1
|
Iijima Y, Miki R, Takasugi N, Fujimura M, Uehara T. Characterization of pathological changes in the olfactory system of mice exposed to methylmercury. Arch Toxicol 2024; 98:1163-1175. [PMID: 38367039 PMCID: PMC10944439 DOI: 10.1007/s00204-024-03682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
Methylmercury (MeHg) is a well-known environmental neurotoxicant that causes severe brain disorders such as Minamata disease. Although some patients with Minamata disease develop olfactory dysfunction, the underlying pathomechanism is largely unknown. We examined the effects of MeHg on the olfactory system using a model of MeHg poisoning in which mice were administered 30 ppm MeHg in drinking water for 8 weeks. Mice exposed to MeHg displayed significant mercury accumulation in the olfactory pathway, including the nasal mucosa, olfactory bulb, and olfactory cortex. The olfactory epithelium was partially atrophied, and olfactory sensory neurons were diminished. The olfactory bulb exhibited an increase in apoptotic cells, hypertrophic astrocytes, and amoeboid microglia, mainly in the granular cell layer. Neuronal cell death was observed in the olfactory cortex, particularly in the ventral tenia tecta. Neuronal cell death was also remarkable in higher-order areas such as the orbitofrontal cortex. Correlation analysis showed that neuronal loss in the olfactory cortex was strongly correlated with the plasma mercury concentration. Our results indicate that MeHg is an olfactory toxicant that damages the central regions involved in odor perception. The model described herein is useful for analyzing the mechanisms and treatments of olfactory dysfunction in MeHg-intoxicated patients.
Collapse
Affiliation(s)
- Yuta Iijima
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700‑8530, Japan
| | - Ryohei Miki
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700‑8530, Japan
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700‑8530, Japan
| | - Masatake Fujimura
- Department of Basic Medical Science, National Institute for Minamata Disease, Kumamoto, 867‑0008, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700‑8530, Japan.
| |
Collapse
|
2
|
De Luca R, Bonanno M, Rifici C, Quartarone A, Calabrò RS. Post-traumatic olfactory dysfunction: a scoping review of assessment and rehabilitation approaches. Front Neurol 2023; 14:1193406. [PMID: 37521284 PMCID: PMC10374209 DOI: 10.3389/fneur.2023.1193406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Post-traumatic Olfactory Dysfunction (PTOD) consists of a complete or partial loss of olfactory function that may occur after a traumatic brain injury (TBI). PTOD may be linked to some neuropsychiatric features, such as social, cognitive and executive dysfunction, as well as behavioral symptoms, especially when TBI involves the orbito-frontal cortex. The diagnosis of PTOD is based on medical history and clinical data and it is supported by psychometric tests (i.e., subjective tools) as well as electrophysiological and neuroimaging measures (i.e., objective methods). The assessment methods allow monitoring the changes in olfactory function over time and help to establish the right therapeutic and rehabilitative approach. In this context, the use of the olfactory training (OT), which is a non-pharmacological and non-invasive treatment option, could promote olfactory function through top-down (central) and bottom-up (peripheral) processes. To better manage patients with TBI, PTOD should be detected early and properly treated using the various therapeutic rehabilitative possibilities, both conventional and advanced, also taking into consideration the emerging neuromodulation approach.
Collapse
|
3
|
Chen Y, Geng Y, Jiang J, Xiong G, Lei C. Smell and taste dysfunction in patients infected with the Omicron variant of severe acute respiratory syndrome coronavirus-2. Acta Otolaryngol 2023; 143:489-494. [PMID: 37326433 DOI: 10.1080/00016489.2023.2223243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Smell and taste dysfunctions (STD) are frequently observed in patients with coronavirus disease (COVID-19). OBJECTIVES To investigate the clinical characteristics of STD in COVID-19 patients. MATERIAL AND METHODS One-hundred six COVID-19 adult patients with the Omicron variant were enrolled. The clinical features of patients with and without STD were compared using questionnaires, laboratory tests, and imaging examinations. RESULTS Of the 76 patients with smell and/or taste dysfunction, age (p = .002), vaccination time (p = .024), history of systemic diseases (p = .032), and smoking status (p = .044) were significantly different from those of the controls (n = 34). Fatigue (p = .001), headache (p = .004), myalgia (p = .047), and gastrointestinal discomfort (p = .001) were observed more frequently in these patients than in controls. The Hospital Anxiety and Depression Scale score of these patients was significantly higher than that of controls (p < .001). The taste visual assessment scale score of the STD group was significantly lower than that of the taste dysfunction group (p = .001), and perceptions of sour, sweet, and salty tastes were worse in the STD group than in the taste dysfunction group (p < .001). CONCLUSIONS AND SIGNIFICANCE COVID-19 patients had similar changes in smell and/or taste dysfunctions and worse emotional states, possibly correlated with some factors, including age and vaccination time.
Collapse
Affiliation(s)
- Yanping Chen
- Department of Otorhinolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yan Geng
- Department of Otorhinolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Juan Jiang
- Department of Otorhinolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Gaoyun Xiong
- Department of Otorhinolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Chenyang Lei
- Department of Otorhinolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
4
|
Hernandez AK, Landis BN, Altundag A, Fjaeldstad AW, Gane S, Holbrook EH, Huart C, Konstantinidis I, Lechner M, Macchi A, Portillo Mazal P, Miwa T, Philpott CM, Pinto JM, Poletti SC, Vodicka J, Welge-Luessen A, Whitcroft KL, Hummel T. Olfactory Nomenclature: An Orchestrated Effort to Clarify Terms and Definitions of Dysosmia, Anosmia, Hyposmia, Normosmia, Hyperosmia, Olfactory Intolerance, Parosmia, and Phantosmia/Olfactory Hallucination. ORL J Otorhinolaryngol Relat Spec 2023; 85:312-320. [PMID: 37062268 PMCID: PMC10711772 DOI: 10.1159/000530211] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/10/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Definitions are essential for effective communication and discourse, particularly in science. They allow the shared understanding of a thought or idea, generalization of knowledge, and comparison across scientific investigation. The current terms describing olfactory dysfunction are vague and overlapping. SUMMARY As a group of clinical olfactory researchers, we propose the standardization of the terms "dysosmia," "anosmia," "hyposmia," "normosmia," "hyperosmia," "olfactory intolerance," "parosmia," and "phantosmia" (or "olfactory hallucination") in olfaction-related communication, with specific definitions in this text. KEY MESSAGES The words included in this paper were determined as those which are most frequently used in the context of olfactory function and dysfunction, in both clinical and research settings. Despite widespread use in publications, however, there still exists some disagreement in the literature regarding the definitions of terms related to olfaction. Multiple overlapping and imprecise terms that are currently in use are confusing and hinder clarity and universal understanding of these concepts. There is a pressing need to have a unified agreement on the definitions of these olfactory terms by researchers working in the field of chemosensory sciences. With the increased interest in olfaction, precise use of these terms will improve the ability to integrate and advance knowledge in this field.
Collapse
Affiliation(s)
- Anna Kristina Hernandez
- Smell and Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Otolaryngology – Head and Neck Surgery, Philippine General Hospital, University of the Philippines – Manila, Manila, Philippines
- Department of Otolaryngology – Head and Neck Surgery, Asian Hospital and Medical Center, Muntinlupa, Philippines
| | - Basile N. Landis
- Rhinology-Olfactology Unit, Department of Otorhinolaryngology, University Hospital of Geneva, Geneva, Switzerland
| | - Aytug Altundag
- Department of Otolaryngology, Head and Neck Surgery, Biruni University Medical School, Istanbul, Turkey
| | - Alexander Wieck Fjaeldstad
- Department of Otorhinolaryngology, University Clinic for Flavour, Balance and Sleep, Regional Hospital Gødstrup, Herning, Denmark
- Department of Clinical Medicine, Flavour Institute, Aarhus University, Aarhus, Denmark
- Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- The Centre for Olfactory Research and Applications, Institute of Philosophy, School of Advanced Study, University of London, London, UK
| | - Simon Gane
- The Centre for Olfactory Research and Applications, Institute of Philosophy, School of Advanced Study, University of London, London, UK
- Royal National Throat Nose and Ear Hospital, UCLH, London, UK
| | - Eric H. Holbrook
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Caroline Huart
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Iordanis Konstantinidis
- Smell and Taste Clinic, Second Academic Otorhinolaryngology Department, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Matt Lechner
- Division of Surgery and Interventional Science, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
- ENT Department, Homerton Healthcare NHS Foundation Trust, London, UK
| | - Alberto Macchi
- ENT Clinic, University of Insubria, ASST Sette Laghi, Varese, Italy
| | - Patricia Portillo Mazal
- Servicio de Otorrinolaringología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Takaki Miwa
- Department of Otorhinolaryngology, Kanazawa Medical University, Uchinada, Japan
| | - Carl M. Philpott
- Norwich Medical School, University of East Anglia, Norwich, UK
- The Smell and Taste Clinic, James Paget University Hospital, Gorleston, UK
| | - Jayant M. Pinto
- Section of Otolaryngology-Head and Neck Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Sophia C. Poletti
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan Vodicka
- Department of Otorhinolaryngology and Head and Neck Surgery, Hospital Pardubice, Faculty of Health Studies, University of Pardubice, Pardubice, Czech Republic
| | - Antje Welge-Luessen
- Department of Otorhinolaryngology, University Hospital Basel, Basel, Switzerland
| | - Katherine L. Whitcroft
- Smell and Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- The Centre for Olfactory Research and Applications, Institute of Philosophy, School of Advanced Study, University of London, London, UK
- UCL Ear Institute, Faculty of Brain Sciences, University College London, London, UK
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Altundag A. Parosmia and Phantosmia: Managing Quality Disorders. CURRENT OTORHINOLARYNGOLOGY REPORTS 2023; 11:19-26. [PMID: 36721659 PMCID: PMC9880375 DOI: 10.1007/s40136-023-00441-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 01/28/2023]
Abstract
Purpose of Review The purpose of this review was to summarize the current knowledge on parosmia and phantosmia and introduce support and treatment algorithms for the two qualitative olfactory disorders. Recent Findings Recent literature regarding parosmia has revealed that patients with the disorder are mainly triggered by certain substances, including thiols and pyrazines. In 2015, the existing "olfactory training" regimen was improved to more effectively treat post-infectious olfactory loss and was named "modified olfactory training" (MOT). It was also found in 2022 that MOT is also effective against COVID-19-induced parosmia. Summary Parosmia, the distortion of smells, is a symptom in qualitative olfactory disorders that severely affects patients' mental well-being and enjoyment of their everyday lives. The condition was first documented in 1895 and can affect up to 5% of the general population. Etiologies of parosmia include sinonasal diseases, viruses, surgeries, traumatic brain injury, neurological and psychiatric conditions, toxic chemicals, and medications. Parosmia has seen a surge in cases since the onset of the COVID-19 pandemic and is linked to changes in brain structure following an infection. The evaluation of the symptom is done using surveys, smell identification tests, fMRI, MRI, PET/CT, and gas chromatography. Treatment for parosmia can vary in duration, which makes it essential to focus not only on helping the patients regain normosmia, but also on supporting the patient through the recovery journey. Parosmia should not be confused with phantosmia, in which the distortion of smells occurs in the absence of olfactory stimuli. The etiology of phantosmia can vary from infections and traumatic brain injury to psychiatric disorders like schizophrenia. Unlike parosmia, the treatment of phantosmia is less straightforward, with an emphasis on determining the etiology and providing symptomatic relief.
Collapse
Affiliation(s)
- Aytug Altundag
- Otorhinolaryngology Department, Biruni University School of Medicine, Istanbul, Turkey
| |
Collapse
|
6
|
Krämer G. Riech- und Schmeckstörungen bei Epilepsien und anderen neurologischen Erkrankungen. DGNEUROLOGIE 2022. [PMCID: PMC9336133 DOI: 10.1007/s42451-022-00464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G. Krämer
- Neurozentrum Bellevue, Theaterstr. 8, 8001 Zürich, Schweiz
| |
Collapse
|
7
|
Carlisle TC, Birlea M, Restrepo D, Filley CM. Headache-Associated Phantosmia as a Harbinger of Lewy Body Dementia. J Neuropsychiatry Clin Neurosci 2022; 35:92-97. [PMID: 35989571 PMCID: PMC11022529 DOI: 10.1176/appi.neuropsych.21110265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Olfactory hallucinations, or phantosmias, can occur in many neurological, psychiatric, and medical conditions, but no widely used standardized approach exists to comprehensively assess qualitative olfactory dysfunction in the clinical setting. Additionally, medical professionals, patients, and their family members may not recognize phantosmia as a potentially neurological problem. Given the many possible etiologies for symptomatic phantosmia, it is important to recognize this unusual presentation and elicit a meaningful history to explore the potential underlying cause. We describe a 77-year-old gentleman with a two-year history of headaches accompanied by smelling a foul odor and discuss the differential diagnosis for new onset and persistent phantosmia. This unusual case ultimately manifested features consistent with Lewy body dementia, highlighting the varied clinical presentations that are possible with this neurodegenerative disorder. We discuss the possible pathophysiology of phantosmia in Lewy body disorders, including a proposed mechanism for olfactory hallucinations arising prior to the typical well-formed hallucinations in Lewy body dementia.
Collapse
Affiliation(s)
- Tara C Carlisle
- Departments of Neurology, Behavioral Neurology (Carlisle, Filley) and Headache (Birlea) sections, Psychiatry (Filley), and Cell and Developmental Biology (Restrepo), University of Colorado School of Medicine, Aurora; Marcus Institute for Brain Health, Aurora (Filley)
| | - Marius Birlea
- Departments of Neurology, Behavioral Neurology (Carlisle, Filley) and Headache (Birlea) sections, Psychiatry (Filley), and Cell and Developmental Biology (Restrepo), University of Colorado School of Medicine, Aurora; Marcus Institute for Brain Health, Aurora (Filley)
| | - Diego Restrepo
- Departments of Neurology, Behavioral Neurology (Carlisle, Filley) and Headache (Birlea) sections, Psychiatry (Filley), and Cell and Developmental Biology (Restrepo), University of Colorado School of Medicine, Aurora; Marcus Institute for Brain Health, Aurora (Filley)
| | - Christopher M Filley
- Departments of Neurology, Behavioral Neurology (Carlisle, Filley) and Headache (Birlea) sections, Psychiatry (Filley), and Cell and Developmental Biology (Restrepo), University of Colorado School of Medicine, Aurora; Marcus Institute for Brain Health, Aurora (Filley)
| |
Collapse
|
8
|
Purja S, Oh S, Kim E. A Systematic Review on Neurological Aspects of COVID-19: Exploring the Relationship Between COVID-19-Related Olfactory Dysfunction and Neuroinvasion. Front Neurol 2022; 13:887164. [PMID: 35911902 PMCID: PMC9334857 DOI: 10.3389/fneur.2022.887164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesTo identify neurological aspects of Coronavirus disease 2019 (COVID-19) and to investigate COVID-19 infected patients with and without olfactory dysfunction in relation to polymerase chain reaction (PCR) assay results for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in the cerebrospinal fluid (CSF).MethodsPubMed and EMBASE databases were searched until March 26, 2021, for observational studies with COVID-19 patients that had performed CSF PCR assay due to the neurologic symptom and reported anosmia status.ResultsInitially, 2,387 studies were identified;167 studies performed SARS-CoV-2 CSF PCR assay, of which our review comprised 45 observational studies that conducted CSF PCR assay for SARS-CoV-2 in 101 patients and reported anosmia status in 55 of 101 patients. Central and peripheral neurological manifestations observed in COVID-19 patients were diverse. The most common neurological diagnoses were Guillain-Barré syndrome (GBS) and its variants (24%), followed by encephalopathy (21%). The SARS-CoV-2 PCR assay was positive in only four CSF samples, of which two patients had olfactory dysfunction while the others did not.ConclusionsThe neurological spectrum of COVID-19 is diverse, and direct neuroinvasion of SARS-CoV-2 is rare. The neuroprotection against SARS-CoV-2 in COVID-19 patients with anosmia is controversial, as an equal number of patients with and without olfactory dysfunction had positive CSF PCR results for SARS-CoV-2 in our study, and further studies are required to provide more insight into this topic.
Collapse
Affiliation(s)
- Sujata Purja
- Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - SuA Oh
- Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - EunYoung Kim
- Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, South Korea
- The Graduate School for Food and Drug Administration, The Graduate School for Pharmaceutical Industry Management, College of Pharmacy, Chung-Ang University, Seoul, South Korea
- *Correspondence: EunYoung Kim
| |
Collapse
|
9
|
Carnemolla S, Kumfor F, Liang CT, Foxe D, Ahmed R, Piguet O. Olfactory Bulb Integrity in Frontotemporal Dementia and Alzheimer’s Disease. J Alzheimers Dis 2022; 89:51-66. [DOI: 10.3233/jad-220080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Olfactory dysfunction is highly prevalent in dementia syndromes, including Alzheimer’s disease (AD) and frontotemporal dementia (FTD). The structural integrity of the olfactory bulb (OB) is thought to play a critical role in odor detection and identification, but no MRI study has measured OB volume in FTD, or measured OB volume longitudinally in AD. Objective: To measure OB volume in FTD and AD patients longitudinally using MRI. Methods: This study measured OB volumes using MRI in patients diagnosed with behavioral-variant FTD (n = 55), semantic dementia (n = 34), progressive non-fluent aphasia (n = 30), AD (n = 50), and healthy age-matched controls (n = 55) at their first visit to a dementia research clinic (‘baseline’). Imaging data in patients 12-months later were analyzed where available (n = 84) for longitudinal assessment. Volumes of subcortical and cortical olfactory regions (‘olfactory network’) were obtained via surface-based morphometry. Results: Results revealed that in AD and FTD at baseline, OB volumes were similar to controls, whereas volumes of olfactory network regions were significantly reduced in all patient groups except in progressive non-fluent aphasia. Longitudinal data revealed that OB volume became significantly reduced (10–25% volume reduction) in all dementia groups with disease progression. Conclusion: Olfactory dysfunction is common in patients diagnosed with AD or FTD, but our results indicate that there is no detectable volume loss to the OBs upon first presentation to the clinic. Our findings indicate that the OBs become detectably atrophied later in the disease process. OB atrophy indicates the potential usefulness for OBs to be targeted in interventions to improve olfactory function.
Collapse
Affiliation(s)
- Sarah Carnemolla
- University of Sydney, School of Psychology, Sydney, New South Wales, Australia
- University of Sydney, Brain & Mind Centre, Sydney, New South Wales, Australia
| | - Fiona Kumfor
- University of Sydney, School of Psychology, Sydney, New South Wales, Australia
- University of Sydney, Brain & Mind Centre, Sydney, New South Wales, Australia
| | - Cheng Tao Liang
- University of Sydney, School of Psychology, Sydney, New South Wales, Australia
- University of Sydney, Brain & Mind Centre, Sydney, New South Wales, Australia
| | - David Foxe
- University of Sydney, School of Psychology, Sydney, New South Wales, Australia
- University of Sydney, Brain & Mind Centre, Sydney, New South Wales, Australia
| | - Rebekah Ahmed
- University of Sydney, Brain & Mind Centre, Sydney, New South Wales, Australia
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- University of Sydney, Central Sydney Medical School, Sydney, New South Wales, Australia
| | - Olivier Piguet
- University of Sydney, School of Psychology, Sydney, New South Wales, Australia
- University of Sydney, Brain & Mind Centre, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Patel ZM, Holbrook EH, Turner JH, Adappa ND, Albers MW, Altundag A, Appenzeller S, Costanzo RM, Croy I, Davis GE, Dehgani-Mobaraki P, Doty RL, Duffy VB, Goldstein BJ, Gudis DA, Haehner A, Higgins TS, Hopkins C, Huart C, Hummel T, Jitaroon K, Kern RC, Khanwalkar AR, Kobayashi M, Kondo K, Lane AP, Lechner M, Leopold DA, Levy JM, Marmura MJ, Mclelland L, Miwa T, Moberg PJ, Mueller CA, Nigwekar SU, O'Brien EK, Paunescu TG, Pellegrino R, Philpott C, Pinto JM, Reiter ER, Roalf DR, Rowan NR, Schlosser RJ, Schwob J, Seiden AM, Smith TL, Soler ZM, Sowerby L, Tan BK, Thamboo A, Wrobel B, Yan CH. International consensus statement on allergy and rhinology: Olfaction. Int Forum Allergy Rhinol 2022; 12:327-680. [PMID: 35373533 DOI: 10.1002/alr.22929] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/01/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The literature regarding clinical olfaction, olfactory loss, and olfactory dysfunction has expanded rapidly over the past two decades, with an exponential rise in the past year. There is substantial variability in the quality of this literature and a need to consolidate and critically review the evidence. It is with that aim that we have gathered experts from around the world to produce this International Consensus on Allergy and Rhinology: Olfaction (ICAR:O). METHODS Using previously described methodology, specific topics were developed relating to olfaction. Each topic was assigned a literature review, evidence-based review, or evidence-based review with recommendations format as dictated by available evidence and scope within the ICAR:O document. Following iterative reviews of each topic, the ICAR:O document was integrated and reviewed by all authors for final consensus. RESULTS The ICAR:O document reviews nearly 100 separate topics within the realm of olfaction, including diagnosis, epidemiology, disease burden, diagnosis, testing, etiology, treatment, and associated pathologies. CONCLUSION This critical review of the existing clinical olfaction literature provides much needed insight and clarity into the evaluation, diagnosis, and treatment of patients with olfactory dysfunction, while also clearly delineating gaps in our knowledge and evidence base that we should investigate further.
Collapse
Affiliation(s)
- Zara M Patel
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric H Holbrook
- Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Justin H Turner
- Otolaryngology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Nithin D Adappa
- Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark W Albers
- Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytug Altundag
- Otolaryngology, Biruni University School of Medicine, İstanbul, Turkey
| | - Simone Appenzeller
- Rheumatology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Richard M Costanzo
- Physiology and Biophysics and Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ilona Croy
- Psychology and Psychosomatic Medicine, TU Dresden, Dresden, Germany
| | - Greg E Davis
- Otolaryngology, Proliance Surgeons, Seattle and Puyallup, Washington, USA
| | - Puya Dehgani-Mobaraki
- Associazione Naso Sano, Umbria Regional Registry of Volunteer Activities, Corciano, Italy
| | - Richard L Doty
- Smell and Taste Center, Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - David A Gudis
- Otolaryngology, Columbia University Irving Medical Center, New York, USA
| | - Antje Haehner
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | - Thomas S Higgins
- Otolaryngology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Claire Hopkins
- Otolaryngology, Guy's and St. Thomas' Hospitals, London Bridge Hospital, London, UK
| | - Caroline Huart
- Otorhinolaryngology, Cliniques universitaires Saint-Luc, Institute of Neuroscience, Université catholgique de Louvain, Brussels, Belgium
| | - Thomas Hummel
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | | | - Robert C Kern
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashoke R Khanwalkar
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Masayoshi Kobayashi
- Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Kenji Kondo
- Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Andrew P Lane
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matt Lechner
- Otolaryngology, Barts Health and University College London, London, UK
| | - Donald A Leopold
- Otolaryngology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Joshua M Levy
- Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Marmura
- Neurology Thomas Jefferson University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisha Mclelland
- Otolaryngology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Takaki Miwa
- Otolaryngology, Kanazawa Medical University, Ishikawa, Japan
| | - Paul J Moberg
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Sagar U Nigwekar
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin K O'Brien
- Otolaryngology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Teodor G Paunescu
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Carl Philpott
- Otolaryngology, University of East Anglia, Norwich, UK
| | - Jayant M Pinto
- Otolaryngology, University of Chicago, Chicago, Illinois, USA
| | - Evan R Reiter
- Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - David R Roalf
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas R Rowan
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rodney J Schlosser
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - James Schwob
- Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Allen M Seiden
- Otolaryngology, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Timothy L Smith
- Otolaryngology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Zachary M Soler
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - Leigh Sowerby
- Otolaryngology, University of Western Ontario, London, Ontario, Canada
| | - Bruce K Tan
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew Thamboo
- Otolaryngology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bozena Wrobel
- Otolaryngology, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Carol H Yan
- Otolaryngology, School of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
11
|
Varied Effects of COVID-19 Chemosensory Loss and Distortion on Appetite: Implications for Understanding Motives for Eating and Drinking. Foods 2022; 11:foods11040607. [PMID: 35206083 PMCID: PMC8871400 DOI: 10.3390/foods11040607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
A common symptom of COVID-19 is altered smell and taste. This qualitative study sought to further characterise this altered chemosensory perception and its effects on appetite for food and drink. Eighteen women and two men who had experienced chemosensory loss associated with COVID-19 participated in semi-structured interviews. Thematic analysis of the interview transcripts revealed five major themes. These confirmed that all participants had experienced an altered sense of smell (anosmia, and less frequently parosmia and phantosmia) of variable duration. Loss of taste (ability to detect sweetness, saltiness, etc.) was less common. Participants experienced decreased, no change or increased appetite, with six participants reporting weight loss. Consistent with evidence linking diminished appetite with inflammation, for two participants, decreased appetite preceded anosmia onset. Anosmia reduced enjoyment of food and drink. Compensatory strategies included choosing salty, sweet and ‘spicy’ foods, and increased attention to food texture, and there was evidence that the postingestive rewarding effects of food intake were also important for maintaining appetite. Some participants mentioned increased alcohol intake, in part facilitated by reduced intensity of disliked flavours of alcoholic drinks. The narratives also underlined the value placed on the sociability and structuring of time that daily meals provide. This research adds to the record and analysis of lived experiences of altered chemosensory perception resulting from SARS-CoV-2 infection, and it contributes insights concerning the role of smell and flavour in motivating and rewarding food ingestion.
Collapse
|
12
|
Lerner DK, Garvey KL, Arrighi-Allisan AE, Filimonov A, Filip P, Shah J, Tweel B, Del Signore A, Schaberg M, Colley P, Govindaraj S, Iloreta AM. Clinical Features of Parosmia Associated With COVID-19 Infection. Laryngoscope 2021; 132:633-639. [PMID: 34870334 PMCID: PMC9015517 DOI: 10.1002/lary.29982] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023]
Abstract
Objective To characterize the clinical features, risk factors, symptom time‐course, and quality of life implications for parosmia among coronavirus disease (COVID)‐related olfactory dysfunction patients. Methods Individuals with olfactory dysfunction associated with laboratory‐confirmed or clinically suspected COVID‐19 infection were recruited from otolaryngology and primary care practices over a period from August 2020 to March 2021. Participants completed olfactory dysfunction and quality of life surveys. Results A total of 148 (64.1%) of 231 respondents reported parosmia at some point. Parosmia developed within 1 week of any COVID‐19 symptom onset in 25.4% of respondents, but more than 1 month after symptom onset in 43.4% of respondents. Parosmia was associated with significantly better quantitative olfactory scores on Brief Smell Identification Test (8.7 vs. 7.5, P = .006), but demonstrated worse quality of life scores, including modified brief Questionnaire of Olfactory Dysfunction—Negative Statements and Sino‐Nasal Outcome Test‐22 scores (12.1 vs. 8.5, P < .001; 26.2 vs. 23.2, P = .113). Participants who developed parosmia at any point were significantly younger and less likely to have history of chronic sinusitis than those who did not develop parosmia (40.2 vs. 44.9 years, P = .007; 7.2% vs. 0.7%, P = .006). Conclusion COVID‐19‐associated olfactory dysfunction is frequently linked with development of parosmia, which often presents either at onset of smell loss or in a delayed fashion. Despite better quantitative olfactory scores, respondents with parosmia report decreased quality of life. A majority of respondents with persistent parosmia have sought treatment. Level of Evidence 3 Laryngoscope, 132:633–639, 2022
Collapse
Affiliation(s)
- David K Lerner
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Katherine L Garvey
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Annie E Arrighi-Allisan
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrey Filimonov
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter Filip
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Janki Shah
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin Tweel
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anthony Del Signore
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madeleine Schaberg
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick Colley
- Department of Otolaryngology, Albert Einstein College of Medicine, New York, New York, USA
| | - Satish Govindaraj
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alfred Marc Iloreta
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
13
|
The microvascular hypothesis underlying neurologic manifestations of long COVID-19 and possible therapeutic strategies. Cardiovasc Endocrinol Metab 2021; 10:193-203. [PMID: 34765889 PMCID: PMC8575441 DOI: 10.1097/xce.0000000000000253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
With the ongoing distribution of the coronavirus disease (COVID) vaccines, the pandemic of our age is ending, leaving the world to deal with its well-documented aftereffects. Long COVID comprises a variety of symptoms, of which the neurological component prevails. The most permeating theory on the genesis of these symptoms builds upon the development of microvascular dysfunction similar to that seen in numerous vascular diseases such as diabetes. This can occur through the peripheral activation of angiotensin-converting enzyme 2 receptors, or through exacerbations of pro-inflammatory cytokines that can remain in circulation even after the infection diminishes. Several drugs have been identified to act on the neurovascular unit to promote repair, such as gliptins, and others. They also succeeded in improving neurologic outcome in diabetic patients. The repurposing of such drugs for treatment of long COVID-19 can possibly shorten the time to recovery of long COVID-19 syndrome.
Collapse
|
14
|
Ercoli T, Masala C, Pinna I, Orofino G, Solla P, Rocchi L, Defazio G. Qualitative smell/taste disorders as sequelae of acute COVID-19. Neurol Sci 2021; 42:4921-4926. [PMID: 34557966 PMCID: PMC8459812 DOI: 10.1007/s10072-021-05611-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/10/2021] [Indexed: 01/12/2023]
Abstract
Background Qualitative smell/taste disorders (such as phantosmia, parosmia, phantogeusia, and parageusia) have not yet been fully characterized in patients who had COVID-19, whereas quantitative disturbances (i.e., reduction/loss of smell/taste) have been widely investigated. Objective To simultaneously assess the presence of both quantitative and qualitative smell/taste dysfunctions in patients who suffered from COVID-19. Methods We enrolled 17 consecutive patients who suffered from COVID-19 over the last 6 months and 21 healthy controls, matched for sex and age. After a negative nasopharyngeal swab, the Sniffin’ Sticks Test and the Taste Strips were used to assess olfactory and taste function, respectively. At the same time, the presence of phantosmia, parosmia, phantogeusia, and parageusia was investigated with a standardized questionnaire. Results Qualitative disturbances of smell and/or taste were found in 6/17 (35.3%) patients. Phantosmia was reported in 2/17 (11.8%) patients and parosmia in 4/17 (23.5%). There were no significant differences in smell test scores between patients who reported phantosmia and/or parosmia and patients who did not. Phantogeusia was described in 3/17 (17.6%) patients, and parageusia was identified in 4/17 (23.5%) patients. All tested patients were normogeusic. Conclusion Around one-third of patients who recover from COVID-19 may have persistent qualitative dysfunction in smell/taste domains. Detection of phantogeusia in long-term COVID-19 patients represents a further novel finding. Further investigation is needed to better characterize the pathophysiology of phantosmia, parosmia, phantogeusia, and parageusia in patients who had COVID-19.
Collapse
Affiliation(s)
- Tommaso Ercoli
- Department of Medical Sciences and Public Health, Institute of Neurology, University of Cagliari, Cagliari, Italy.
| | - Carla Masala
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Ilenia Pinna
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Gianni Orofino
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| | - Paolo Solla
- Department of Neurology, University of Sassari, Sassari, Italy
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, Institute of Neurology, University of Cagliari, Cagliari, Italy.,Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, Institute of Neurology, University of Cagliari, Cagliari, Italy.,Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| |
Collapse
|