1
|
Gu Y, Zhang Q, Huang H, Ho KHW, Zhang Y, Yi C, Zheng Y, Chang RCC, Wang ES, Yang M. Tau‑targeting multifunctional nanocomposite based on tannic acid-metal for near-infrared fluorescence/magnetic resonance bimodal imaging-guided combinational therapy in Alzheimer's disease. Theranostics 2024; 14:6218-6235. [PMID: 39431022 PMCID: PMC11488108 DOI: 10.7150/thno.98462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Rationale: Alzheimer's disease (AD) is hallmarked by amyloid-β (Aβ) plaques and hyperphosphorylated tau (p-tau) neurofibrillary tangles. While Aβ-centric therapies have shown promise, the complex pathology of AD requires a multifaceted therapeutic approach. The weak association between Aβ levels and cognitive decline highlights the need for alternative theranostic strategies. Currently, oxidative stress and tau hyperphosphorylation are now recognized as critical pathological events in AD. Thus, therapies that concurrently attenuate oxidative stress damage and inhibit tau pathology hold great potential for AD treatment. Methods: Herein, a multifunctional neuron-targeted nanocomposite is devised to realize dual imaging-guided AD therapy, integrating the inhibition of tau pathology and reactive oxygen species (ROS)-neutralizing biofunctions. The construction of the nanocomposite incorporates polyphenolic antioxidants tannic acid (TA)-based nanoparticles carrying manganese ions (Mn2+) and fluorescent dye IR780 iodide (IR780), coupled with a neuron-specific TPL peptide. The resulting IR780-Mn@TA-TPL nanoparticles (NPs) are comprehensively evaluated in both in vitro and in vivo AD models to assess their imaging capabilities and therapeutic efficacy. Results: The nanocomposite facilitates Mn-enhanced magnetic resonance (MR) imaging and near-infrared (NIR) fluorescence imaging. It effectively neutralizes toxic ROS and reduces tau hyperphosphorylation and aggregation. In AD rat models, the nanocomposite restores neuronal density in the hippocampus and significantly improves spatial memory. Conclusions: Such a neuron‑targeting multifunctional nanocomposite represents a potential theranostic strategy for AD, signifying a shift towards bimodal imaging-guided treatment approaches.
Collapse
Affiliation(s)
- Yutian Gu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Research Center for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| | - Honglin Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Kwun Hei Willis Ho
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yu Zhang
- Department of Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology, Melbourne VIC 3000, Australia
| | - Changqing Yi
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yifan Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Raymond Chuen Chung Chang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Emma Shujun Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Research Center for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| |
Collapse
|
2
|
Molinar-Díaz J, Arjuna A, Abrehart N, McLellan A, Harris R, Islam MT, Alzaidi A, Bradley CR, Gidman C, Prior MJW, Titman J, Blockley NP, Harvey P, Marciani L, Ahmed I. Development of Resorbable Phosphate-Based Glass Microspheres as MRI Contrast Media Agents. Molecules 2024; 29:4296. [PMID: 39339291 PMCID: PMC11434598 DOI: 10.3390/molecules29184296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
In this research, resorbable phosphate-based glass (PBG) compositions were developed using varying modifier oxides including iron (Fe2O3), copper (CuO), and manganese (MnO2), and then processed via a rapid single-stage flame spheroidisation process to manufacture dense (i.e., solid) and highly porous microspheres. Solid (63-200 µm) and porous (100-200 µm) microspheres were produced and characterised via SEM, XRD, and EDX to investigate their surface topography, structural properties, and elemental distribution. Complementary NMR investigations revealed the formation of Q2, Q1, and Q0 phosphate species within the porous and solid microspheres, and degradation studies performed to evaluate mass loss, particle size, and pH changes over 28 days showed no significant differences among the microspheres (63-71 µm) investigated. The microspheres produced were then investigated using clinical (1.5 T) and preclinical (7 T) MRI systems to determine the R1 and R2 relaxation rates. Among the compositions investigated, manganese-based porous and solid microspheres revealed enhanced levels of R2 (9.7-10.5 s-1 for 1.5 T; 17.1-18.9 s-1 for 7 T) and R1 (3.4-3.9 s-1 for 1.5 T; 2.2-2.3 s-1 for 7 T) when compared to the copper and iron-based microsphere samples. This was suggested to be due to paramagnetic ions present in the Mn-based microspheres. It is also suggested that the porosity in the resorbable PBG porous microspheres could be further explored for loading with drugs or other biologics. This would further advance these materials as MRI theranostic agents and generate new opportunities for MRI contrast-enhancement oral-delivery applications.
Collapse
Affiliation(s)
- Jesús Molinar-Díaz
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
- Composites Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2GX, UK
| | - Andi Arjuna
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Nichola Abrehart
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alison McLellan
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Roy Harris
- Research Design Service East Midlands, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Md Towhidul Islam
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ahlam Alzaidi
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Chris R Bradley
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2QX, UK
| | - Charlotte Gidman
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Malcolm J W Prior
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2QX, UK
| | - Jeremy Titman
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nicholas P Blockley
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Peter Harvey
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2QX, UK
| | - Luca Marciani
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
3
|
Majewski M, Piwko K, Ordak M, Muszynska E, Nasierowski T, Bujalska-Zadrozny M. Magnetic Resonance Imaging and Manganism: A Narrative Review and Laboratory Recommendations. J Clin Med 2024; 13:2823. [PMID: 38792364 PMCID: PMC11122624 DOI: 10.3390/jcm13102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, a series of articles has been published concerning magnetic resonance imaging (MRI) studies in a group of patients exposed to manganism, specifically factory workers, welders, and individuals with liver diseases, as well as those abusing home-produced ephedrone. Some potential symptoms of manganese toxicity include motor disturbances, neurocognitive problems, sleep disorders, and psychosocial changes. Despite various publications on MRI research in individuals with an elevated risk of manganism, there is a noticeable absence of a comprehensive review in this field. The detection of the accumulation of manganese in the brain through MRI can confirm the diagnosis and guide appropriate treatment. Due to the high cost of determining manganese ion levels in biological material, an additional aim of the manuscript was to identify simple medical laboratory parameters that, when performed concurrently with MRI, could assist in the diagnosis of manganism. Among these types of parameters are the levels of bilirubin, magnesium, liver enzymes, creatinine, hemoglobin, and hematocrit.
Collapse
Affiliation(s)
- Michal Majewski
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland; (M.M.); (K.P.); (M.B.-Z.)
| | - Karolina Piwko
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland; (M.M.); (K.P.); (M.B.-Z.)
| | - Michal Ordak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland; (M.M.); (K.P.); (M.B.-Z.)
| | - Elzbieta Muszynska
- Department of Medical Biology, Medical University of Bialystok, Mickiewicza 2c Str., 15-222 Bialystok, Poland;
| | - Tadeusz Nasierowski
- Department of Psychiatry, Faculty of Pharmacy, Medical University of Warsaw, Nowowiejska 27 Str., 00-665 Warsaw, Poland;
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland; (M.M.); (K.P.); (M.B.-Z.)
| |
Collapse
|
4
|
Kamens HM, Cramer S, Hanley RN, Chase S, Wickenheisser A, Horton WJ, Zhang N. Neuroimaging of opioid exposure: a review of preclinical animal models to inform addiction research. Psychopharmacology (Berl) 2023; 240:2459-2482. [PMID: 37857897 DOI: 10.1007/s00213-023-06477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
Opioid use results in thousands of overdose deaths each year. To address this crisis, we need a better understanding of the neurobiological mechanisms that drive opioid abuse. The noninvasive imaging tools positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and manganese-enhanced magnetic resonance imaging (MEMRI) can be used to identify how brain activity responds to acute opioid exposure and adapts to chronic drug treatment. These techniques can be performed in humans and animal models, and brain networks identified in animals closely map to the human brain. Animal models have the advantage of being able to systematically examine the independent effects of opioid exposure in a controlled environment accounting for the complex factors that drive opioid misuse in humans. This review synthesizes literature that utilized noninvasive neuroimaging tools (PET, fMRI, and MEMRI) measuring brain activity correlates in animals to understand the neurobiological consequences of exposure to abused opioids. A PubMed search in September 2023 identified 25 publications. These manuscripts were divided into 4 categories based on the route and duration of drug exposure (acute/chronic, active/passive administration). Within each category, the results were generally consistent across drug and imaging protocols. These papers cover a 20-year range and highlight the advancements in neuroimaging methodology during that time. These advances have enabled researchers to achieve greater resolution of brain regions altered by opioid exposure and to identify patterns of brain activation across regions (i.e., functional connectivity) and within subregions of structures. After describing the existing literature, we suggest areas where additional research is needed.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Samuel Cramer
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Rachel N Hanley
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Spencer Chase
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Anna Wickenheisser
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA
| | - William J Horton
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
5
|
Flak D, Zalewski T, Fiedorowicz K, Przysiecka Ł, Jarek M, Klimaszyk A, Kempka M, Zimna A, Rozwadowska N, Avaro J, Liebi M, Nowaczyk G. Hybrids of manganese oxide and lipid liquid crystalline nanoparticles (LLCNPs@MnO) as potential magnetic resonance imaging (MRI) contrast agents. J Mater Chem B 2023; 11:8732-8753. [PMID: 37655519 DOI: 10.1039/d3tb01110k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Due to the health risks associated with the use of Gd-chelates and the promising effects of using nanoparticles as T1 contrast agents (CAs) for MRI, Mn-based nanoparticles are considered a highly competitive alternative. The use of hybrid constructs with paramagnetic functionality of Mn-based nanoparticles is an effective approach, in particular, the use of biocompatible lipid liquid crystalline nanoparticles (LLCNPs) as a carrier of MnO nanoparticles. LLCNPs possess a unique internal structure ensuring a payload of different polarity MnO nanoparticles. In view of MRI application, the surface properties including the polarity of MnO are crucial factors determining their relaxation rate and thus the MRI efficiency. Two novel hybrid constructs consisting of LLCNPs loaded with hydrophobic MnO-oleate and hydrophilic MnO-DMSA NPs were prepared. These nanosystems were studied in terms of their physico-chemical properties, positive T1 contrast enhancement properties (in vitro and in vivo) and biological safety. LLCNPs@MnO-oleate and LLCNPs@MnO-DMSA hybrids exhibited a heterogeneous phase composition, however with differences in the inner periodic arrangement and structural parameters, as well as in the preferable localization of MnO NPs within the LLCNPs. Also, these hybrids differed in terms of particle size-related parameters and colloidal stability, which was found to be strongly dependent on the addition of differently functionalized MnO NPs. Embedding both types of MnO NPs into LLCNPs resulted in high relaxivity parameters, in comparison to bare MnO-DMSA NPs and also commercially developed CAs (e.g. Dotarem and Teslascan). Further biosafety studies revealed that cell internalization pathways were dependent on the prepared hybrid type, while viability, effects on the mitochondria membrane potential and cytoskeletal networks were rather related to the susceptibility of the particular cell line. The high relaxation rates achieved with the developed hybrid LLCNPs@MnO enable them to be possibly used as novel and biologically safe MRI T1-enhancing CAs in in vivo imaging.
Collapse
Affiliation(s)
- Dorota Flak
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Katarzyna Fiedorowicz
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Łucja Przysiecka
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Marcin Jarek
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Adam Klimaszyk
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Marek Kempka
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Agnieszka Zimna
- Institute of Human Genetics Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Natalia Rozwadowska
- Institute of Human Genetics Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Jonathan Avaro
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics and Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Marianne Liebi
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| |
Collapse
|
6
|
Guadilla I, González S, Cerdán S, Lizarbe B, López-Larrubia P. Magnetic resonance imaging to assess the brain response to fasting in glioblastoma-bearing rats as a model of cancer anorexia. Cancer Imaging 2023; 23:36. [PMID: 37038232 PMCID: PMC10088192 DOI: 10.1186/s40644-023-00553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/03/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Global energy balance is a vital process tightly regulated by the brain that frequently becomes dysregulated during the development of cancer. Glioblastoma (GBM) is one of the most investigated malignancies, but its appetite-related disorders, like anorexia/cachexia symptoms, remain poorly understood. METHODS We performed manganese enhanced magnetic resonance imaging (MEMRI) and subsequent diffusion tensor imaging (DTI), in adult male GBM-bearing (n = 13) or control Wistar rats (n = 12). A generalized linear model approach was used to assess the effects of fasting in different brain regions involved in the regulation of the global energy metabolism: cortex, hippocampus, hypothalamus and thalamus. The regions were selected on the contralateral side in tumor-bearing animals, and on the left hemisphere in control rats. An additional DTI-only experiment was completed in two additional GBM (n = 5) or healthy cohorts (n = 6) to assess the effects of manganese infusion on diffusion measurements. RESULTS MEMRI results showed lower T1 values in the cortex (p-value < 0.001) and thalamus (p-value < 0.05) of the fed ad libitum GBM animals, as compared to the control cohort, consistent with increased Mn2+ accumulation. No MEMRI-detectable differences were reported between fed or fasting rats, either in control or in the GBM group. In the MnCl2-infused cohorts, DTI studies showed no mean diffusivity (MD) variations from the fed to the fasted state in any animal cohort. However, the DTI-only set of acquisitions yielded remarkably decreased MD values after fasting only in the healthy control rats (p-value < 0.001), and in all regions, but thalamus, of GBM compared to control animals in the fed state (p-value < 0.01). Fractional anisotropy (FA) decreased in tumor-bearing rats due to the infiltrate nature of the tumor, which was detected in both diffusion sets, with (p-value < 0.01) and without Mn2+ administration (p-value < 0.001). CONCLUSIONS Our results revealed that an altered physiological brain response to fasting occurred in hunger related regions in GBM animals, detectable with DTI, but not with MEMRI acquisitions. Furthermore, the present results showed that Mn2+ induces neurotoxic inflammation, which interferes with diffusion MRI to detect appetite-induced responses through MD changes.
Collapse
Affiliation(s)
- Irene Guadilla
- Biomedical Magnetic Resonance Group, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Sara González
- Biomedical Magnetic Resonance Group, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Sebastián Cerdán
- Biomedical Magnetic Resonance Group, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Blanca Lizarbe
- Biomedical Magnetic Resonance Group, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, C/ Arturo Duperier 4, 28029, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Pilar López-Larrubia
- Biomedical Magnetic Resonance Group, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, C/ Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
7
|
Tahara M, Higurashi N, Hata J, Nishikawa M, Ito K, Hirose S, Kaneko T, Mashimo T, Sakuma T, Yamamoto T, Okano HJ. Developmental changes in brain activity of heterozygous Scn1a knockout rats. Front Neurol 2023; 14:1125089. [PMID: 36998780 PMCID: PMC10043303 DOI: 10.3389/fneur.2023.1125089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionDravet syndrome (DS) is an infantile-onset developmental and epileptic encephalopathy characterized by an age-dependent evolution of drug-resistant seizures and poor developmental outcomes. Functional impairment of gamma-aminobutyric acid (GABA)ergic interneurons due to loss-of-function mutation of SCN1A is currently considered the main pathogenesis. In this study, to better understand the age-dependent changes in the pathogenesis of DS, we characterized the activity of different brain regions in Scn1a knockout rats at each developmental stage.MethodsWe established an Scn1a knockout rat model and examined brain activity from postnatal day (P) 15 to 38 using a manganese-enhanced magnetic resonance imaging technique (MEMRI).ResultsScn1a heterozygous knockout (Scn1a+/−) rats showed a reduced expression of voltage-gated sodium channel alpha subunit 1 protein in the brain and heat-induced seizures. Neural activity was significantly higher in widespread brain regions of Scn1a+/− rats than in wild-type rats from P19 to P22, but this difference did not persist thereafter. Bumetanide, a Na+-K+-2Cl− cotransporter 1 inhibitor, mitigated hyperactivity to the wild-type level, although no change was observed in the fourth postnatal week. Bumetanide also increased heat-induced seizure thresholds of Scn1a+/− rats at P21.ConclusionsIn Scn1a+/− rats, neural activity in widespread brain regions increased during the third postnatal week, corresponding to approximately 6 months of age in humans, when seizures most commonly develop in DS. In addition to impairment of GABAergic interneurons, the effects of bumetanide suggest a possible contribution of immature type A gamma-aminobutyric acid receptor signaling to transient hyperactivity and seizure susceptibility during the early stage of DS. This hypothesis should be addressed in the future. MEMRI is a potential technique for visualizing changes in basal brain activity in developmental and epileptic encephalopathies.
Collapse
Affiliation(s)
- Mayu Tahara
- Department of Pediatrics, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Norimichi Higurashi
- Department of Pediatrics, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- *Correspondence: Norimichi Higurashi
| | - Junichi Hata
- Division of Regenerative Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo, Japan
| | - Masako Nishikawa
- Clinical Research Support Center, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Ken Ito
- Department of Pediatrics, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Shinichi Hirose
- General Medical Research Center, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takehito Kaneko
- Division of Fundamental and Applied Sciences, Graduate School of Science and Engineering, Iwate University, Morioka, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Hirotaka James Okano
| |
Collapse
|
8
|
Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese-enhanced magnetic resonance imaging of neural projections and activity. NMR IN BIOMEDICINE 2022; 35:e4675. [PMID: 35253280 PMCID: PMC11064873 DOI: 10.1002/nbm.4675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) holds exceptional promise for preclinical studies of brain-wide physiology in awake-behaving animals. The objectives of this review are to update the current information regarding MEMRI and to inform new investigators as to its potential. Mn(II) is a powerful contrast agent for two main reasons: (1) high signal intensity at low doses; and (2) biological interactions, such as projection tracing and neural activity mapping via entry into electrically active neurons in the living brain. High-spin Mn(II) reduces the relaxation time of water protons: at Mn(II) concentrations typically encountered in MEMRI, robust hyperintensity is obtained without adverse effects. By selectively entering neurons through voltage-gated calcium channels, Mn(II) highlights active neurons. Safe doses may be repeated over weeks to allow for longitudinal imaging of brain-wide dynamics in the same individual across time. When delivered by stereotactic intracerebral injection, Mn(II) enters active neurons at the injection site and then travels inside axons for long distances, tracing neuronal projection anatomy. Rates of axonal transport within the brain were measured for the first time in "time-lapse" MEMRI. When delivered systemically, Mn(II) enters active neurons throughout the brain via voltage-sensitive calcium channels and clears slowly. Thus behavior can be monitored during Mn(II) uptake and hyperintense signals due to Mn(II) uptake captured retrospectively, allowing pairing of behavior with neural activity maps for the first time. Here we review critical information gained from MEMRI projection mapping about human neuropsychological disorders. We then discuss results from neural activity mapping from systemic Mn(II) imaged longitudinally that have illuminated development of the tonotopic map in the inferior colliculus as well as brain-wide responses to acute threat and how it evolves over time. MEMRI posed specific challenges for image data analysis that have recently been transcended. We predict a bright future for longitudinal MEMRI in pursuit of solutions to the brain-behavior mystery.
Collapse
Affiliation(s)
- Taylor W. Uselman
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elaine L. Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
9
|
Pérez-Ramírez Ú, López-Madrona VJ, Pérez-Segura A, Pallarés V, Moreno A, Ciccocioppo R, Hyytiä P, Sommer WH, Moratal D, Canals S. Brain Network Allostasis after Chronic Alcohol Drinking Is Characterized by Functional Dedifferentiation and Narrowing. J Neurosci 2022; 42:4401-4413. [PMID: 35437279 PMCID: PMC9145238 DOI: 10.1523/jneurosci.0389-21.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Alcohol use disorder (AUD) causes complex alterations in the brain that are poorly understood. The heterogeneity of drinking patterns and the high incidence of comorbid factors compromise mechanistic investigations in AUD patients. Here we used male Marchigian Sardinian alcohol-preferring (msP) rats, a well established animal model of chronic alcohol drinking, and a combination of longitudinal resting-state fMRI and manganese-enhanced MRI to provide objective measurements of brain connectivity and activity, respectively. We found that 1 month of chronic alcohol drinking changed the correlation between resting-state networks. The change was not homogeneous, resulting in the reorganization of pairwise interactions and a shift in the equilibrium of functional connections. We identified two fundamentally different forms of network reorganization. First is functional dedifferentiation, which is defined as a regional increase in neuronal activity and overall correlation, with a concomitant decrease in preferential connectivity between specific networks. Through this mechanism, occipital cortical areas lost their specific interaction with sensory-insular cortex, striatal, and sensorimotor networks. Second is functional narrowing, which is defined as an increase in neuronal activity and preferential connectivity between specific brain networks. Functional narrowing strengthened the interaction between striatal and prefrontocortical networks, involving the anterior insular, cingulate, orbitofrontal, prelimbic, and infralimbic cortices. Importantly, these two types of alterations persisted after alcohol discontinuation, suggesting that dedifferentiation and functional narrowing rendered persistent network states. Our results support the idea that chronic alcohol drinking, albeit at moderate intoxicating levels, induces an allostatic change in the brain functional connectivity that propagates into early abstinence.SIGNIFICANCE STATEMENT Excessive consumption of alcohol is positioned among the top five risk factors for disease and disability. Despite this priority, the transformations that the nervous system undergoes from an alcohol-naive state to a pathologic alcohol drinking are not well understood. In our study, we use an animal model with proven translational validity to study this transformation longitudinally. The results show that shortly after chronic alcohol consumption there is an increase in redundant activity shared by brain structures, and the specific communication shrinks to a set of pathways. This functional dedifferentiation and narrowing are not reversed immediately after alcohol withdrawal but persist during early abstinence. We causally link chronic alcohol drinking with an early and abstinence-persistent retuning of the functional equilibrium of the brain.
Collapse
Affiliation(s)
- Úrsula Pérez-Ramírez
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, E-46022 Valencia, Spain
| | - Víctor J López-Madrona
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | - Andrés Pérez-Segura
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | - Vicente Pallarés
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | - Andrea Moreno
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | | | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, E-46022 Valencia, Spain
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| |
Collapse
|
10
|
Sguizzato M, Martini P, Marvelli L, Pula W, Drechsler M, Capozza M, Terreno E, Del Bianco L, Spizzo F, Cortesi R, Boschi A. Synthetic and Nanotechnological Approaches for a Diagnostic Use of Manganese. Molecules 2022; 27:molecules27103124. [PMID: 35630601 PMCID: PMC9146667 DOI: 10.3390/molecules27103124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
The development of multimodal imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) allows the contemporary obtaining of metabolic and morphological information. To fully exploit the complementarity of the two imaging modalities, the design of probes displaying radioactive and magnetic properties at the same time could be very beneficial. In this regard, transition metals offer appealing options, with manganese representing an ideal candidate. As nanosized imaging probes have demonstrated great value for designing advanced diagnostic/theranostic procedures, this work focuses on the potential of liposomal formulations loaded with a new synthesized paramagnetic Mn(II) chelates. Negatively charged liposomes were produced by thin-layer hydration method and extrusion. The obtained formulations were characterized in terms of size, surface charge, efficiency of encapsulation, stability over time, relaxivity, effective magnetic moment, and in vitro antiproliferative effect on human cells by means of the MTT assay. The negatively charged paramagnetic liposomes were monodisperse, with an average hydrodynamic diameter not exceeding 200 nm, and they displayed good stability and no cytotoxicity. As determined by optical emission spectroscopy, manganese complexes are loaded almost completely on liposomes maintaining their paramagnetic properties.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.)
- Biotechnology Interuniversity Consortium, Ferrara Section, University of Ferrara, 44121 Ferrara, Italy
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
- INFN—Laboratori Nazionali Legnaro, National Institute of Nuclear Physics, Viale dell’Università, 2, 35020 Legnaro, Italy
| | - Lorenza Marvelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.)
- Correspondence: (L.M.); (R.C.)
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.)
| | - Markus Drechsler
- Key Lab “Electron and Optical Microscopy”, Bavarian Polymer Institute (BPI), University of Bayreuth, 95440 Bayreuth, Germany;
| | - Martina Capozza
- Molecular & Preclinical Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Enzo Terreno
- Molecular & Preclinical Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Lucia Del Bianco
- Department of Physics and Earth Science, University of Ferrara, 44122 Ferrara, Italy; (L.D.B.); (F.S.)
| | - Federico Spizzo
- Department of Physics and Earth Science, University of Ferrara, 44122 Ferrara, Italy; (L.D.B.); (F.S.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.)
- INFN—Laboratori Nazionali Legnaro, National Institute of Nuclear Physics, Viale dell’Università, 2, 35020 Legnaro, Italy
- Correspondence: (L.M.); (R.C.)
| | - Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.)
| |
Collapse
|
11
|
Komatsu C, van der Merwe Y, He L, Kasi A, Sims JR, Miller MR, Rosner IA, Khatter NJ, Su AJA, Schuman JS, Washington KM, Chan KC. In vivo MRI evaluation of anterograde manganese transport along the visual pathway following whole eye transplantation. J Neurosci Methods 2022; 372:109534. [PMID: 35202613 PMCID: PMC8940646 DOI: 10.1016/j.jneumeth.2022.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since adult mammalian retinal ganglion cells cannot regenerate after injury, we have recently established a whole-eye transplantation (WET) rat model that provides an intact optical system to investigate potential surgical restoration of irreversible vision loss. However, it remains to be elucidated whether physiological axoplasmic transport exists in the transplanted visual pathway. New Method: We developed an in vivo imaging model system to assess WET integration using manganese-enhanced magnetic resonance imaging (MEMRI) in rats. Since Mn2+ is a calcium analogue and an active T1-positive contrast agent, the levels of anterograde manganese transport can be evaluated in the visual pathways upon intravitreal Mn2+ administration into both native and transplanted eyes. RESULTS No significant intraocular pressure difference was found between native and transplanted eyes, whereas comparable manganese enhancement was observed between native and transplanted intraorbital optic nerves, suggesting the presence of anterograde manganese transport after WET. No enhancement was detected across the coaptation site in the higher visual areas of the recipient brain. Comparison with Existing Methods: Existing imaging methods to assess WET focus on either the eye or local optic nerve segments without direct visualization and longitudinal quantification of physiological transport along the transplanted visual pathway, hence the development of in vivo MEMRI. CONCLUSION Our established imaging platform indicated that essential physiological transport exists in the transplanted optic nerve after WET. As neuroregenerative approaches are being developed to connect the transplanted eye to the recipient's brain, in vivo MEMRI is well-suited to guide strategies for successful WET integration for vision restoration. Keywords (Max 6): Anterograde transport, magnetic resonance imaging, manganese, neuroregeneration, optic nerve, whole-eye transplantation.
Collapse
Affiliation(s)
- Chiaki Komatsu
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yolandi van der Merwe
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lin He
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Plastic, Aesthetic & Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Anisha Kasi
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Jeffrey R Sims
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Maxine R Miller
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ian A Rosner
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Neil J Khatter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Colorado, Denver, CO, United States; William Beaumont School of Medicine, Oakland University, Rochester, MI, United States
| | - An-Jey A Su
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Colorado, Denver, CO, United States
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Center for Neural Science, College of Arts and Science, New York University, New York, NY, United States; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Kia M Washington
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Colorado, Denver, CO, United States; Veterans Administration Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Kevin C Chan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Center for Neural Science, College of Arts and Science, New York University, New York, NY, United States; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States; Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States.
| |
Collapse
|
12
|
Sommer WH, Canals S, Bifone A, Heilig M, Hyytiä P. From a systems view to spotting a hidden island: A narrative review implicating insula function in alcoholism. Neuropharmacology 2022; 209:108989. [PMID: 35217032 DOI: 10.1016/j.neuropharm.2022.108989] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/31/2022]
Abstract
Excessive use of alcohol promotes the development of alcohol addiction, but the understanding of how alcohol-induced brain alterations lead to addiction remains limited. To further this understanding, we adopted an unbiased discovery strategy based on the principles of systems medicine. We used functional magnetic resonance imaging data from patients and animal models of alcohol addiction-like behaviors, and developed mathematical models of the 'relapse-prone' network states to identify brain sites and functional networks that can be selectively targeted by therapeutic interventions. Our systems level, non-local, and largely unbiased analyses converged on a few well-defined brain regions, with the insula emerging as one of the most consistent finding across studies. In proof-of-concept experiments we were able to demonstrate that it is possible to guide network dynamics towards increased resilience in animals but an initial translation into a clinical trial targeting the insula failed. Here, in a narrative review, we summarize the key experiments, methodological developments and knowledge gained from this completed round of a discovery cycle moving from identification of 'relapse-prone' network states in humans and animals to target validation and intervention trial. Future concerted efforts are necessary to gain a deeper understanding of insula function a in a state-dependent, circuit-specific and cell population perspective, and to develop the means for insula-directed interventions, before therapeutic targeting of this structure may become possible.
Collapse
Affiliation(s)
- Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Bethania Hospital for Psychiatry, Psychosomatics, and Psychotherapy, Greifswald, Germany.
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Spain
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Torino, Italy
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Linköping University and Dept. of Psychiatry, Linköping Univ. Hospital, S-581 85, Linköping, Sweden
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
13
|
Sguizzato M, Pula W, Bordin A, Pagnoni A, Drechsler M, Marvelli L, Cortesi R. Manganese in Diagnostics: A Preformulatory Study. Pharmaceutics 2022; 14:pharmaceutics14010108. [PMID: 35057004 PMCID: PMC8780490 DOI: 10.3390/pharmaceutics14010108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
This investigation aims to find lipid-based nanosystems to be used as tools to deliver manganese for diagnostic purposes in multimodal imaging techniques. In particular, the study describes the production and characterization of aqueous dispersions of anionic liposomes as delivery systems for two model manganese-based compounds, namely manganese chloride and manganese acetylacetonate. Negatively charged liposomes were obtained using four different anionic surfactants, namely sodium docusate (SD), N-lauroylsarcosine (NLS), Protelan AG8 (PAG) and sodium lauroyl lactylate (SLL). Liposomes were produced by the direct hydration method followed by extrusion and characterized in terms of size, polydispersity, surface charge and stability over time. After extrusion, liposomes are homogeneous and monodispersed with an average diameter not exceeding 200 nm and a negative surface charge as confirmed by ζ potential measurement. Moreover, as indicated by atomic absorption spectroscopy analyses, the loading of manganese-based compounds was almost quantitative. Liposomes containing NLS or SLL were the most stable over time and the presence of manganese-based compounds did not affect their size distribution. Liposomes containing PAG and SD were instable and therefore discarded. The in vitro cytotoxicity of the selected anionic liposomes was evaluated by MTT assay on human keratinocyte. The obtained results highlighted that the toxicity of the formulations is dose dependent.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.); (L.M.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.); (L.M.)
| | - Anna Bordin
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.); (L.M.)
| | - Antonella Pagnoni
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy;
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany;
| | - Lorenza Marvelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.); (L.M.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.); (L.M.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
14
|
Neuroimaging reveals functionally distinct neuronal networks associated with high-level alcohol consumption in two genetic rat models. Behav Pharmacol 2020; 32:229-238. [PMID: 32925226 DOI: 10.1097/fbp.0000000000000582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human imaging data suggest that the motivational processes associated with alcohol reward are reflected in the patterns of neural activation after alcohol or alcohol-related cues. In animal models of alcohol drinking, however, the changes in brain activation during voluntary alcohol ingestion are poorly known. In order to improve the translational utility of animal models, we examined alcohol-induced functional brain activation in Alko Alcohol (AA) and Marchigian-Sardinian alcohol-preferring (msP) rats that drink voluntarily high levels of alcohol, but exhibit widely different neurochemical and behavioral traits cosegregated with alcohol preference. Brain imaging was performed using manganese-enhanced MRI (MEMRI), which is based on accumulation of Mn2+ ions in activated neurons, allowing the identification of functional neuronal networks recruited during specific behaviors in awake animals during a subsequent imaging session under anesthesia. MEMRI was performed following 4 weeks of voluntary alcohol drinking, using water drinking as the control. Despite similar levels of alcohol drinking, strikingly different alcohol-induced neuronal activity patterns were observed in AA and msP rats. Overall, functional activation in the AA rats was more widespread, involving large cortical areas and subcortical structures, such as the bed nucleus of the stria terminalis, preoptic area, hypothalamus, periaqueductal grey, and substantia nigra. In the msP rats, however, alcohol-related activation was largely confined to prefrontal cortical regions and insular cortex, and olfactory areas. Overlapping areas of activation found in both rat lines included the nucleus accumbens, prelimbic, orbital, and insular cortex. In conclusion, our data reveal strikingly different brain circuits associated with alcohol drinking in two genetically different rat lines and suggest innately different motivational and behavioral processes driving alcohol drinking. These findings have important implications for the use of these lines in translational alcohol research.
Collapse
|