisms in TBIs to pinpoint therapeutic advancements. Baseline levels of biomarkers, including neurofilament light chain (NF-L), ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), Tau, and glial fibrillary acidic protein (GFAP) in TBI, have demonstrated prognostic value for cognitive outcomes, laying the groundwork for personalized treatment strategies. In terms of pharmacological progress, the most promising approaches currently target neuroinflammation, oxidative stress, and apoptotic mechanisms. Agents that can modulate these pathways offer the potential to reduce a TBI's impact and aid in neurological rehabilitation. Future research is poised to refine these therapeutic approaches, potentially revolutionizing TBI treatment.
Collapse
Affiliation(s)
| | | | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Via Provinciale Palermo, SS 113, Contrada Casazza, 98124 Messina, Italy; (S.S.); (I.R.); (A.Q.)
| |
Collapse
|
14
|
Tang TZ, Zhao Y, Agarwal D, Tharzeen A, Patrikeev I, Zhang Y, DeJesus J, Bossmann SH, Natarajan B, Motamedi M, Szczesny B. Serum amyloid A and mitochondrial DNA in extracellular vesicles are novel markers for detecting traumatic brain injury in a mouse model. iScience 2024; 27:108932. [PMID: 38323004 PMCID: PMC10844832 DOI: 10.1016/j.isci.2024.108932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
This study investigates the potential use of circulating extracellular vesicles' (EVs) DNA and protein content as biomarkers for traumatic brain injury (TBI) in a mouse model. Despite an overall decrease in EVs count during the acute phase, there was an increased presence of exosomes (CD63+ EVs) during acute and an increase in microvesicles derived from microglia/macrophages (CD11b+ EVs) and astrocytes (ACSA-2+ EVs) in post-acute TBI phases, respectively. Notably, mtDNA exhibited an immediate elevation post-injury. Neuronal (NFL) and microglial (Iba1) markers increased in the acute, while the astrocyte marker (GFAP) increased in post-acute TBI phases. Novel protein biomarkers (SAA, Hp, VWF, CFD, CBG) specific to different TBI phases were also identified. Biostatistical modeling and machine learning identified mtDNA and SAA as decisive markers for TBI detection. These findings emphasize the importance of profiling EVs' content and their dynamic release as an innovative diagnostic approach for TBI in liquid biopsies.
Collapse
Affiliation(s)
- Tony Z. Tang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Deepesh Agarwal
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Aabila Tharzeen
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Igor Patrikeev
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuanyi Zhang
- Department of Office of Biostatistics, University of Texas Medical Branch, Galveston, TX, USA
| | - Jana DeJesus
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Stefan H. Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Bartosz Szczesny
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
15
|
Edwards KA, Lange RT, Lippa SM, Brickell TA, Gill JM, French LM. Serum GFAP, NfL, and tau concentrations are associated with worse neurobehavioral functioning following mild, moderate, and severe TBI: a cross-sectional multiple-cohort study. Front Neurol 2024; 14:1223960. [PMID: 38292036 PMCID: PMC10826119 DOI: 10.3389/fneur.2023.1223960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/05/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction The purpose of this study was to examine whether blood-based biomarkers associate with neurobehavioral functioning at three time points following traumatic brain injury (TBI). Materials and methods Participants were 328 United States service members and veterans (SMVs) prospectively enrolled in the Defense and Veterans Brain Injury Center-Traumatic Brain Injury Center of Excellence (DVBIC-TBICoE) 15-Year Longitudinal TBI Study, recruited into three groups: uncomplicated mild TBI (MTBI, n = 155); complicated mild, moderate, severe TBI combined (STBI, n = 97); non-injured controls (NIC, n = 76). Participants were further divided into three cohorts based on time since injury (≤12 months, 3-5 years, and 8-10 years). Participants completed the Minnesota Multiphasic Personality Inventory-2-Restructured Format (MMPI-2-RF) and underwent blood draw to measure serum concentrations of glial fibrillary acidic protein (GFAP), neurofilament light (NfL), and tau. A total of 11 MMPI-2-RF scales were examined (e.g., depression, anxiety, anger, somatic, cognitive symptoms). Stepwise hierarchical regression models were conducted within each group. Results Significant associations were found between biomarkers and MMPI-2-RF scales (all p < 0.05; R2Δ > 0.10). GFAP was inversely related to (a) neurological complaints in the MTBI group at ≤12 months, (b) demoralization, anger proneness in the STBI group at ≤12 months, and (c) head pain complaints in the STBI group at 8-10 years. NfL was (a) related to low positive emotions in the NIC group; and inversely related to (b) demoralization, somatic complaints, neurological complaints, cognitive complaints in the MTBI group at ≤12 months, (c) demoralization in the STBI group at ≤12 months, and (d) demoralization, head pain complaints, stress/worry in the STBI group at 3-5 years. In the STBI group, there were meaningful findings (R2Δ > 0.10) for tau, NFL, and GFAP that did not reach statistical significance. Discussion Results indicate worse scores on some MMPI-2-RF scales (e.g., depression, stress/worry, neurological and head pain complaints) were associated with lower concentrations of serum GFAP, NfL, and tau in the sub-acute and chronic phase of the recovery trajectory up to 5 years post-injury, with a reverse trend observed at 8-10 years. Longitudinal studies are needed to help elucidate any patterns of association between blood-based biomarkers and neurobehavioral outcome over the recovery trajectory following TBI.
Collapse
Affiliation(s)
- Katie A. Edwards
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
| | - Rael T. Lange
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, United States
- Walter Reed National Military Medical Center, Bethesda, MD, United States
- National Intrepid Center of Excellence, Bethesda, MD, United States
- General Dynamics Information Technology, Silver Spring, MD, United States
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Sara M. Lippa
- Walter Reed National Military Medical Center, Bethesda, MD, United States
- National Intrepid Center of Excellence, Bethesda, MD, United States
- Department of Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Tracey A. Brickell
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, United States
- Walter Reed National Military Medical Center, Bethesda, MD, United States
- National Intrepid Center of Excellence, Bethesda, MD, United States
- General Dynamics Information Technology, Silver Spring, MD, United States
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jessica M. Gill
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
| | - Louis M. French
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, United States
- Walter Reed National Military Medical Center, Bethesda, MD, United States
- National Intrepid Center of Excellence, Bethesda, MD, United States
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
16
|
Landvater J, Kim S, Caswell K, Kwon C, Odafe E, Roe G, Tripathi A, Vukovics C, Wang J, Ryan K, Cocozza V, Brock M, Tchopev Z, Tonkin B, Capaldi V, Collen J, Creamer J, Irfan M, Wickwire EM, Williams S, Werner JK. Traumatic brain injury and sleep in military and veteran populations: A literature review. NeuroRehabilitation 2024; 55:245-270. [PMID: 39121144 PMCID: PMC11613026 DOI: 10.3233/nre-230380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/12/2024] [Indexed: 08/11/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a hallmark of wartime injury and is related to numerous sleep wake disorders (SWD), which persist long term in veterans. Current knowledge gaps in pathophysiology have hindered advances in diagnosis and treatment. OBJECTIVE We reviewed TBI SWD pathophysiology, comorbidities, diagnosis and treatment that have emerged over the past two decades. METHODS We conducted a literature review of English language publications evaluating sleep disorders (obstructive sleep apnea, insomnia, hypersomnia, parasomnias, restless legs syndrome and periodic limb movement disorder) and TBI published since 2000. We excluded studies that were not specifically evaluating TBI populations. RESULTS Highlighted areas of interest and knowledge gaps were identified in TBI pathophysiology and mechanisms of sleep disruption, a comparison of TBI SWD and post-traumatic stress disorder SWD. The role of TBI and glymphatic biomarkers and management strategies for TBI SWD will also be discussed. CONCLUSION Our understanding of the pathophysiologic underpinnings of TBI and sleep health, particularly at the basic science level, is limited. Developing an understanding of biomarkers, neuroimaging, and mixed-methods research in comorbid TBI SWD holds the greatest promise to advance our ability to diagnose and monitor response to therapy in this vulnerable population.
Collapse
Affiliation(s)
- Jeremy Landvater
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sharon Kim
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Keenan Caswell
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Caroline Kwon
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Emamoke Odafe
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Grace Roe
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ananya Tripathi
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Jonathan Wang
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Keith Ryan
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Matthew Brock
- Wilford Hall Ambulatory Surgical Center, San Antonio, TX, USA
| | - Zahari Tchopev
- Wilford Hall Ambulatory Surgical Center, San Antonio, TX, USA
| | - Brionn Tonkin
- University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Administration Medical Center, Minneapolis, MN, USA
| | - Vincent Capaldi
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jacob Collen
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Muna Irfan
- University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Administration Medical Center, Minneapolis, MN, USA
| | - Emerson M. Wickwire
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Scott Williams
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Defense Health Headquarters, Falls Church, VA, USA
| | - J. Kent Werner
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
17
|
Freeman-Jones E, Miller WH, Work LM, Fullerton JL. Polypathologies and Animal Models of Traumatic Brain Injury. Brain Sci 2023; 13:1709. [PMID: 38137157 PMCID: PMC10741988 DOI: 10.3390/brainsci13121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Traumatic brain injury (TBI) is an important health issue for the worldwide population, as it causes long-term pathological consequences for a diverse group of individuals. We are yet to fully elucidate the significance of TBI polypathologies, such as neuroinflammation and tau hyperphosphorylation, and their contribution to the development of chronic traumatic encephalopathy (CTE) and other neurological conditions. To advance our understanding of TBI, it is necessary to replicate TBI in preclinical models. Commonly used animal models include the weight drop model; these methods model human TBI in various ways and in different animal species. However, animal models have not demonstrated their clinical utility for identifying therapeutic interventions. Many interventions that were successful in improving outcomes for animal models did not translate into clinical benefit for patients. It is important to review current animal models and discuss their strengths and limitations within a TBI context. Modelling human TBI in animals encounters numerous challenges, yet despite these barriers, the TBI research community is working to overcome these difficulties. Developments include advances in biomarkers, standardising, and refining existing models. This progress will improve our ability to model TBI in animals and, therefore, enhance our understanding of TBI and, potentially, how to treat it.
Collapse
Affiliation(s)
- Erin Freeman-Jones
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G12 8QQ, UK; (E.F.-J.); (W.H.M.)
| | - William H. Miller
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G12 8QQ, UK; (E.F.-J.); (W.H.M.)
| | - Lorraine M. Work
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK;
| | - Josie L. Fullerton
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK;
| |
Collapse
|
18
|
Lee MY, Son M, Lee HH, Kang MG, Yun SJ, Seo HG, Kim Y, Oh BM. Proteomic discovery of prognostic protein biomarkers for persisting problems after mild traumatic brain injury. Sci Rep 2023; 13:19786. [PMID: 37957236 PMCID: PMC10643618 DOI: 10.1038/s41598-023-45965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Some individuals with mild traumatic brain injury (mTBI), also known as concussion, have neuropsychiatric and physical problems that last longer than a few months. Symptoms following mTBI are not only impacted by the kind and severity of the injury but also by the post-injury experience and the individual's responses to it, making the persistence of mTBI particularly difficult to predict. We aimed to identify prognostic blood-based protein biomarkers predicting 6-month outcomes, in light of the clinical course after the injury, in a longitudinal mTBI cohort (N = 42). Among 420 target proteins quantified by multiple-reaction monitoring-mass spectrometry assays of blood samples, 31, 43, and 15 proteins were significantly associated with the poor recovery of neuropsychological symptoms at < 72 h, 1 week, and 1 month after the injury, respectively. Sequential associations among clinical assessments (depressive symptoms and cognitive function) affecting the 6-month outcomes were evaluated. Then, candidate biomarker proteins indirectly affecting the outcome via neuropsychological symptoms were identified. Using the identified proteins, prognostic models that can predict the 6-month outcome of mTBI were developed. These protein biomarkers established in the context of the clinical course of mTBI may have potential for clinical application.
Collapse
Affiliation(s)
- Min-Yong Lee
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Yangpyeong, Korea
| | - Minsoo Son
- Interdisciplinary Program of Bioengineering, Seoul National University College of Engineering, Seoul, Korea
- Mass Spectrometry Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Hyun Haeng Lee
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Rehabilitation Medicine, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, Korea
| | - Min-Gu Kang
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Korea
| | - Seo Jung Yun
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Youngsoo Kim
- Interdisciplinary Program of Bioengineering, Seoul National University College of Engineering, Seoul, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Department of Biomedical Science, School of Medicine, CHA University, Seongnam-si, Kyeonggi-do, Korea.
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Korea.
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Yangpyeong, Korea.
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Korea.
- Institute on Aging, Seoul National University, Seoul, Korea.
| |
Collapse
|
19
|
Hacker D, Jones CA, Yasin E, Preece S, Davies H, Hawkins A, Belli A, Paton E. Cognitive Outcome After Complicated Mild Traumatic Brain Injury: A Literature Review and Meta-Analysis. J Neurotrauma 2023; 40:1995-2014. [PMID: 36964755 DOI: 10.1089/neu.2023.0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Cognitive outcome for mild traumatic brain injury (mTBI) with positive brain imaging (complicated mTBI) was compared with that for mTBI with normal imaging (uncomplicated mTBI) and with moderate to severe TBI, using meta-analysis. Twenty-three studies utilizing objective neurocognitive tests were included in the analysis. At less than 3 months post-injury, complicated mTBI was associated with poorer cognitive outcomes than uncomplicated mTBI, but deficits were not comparable to those with moderate-severe TBI. After 3 months post-injury, a similar pattern was detected. Beyond 3 months, deficits in complicated mTBI relative to those with uncomplicated mTBI were present in processing speed, memory, executive function, and language, although the latter may be the result of reduced semantic fluency. The effect size of deficits in these domains was more marked in moderate-severe TBI. The available data support the use of complicated mTBI as a distinct classification in the prediction of cognitive outcome. The extent of cognitive deficit in complicated mTBI was small and unlikely to cause significant disability. However, patients with complicated mTBI constitute a broad category encompassing individuals who may differ markedly in the nature and extent of intracranial imaging abnormality, and further studies are warranted. Limitations of the available studies include small, selected samples; variations in TBI severity classification; absence of validity ("effort") testing; differing imaging methodology; and lack of long-term follow-up.
Collapse
Affiliation(s)
- David Hacker
- Clinical Neuropsychology Department, and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Christopher A Jones
- School of Psychology, The University of Birmingham, Birmingham, United Kingdom
| | - Eyrsa Yasin
- Clinical Neuropsychology Department, and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Sophie Preece
- Clinical Neuropsychology Department, and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Holly Davies
- Clinical Neuropsychology Department, and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Andrew Hawkins
- Clinical Neuropsychology Department, and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Antonio Belli
- Department of Neurosurgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Emily Paton
- Clinical Neuropsychology Department, and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
20
|
Zhao ZA, Yan L, Wen J, Satyanarayanan SK, Yu F, Lu J, Liu YU, Su H. Cellular and molecular mechanisms in vascular repair after traumatic brain injury: a narrative review. BURNS & TRAUMA 2023; 11:tkad033. [PMID: 37675267 PMCID: PMC10478165 DOI: 10.1093/burnst/tkad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/01/2023] [Accepted: 05/26/2023] [Indexed: 09/08/2023]
Abstract
Traumatic brain injury (TBI) disrupts normal brain function and is associated with high morbidity and fatality rates. TBI is characterized as mild, moderate or severe depending on its severity. The damage may be transient and limited to the dura matter, with only subtle changes in cerebral parenchyma, or life-threatening with obvious focal contusions, hematomas and edema. Blood vessels are often injured in TBI. Even in mild TBI, dysfunctional cerebral vascular repair may result in prolonged symptoms and poor outcomes. Various distinct types of cells participate in vascular repair after TBI. A better understanding of the cellular response and function in vascular repair can facilitate the development of new therapeutic strategies. In this review, we analyzed the mechanism of cerebrovascular impairment and the repercussions following various forms of TBI. We then discussed the role of distinct cell types in the repair of meningeal and parenchyma vasculature following TBI, including endothelial cells, endothelial progenitor cells, pericytes, glial cells (astrocytes and microglia), neurons, myeloid cells (macrophages and monocytes) and meningeal lymphatic endothelial cells. Finally, possible treatment techniques targeting these unique cell types for vascular repair after TBI are discussed.
Collapse
Affiliation(s)
- Zi-Ai Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
- Department of Neurology, General Hospital of Northern Theater Command, 83# Wen-Hua Road, Shenyang 110840, China
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Senthil Kumaran Satyanarayanan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Feng Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yong U Liu
- Laboratory of Neuroimmunology in Health and Disease Institute, Guangzhou First People’s Hospital School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 511400, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
21
|
Toft-Bertelsen TL, Andreassen SN, Rostgaard N, Olsen MH, Norager NH, Capion T, Juhler M, MacAulay N. Distinct Cerebrospinal Fluid Lipid Signature in Patients with Subarachnoid Hemorrhage-Induced Hydrocephalus. Biomedicines 2023; 11:2360. [PMID: 37760800 PMCID: PMC10525923 DOI: 10.3390/biomedicines11092360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Patients with subarachnoid hemorrhage (SAH) may develop posthemorrhagic hydrocephalus (PHH), which is treated with surgical cerebrospinal fluid (CSF) diversion. This diversion is associated with risk of infection and shunt failure. Biomarkers for PHH etiology, CSF dynamics disturbances, and potentially subsequent shunt dependency are therefore in demand. With the recent demonstration of lipid-mediated CSF hypersecretion contributing to PHH, exploration of the CSF lipid signature in relation to brain pathology is of interest. Despite being a relatively new addition to the omic's landscape, lipidomics are increasingly recognized as a tool for biomarker identification, as they provide a comprehensive overview of lipid profiles in biological systems. We here employ an untargeted mass spectroscopy-based platform and reveal the complete lipid profile of cisternal CSF from healthy control subjects and demonstrate its bimodal fluctuation with age. Various classes of lipids, in addition to select individual lipids, were elevated in the ventricular CSF obtained from patients with SAH during placement of an external ventricular drain. The lipidomic signature of the CSF in the patients with SAH suggests dysregulation of the lipids in the CSF in this patient group. Our data thereby reveal possible biomarkers present in a brain pathology with a hemorrhagic event, some of which could be potential future biomarkers for hypersecretion contributing to ventriculomegaly and thus pharmacological targets for pathologies involving disturbed CSF dynamics.
Collapse
Affiliation(s)
| | - Søren Norge Andreassen
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark; (T.L.T.-B.)
| | - Nina Rostgaard
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Markus Harboe Olsen
- Department of Neuroanaesthesiology, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Nicolas H. Norager
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Tenna Capion
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark; (T.L.T.-B.)
| |
Collapse
|
22
|
Ye L, Xu L, Kuang H, Xu X, Xu C. Colloidal gold-based immunochromatographic biosensor for quantitative detection of S100B in serum samples. NANOSCALE HORIZONS 2023; 8:1253-1261. [PMID: 37461392 DOI: 10.1039/d3nh00192j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Traumatic brain injury has become a serious public health problem. Timely detection, diagnosis and treatment of brain injury are closely related to the prognosis of patients, so identification of highly sensitive and specific biochemical markers of brain injury has important clinical value. Currently, the most studied and most promising marker is the protein S100B. In this study, a rapid quantitative biosensor for S100B was established using colloidal gold labeling and double antibody (8C10-6B8) sandwich immunochromatography. The biosensor was capable of quantifying S100B within 15 min, and showed no cross-reactivity with S100A, NSE, GFAP, or PGP9.5. The detection limit was determined to be 4.6 pg mL-1 with a linear range of 0.01-2 ng mL-1. Recovery experiments also indicated that the method had an acceptable accuracy. Moreover, the quantitative colloidal gold assay correlated well with the results of a chemiluminescence immunoassay when testing 40 clinical serum samples. Our developed colloidal gold quantitative immunochromatographic biosensor is a rapid, sensitive, specific and accurate method for the detection of S100B protein in serum, which is useful in the clinic for early diagnosis, as well as assessment of disease progression and prognosis of traumatic brain injury.
Collapse
Affiliation(s)
- Liya Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
23
|
Magatti M, Pischiutta F, Ortolano F, Pasotti A, Caruso E, Cargnoni A, Papait A, Capuzzi F, Zoerle T, Carbonara M, Stocchetti N, Borsa S, Locatelli M, Erba E, Prati D, Silini AR, Zanier ER, Parolini O. Systemic immune response in young and elderly patients after traumatic brain injury. Immun Ageing 2023; 20:41. [PMID: 37573338 PMCID: PMC10422735 DOI: 10.1186/s12979-023-00369-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of death and long-term disability worldwide. In addition to primary brain damage, systemic immune alterations occur, with evidence for dysregulated immune responses in aggravating TBI outcome and complications. However, immune dysfunction following TBI has been only partially understood, especially in the elderly who represent a substantial proportion of TBI patients and worst outcome. Therefore, we aimed to conduct an in-depth immunological characterization of TBI patients, by evaluating both adaptive (T and B lymphocytes) and innate (NK and monocytes) immune cells of peripheral blood mononuclear cells (PBMC) collected acutely (< 48 h) after TBI in young (18-45 yo) and elderly (> 65 yo) patients, compared to age-matched controls, and also the levels of inflammatory biomarkers. RESULTS Our data show that young respond differently than elderly to TBI, highlighting the immune unfavourable status of elderly compared to young patients. While in young only CD4 T lymphocytes are activated by TBI, in elderly both CD4 and CD8 T cells are affected, and are induced to differentiate into subtypes with low cytotoxic activity, such as central memory CD4 T cells and memory precursor effector CD8 T cells. Moreover, TBI enhances the frequency of subsets that have not been previously investigated in TBI, namely the double negative CD27- IgD- and CD38-CD24- B lymphocytes, and CD56dim CD16- NK cells, both in young and elderly patients. TBI reduces the production of pro-inflammatory cytokines TNF-α and IL-6, and the expression of HLA-DM, HLA-DR, CD86/B7-2 in monocytes, suggesting a compromised ability to drive a pro-inflammatory response and to efficiently act as antigen presenting cells. CONCLUSIONS We described the acute immunological response induced by TBI and its relation with injury severity, which could contribute to pathologic evolution and possibly outcome. The focus on age-related immunological differences could help design specific therapeutic interventions based on patients' characteristics.
Collapse
Affiliation(s)
- Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy.
| | - Francesca Pischiutta
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Fabrizio Ortolano
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Pasotti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Enrico Caruso
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Andrea Papait
- Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy
| | - Franco Capuzzi
- Dipartimento Medicina di Laboratorio, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Tommaso Zoerle
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Marco Carbonara
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nino Stocchetti
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Stefano Borsa
- Unit of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Marco Locatelli
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
- Unit of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Elisa Erba
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Antonietta R Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Elisa R Zanier
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Ornella Parolini
- Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Roma, Italy
| |
Collapse
|
24
|
Mikolić A, Steyerberg EW, Polinder S, Wilson L, Zeldovich M, von Steinbuechel N, Newcombe VF, Menon DK, van der Naalt J, Lingsma HF, Maas AI, van Klaveren D. Prognostic Models for Global Functional Outcome and Post-Concussion Symptoms Following Mild Traumatic Brain Injury: A Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) Study. J Neurotrauma 2023; 40:1651-1670. [PMID: 37078144 PMCID: PMC10458380 DOI: 10.1089/neu.2022.0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
After mild traumatic brain injury (mTBI), a substantial proportion of individuals do not fully recover on the Glasgow Outcome Scale Extended (GOSE) or experience persistent post-concussion symptoms (PPCS). We aimed to develop prognostic models for the GOSE and PPCS at 6 months after mTBI and to assess the prognostic value of different categories of predictors (clinical variables; questionnaires; computed tomography [CT]; blood biomarkers). From the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study, we included participants aged 16 or older with Glasgow Coma Score (GCS) 13-15. We used ordinal logistic regression to model the relationship between predictors and the GOSE, and linear regression to model the relationship between predictors and the Rivermead Post-concussion Symptoms Questionnaire (RPQ) total score. First, we studied a pre-specified Core model. Next, we extended the Core model with other clinical and sociodemographic variables available at presentation (Clinical model). The Clinical model was then extended with variables assessed before discharge from hospital: early post-concussion symptoms, CT variables, biomarkers, or all three categories (extended models). In a subset of patients mostly discharged home from the emergency department, the Clinical model was extended with 2-3-week post-concussion and mental health symptoms. Predictors were selected based on Akaike's Information Criterion. Performance of ordinal models was expressed as a concordance index (C) and performance of linear models as proportion of variance explained (R2). Bootstrap validation was used to correct for optimism. We included 2376 mTBI patients with 6-month GOSE and 1605 patients with 6-month RPQ. The Core and Clinical models for GOSE showed moderate discrimination (C = 0.68 95% confidence interval 0.68 to 0.70 and C = 0.70[0.69 to 0.71], respectively) and injury severity was the strongest predictor. The extended models had better discriminative ability (C = 0.71[0.69 to 0.72] with early symptoms; 0.71[0.70 to 0.72] with CT variables or with blood biomarkers; 0.72[0.71 to 0.73] with all three categories). The performance of models for RPQ was modest (R2 = 4% Core; R2 = 9% Clinical), and extensions with early symptoms increased the R2 to 12%. The 2-3-week models had better performance for both outcomes in the subset of participants with these symptoms measured (C = 0.74 [0.71 to 0.78] vs. C = 0.63[0.61 to 0.67] for GOSE; R2 = 37% vs. 6% for RPQ). In conclusion, the models based on variables available before discharge have moderate performance for the prediction of GOSE and poor performance for the prediction of PPCS. Symptoms assessed at 2-3 weeks are required for better predictive ability of both outcomes. The performance of the proposed models should be examined in independent cohorts.
Collapse
Affiliation(s)
- Ana Mikolić
- Department of Public Health, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ewout W. Steyerberg
- Department of Public Health, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Suzanne Polinder
- Department of Public Health, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Lindsay Wilson
- Division of Psychology, University of Stirling, Stirling, United Kingdom
| | - Marina Zeldovich
- Institute of Medical Psychology and Medical Sociology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Nicole von Steinbuechel
- Institute of Medical Psychology and Medical Sociology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Virginia F.J. Newcombe
- Division of Anesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- Division of Anesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Joukje van der Naalt
- Department of Neurology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Hester F. Lingsma
- Department of Public Health, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Andrew I.R. Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - David van Klaveren
- Department of Public Health, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
- Predictive Analytics and Comparative Effectiveness Center, Institute for Clinical Research and Health Policy Studies/Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Schneider AL, Huie JR, Jain S, Sun X, Ferguson AR, Lynch C, Yue JK, Manley GT, Wang KK, Sandsmark DK, Campbell C, Diaz-Arrastia R. Associations of Microvascular Injury-Related Biomarkers With Traumatic Brain Injury Severity and Outcomes: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot Study. J Neurotrauma 2023; 40:1625-1637. [PMID: 37021339 PMCID: PMC10458378 DOI: 10.1089/neu.2022.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Traumatic brain injury (TBI) is characterized by heterogeneity in terms of injury severity, mechanism, outcome, and pathophysiology. A single biomarker alone is unlikely to capture the heterogeneity of even one injury subtype, necessitating the use of panels of biomarkers. Herein, we focus on traumatic cerebrovascular injury and investigate associations of a panel of 16 vascular injury-related biomarkers with indices of TBI severity and outcomes using data from 159 participants in the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Pilot Study. Associations of individual biomarkers and clusters of biomarkers identified using non-linear principal components analysis with TBI severity and outcomes were assessed using logistic regression models and Spearman's correlations. As individual biomarkers, higher levels of thrombomodulin, angiopoietin (Ang)-2, von Willebrand factor, and P-selectin were associated with more severe injury; higher levels of Ang-1, Tie2, vascular endothelial growth factor (VEGF)-C, and basic fibroblast growth factor (bFGF) were associated with less severe injury (all p < 0.05 in age-adjusted models). After false discovery rate correction for multiple comparisons, higher levels of Ang-2 remained associated with more severe injury and higher levels of Ang-1, Tie2, and bFGF remained associated with less severe injury at a p < 0.05 level. In principal components analysis, principal component (PC)1, comprised of Ang1, bFGF, P-selectin, VEGF-C, VEGF-A, and Tie2, was associated with less severe injury (age-adjusted odds ratio [OR]: 0.63, 95% confidence interval [CI]: 0.44-0.88 for head computer tomography [CT] positive vs. negative) and PC2 (Ang-2, E-selectin, Flt-1, placental growth factor, thrombomodulin, and vascular cell adhesion protein 1) was associated with greater injury severity (age-adjusted OR: 2.29, 95% CI: 1.49-3.69 for Glasgow Coma Scale [GCS] 3-12 vs. 13-15 and age-adjusted OR 1.59, 95% CI: 1.11-2.32 for head CT positive vs. negative). Neither individual biomarkers nor PCs were associated with outcomes in adjusted models (all p > 0.05). In conclusion, in this trauma-center based population of acute TBI patients, biomarkers of microvascular injury were associated with TBI severity.
Collapse
Affiliation(s)
- Andrea L.C. Schneider
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - J. Russell Huie
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Sonia Jain
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Xiaoying Sun
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Adam R. Ferguson
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Cillian Lynch
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John K. Yue
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Geoffrey T. Manley
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Kevin K.W. Wang
- Program for Neurotrauma, Neuroproteomics, and Biomarker Research, Departments of Emergency Medicine, Psychiatry, and Chemistry, University of Florida, Gainesville, Florida, USA
| | - Danielle K. Sandsmark
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Ramon Diaz-Arrastia
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Li T, Zhuang D, Cai S, Ding F, Tian F, Huang M, Li L, Chen W, Li K, Sheng J. Low serum calcium is a novel predictor of unfavorable prognosis after traumatic brain injury. Heliyon 2023; 9:e18475. [PMID: 37576228 PMCID: PMC10412893 DOI: 10.1016/j.heliyon.2023.e18475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/21/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Background Accurate and convenient serological markers for prognosis after traumatic brain injury (TBI) are still lacking. We aimed to explore the predictive value of serum calcium for prognosing outcomes within 6 months after TBI. Methods In this multicenter retrospective study, 1255 and 719 patients were included in development and validation cohorts, respectively, and their 6-month prognoses were recorded. Serum calcium was measured through routine blood tests within 24 h of hospital admission. Two multivariate predictive models with or without serum calcium for prognosis were developed. Receiver operating characteristics and calibration curves were applied to estimate their performance. Results The patients with lower serum calcium levels had a higher frequency of unfavorable 6-month prognosis than those without. Lower serum calcium level at admission was associated with an unfavorable 6-month prognosis in a wide spectrum of patients with TBI. Lower serum calcium level and our prognostic model including calcium performed well in predicting the 6-month unfavorable outcome. The calcium nomogram maintained excellent performance in discrimination and calibration in the external validation cohort. Conclusions Lower serum calcium level upon admission is an independent risk factor for an unfavorable 6-month prognosis after TBI. Integrating serum calcium into a multivariate predictive model improves the performance for predicting 6-month unfavorable outcomes.
Collapse
Affiliation(s)
- Tian Li
- Shantou University Medical College, Department of Microbiology and Immunology & Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, Guangdong, China
| | - Dongzhou Zhuang
- First Affiliated Hospital of Shantou University Medical College, Department of Neurosurgery, Shantou, Guangdong, China
- Fuzong Clinical Medical College of Fujian Medical University, Department of Neurosurgery, Fuzhou, Fujian, China
| | - Shirong Cai
- First Affiliated Hospital of Shantou University Medical College, Department of Neurosurgery, Shantou, Guangdong, China
| | - Faxiu Ding
- First Affiliated Hospital of Shantou University Medical College, Department of Neurosurgery, Shantou, Guangdong, China
| | - Fei Tian
- Second Affiliated Hospital of Shantou University Medical College, Department of Neurosurgery, Shantou, Guangdong, China
| | - Mindong Huang
- Affiliated Jieyang Hospital of Sun Yat-sen University, Department of Neurosurgery, Jieyang, Guangdong, China
| | - Lianjie Li
- Fuzong Clinical Medical College of Fujian Medical University, Department of Neurosurgery, Fuzhou, Fujian, China
| | - Weiqiang Chen
- First Affiliated Hospital of Shantou University Medical College, Department of Neurosurgery, Shantou, Guangdong, China
| | - Kangsheng Li
- Shantou University Medical College, Department of Microbiology and Immunology & Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, Guangdong, China
| | - Jiangtao Sheng
- Shantou University Medical College, Department of Microbiology and Immunology & Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, Guangdong, China
| |
Collapse
|
27
|
Kudryashev JA, Madias MI, Kandell RM, Lin QX, Kwon EJ. An Activity-Based Nanosensor for Minimally-Invasive Measurement of Protease Activity in Traumatic Brain Injury. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2300218. [PMID: 37873031 PMCID: PMC10586543 DOI: 10.1002/adfm.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Indexed: 10/25/2023]
Abstract
Current screening and diagnostic tools for traumatic brain injury (TBI) have limitations in sensitivity and prognostication. Aberrant protease activity is a central process that drives disease progression in TBI and is associated with worsened prognosis; thus direct measurements of protease activity could provide more diagnostic information. In this study, a nanosensor is engineered to release a measurable signal into the blood and urine in response to activity from the TBI-associated protease calpain. Readouts from the nanosensor were designed to be compatible with ELISA and lateral flow assays, clinically-relevant assay modalities. In a mouse model of TBI, the nanosensor sensitivity is enhanced when ligands that target hyaluronic acid are added. In evaluation of mice with mild or severe injuries, the nanosensor identifies mild TBI with a higher sensitivity than the biomarker GFAP. This nanosensor technology allows for measurement of TBI-associated proteases without the need to directly access brain tissue, and has the potential to complement existing TBI diagnostic tools.
Collapse
Affiliation(s)
- Julia A Kudryashev
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Marianne I Madias
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Rebecca M Kandell
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Queenie X Lin
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ester J Kwon
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
28
|
Ijaz S, Scott L, Dawson S, Wilson R, Jackson J, Birnie K, Redaniel MT, Savović J, Wright I, Lyttle MD, Mytton J. Factors related to adverse long-term outcomes after mild traumatic brain injury in children: a scoping review. Arch Dis Child 2023; 108:492-497. [PMID: 37001968 DOI: 10.1136/archdischild-2022-325202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/16/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE To identify demographic, premorbid and injury-related factors, or biomarkers associated with long-term (≥3 months) adverse outcomes in children after mild traumatic brain injury (mTBI). DESIGN Scoping review of literature. PATIENTS Children and adolescents with mTBI. RISK FACTORS Any demographic, premorbid and injury-related factors, or biomarkers were included. We excluded genetic and treatment-related factors. MAIN OUTCOME MEASURES Postconcussion syndrome (PCS), recovery. RESULTS Seventy-three publications were included, reporting 12 long-term adverse outcomes, including PCS in 12 studies and recovery in 29 studies. Additional outcomes studied were symptom scores/severity (n=22), quality of life (n=9) and cognitive function (n=9). Forty-nine risk factors were identified across studies. Risk factors most often assessed were sex (n=28), followed by age (n=23), injury mechanism = (n=22) and prior mTBI (n=18). The influence of these and other risk factors on outcomes of mTBI were inconsistent across the reviewed literature. CONCLUSIONS The most researched risk factors are sex, age and mechanism of injury, but their effects have been estimated inconsistently and did not show a clear pattern. The most studied outcomes are recovery patterns and symptom severity. However, these may not be the most important outcomes for clinicians and patients. Future primary studies in this area should focus on patient-important outcomes. Population-based prospective studies are needed that address prespecified hypotheses on the relationship of risk factors with given outcomes to enable reliable prediction of long-term adverse outcomes for childhood mTBI.
Collapse
Affiliation(s)
- Sharea Ijaz
- NIHR ARC West, Population Health Sciences, University of Bristol, Bristol, UK
| | - Lauren Scott
- NIHR ARC West, Population Health Sciences, University of Bristol, Bristol, UK
| | - Sarah Dawson
- NIHR ARC West, Population Health Sciences, University of Bristol, Bristol, UK
| | - Rebecca Wilson
- NIHR ARC West, Population Health Sciences, University of Bristol, Bristol, UK
| | - Joni Jackson
- NIHR ARC West, Population Health Sciences, University of Bristol, Bristol, UK
| | - Kate Birnie
- Population Health Sciences, University of Bristol, Bristol, UK
| | | | - Jelena Savović
- NIHR ARC West, Population Health Sciences, University of Bristol, Bristol, UK
| | - Ingram Wright
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Mark D Lyttle
- Emergency Department, Bristol Royal Hospital for Children, Bristol, UK
- Research in Emergency Care Avon Collaborative Hub (REACH), University of the West of England, Bristol, Avon, UK
| | - Julie Mytton
- School of Health and Social Wellbeing, University of the West of England, Bristol, UK
| |
Collapse
|
29
|
McBride WR, Eltman NR, Swanson RL. Blood-Based Biomarkers in Traumatic Brain Injury: A Narrative Review With Implications for the Legal System. Cureus 2023; 15:e40417. [PMID: 37325684 PMCID: PMC10266433 DOI: 10.7759/cureus.40417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
Traumatic brain injury (TBI) is an increasingly recognized diagnosis with significant, and often costly, associated consequences. Yet, despite their increased recognition, TBIs remain underdiagnosed. This issue is especially prominent in the context of mild TBI (mTBI), where there often exists little to no objective evidence of brain injury. In recent years, considerable effort has been made to better define and interpret known objective markers of TBI, as well as identify and explore new ones. An area of particular interest has focused on research related to blood-based biomarkers of TBI. Advancements in our understanding of TBI-related biomarkers can make it possible to characterize the severity of TBI with greater accuracy, improve our understanding of staging within both the injury process and the recovery process, and help us develop quantifiable metrics representative of reversal and recovery from a brain injury following trauma. Proteomic and non-proteomic blood-based biomarkers are being studied extensively and have shown promise for these purposes. Developments in this realm have significant implications not only for clinical care but also for legislation, as well as civil and criminal litigation. Despite their substantial potential, most of these biomarkers are not yet ready for use within the clinical setting, and therefore, are not appropriate for use within the legal or policy-making systems at this time. Given that existing standardization for the accurate and reliable use of TBI biomarkers is currently insufficient for use within either the clinical or legal realms, such data can be vulnerable to misuse and can even result in the abuse of the legal system for unwarranted gain. Courts will need to carefully evaluate the information presented in their role as gatekeepers of the admissibility of scientific evidence within the legal process. Ultimately, the development of biomarkers should lead to improved clinical care following TBI exposure, coherent and informed laws surrounding TBI, and more accurate and just results in litigation surrounding TBI-related sequelae.
Collapse
Affiliation(s)
- William R McBride
- Forensic Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, USA
| | - Nicholas R Eltman
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
- Physical Medicine and Rehabilitation, Rowan-Virtua School of Osteopathic Medicine, Stratford, USA
| | - Randel L Swanson
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
- Physical Medicine and Rehabilitation, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| |
Collapse
|
30
|
O'Donnell JC, Browne KD, Kvint S, Makaron L, Grovola MR, Karandikar S, Kilbaugh TJ, Cullen DK, Petrov D. Multimodal Neuromonitoring and Neurocritical Care in Swine to Enhance Translational Relevance in Brain Trauma Research. Biomedicines 2023; 11:biomedicines11051336. [PMID: 37239007 DOI: 10.3390/biomedicines11051336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Neurocritical care significantly impacts outcomes after moderate-to-severe acquired brain injury, but it is rarely applied in preclinical studies. We created a comprehensive neurointensive care unit (neuroICU) for use in swine to account for the influence of neurocritical care, collect clinically relevant monitoring data, and create a paradigm that is capable of validating therapeutics/diagnostics in the unique neurocritical care space. Our multidisciplinary team of neuroscientists, neurointensivists, and veterinarians adapted/optimized the clinical neuroICU (e.g., multimodal neuromonitoring) and critical care pathways (e.g., managing cerebral perfusion pressure with sedation, ventilation, and hypertonic saline) for use in swine. Moreover, this neurocritical care paradigm enabled the first demonstration of an extended preclinical study period for moderate-to-severe traumatic brain injury with coma beyond 8 h. There are many similarities with humans that make swine an ideal model species for brain injury studies, including a large brain mass, gyrencephalic cortex, high white matter volume, and topography of basal cisterns, amongst other critical factors. Here we describe the neurocritical care techniques we developed and the medical management of swine following subarachnoid hemorrhage and traumatic brain injury with coma. Incorporating neurocritical care in swine studies will reduce the translational gap for therapeutics and diagnostics specifically tailored for moderate-to-severe acquired brain injury.
Collapse
Affiliation(s)
- John C O'Donnell
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin D Browne
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Svetlana Kvint
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leah Makaron
- University Laboratory Animal Resources, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael R Grovola
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Saarang Karandikar
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Todd J Kilbaugh
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - D Kacy Cullen
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dmitriy Petrov
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Stukas S, Cooper J, Gill J, Fallah N, Skinnider MA, Belanger L, Ritchie L, Tsang A, Dong K, Streijger F, Street J, Paquette S, Ailon T, Dea N, Charest-Morin R, Fisher CG, Bailey CS, Dhall S, Mac-Thiong JM, Wilson JR, Christie S, Dvorak MF, Wellington CL, Kwon BK. Association of CSF and Serum Neurofilament Light and Glial Fibrillary Acidic Protein, Injury Severity, and Outcome in Spinal Cord Injury. Neurology 2023; 100:e1221-e1233. [PMID: 36599698 PMCID: PMC10033160 DOI: 10.1212/wnl.0000000000206744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/15/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Traumatic spinal cord injury (SCI) is highly heterogeneous, and tools to better delineate pathophysiology and recovery are needed. Our objective was to profile the response of 2 biomarkers, neurofilament light (NF-L) and glial fibrillary acidic protein (GFAP), in the serum and CSF of patients with acute SCI to evaluate their ability to objectively characterize injury severity and predict neurologic recovery. METHODS Blood and CSF samples were obtained from prospectively enrolled patients with acute SCI through days 1-4 postinjury, and the concentration of NF-L and GFAP was quantified using Simoa technology. Neurologic assessments defined the ASIA Impairment Scale (AIS) grade and motor score (MS) at presentation and 6 months postinjury. RESULTS One hundred eighteen patients with acute SCI (78 AIS A, 20 AIS B, and 20 AIS C) were enrolled, with 113 (96%) completing 6-month follow-up. NF-L and GFAP levels were strongly associated between paired serum and CSF specimens, were both increased with injury severity, and distinguished among baseline AIS grades. Serum NF-L and GFAP were significantly (p = 0.02 to <0.0001) higher in AIS A patients who did not improve at 6 months, predicting AIS grade conversion with a sensitivity and specificity (95% CI) of 76% (61, 87) and 77% (55, 92) using NF-L and 72% (57, 84) and 77% (55, 92) using GFAP at 72 hours, respectively. Independent of clinical baseline assessment, a serum NF-L threshold of 170 pg/mL at 72 hours predicted those patients who would be classified as motor complete (AIS A/B) compared with motor incomplete (AIS C/D) at 6 months with a sensitivity of 87% (76, 94) and specificity of 84% (69, 94); a serum GFAP threshold of 13,180 pg/mL at 72 hours yielded a sensitivity of 90% (80, 96) and specificity of 84% (69, 94). DISCUSSION The potential for NF-L and GFAP to classify injury severity and predict outcome after acute SCI will be useful for patient stratification and prognostication in clinical trials and inform communication of prognosis. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that higher serum NF-L and GFAP are associated with worse neurological outcome after acute SCI. TRIAL REGISTRATION INFORMATION Registered on ClinicalTrials.gov: NCT00135278 (March 2006) and NCT01279811 (January 2012).
Collapse
Affiliation(s)
- Sophie Stukas
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Jennifer Cooper
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Jasmine Gill
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Nader Fallah
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Michael A Skinnider
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Lise Belanger
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Leanna Ritchie
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Angela Tsang
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Kevin Dong
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Femke Streijger
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - John Street
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Scott Paquette
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Tamir Ailon
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Nicolas Dea
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Raphaele Charest-Morin
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Charles G Fisher
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Christopher S Bailey
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Sanjay Dhall
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Jean-Marc Mac-Thiong
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Jefferson R Wilson
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Sean Christie
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Marcel F Dvorak
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Cheryl L Wellington
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Brian K Kwon
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada.
| |
Collapse
|
32
|
Li Y, Ding VY, Chen H, Zhu G, Jiang B, Boothroyd D, Rezaii PG, Bet AM, Paulino AD, Weber A, Glushakova OY, Hayes RL, Wintermark M. Comparing blood biomarkers to clinical decision rules to select patients suspected of traumatic brain injury for head computed tomography. Neuroradiol J 2023; 36:68-75. [PMID: 35588232 PMCID: PMC9893157 DOI: 10.1177/19714009221101306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major public health concern in the U.S. Recommendations for patients admitted in the emergency department (ED) to receive head computed tomography (CT) scan are currently guided by various clinical decision rules. OBJECTIVE To compare how a blood biomarker approach compares with clinical decision rules in terms of predicting a positive head CT in adult patients suspected of TBI. METHODS We retrospectively identified patients transported to our emergency department and underwent a noncontrast head CT due to suspicion of TBI and who had blood samples available. Published thresholds for serum and plasma glial fibrillary acidic protein (GFAP), ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1), and serum S100β were used to make CT recommendations. These blood biomarker-based recommendations were compared to those achieved under widely used clinical head CT decision rules (Canadian, New Orleans, NEXUS II, and ACEP Clinical Policy). RESULTS Our study included 463 patients, of which 122 (26.3%) had one or more abnormalities presenting on head CT. Individual blood biomarkers achieved high negative predictive value (NPV) for abnormal head CT findings (88%-98%), although positive predictive value (PPV) was consistently low (25%-42%). A composite biomarker-based decision rule (GFAP+UCH-L1)'s NPV of 100% and PPV of 29% were comparable or better than those achieved under the clinical decision rules. CONCLUSION Blood biomarkers perform at least as well as clinical rules in terms of selecting TBI patients for head CT and may be easier to implement in the clinical setting. A prospective study is necessary to validate this approach.
Collapse
Affiliation(s)
- Ying Li
- Department of Radiology,
Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Victoria Y Ding
- Quantitative Sciences Unit,
Department of Medicine, Stanford University, Stanford, CA, USA
| | - Hui Chen
- Department of Radiology,
Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Guangming Zhu
- Department of Radiology,
Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Bin Jiang
- Department of Radiology,
Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Derek Boothroyd
- Quantitative Sciences Unit,
Department of Medicine, Stanford University, Stanford, CA, USA
| | - Paymon G Rezaii
- Department of Radiology,
Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Anthony M Bet
- Department of Radiology,
Neuroradiology Division, Stanford University, Stanford, CA, USA
| | | | - Art Weber
- Banyan Biomarkers Inc., San Diego, CA, USA
| | - Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth
University, Richmond, VA, USA
| | - Ronald L Hayes
- Department of Neurosurgery, Virginia Commonwealth
University, Richmond, VA, USA
| | - Max Wintermark
- Department of Radiology,
Neuroradiology Division, Stanford University, Stanford, CA, USA
| |
Collapse
|
33
|
Harris G, Rickard JJS, Butt G, Kelleher L, Blanch RJ, Cooper J, Oppenheimer PG. Review: Emerging Eye-Based Diagnostic Technologies for Traumatic Brain Injury. IEEE Rev Biomed Eng 2023; 16:530-559. [PMID: 35320105 PMCID: PMC9888755 DOI: 10.1109/rbme.2022.3161352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022]
Abstract
The study of ocular manifestations of neurodegenerative disorders, Oculomics, is a growing field of investigation for early diagnostics, enabling structural and chemical biomarkers to be monitored overtime to predict prognosis. Traumatic brain injury (TBI) triggers a cascade of events harmful to the brain, which can lead to neurodegeneration. TBI, termed the "silent epidemic" is becoming a leading cause of death and disability worldwide. There is currently no effective diagnostic tool for TBI, and yet, early-intervention is known to considerably shorten hospital stays, improve outcomes, fasten neurological recovery and lower mortality rates, highlighting the unmet need for techniques capable of rapid and accurate point-of-care diagnostics, implemented in the earliest stages. This review focuses on the latest advances in the main neuropathophysiological responses and the achievements and shortfalls of TBI diagnostic methods. Validated and emerging TBI-indicative biomarkers are outlined and linked to ocular neuro-disorders. Methods detecting structural and chemical ocular responses to TBI are categorised along with prospective chemical and physical sensing techniques. Particular attention is drawn to the potential of Raman spectroscopy as a non-invasive sensing of neurological molecular signatures in the ocular projections of the brain, laying the platform for the first tangible path towards alternative point-of-care diagnostic technologies for TBI.
Collapse
Affiliation(s)
- Georgia Harris
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Jonathan James Stanley Rickard
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Department of Physics, Cavendish LaboratoryUniversity of CambridgeCB3 0HECambridgeU.K.
| | - Gibran Butt
- Ophthalmology DepartmentUniversity Hospitals Birmingham NHS Foundation TrustB15 2THBirminghamU.K.
| | - Liam Kelleher
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Richard James Blanch
- Department of Military Surgery and TraumaRoyal Centre for Defence MedicineB15 2THBirminghamU.K.
- Neuroscience and Ophthalmology, Department of Ophthalmology, University Hospitals Birmingham NHS Foundation TrustcBirminghamU.K.
| | - Jonathan Cooper
- School of Biomedical EngineeringUniversity of GlasgowG12 8LTGlasgowU.K.
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Healthcare Technologies Institute, Institute of Translational MedicineB15 2THBirminghamU.K.
| |
Collapse
|
34
|
Forouzan A, Fahimi MA, Bastan ASI, Delirrooyfard A. Diagnostic Competence of Creatine Kinase BB, in Mild Traumatic Brain Injury and its Prognostic Value. Adv Biomed Res 2023; 12:84. [PMID: 37200752 PMCID: PMC10186058 DOI: 10.4103/abr.abr_122_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 05/20/2023] Open
Abstract
Background Due to the very high and increasing prevalence, essential complications, and risk factors for psychiatric disorders, it is necessary to introduce screening tests for diagnosing and predicting mild traumatic brain injury (mTBI) prognosis. Materials and Methods After completing the consent form and recording information and examination findings of patients with mild trauma, venous blood samples were taken from these patients. The samples were measured by observing the cold chain. After 3 months from mTBI, the post concussion symptoms questionnaire (PCSQ) and the short form 36 (SF-36) questionnaire for physical and mental evaluations were performed. Statistical tests analyzed the relationship between different variables and serum Creatine kinase BB (CKBB) levels. Results Statistic analyses showed no relation between CKBB level of serum and age, gender, level of consciousness, PCSQ, and SF 36 scale, and the interval between trauma and arrival to the hospital. Further, there is a significant correlation between CK-BB levels and intracranial damage based on Fisher's exact test. Conclusion This study and following more significant considerations can introduce a serum-based biomarker panel that can accurately differentiate patients with complicated mTBI from those with uncomplicated.
Collapse
Affiliation(s)
- Arash Forouzan
- Department of Emergency Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ali Fahimi
- Department of Emergency Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Sadegh Iran Bastan
- Department of Emergency Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Delirrooyfard
- Clinical Research Development Unit, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Address for correspondence: Dr. Ali Delirrooyfard, Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. E-mail:
| |
Collapse
|
35
|
Dillon ST, Otu HH, Ngo LH, Fong TG, Vasunilashorn SM, Xie Z, Kunze LJ, Vlassakov KV, Abdeen A, Lange JK, Earp BE, Cooper ZR, Schmitt E, Arnold SE, Hshieh T, Jones RN, Inouye SK, Marcantonio ER, Libermann TA. Patterns and Persistence of Perioperative Plasma and Cerebrospinal Fluid Neuroinflammatory Protein Biomarkers After Elective Orthopedic Surgery Using SOMAscan. Anesth Analg 2023; 136:163-175. [PMID: 35389379 PMCID: PMC9537343 DOI: 10.1213/ane.0000000000005991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The neuroinflammatory response to surgery can be characterized by peripheral acute plasma protein changes in blood, but corresponding, persisting alterations in cerebrospinal fluid (CSF) proteins remain mostly unknown. Using the SOMAscan assay, we define acute and longer-term proteome changes associated with surgery in plasma and CSF. We hypothesized that biological pathways identified by these proteins would be in the categories of neuroinflammation and neuronal function and define neuroinflammatory proteome changes associated with surgery in older patients. METHODS SOMAscan analyzed 1305 proteins in blood plasma (n = 14) and CSF (n = 15) samples from older patients enrolled in the Role of Inflammation after Surgery for Elders (RISE) study undergoing elective hip and knee replacement surgery with spinal anesthesia. Systems biology analysis identified biological pathways enriched among the surgery-associated differentially expressed proteins in plasma and CSF. RESULTS Comparison of postoperative day 1 (POD1) to preoperative (PREOP) plasma protein levels identified 343 proteins with postsurgical changes ( P < .05; absolute value of the fold change [|FC|] > 1.2). Comparing postoperative 1-month (PO1MO) plasma and CSF with PREOP identified 67 proteins in plasma and 79 proteins in CSF with altered levels ( P < .05; |FC| > 1.2). In plasma, 21 proteins, primarily linked to immune response and inflammation, were similarly changed at POD1 and PO1MO. Comparison of plasma to CSF at PO1MO identified 8 shared proteins. Comparison of plasma at POD1 to CSF at PO1MO identified a larger number, 15 proteins in common, most of which are regulated by interleukin-6 (IL-6) or transforming growth factor beta-1 (TGFB1) and linked to the inflammatory response. Of the 79 CSF PO1MO-specific proteins, many are involved in neuronal function and neuroinflammation. CONCLUSIONS SOMAscan can characterize both short- and long-term surgery-induced protein alterations in plasma and CSF. Acute plasma protein changes at POD1 parallel changes in PO1MO CSF and suggest 15 potential biomarkers for longer-term neuroinflammation that warrant further investigation.
Collapse
Affiliation(s)
- Simon T. Dillon
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, MA
- Beth Israel Deaconess Medical Center Genomics, Proteomics, Bioinformatics and Systems Biology Center, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Long H. Ngo
- Harvard Medical School, Boston, MA
- Divisions of General Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Tamara G. Fong
- Harvard Medical School, Boston, MA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
| | - Sarinnapha M. Vasunilashorn
- Harvard Medical School, Boston, MA
- Divisions of General Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Zhongcong Xie
- Harvard Medical School, Boston, MA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
| | - Lisa J. Kunze
- Harvard Medical School, Boston, MA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Kamen V. Vlassakov
- Harvard Medical School, Boston, MA
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Ayesha Abdeen
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA
| | - Jeffrey K. Lange
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA
| | - Brandon E. Earp
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Brigham and Women’s Faulkner Hospital, Boston, MA
| | - Zara R. Cooper
- Harvard Medical School, Boston, MA
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA
| | - Eva Schmitt
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
| | - Steven E. Arnold
- MGH Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Tammy Hshieh
- Harvard Medical School, Boston, MA
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
- Divisions of General Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Richard N. Jones
- Departments of Psychiatry and Human Behavior and Neurology, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Sharon K. Inouye
- Harvard Medical School, Boston, MA
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
- Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Edward R. Marcantonio
- Harvard Medical School, Boston, MA
- Divisions of General Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Towia A. Libermann
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, MA
- Beth Israel Deaconess Medical Center Genomics, Proteomics, Bioinformatics and Systems Biology Center, Boston, MA
- Harvard Medical School, Boston, MA
| | | |
Collapse
|
36
|
Ramasubramanian B, Reddy VS, Chellappan V, Ramakrishna S. Emerging Materials, Wearables, and Diagnostic Advancements in Therapeutic Treatment of Brain Diseases. BIOSENSORS 2022; 12:1176. [PMID: 36551143 PMCID: PMC9775999 DOI: 10.3390/bios12121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Among the most critical health issues, brain illnesses, such as neurodegenerative conditions and tumors, lower quality of life and have a significant economic impact. Implantable technology and nano-drug carriers have enormous promise for cerebral brain activity sensing and regulated therapeutic application in the treatment and detection of brain illnesses. Flexible materials are chosen for implantable devices because they help reduce biomechanical mismatch between the implanted device and brain tissue. Additionally, implanted biodegradable devices might lessen any autoimmune negative effects. The onerous subsequent operation for removing the implanted device is further lessened with biodegradability. This review expands on current developments in diagnostic technologies such as magnetic resonance imaging, computed tomography, mass spectroscopy, infrared spectroscopy, angiography, and electroencephalogram while providing an overview of prevalent brain diseases. As far as we are aware, there hasn't been a single review article that addresses all the prevalent brain illnesses. The reviewer also looks into the prospects for the future and offers suggestions for the direction of future developments in the treatment of brain diseases.
Collapse
Affiliation(s)
- Brindha Ramasubramanian
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Vundrala Sumedha Reddy
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| | - Vijila Chellappan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
37
|
Creech M, Carvalho L, McCoy H, Jacobs J, Hinson HE. Mass Spectrometry-Based Approaches for Clinical Biomarker Discovery in Traumatic Brain Injury. Curr Treat Options Neurol 2022; 24:605-618. [PMID: 37025501 PMCID: PMC10072855 DOI: 10.1007/s11940-022-00742-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
Abstract
Purpose of Review Precision treatments to address the multifaceted pathophysiology of traumatic brain injury (TBI) are desperately needed, which has led to the intense study of fluid-based protein biomarkers in TBI. Mass Spectrometry (MS) is increasingly being applied to biomarker discovery and quantification in neurological disease to explore the proteome, allowing for more flexibility in biomarker discovery than commonly encountered antibody-based assays. In this narrative review, we will provide specific examples of how MS technology has advanced translational research in traumatic brain injury (TBI) focusing on clinical studies, and looking ahead to promising emerging applications of MS to the field of Neurocritical Care. Recent Findings Proteomic biomarker discovery using MS technology in human subjects has included the full range of injury severity in TBI, though critically ill patients can offer more options to biofluids given the need for invasive monitoring. Blood, urine, cerebrospinal fluid, brain specimens, and cerebral extracellular fluid have all been sources for analysis. Emerging evidence suggests there are distinct proteomic profiles in radiographic TBI subtypes, and that biomarkers may be used to distinguish patients sustaining TBI from healthy controls. Metabolomics may offer a window into the perturbations of ongoing cerebral insults in critically ill patients after severe TBI. Summary Emerging MS technologies may offer biomarker discovery and validation opportunities not afforded by conventional means due to its ability to handle the complexities associated with the proteome. While MS techniques are relatively early in development in the neurosciences space, the potential applications to TBI and neurocritical care are likely to accelerate in the coming decade.
Collapse
Affiliation(s)
- Matthew Creech
- Department of Neurology, Oregon Health and Science University, Portland OR
| | - Lindsey Carvalho
- Department of Neurology, Oregon Health and Science University, Portland OR
| | - Heather McCoy
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, WA
| | - Jon Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, WA
| | - H E Hinson
- Department of Neurology, Oregon Health and Science University, Portland OR
- Department of Emergency Medicine, Oregon Health and Science University, Portland OR
| |
Collapse
|
38
|
Iverson GL, Minkkinen M, Karr JE, Berghem K, Zetterberg H, Blennow K, Posti JP, Luoto TM. Examining four blood biomarkers for the detection of acute intracranial abnormalities following mild traumatic brain injury in older adults. Front Neurol 2022; 13:960741. [PMID: 36484020 PMCID: PMC9723459 DOI: 10.3389/fneur.2022.960741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023] Open
Abstract
Blood-based biomarkers have been increasingly studied for diagnostic and prognostic purposes in patients with mild traumatic brain injury (MTBI). Biomarker levels in blood have been shown to vary throughout age groups. Our aim was to study four blood biomarkers, glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light (NF-L), and total tau (t-tau), in older adult patients with MTBI. The study sample was collected in the emergency department in Tampere University Hospital, Finland, between November 2015 and November 2016. All consecutive adult patients with head injury were eligible for inclusion. Serum samples were collected from the enrolled patients, which were frozen and later sent for biomarker analyses. Patients aged 60 years or older with MTBI, head computed tomography (CT) imaging, and available biomarker levels were eligible for this study. A total of 83 patients (mean age = 79.0, SD = 9.58, range = 60-100; 41.0% men) were included in the analysis. GFAP was the only biomarker to show statistically significant differentiation between patients with and without acute head CT abnormalities [U(83) = 280, p < 0.001, r = 0.44; area under the curve (AUC) = 0.79, 95% CI = 0.67-0.91]. The median UCH-L1 values were modestly greater in the abnormal head CT group vs. normal head CT group [U (83) = 492, p = 0.065, r = 0.20; AUC = 0.63, 95% CI = 0.49-0.77]. Older age was associated with biomarker levels in the normal head CT group, with the most prominent age associations being with NF-L (r = 0.56) and GFAP (r = 0.54). The results support the use of GFAP in detecting abnormal head CT findings in older adults with MTBIs. However, small sample sizes run the risk for producing non-replicable findings that may not generalize to the population and do not translate well to clinical use. Further studies should consider the potential effect of age on biomarker levels when establishing clinical cut-off values for detecting head CT abnormalities.
Collapse
Affiliation(s)
- Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and the Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, MA, United States,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, MA, United States
| | - Mira Minkkinen
- Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Justin E. Karr
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Ksenia Berghem
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,UK Dementia Research Institute at University College London, London, United Kingdom,Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jussi P. Posti
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turku, Finland,Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Teemu M. Luoto
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland,*Correspondence: Teemu M. Luoto
| |
Collapse
|
39
|
Dzierzęcki S, Ząbek M, Zapolska G, Tomasiuk R. The S-100B level, intracranial pressure, body temperature, and transcranial blood flow velocities predict the outcome of the treatment of severe brain injury. Medicine (Baltimore) 2022; 101:e30348. [PMID: 36197246 PMCID: PMC9509168 DOI: 10.1097/md.0000000000030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study evaluates the applicability of S100B levels, mean maximum velocity (Vmean) over time, pulsatility index (PI), intracranial pressure (ICP), and body temperature (T) for the prediction of the treatment of patients with traumatic brain injury (TBI). Sixty patients defined by the Glasgow Coma Scale score ≤ 8 were stratified using the Glasgow Coma Scale into 2 groups: favorable (FG: Glasgow Outcome Scale ≥ 4) and unfavorable (UG: Glasgow Outcome Scale < 4). The S100B concentration was at the time of hospital admission. Vmean was measured using transcranial Doppler. PI was derived from a transcranial Doppler examination. T was measured in the temporal artery. The differences in mean between FG and UG were tested using a bootstrap test of 10,000 repetitions with replacement. Changes in S100B, Vmean, PI, ICP, and T levels stratified by the group were calculated using the one-way aligned rank transform for nonparametric factorial analysis of variance. The reference ranges for the levels of S100B, Vmean, and PI were 0.05 to 0.23 µg/L, 30.8 to 73.17 cm/s, and 0.62 to 1.13, respectively. Both groups were defined by an increase in Vmean, a decrease in S100B, PI, and ICP levels; and a virtually constant T. The unfavorable outcome is defined by significantly higher levels of all parameters, except T. A favorable outcome is defined by S100B < 3 mg/L, PI < 2.86, ICP > 25 mm Hg, and Vmean > 40 cm/s. The relationships provided may serve as indicators of the results of the TBI treatment.
Collapse
Affiliation(s)
- Sebastian Dzierzęcki
- Department of Neurosurgery, Postgraduate Medical Centre, Warsaw, Poland
- Gamma Knife Centre, Brodno Masovian Hospital, Warsaw, Poland
- *Correspondence: Sebastian Dzierzecki, Warsaw Gamma Knife Centre, Brodno Masovian Hospital, Kondratowicza 8 Building H, 03-242 Warsaw, Poland (e-mail: )
| | - Mirosław Ząbek
- Department of Neurosurgery, Postgraduate Medical Centre, Warsaw, Poland
- Clinical Department of Neurosurgery, Central Clinical Hospital of the Ministry of the Interior and Administration, Warsaw, Poland
| | | | - Ryszard Tomasiuk
- Kazimierz Pulaski University of Technology and Humanities Radom, Faculty of Medical Sciences and Health Sciences, Radom, Poland
| |
Collapse
|
40
|
Khaksari K, Chen WL, Gropman AL. Review of Applications of Near-Infrared Spectroscopy in Two Rare Disorders with Executive and Neurological Dysfunction: UCD and PKU. Genes (Basel) 2022; 13:genes13101690. [PMID: 36292574 PMCID: PMC9602148 DOI: 10.3390/genes13101690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Studying rare diseases, particularly those with neurological dysfunction, is a challenge to researchers and healthcare professionals due to their complexity and small population with geographical dispersion. Universal and standardized biomarkers generated by tools such as functional neuroimaging have been forged to collect baseline data as well as treatment effects. However, the cost and heavily infrastructural requirement of those technologies have substantially limited their availability. Thus, developing non-invasive, portable, and inexpensive modalities has become a major focus for both researchers and clinicians. When considering neurological disorders and diseases with executive dysfunction, EEG is the most convenient tool to obtain biomarkers which can correlate the objective severity and clinical observation of these conditions. However, studies have also shown that EEG biomarkers and clinical observations alone are not sensitive enough since not all the patients present classical phenotypical features or EEG evidence of dysfunction. This article reviews disorders, including two rare disorders with neurological dysfunction and the usefulness of functional near-infrared spectroscopy (fNIRS) as a non-invasive optical modality to obtain hemodynamic biomarkers of diseases and for screening and monitoring the disease.
Collapse
Affiliation(s)
- Kosar Khaksari
- Division of Neurogenetics and Developmental Pediatrics, Children’s National Health System, Washington, DC 20010, USA
- Correspondence:
| | - Wei-Liang Chen
- School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Andrea L. Gropman
- Division of Neurogenetics and Developmental Pediatrics, Children’s National Health System, Washington, DC 20010, USA
- Department of Neurology, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
41
|
Fesharaki-Zadeh A. A Case of Possible Chronic Traumatic Encephalopathy and Alzheimer's Disease in an Ex-Football Player. Neurologist 2022; 27:249-252. [PMID: 34879014 PMCID: PMC9439689 DOI: 10.1097/nrl.0000000000000391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Chronic traumatic encephalopathy (CTE) is a debilitating neurodegenerative disease, which is often the sequelae of repetitive head trauma. Although the definitive diagnosis of CTE is made postmortem, there are proposed clinical algorithms aimed at identifying characteristic features of CTE, based on a combination of clinical history, serum, cerebrospinal fluid and neuroimaging biomarkers. There are promising new advances in positron emission tomography neuroimaging, including tau specific ligands, which will potentially provide a robust assessment as well as an exploratory tool of the disease semiology and progression. CASE REPORT Here is a unique case of an ex-football player, who suffered multiple prior traumatic brain injuries throughout his career, and presented to our clinic with significant episodic memory, visuospatial and executive functioning deficits, as well as comorbid mood and behavioral changes in the absence of prior psychiatric history or substance use. His clinical presentation and biomarkers were consistent with a suspected diagnosis of CTE comorbid with Alzheimer disease, which comprises a significant portion of overall CTE cases. CONCLUSION This case report presents a patient with a subtle case of dementia, which could be easily mistaken for behavioral variant frontotemporal dementia or primary progressive aphasia. This in turn highlights the importance of detailed longitudinal history taking, as well as rigorous biomarker studies.
Collapse
|
42
|
Biomarkers add value to traumatic brain injury prognosis. Lancet Neurol 2022; 21:761-763. [DOI: 10.1016/s1474-4422(22)00306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
|
43
|
Podolak OE, Arbogast KB, Master CL, Sleet D, Grady MF. Pediatric Sports-Related Concussion: An Approach to Care. Am J Lifestyle Med 2022; 16:469-484. [PMID: 35860366 PMCID: PMC9290185 DOI: 10.1177/1559827620984995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 08/14/2023] Open
Abstract
Sports-related concussion (SRC) is a common sports injury in children and adolescents. With the vast amount of youth sports participation, an increase in awareness of concussion and evidence that the injury can lead to consequences for school, sports and overall quality of life, it has become increasingly important to properly diagnose and manage concussion. SRC in the student athlete is a unique and complex injury, and it is important to highlight the differences in the management of child and adolescent concussion compared with adults. This review focuses on the importance of developing a multimodal systematic approach to diagnosing and managing pediatric sports-related concussion, from the sidelines through recovery.
Collapse
Affiliation(s)
- Olivia E. Podolak
- Center for Injury Research and Prevention, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kristy B. Arbogast
- Center for Injury Research and Prevention, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Christina L. Master
- Center for Injury Research and Prevention, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Sports Medicine and Performance Center, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - David Sleet
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Matthew F. Grady
- Sports Medicine and Performance Center, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
44
|
Kocheril PA, Moore SC, Lenz KD, Mukundan H, Lilley LM. Progress Toward a Multiomic Understanding of Traumatic Brain Injury: A Review. Biomark Insights 2022; 17:11772719221105145. [PMID: 35719705 PMCID: PMC9201320 DOI: 10.1177/11772719221105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is not a single disease state but describes an array
of conditions associated with insult or injury to the brain. While some
individuals with TBI recover within a few days or months, others present with
persistent symptoms that can cause disability, neuropsychological trauma, and
even death. Understanding, diagnosing, and treating TBI is extremely complex for
many reasons, including the variable biomechanics of head impact, differences in
severity and location of injury, and individual patient characteristics. Because
of these confounding factors, the development of reliable diagnostics and
targeted treatments for brain injury remains elusive. We argue that the
development of effective diagnostic and therapeutic strategies for TBI requires
a deep understanding of human neurophysiology at the molecular level and that
the framework of multiomics may provide some effective solutions for the
diagnosis and treatment of this challenging condition. To this end, we present
here a comprehensive review of TBI biomarker candidates from across the
multiomic disciplines and compare them with known signatures associated with
other neuropsychological conditions, including Alzheimer’s disease and
Parkinson’s disease. We believe that this integrated view will facilitate a
deeper understanding of the pathophysiology of TBI and its potential links to
other neurological diseases.
Collapse
Affiliation(s)
- Philip A Kocheril
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shepard C Moore
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Laura M Lilley
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
45
|
Dzierzęcki S, Ząbek M, Zaczyński A, Tomasiuk R. Prognostic properties of the association between the S‑100B protein levels and the mean cerebral blood flow velocity in patients diagnosed with severe traumatic brain injury. Biomed Rep 2022; 17:58. [PMID: 35719835 PMCID: PMC9201289 DOI: 10.3892/br.2022.1541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/21/2021] [Indexed: 11/06/2022] Open
Abstract
Craniocerebral injury (CBI) is tissue damage caused by a sudden mechanical force. CBI can result in neurological, neuropsychological and psychiatric dysfunctions. Currently, the severity of CBI is assessed using the Glasgow Coma Scale, brain perfusion pressure measurements, transcranial Doppler tests and biochemical markers. This study aimed to determine the applicability of the S-100B protein levels and the time-averaged mean maximum cerebral blood flow velocity (Vmean) as a means of predicting the treatment outcomes of CBI in the first 4 days of hospitalization. The results validated the standard reference ranges previously proposed for the concentration of S-100B (0.05-0.23 µg/l) and the mean of cerebral blood flow velocity (30.9 to 74.1 cm/sec). The following stratification scheme was used to predict the success of treatment: Patients with a Glasgow Outcome Scale (GOS) score ≥4 or GOS <4 were stratified into ‘favorable’ and ‘unfavorable’ groups, respectively. The favorable group showed relatively constant levels of the S-100B protein close to the normal range and exhibited an increase in Vmean, but this was still within the normal range. The unfavorable group exhibited a high level of S-100B protein and increased Vmean outside of the normal ranges. The changes in the levels of S-100B in the unfavorable and favorable groups were -0.03 and -0.006 mg/l/h, respectively. Furthermore, the rate of decrease in the Vmean value in the unfavorable and favorable groups were -0.26 and -0.18 cm/sec/h, respectively. This study showed that constant levels of S-100B protein, even slightly above the normal range, associated with an increase in Vmean was indicative of a positive therapeutic outcome. However, additional research is required to obtain the appropriate statistical strength required for clinical practice.
Collapse
Affiliation(s)
| | - Mirosław Ząbek
- Department of Neurosurgery, Postgraduate Medical Centre, 03‑242 Warsaw, Poland
| | - Artur Zaczyński
- Clinical Department of Neurosurgery, Central Clinical Hospital of the Ministry of the Interior and Administration, 02‑507 Warsaw, Poland
| | - Ryszard Tomasiuk
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities Radom, 26‑600 Radom, Poland
| |
Collapse
|
46
|
Jeon JP, Kim S, Kim TY, Han SW, Lim SH, Youn DH, Kim BJ, Hong EP, Park CH, Kim JT, Ahn JH, Rhim JK, Park JJ, Kim HC, Kang SH. Association Between Copeptin and Six-Month Neurologic Outcomes in Patients With Moderate Traumatic Brain Injury. Front Neurol 2022; 12:749110. [PMID: 35547639 PMCID: PMC9081440 DOI: 10.3389/fneur.2021.749110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
Background Copeptin has been reported as a predictive biomarker for the prognosis after traumatic brain injury (TBI). However, most of them were in patients with severe TBI and limited value in predicting outcomes in patients with moderate TBI defined as Glasgow Coma Scale (GCS) score from 9 to 12. We aimed to investigate the predictive value of copeptin in assessing the neurologic outcome following moderate TBI. Methods Patients were prospectively enrolled between May 2017 and November 2020. We consecutively measured plasma copeptin within 24 h after trauma, days 3, 5, and 7 using ELISA. The primary outcome was to correlate plasma copeptin levels with poor neurologic outcome at 6 months after moderate TBI. The secondary outcome was to compare the prognostic accuracy of copeptin and C-reactive protein (CRP) in assessing the outcome of patient. Results A total of 70 patients were included for the final analysis. The results showed that 29 patients (41.4%) experienced a poor neurologic outcome at 6 months. Multivariable logistic regression analysis revealed that increased copeptin (odds ration [OR] = 1.020, 95% CI: 1.005–1.036), GCS score of 9 or 10 (OR = 4.507, 95% CI: 1.266–16.047), and significant abnormal findings on CT (OR = 4.770; 95% CI: 1.133–20.076) were independent risk factors for poor outcomes. Consecutive plasma copeptin levels were significantly different according to outcomes (p < 0.001). Copeptin on day 7 exhibited better prognostic performance than CRP with an area under receiver operating characteristic curve (AUROC) difference of 0.179 (95% CI: 0.032–0.325) in predicting 6-month poor outcomes. Conclusion Plasma copeptin level can be a useful marker in predicting 6-month outcomes in patients with moderate TBI.
Collapse
Affiliation(s)
- Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Seonghyeon Kim
- Department of Orthopaedic Surgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Tae Yeon Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Seung Hyuk Lim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Chan Hum Park
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jun Hyong Ahn
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju, South Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk Medical Center, Seoul, South Korea
| | - Heung Cheol Kim
- Department of Radioilogy, Hallym University College of Medicine, Chuncheon, South Korea
| | - Suk Hyung Kang
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea
| |
Collapse
|
47
|
Bui LA, Yeboah D, Steinmeister L, Azizi S, Hier DB, Wunsch DC, Olbricht GR, Obafemi-Ajayi T. Heterogeneity in Blood Biomarker Trajectories After Mild TBI Revealed by Unsupervised Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1365-1378. [PMID: 34166200 DOI: 10.1109/tcbb.2021.3091972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Concussions, also known as mild traumatic brain injury (mTBI), are a growing health challenge. Approximately four million concussions are diagnosed annually in the United States. Concussion is a heterogeneous disorder in causation, symptoms, and outcome making precision medicine approaches to this disorder important. Persistent disabling symptoms sometimes delay recovery in a difficult to predict subset of mTBI patients. Despite abundant data, clinicians need better tools to assess and predict recovery. Data-driven decision support holds promise for accurate clinical prediction tools for mTBI due to its ability to identify hidden correlations in complex datasets. We apply a Locality-Sensitive Hashing model enhanced by varied statistical methods to cluster blood biomarker level trajectories acquired over multiple time points. Additional features derived from demographics, injury context, neurocognitive assessment, and postural stability assessment are extracted using an autoencoder to augment the model. The data, obtained from FITBIR, consisted of 301 concussed subjects (athletes and cadets). Clustering identified 11 different biomarker trajectories. Two of the trajectories (rising GFAP and rising NF-L) were associated with a greater risk of loss of consciousness or post-traumatic amnesia at onset. The ability to cluster blood biomarker trajectories enhances the possibilities for precision medicine approaches to mTBI.
Collapse
|
48
|
Nishimura K, Cordeiro JG, Ahmed AI, Yokobori S, Gajavelli S. Advances in Traumatic Brain Injury Biomarkers. Cureus 2022; 14:e23804. [PMID: 35392277 PMCID: PMC8978594 DOI: 10.7759/cureus.23804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/05/2022] Open
Abstract
Traumatic brain injury (TBI) is increasingly a major cause of disability across the globe. The current methods of diagnosis are inadequate at classifying patients and prognosis. TBI is a diagnostic and therapeutic challenge. There is no Food and Drug Administration (FDA)-approved treatment for TBI yet. It took about 16 years of preclinical research to develop accurate and objective diagnostic measures for TBI. Two brain-specific protein biomarkers, namely, ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein, have been extensively characterized. Recently, the two biomarkers were approved by the FDA as the first blood-based biomarker, Brain Trauma Indicator™ (BTI™), via the Breakthrough Devices Program. This scoping review presents (i) TBI diagnosis challenges, (ii) the process behind the FDA approval of biomarkers, and (iii) known unknowns in TBI biomarker biology. The current lag in TBI incidence and hospitalization can be reduced if digital biomarkers such as hard fall detection are standardized and used as a mechanism to alert paramedics to an unresponsive trauma patient.
Collapse
|
49
|
Schneider L, Rezaeezade-Roukerd M, Faulkner J, Reichert E, Shaar HAA, Flis A, Rubiano A, Hawryluk GW. The Human Anti-Ganglioside GM1 Autoantibody Response Following Traumatic and Surgical Central Nervous System Insults. Neurosci Res 2022; 181:105-114. [DOI: 10.1016/j.neures.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
|
50
|
Lee J, Kane BJ, Khanwalker M, Sode K. Development of an electrochemical impedance spectroscopy based biosensor for detection of ubiquitin C-Terminal hydrolase L1. Biosens Bioelectron 2022; 208:114232. [PMID: 35390718 DOI: 10.1016/j.bios.2022.114232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022]
Abstract
Year over year, the incidence of traumatic brain injury (TBI) in the population is dramatically increasing; thus, timely diagnosis is crucial for improving patient outcomes in the clinic. Ubiquitin C-terminal hydrolase L1 (UCH-L1), a blood-based biomarker, has been approved by the FDA as a promising quantitative indicator of mild TBI that arises in blood serum shortly after injury. Current gold standard techniques for its quantitation are time-consuming and require specific laboratory equipment. Hence, development of a hand-held device is an attractive alternative. In this study, we report a novel system for rapid, one-step electrochemical UCH-L1 detection. Electrodes were functionalized with anti-UCH-L1 antibody, which was used as a molecular recognition element for selective sensing of UCH-L1. Electrochemical impedance spectroscopy (EIS) was used as a transduction method to quantify its binding. When the electrode was incubated with different concentrations of UCH-L1, impedance signal increased against a concentration gradient with high logarithmic correlation. Upon single-frequency analysis, a second calibration curve with greater signal to noise was obtained, which was used to distinguish physiologically relevant concentrations of UCH-L1. Notably, our system could detect UCH-L1 within 5 min, without a washing step nor bound/free separation, and had resolution across concentrations ranging from 1 pM to 1000 pM within an artificial serum sample. These attributes, together with the miniaturization potential afforded by an impedimetric sensing platform, make this platform an attractive candidate for scale-up as a device for rapid, on-site detection of TBI. These findings may aid in the future development of sensing systems for quantitative TBI detection.
Collapse
Affiliation(s)
- Jinhee Lee
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Bryant J Kane
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Mukund Khanwalker
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
| |
Collapse
|