1
|
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver CM, Aguayo-Mazzucato C, Baker DJ, Bernlohr DA, Jurk D, Mangarova DB, Quardokus EM, Enninga EAL, Schmidt EL, Chen F, Duncan FE, Cambuli F, Kaur G, Kuchel GA, Lee G, Daldrup-Link HE, Martini H, Phatnani H, Al-Naggar IM, Rahman I, Nie J, Passos JF, Silverstein JC, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer LJ, Ding L, Wang L, Adams LC, Ruiyang L, Doolittle ML, Teneche MG, Schafer MJ, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez PT, Vasilikos P, Adams PD, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery RR, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic VD, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol 2024; 25:1001-1023. [PMID: 38831121 PMCID: PMC11578798 DOI: 10.1038/s41580-024-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | | | - Alla Karpova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit K Dey
- National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ann Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Anthony Agudelo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Bikem Soygur
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Cristina Aguayo-Mazzucato
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dilyana B Mangarova
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth L Schmidt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Feng Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca E Duncan
- The Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Gung Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanako Iwasaki
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Karina Barbosa
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Kay Metis
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lichao Wang
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Liu Ruiyang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Madison L Doolittle
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mohammadjavad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | | | | | - Nicholas Sloan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nikolai Slavov
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Olena Kuksenko
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Periklis Vasilikos
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Priscila Carapeto
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Quan Zhu
- Center for Epigenomics, University of California, San Diego, CA, USA
| | | | | | - Rong Fan
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ruth R Montgomery
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sonja Suvakov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Hudson HR, Riessland M, Orr ME. Defining and characterizing neuronal senescence, 'neurescence', as G X arrested cells. Trends Neurosci 2024; 47:971-984. [PMID: 39389805 DOI: 10.1016/j.tins.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Cellular senescence is a cell state characterized by resistance to apoptosis and stable cell cycle arrest. Senescence was first observed in mitotic cells in vitro. Recent evidence from in vivo studies and human tissue indicates that postmitotic cells, including neurons, may also become senescent. The quiescent cell state of neurons and inconsistent descriptions of neuronal senescence across studies, however, have caused confusion in this burgeoning field. We summarize evidence demonstrating that exit from G0 quiescence may protect neurons against apoptosis and predispose them toward senescence. Additionally, we propose the term 'neurescent' for senescent neurons and introduce the cell state, GX, to describe cell cycle arrest achieved by passing through G0 quiescence. Criteria are provided to identify neurescent cells, distinguish them from G0 quiescent neurons, and compare neurescent phenotypes with classic replicative senescence.
Collapse
Affiliation(s)
- Hannah R Hudson
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | - Miranda E Orr
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
3
|
Solano-Aguilar G, Matuszek G, Matthan NR, Lichtenstein AH, Wang X, Lakshman S, Barger K, Urban JF, Molokin A, Bennett RE, Hyman BT, Lamon-Fava S. Differential regulation of brain microvessel transcriptome and brain metabolome by western and heart-healthy dietary patterns in Ossabaw pigs. Sci Rep 2024; 14:29621. [PMID: 39609531 PMCID: PMC11604918 DOI: 10.1038/s41598-024-81321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024] Open
Abstract
Diet is a potentially modifiable neurodegenerative disease risk factor. We studied the effects of a typical Western diet (WD; high in refined carbohydrates, cholesterol and saturated fat), relative to a heart-healthy diet (HHD; high in unrefined carbohydrates, polyunsaturated fat and fiber, and low in cholesterol) on brain microvessel transcriptomics and brain metabolomics of the temporal region in Ossabaw minipigs. Thirty-two pigs (16 male and 16 females) were fed a WD or HHD starting at the age of 4 months for a period of 6 months. The WD and HHD were isocaloric and had a similar macronutrient content but differed in macronutrient quality. Within each dietary group, half of the pigs also received atorvastatin. Relative to HHD-fed pigs, WD-fed pigs had 175 genes differentially expressed (fold change > 1.3, FDR < 0.05) by diet, 46 upregulated and 129 downregulated. Gene Set Enrichment Analysis identified 22 gene sets enriched in WD-fed pigs, comprising pathways related to inflammation, angiogenesis, and apoptosis, and 53 gene sets enriched in the HHD-fed pigs, including cell energetics, neurotransmission, and inflammation resolution pathways. Metabolite analysis showed enrichment in arginine, tyrosine, and lysine in WD-fed pigs, and ergothioneine and S-adenosyl methionine in HHD-fed pigs. Atorvastatin treatment did not affect gene expression. These results suggest a likely contribution of diet to brain pathologies characterized by neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Gloria Solano-Aguilar
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA Northeast Area, Beltsville, MD, USA
| | - Gregory Matuszek
- Biostatistics Core Unit, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, 02111, USA
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, 02111, USA
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Xuedi Wang
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Sukla Lakshman
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA Northeast Area, Beltsville, MD, USA
| | - Kathryn Barger
- Biostatistics Core Unit, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Joseph F Urban
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA Northeast Area, Beltsville, MD, USA
| | - Aleksey Molokin
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA Northeast Area, Beltsville, MD, USA
| | - Rachel E Bennett
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, 02111, USA.
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
4
|
Ma K, An C, Li M, Zhang Y, Ren M, Wei Y, Xu W, Wang R, Bai Y, Zhang H, Liu X, Ji S, Chen X, Zhu K. Dexmedetomidine Attenuated Neuron Death, Cognitive Decline, and Anxiety-Like Behavior by Inhibiting CXCL2 in CA1 Region of AD Mice. Drug Des Devel Ther 2024; 18:5351-5365. [PMID: 39605963 PMCID: PMC11600949 DOI: 10.2147/dddt.s489860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose β-amyloid overload-induced neuroinflammation and neuronal loss are key pathological changes that occur during the progression of Alzheimer's disease (AD). Dexmedetomidine (Dex) exhibits neuroprotective and anti-inflammatory effects on the nervous system. However, the effect of Dex in AD mice remains unclear, and its neuroprotective regulatory mechanism requires further investigation. This study aimed to reveal how Dex protects against Aβ induced neuropathological changes and behavior dysfunction in AD mice. Methods An AD mouse model was established by the injection of Aβ into the brains of mice, followed by intraperitoneal injection with Dex. CXCL2 overexpression and Yohimbine, a Dex inhibitor, were used to investigate the role of Dex and CXCL2 in the regulation of neuronal loss, cognitive decline, and anxiety-like behavior in AD mice. Behavioral tests were performed to evaluate the cognitive and anxiety status of the mice. Nissl staining and immunofluorescence experiments were conducted to evaluate the status of the hippocampal neurons and astrocytes. qRT-PCR was performed to detect the expression of CXCL2, IL-1β, INOS, SPHK1, Bcl2, IFN-γ, and Caspase 1. The malondialdehyde (MDA) level was detected using an ELISA kit. Terminal TUNEL and Fluoro-Jade C (FJC) staining were used to measure the cell apoptosis rate. Results In AD mice, cognitive decline and anxiety-like behaviors were significantly improved by the Dex treatment. The number of neurons was increased in mice in the Dex + AD group compared to those in the AD group, and the number of astrocytes was not significantly different between the two groups. CXCL2, IL-1β, iNOS, and SPHK1 levels were significantly lower in Dex-treated AD mice than those in AD mice. Overloading of CXCL2 or Yohimbine reversed the protective effect of Dex on neuron number and cognitive and anxiety symptoms in AD mice. Conclusion Our results suggest that Dex exerts neuroprotective effects by downregulating CXCL2. Dex shows potential as a therapeutic drug for AD.
Collapse
Affiliation(s)
- Kaige Ma
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Chanyuan An
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Mai Li
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Yuming Zhang
- Department of Anesthesiology, Shaanxi Provincial People’s Hospital, Xi’an, 710068, People’s Republic of China
| | - Minghe Ren
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Yuyang Wei
- School of Forensic Medicine, Southern Medical University, Guangdong, 510515, People’s Republic of China
| | - Wenting Xu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Ruoxi Wang
- Department of Optometry, Fenyang College Shanxi Medical University, Fenyang, 032200, People’s Republic of China
| | - Yudan Bai
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Hanyue Zhang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Xiyue Liu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Shengfeng Ji
- Department of Optometry, Fenyang College Shanxi Medical University, Fenyang, 032200, People’s Republic of China
| | - Xinlin Chen
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Kun Zhu
- Department of Neurology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| |
Collapse
|
5
|
Zhu J, Wu C, Yang L. Cellular senescence in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2024; 13:55. [PMID: 39568081 PMCID: PMC11577763 DOI: 10.1186/s40035-024-00447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/12/2024] [Indexed: 11/22/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, characterized by the accumulation of Aβ and abnormal tau hyperphosphorylation. Despite substantial efforts in development of drugs targeting Aβ and tau pathologies, effective therapeutic strategies for AD remain elusive. Recent attention has been paid to the significant role of cellular senescence in AD progression. Mounting evidence suggests that interventions targeting cellular senescence hold promise in improving cognitive function and ameliorating hallmark pathologies in AD. This narrative review provides a comprehensive summary and discussion of the physiological roles, characteristics, biomarkers, and commonly employed in vivo and in vitro models of cellular senescence, with a particular focus on various cell types in the brain, including astrocytes, microglia, oligodendrocyte precursor cells, neurons, and endothelial cells. The review further delves into factors influencing cellular senescence in AD and emphasizes the significance of targeting cellular senescence as a promising approach for AD treatment, which includes the utilization of senolytics and senomorphics.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
6
|
Shirai T, Okazaki S, Tanifuji T, Numata S, Nakayama T, Yoshida T, Mouri K, Otsuka I, Hiroi N, Hishimoto A. Meta-analyses of epigenetic age acceleration and GrimAge components of schizophrenia or first-episode psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:108. [PMID: 39548083 PMCID: PMC11568310 DOI: 10.1038/s41537-024-00531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Schizophrenia is a common chronic psychiatric disorder that causes age-related dysfunction. The life expectancy in patients with schizophrenia is ≥10 years shorter than that in the general population because of the higher risk of other diseases, such as cardiovascular diseases. Aging studies based on DNA methylation status have received considerable attention. Several epigenetic age accelerations and predicted values of aging-related proteins (GrimAge and GrimAge2 components) have been analyzed in multiple diseases. However, no studies have investigated up to GrimAge and GrimAge2 components between patients with schizophrenia and controls. Therefore, we aimed to conduct multiple regression analyses to investigate the association between schizophrenia and epigenetic age accelerations and GrimAge and GrimAge2 components in seven cohorts. Furthermore, we included patients with first-episode psychosis whose illness duration was often shorter than schizophrenia in our analysis. We integrated these results with meta-analyses, noting the acceleration of GrimAge, GrimAge2, and DunedinPACE, and increase in adrenomedullin, beta-2 microglobulin, cystatin C, and plasminogen activation inhibitor-1 levels, in patients with schizophrenia or first-episode psychosis. These results corroborated the finding that patients with schizophrenia had an increased risk of diabetes, cardiovascular disease, and cognitive dysfunction from a biological perspective. Patients with schizophrenia and first-episode psychosis showed differences in the results when compared with controls. Such analyses may lead to the development of novel therapeutic targets to patients with schizophrenia or relevant diseases from the perspective of aging in the future.
Collapse
Affiliation(s)
- Toshiyuki Shirai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Takaki Tanifuji
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, USA
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tomohiko Nakayama
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tomohiro Yoshida
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kentaro Mouri
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, USA
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
7
|
Riessland M, Ximerakis M, Jarjour AA, Zhang B, Orr ME. Therapeutic targeting of senescent cells in the CNS. Nat Rev Drug Discov 2024; 23:817-837. [PMID: 39349637 DOI: 10.1038/s41573-024-01033-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 11/01/2024]
Abstract
Senescent cells accumulate throughout the body with advanced age, diseases and chronic conditions. They negatively impact health and function of multiple systems, including the central nervous system (CNS). Therapies that target senescent cells, broadly referred to as senotherapeutics, recently emerged as potentially important treatment strategies for the CNS. Promising therapeutic approaches involve clearing senescent cells by disarming their pro-survival pathways with 'senolytics'; or dampening their toxic senescence-associated secretory phenotype (SASP) using 'senomorphics'. Following the pioneering discovery of first-generation senolytics dasatinib and quercetin, dozens of additional therapies have been identified, and several promising targets are under investigation. Although potentially transformative, senotherapies are still in early stages and require thorough testing to ensure reliable target engagement, specificity, safety and efficacy. The limited brain penetrance and potential toxic side effects of CNS-acting senotherapeutics pose challenges for drug development and translation to the clinic. This Review assesses the potential impact of senotherapeutics for neurological conditions by summarizing preclinical evidence, innovative methods for target and biomarker identification, academic and industry drug development pipelines and progress in clinical trials.
Collapse
Affiliation(s)
- Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miranda E Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
8
|
Qian B, Li TY, Zheng ZX, Zhang HY, Xu WQ, Mo SM, Cui JJ, Chen WJ, Lin YC, Lin ZN. The involvement of SigmaR1 K142 degradation mediated by ERAD in neural senescence linked with CdCl 2 exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134466. [PMID: 38718507 DOI: 10.1016/j.jhazmat.2024.134466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/30/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Due to its uncertain pathogenesis, there is currently no treatment available for AD. Increasing evidences have linked cellular senescence to AD, although the mechanism triggering cellular senescence in AD requires further exploration. To investigate the involvement of cellular senescence in AD, we explored the effects of cadmium chloride (CdCl2) exposure, one of the potential environmental risk factors for AD, on neuron senescence in vivo and in vitro. β-amyloid (Aβ) and tubulin-associated protein (tau) pathologies were found to be enhanced by CdCl2 exposure in the in vitro models, while p53/p21/Rb cascade-related neuronal senescence pathways were activated. Conversely, the use of melatonin, a cellular senescence inhibitor, or a cadmium ion chelator suppressed CdCl2-induced neuron senescence, along with the Aβ and tau pathologies. Mechanistically, CdCl2 exposure activated the suppressor enhancer Lin-12/Notch 1-like (SEL1L)/HMG-CoA reductase degradation 1 (HRD1)-regulated endoplasmic reticulum-associated degradation (ERAD), which enhanced the ubiquitin degradation of sigma-1 receptor (SigmaR1) by specifically recognizing its K142 site, resulting in the activation of the p53/p21/Rb pathway via the induction of Ca2+ dyshomeostasis and mitochondrial dysfunction. In the in vivo models, the administration of the SigmaR1 agonist ANAVEX2-73 rescues neurobehavioral inhibition and alleviates cellular senescence and AD-like pathology in the brain tissue of CdCl2-exposed mice. Consequently, the present study revealed a novel senescence-associated regulatory route for the SEL1L/HRD1/SigmaR1 axis that affects the pathological progression of CdCl2 exposure-associated AD. CdCl2 exposure activated SEL1L/HRD1-mediated ERAD and promoted the ubiquitinated degradation of SigmaR1, activating p53/p21/Rb pathway-regulated neuronal senescence. The results of the present study suggest that SigmaR1 may function as a neuroprotective biomarker of neuronal senescence, and pharmacological activation of SigmaR1 could be a promising intervention strategy for AD therapy.
Collapse
Affiliation(s)
- Bo Qian
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ting-Yu Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhao-Xuan Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Han-Yu Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wen-Qi Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Su-Min Mo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jia-Jia Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei-Jie Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yu-Chun Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Zhong-Ning Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
9
|
Llamas Rodríguez J, van der Kouwe AJW, Oltmer J, Rosenblum E, Mercaldo N, Fischl B, Marshall M, Frosch MP, Augustinack JC. Entorhinal vessel density correlates with phosphorylated tau and TDP-43 pathology. Alzheimers Dement 2024; 20:4649-4662. [PMID: 38877668 PMCID: PMC11247684 DOI: 10.1002/alz.13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION The entorhinal cortex (EC) and perirhinal cortex (PC) are vulnerable to Alzheimer's disease. A triggering factor may be the interaction of vascular dysfunction and tau pathology. METHODS We imaged post mortem human tissue at 100 μm3 with 7 T magnetic resonance imaging and manually labeled individual blood vessels (mean = 270 slices/case). Vessel density was quantified and compared per EC subfield, between EC and PC, and in relation to tau and TAR DNA-binding protein 43 (TDP-43) semiquantitative scores. RESULTS PC was more vascularized than EC and vessel densities were higher in posterior EC subfields. Tau and TDP-43 strongly correlated with vasculature density and subregions with severe tau at the preclinical stage had significantly greater vessel density than those with low tau burden. DISCUSSION These data impact cerebrovascular maps, quantification of subfield vasculature, and correlation of vasculature and pathology at early stages. The ordered association of vessel density, and tau or TDP-43 pathology, may be exploited in a predictive context. HIGHLIGHTS Vessel density correlates with phosphorylated tau (p-tau) burden in entorhinal and perirhinal cortices. Perirhinal area 35 and posterior entorhinal cortex showed greatest p-tau burden but also the highest vessel density in the preclinical phase of Alzheimer's disease. We combined an ex vivo magnetic resonance imaging model and histopathology to demonstrate the 3D reconstruction of intracortical vessels and its spatial relationship to the pathology.
Collapse
Affiliation(s)
- Josué Llamas Rodríguez
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - André J W van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Jan Oltmer
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Digital Health & Innovation, Vivantes Netzwerk für Gesundheit GmbH, Berlin, Germany
| | - Emma Rosenblum
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Nathaniel Mercaldo
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- MGH Institute for Technology Assessment, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bruce Fischl
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael Marshall
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jean C Augustinack
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
10
|
Malla S, Bryant AG, Jayakumar R, Woost B, Wolf N, Li A, Das S, van Veluw SJ, Bennett RE. Molecular profiling of frontal and occipital subcortical white matter hyperintensities in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598845. [PMID: 38915516 PMCID: PMC11195168 DOI: 10.1101/2024.06.13.598845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
White matter hyperintensities (WMHs) are commonly detected on T2-weighted magnetic resonance imaging (MRI) scans, occurring in both typical aging and Alzheimer's disease. Despite their frequent appearance and their association with cognitive decline, the molecular factors contributing to WMHs remain unclear. In this study, we investigated the transcriptomic profiles of two commonly affected brain regions with coincident AD pathology-frontal subcortical white matter (frontal-WM) and occipital subcortical white matter (occipital-WM)-and compared with age-matched healthy controls. Through RNA-sequencing in frontal- and occipital-WM bulk tissues, we identified an upregulation of genes associated with brain vasculature function in AD white matter. To further elucidate vasculature-specific transcriptomic features, we performed RNA-seq analysis on blood vessels isolated from these white matter regions, which revealed an upregulation of genes related to protein folding pathways. Finally, comparing gene expression profiles between AD individuals with high- versus low-WMH burden showed an increased expression of pathways associated with immune function. Taken together, our study characterizes the diverse molecular profiles of white matter changes in AD compared to normal aging and provides new mechanistic insights processes underlying AD-related WMHs.
Collapse
Affiliation(s)
- Sulochan Malla
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Annie G Bryant
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- School of Physics, The University of Sydney, Sydney, Australia
| | - Rojashree Jayakumar
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Benjamin Woost
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Nina Wolf
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Andrew Li
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Susanne J van Veluw
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rachel E Bennett
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Lee H, Fu JF, Gaudet K, Bryant AG, Price JC, Bennett RE, Johnson KA, Hyman BT, Hedden T, Salat DH, Yen YF, Huang SY. Aberrant vascular architecture in the hippocampus correlates with tau burden in mild cognitive impairment and Alzheimer's disease. J Cereb Blood Flow Metab 2024; 44:787-800. [PMID: 38000018 PMCID: PMC11197134 DOI: 10.1177/0271678x231216144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/04/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023]
Abstract
Cerebrovascular dysfunction is a significant contributor to Alzheimer's disease (AD) progression. AD mouse models show altered capillary morphology, density, and diminished blood flow in areas of tau and beta-amyloid accumulation. The purpose of this study was to examine alterations in vascular structure and their contributions to perfusion deficits in the hippocampus in AD and mild cognitive impairment (MCI). Seven individuals with AD and MCI (1 AD/6 MCI), nine cognitively intact older healthy adults, and seven younger healthy adults underwent pseudo-continuous arterial spin labeling (PCASL) and gradient-echo/spin-echo (GESE) dynamic susceptibility contrast (DSC) MRI. Cerebral blood flow (CBF), cerebral blood volume, relative vessel size index (rVSI), and mean vessel density were calculated from model fitting. Lower CBF from PCASL and SE DSC MRI was observed in the hippocampus of AD/MCI group. rVSI in the hippocampus of the AD/MCI group was larger than that of the two healthy groups (FDR-P = 0.02). No difference in vessel density was detected between the groups. We also explored relationship of tau burden from 18F-flortaucipir positron emission tomography and vascular measures from MRI. Tau burden was associated with larger vessel size and lower CBF in the hippocampus. We postulate that larger vessel size may be associated with vascular alterations in AD/MCI.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jessie Fanglu Fu
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kyla Gaudet
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Annie G Bryant
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Julie C Price
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Rachel E Bennett
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Keith A Johnson
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Trey Hedden
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David H Salat
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yi-Fen Yen
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Susie Y Huang
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
12
|
Shirai T, Okazaki S, Otsuka I, Miyachi M, Tanifuji T, Shindo R, Okada S, Minami H, Horai T, Mouri K, Hishimoto A. Accelerated epigenetic aging in alcohol dependence. J Psychiatr Res 2024; 173:175-182. [PMID: 38547739 DOI: 10.1016/j.jpsychires.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
Alcohol dependence poses a global health threat associated with aging and reduced life expectancy. Recently, aging research through deoxyribonucleic acid (DNA) methylation has gained attention. New epigenetic clocks have been developed; however, no study has investigated GrimAge components, GrimAge2 components and DunedinPACE in patients with alcohol dependence. In this study, we aimed to perform epigenetic clock analysis to evaluate epigenetic age acceleration and DNA methylation-based age-predictive components in patients with alcohol dependence and controls. We utilized publicly available DNA methylation data (GSE98876) for our analysis. Additionally, we compared the values of the same items before and after the patients underwent a treatment program. The dataset comprised 23 controls and 24 patients. We observed that DunedinPACE accelerated more in patients with alcohol dependence. AgeAccelGrim and AgeAccelGrim2 decelerated more after the treatment program than before, and beta-2-microglobulin and Cystatin C decreased after the treatment program than before. These findings are crucial as they affect the cranial nerve area, potentially contributing to cognitive dysfunction and psychiatric symptoms in patients with alcohol dependence.
Collapse
Affiliation(s)
- Toshiyuki Shirai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masao Miyachi
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takaki Tanifuji
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryota Shindo
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shohei Okada
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Haruka Minami
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadasu Horai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kentaro Mouri
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
13
|
Liu Y, Tan Y, Zhang Z, Yi M, Zhu L, Peng W. The interaction between ageing and Alzheimer's disease: insights from the hallmarks of ageing. Transl Neurodegener 2024; 13:7. [PMID: 38254235 PMCID: PMC10804662 DOI: 10.1186/s40035-024-00397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Ageing is a crucial risk factor for Alzheimer's disease (AD) and is characterised by systemic changes in both intracellular and extracellular microenvironments that affect the entire body instead of a single organ. Understanding the specific mechanisms underlying the role of ageing in disease development can facilitate the treatment of ageing-related diseases, such as AD. Signs of brain ageing have been observed in both AD patients and animal models. Alleviating the pathological changes caused by brain ageing can dramatically ameliorate the amyloid beta- and tau-induced neuropathological and memory impairments, indicating that ageing plays a crucial role in the pathophysiological process of AD. In this review, we summarize the impact of several age-related factors on AD and propose that preventing pathological changes caused by brain ageing is a promising strategy for improving cognitive health.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Yejun Tan
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Min Yi
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China.
| |
Collapse
|
14
|
Melo Dos Santos LS, Trombetta-Lima M, Eggen B, Demaria M. Cellular senescence in brain aging and neurodegeneration. Ageing Res Rev 2024; 93:102141. [PMID: 38030088 DOI: 10.1016/j.arr.2023.102141] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Cellular senescence is a state of terminal cell cycle arrest associated with various macromolecular changes and a hypersecretory phenotype. In the brain, senescent cells naturally accumulate during aging and at sites of age-related pathologies. Here, we discuss the recent advances in understanding the accumulation of senescent cells in brain aging and disorders. Here we highlight the phenotypical heterogeneity of different senescent brain cell types, highlighting the potential importance of subtype-specific features for physiology and pathology. We provide a comprehensive overview of various senescent cell types in naturally occurring aging and the most common neurodegenerative disorders. Finally, we critically discuss the potential of adapting senotherapeutics to improve brain health and reduce pathological progression, addressing limitations and future directions for application and development.
Collapse
Affiliation(s)
- L S Melo Dos Santos
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, the Netherlands; School of Sciences, Health and Life, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Avenue, 6681, 90619-900 Porto Alegre, Brazil
| | - M Trombetta-Lima
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA Groningen, the Netherlands; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusiglaan 1, 9713AV Groningen, the Netherlands
| | - Bjl Eggen
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA Groningen, the Netherlands
| | - M Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, the Netherlands.
| |
Collapse
|
15
|
Orr ME. A Need for Refined Senescence Biomarkers and Measures of Senolytics in the Brain. J Alzheimers Dis 2024; 98:411-415. [PMID: 38461508 PMCID: PMC11063734 DOI: 10.3233/jad-231462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cellular senescence contributes to Alzheimer's disease (AD) pathogenesis. Treatments that remove senescent cells, senolytics, improve brain outcomes in AD mice with amyloid-β or tau deposition. 3xTgAD mice develop both AD neuropathologies; however, Ng et al. report low p16INK4a-associated senescence in the brain. Senolytic treatment by genetic removal; dasatinib with quercetin (D+Q), which enter the brain; and ABT-263 with limited brain penetrance all reduced AD neuropathology. Refined measures of senescence and brain exposure would help clarify the benefits of senolytics despite low p16INK4a-associated senescence and potential limited brain penetrance.
Collapse
Affiliation(s)
- Miranda E. Orr
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Salisbury VA Medical Center, Salisbury, NC, USA
| |
Collapse
|
16
|
Gaikwad S, Senapati S, Haque MA, Kayed R. Senescence, brain inflammation, and oligomeric tau drive cognitive decline in Alzheimer's disease: Evidence from clinical and preclinical studies. Alzheimers Dement 2024; 20:709-727. [PMID: 37814508 PMCID: PMC10841264 DOI: 10.1002/alz.13490] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Aging, tau pathology, and chronic inflammation in the brain play crucial roles in synaptic loss, neurodegeneration, and cognitive decline in tauopathies, including Alzheimer's disease. Senescent cells accumulate in the aging brain, accelerate the aging process, and promote tauopathy progression through their abnormal inflammatory secretome known as the senescence-associated secretory phenotype (SASP). Tau oligomers (TauO)-the most neurotoxic tau species-are known to induce senescence and the SASP, which subsequently promote neuropathology, inflammation, oxidative stress, synaptic dysfunction, neuronal death, and cognitive dysfunction. TauO, brain inflammation, and senescence are associated with heterogeneity in tauopathy progression and cognitive decline. However, the underlying mechanisms driving the disease heterogeneity remain largely unknown, impeding the development of therapies for tauopathies. Based on clinical and preclinical evidence, this review highlights the critical role of TauO and senescence in neurodegeneration. We discuss key knowledge gaps and potential strategies for targeting senescence and TauO to treat tauopathies. HIGHLIGHTS: Senescence, oligomeric Tau (TauO), and brain inflammation accelerate the aging process and promote the progression of tauopathies, including Alzheimer's disease. We discuss their role in contributing to heterogeneity in tauopathy and cognitive decline. We highlight strategies to target senescence and TauO to treat tauopathies while addressing key knowledge gaps.
Collapse
Affiliation(s)
- Sagar Gaikwad
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Sudipta Senapati
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Md. Anzarul Haque
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rakez Kayed
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| |
Collapse
|
17
|
Hochuli N, Kadyan S, Park G, Patoine C, Nagpal R. Pathways linking microbiota-gut-brain axis with neuroinflammatory mechanisms in Alzheimer's pathophysiology. MICROBIOME RESEARCH REPORTS 2023; 3:9. [PMID: 38455083 PMCID: PMC10917618 DOI: 10.20517/mrr.2023.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 03/09/2024]
Abstract
Disturbances in the local and peripheral immune systems are closely linked to a wide range of diseases. In the context of neurodegenerative disorders such as Alzheimer's disease (AD), inflammation plays a crucial role, often appearing as a common manifestation despite the variability in the occurrence of other pathophysiological hallmarks. Thus, combating neuroinflammation holds promise in treating complex pathophysiological diseases like AD. Growing evidence suggests the gut microbiome's crucial role in shaping the pathogenesis of AD by influencing inflammatory mediators. Gut dysbiosis can potentially activate neuroinflammatory pathways through bidirectional signaling of the gut-brain axis; however, the precise mechanisms of this complex interweaved network remain largely unclear. In these milieus, this review attempts to summarize the contributing role of gut microbiome-mediated neuroinflammatory signals in AD pathophysiology, while also pondering potential mechanisms through which commensal and pathogenic gut microbes affect neuroinflammation. While certain taxa such as Roseburia and Escherichia have been strongly correlated with AD, other clades such as Bacteroides and Faecalibacterium exhibit variations at the species and strain levels. In order to disentangle the inflammatory aspects of neurodegeneration attributed to the gut microbiome, it is imperative that future mechanistic studies investigate the species/strain-level dependency of commensals, opportunistic, and pathogenic gut microbes that consistently show correlations with AD patients across multiple associative studies.
Collapse
Affiliation(s)
| | | | | | | | - Ravinder Nagpal
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
18
|
Xiao X, Jiang H, Wei H, Zhou Y, Ji X, Zhou C. Endothelial Senescence in Neurological Diseases. Aging Dis 2023; 14:2153-2166. [PMID: 37199574 PMCID: PMC10676791 DOI: 10.14336/ad.2023.0226-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/26/2023] [Indexed: 05/19/2023] Open
Abstract
Endothelial cells, which are highly dynamic cells essential to the vascular network, play an indispensable role in maintaining the normal function of the body. Several lines of evidence indicate that the phenotype associated with senescent endothelial cells causes or promotes some neurological disorders. In this review, we first discuss the phenotypic changes associated with endothelial cell senescence; subsequently, we provide an overview of the molecular mechanisms of endothelial cell senescence and its relationship with neurological disorders. For refractory neurological diseases such as stroke and atherosclerosis, we intend to provide some valid clues and new directions for clinical treatment options.
Collapse
Affiliation(s)
- Xuechun Xiao
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Huimin Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Huimin Wei
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Yifan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Chen Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Ting KK, Coleman P, Kim HJ, Zhao Y, Mulangala J, Cheng NC, Li W, Gunatilake D, Johnstone DM, Loo L, Neely GG, Yang P, Götz J, Vadas MA, Gamble JR. Vascular senescence and leak are features of the early breakdown of the blood-brain barrier in Alzheimer's disease models. GeroScience 2023; 45:3307-3331. [PMID: 37782439 PMCID: PMC10643714 DOI: 10.1007/s11357-023-00927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/27/2023] [Indexed: 10/03/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related disease, with loss of integrity of the blood-brain barrier (BBB) being an early feature. Cellular senescence is one of the reported nine hallmarks of aging. Here, we show for the first time the presence of senescent cells in the vasculature in AD patients and mouse models of AD. Senescent endothelial cells and pericytes are present in APP/PS1 transgenic mice but not in wild-type littermates at the time of amyloid deposition. In vitro, senescent endothelial cells display altered VE-cadherin expression and loss of cell junction formation and increased permeability. Consistent with this, senescent endothelial cells in APP/PS1 mice are present at areas of vascular leak that have decreased claudin-5 and VE-cadherin expression confirming BBB breakdown. Furthermore, single cell sequencing of endothelial cells from APP/PS1 transgenic mice confirms that adhesion molecule pathways are among the most highly altered pathways in these cells. At the pre-plaque stage, the vasculature shows significant signs of breakdown, with a general loss of VE-cadherin, leakage within the microcirculation, and obvious pericyte perturbation. Although senescent vascular cells were not directly observed at sites of vascular leak, senescent cells were close to the leak area. Thus, we would suggest in AD that there is a progressive induction of senescence in constituents of the neurovascular unit contributing to an increasing loss of vascular integrity. Targeting the vasculature early in AD, either with senolytics or with drugs that improve the integrity of the BBB may be valid therapeutic strategies.
Collapse
Affiliation(s)
- Ka Ka Ting
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia.
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| | - Paul Coleman
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Hani Jieun Kim
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Yang Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jocelyne Mulangala
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
| | - Ngan Ching Cheng
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
| | - Wan Li
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Dilini Gunatilake
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
| | - Daniel M Johnstone
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Lipin Loo
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, & School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - G Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, & School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Mathew A Vadas
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
- Heart Research Institute, Sydney, NSW, Australia
| | - Jennifer R Gamble
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia.
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
20
|
Mahoney SA, Dey AK, Basisty N, Herman AB. Identification and functional analysis of senescent cells in the cardiovascular system using omics approaches. Am J Physiol Heart Circ Physiol 2023; 325:H1039-H1058. [PMID: 37656130 PMCID: PMC10908411 DOI: 10.1152/ajpheart.00352.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide, and senescent cells have emerged as key contributors to its pathogenesis. Senescent cells exhibit cell cycle arrest and secrete a range of proinflammatory factors, termed the senescence-associated secretory phenotype (SASP), which promotes tissue dysfunction and exacerbates CVD progression. Omics technologies, specifically transcriptomics and proteomics, offer powerful tools to uncover and define the molecular signatures of senescent cells in cardiovascular tissue. By analyzing the comprehensive molecular profiles of senescent cells, omics approaches can identify specific genetic alterations, gene expression patterns, protein abundances, and metabolite levels associated with senescence in CVD. These omics-based discoveries provide insights into the mechanisms underlying senescence-induced cardiovascular damage, facilitating the development of novel diagnostic biomarkers and therapeutic targets. Furthermore, integration of multiple omics data sets enables a systems-level understanding of senescence in CVD, paving the way for precision medicine approaches to prevent or treat cardiovascular aging and its associated complications.
Collapse
Affiliation(s)
- Sophia A Mahoney
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado, United States
| | - Amit K Dey
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States
| | - Nathan Basisty
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States
| | - Allison B Herman
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States
| |
Collapse
|
21
|
Qi F, Zuo Z, Hu K, Wang R, Wu T, Liu H, Tang J, Wang Q, Xie Y, Tan L, Yang Y, Zhang X, Zheng J, Xu J, Yao Z, Wang S, Wu LJ, Guo K. VEGF-A in serum protects against memory impairment in APP/PS1 transgenic mice by blocking neutrophil infiltration. Mol Psychiatry 2023; 28:4374-4389. [PMID: 37280283 PMCID: PMC10827659 DOI: 10.1038/s41380-023-02097-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023]
Abstract
Activation of innate immunity in the brain is a prominent feature of Alzheimer's disease (AD). The present study investigated the regulation of innate immunity by wild-type serum injection in a transgenic AD mouse model. We found that treatment with wild-type mouse serum significantly reduced the number of neutrophils and microglial reactivity in the brains of APP/PS1 mice. Mimicking this effect, neutrophil depletion via Ly6G neutralizing antibodies resulted in improvements in AD brain functions. Serum proteomic analysis identified vascular endothelial growth factor-A (VEGF-A) and chemokine (C-X-C motif) ligand 1 (CXCL1) as factors enriched in serum samples, which are crucial for neutrophil migration and chemotaxis, leukocyte migration, and cell chemotaxis. Exogenous VEGF-A reversed amyloid β (Aβ)-induced decreases in cyclin-dependent kinase 5 (Cdk5) and increases in CXCL1 in vitro and blocked neutrophil infiltration into the AD brain. Endothelial Cdk5 overexpression conferred an inhibitory effect on CXCL1 and neutrophil infiltration, thereby restoring memory abilities in APP/PS1 mice. Our findings uncover a previously unknown link between blood-derived VEGF signaling and neutrophil infiltration and support targeting endothelial Cdk5 signaling as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Fangfang Qi
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Editorial Department of Journal of Sun Yat-sen University, Guangzhou, 510080, China
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zejie Zuo
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rui Wang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tong Wu
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Liu
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiaoling Tang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qingbo Wang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yufeng Xie
- Five-year Programs of Clinical Medicine in the 2017 grade, School of Medicine, Sun Yat-sen University, Shenzhen, 528406, China
| | - Liren Tan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yunjie Yang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jie Xu
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhibin Yao
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shengwen Wang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Kaihua Guo
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
22
|
Gonzales MM, Garbarino VR, Kautz TF, Palavicini JP, Lopez-Cruzan M, Dehkordi SK, Mathews JJ, Zare H, Xu P, Zhang B, Franklin C, Habes M, Craft S, Petersen RC, Tchkonia T, Kirkland JL, Salardini A, Seshadri S, Musi N, Orr ME. Senolytic therapy in mild Alzheimer's disease: a phase 1 feasibility trial. Nat Med 2023; 29:2481-2488. [PMID: 37679434 PMCID: PMC10875739 DOI: 10.1038/s41591-023-02543-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Cellular senescence contributes to Alzheimer's disease (AD) pathogenesis. An open-label, proof-of-concept, phase I clinical trial of orally delivered senolytic therapy, dasatinib (D) and quercetin (Q), was conducted in early-stage symptomatic patients with AD to assess central nervous system (CNS) penetrance, safety, feasibility and efficacy. Five participants (mean age = 76 + 5 years; 40% female) completed the 12-week pilot study. D and Q levels in blood increased in all participants (12.7-73.5 ng ml-1 for D and 3.29-26.3 ng ml-1 for Q). In cerebrospinal fluid (CSF), D levels were detected in four participants (80%) ranging from 0.281 to 0.536 ml-1 with a CSF to plasma ratio of 0.422-0.919%; Q was not detected. The treatment was well-tolerated, with no early discontinuation. Secondary cognitive and neuroimaging endpoints did not significantly differ from baseline to post-treatment further supporting a favorable safety profile. CSF levels of interleukin-6 (IL-6) and glial fibrillary acidic protein (GFAP) increased (t(4) = 3.913, P = 0.008 and t(4) = 3.354, P = 0.028, respectively) with trending decreases in senescence-related cytokines and chemokines, and a trend toward higher Aβ42 levels (t(4) = -2.338, P = 0.079). In summary, CNS penetrance of D was observed with outcomes supporting safety, tolerability and feasibility in patients with AD. Biomarker data provided mechanistic insights of senolytic effects that need to be confirmed in fully powered, placebo-controlled studies. ClinicalTrials.gov identifier: NCT04063124 .
Collapse
Affiliation(s)
- Mitzi M Gonzales
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Valentina R Garbarino
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tiffany F Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Juan Pablo Palavicini
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Marisa Lopez-Cruzan
- Department of Psychiatry & Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shiva Kazempour Dehkordi
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Julia J Mathews
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Crystal Franklin
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamad Habes
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Suzanne Craft
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arash Salardini
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Nicolas Musi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Miranda E Orr
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
23
|
Matsudaira T, Nakano S, Konishi Y, Kawamoto S, Uemura K, Kondo T, Sakurai K, Ozawa T, Hikida T, Komine O, Yamanaka K, Fujita Y, Yamashita T, Matsumoto T, Hara E. Cellular senescence in white matter microglia is induced during ageing in mice and exacerbates the neuroinflammatory phenotype. Commun Biol 2023; 6:665. [PMID: 37353538 PMCID: PMC10290132 DOI: 10.1038/s42003-023-05027-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
Cellular senescence, a state of irreversible cell-cycle arrest caused by a variety of cellular stresses, is critically involved in age-related tissue dysfunction in various organs. However, the features of cells in the central nervous system that undergo senescence and their role in neural impairment are not well understood as yet. Here, through comprehensive investigations utilising single-cell transcriptome analysis and various mouse models, we show that microglia, particularly in the white matter, undergo cellular senescence in the brain and spinal cord during ageing and in disease models involving demyelination. Microglial senescence is predominantly detected in disease-associated microglia, which appear in ageing and neurodegenerative diseases. We also find that commensal bacteria promote the accumulation of senescent microglia and disease-associated microglia during ageing. Furthermore, knockout of p16INK4a, a key senescence inducer, ameliorates the neuroinflammatory phenotype in damaged spinal cords in mice. These results advance our understanding of the role of cellular senescence in the central nervous system and open up possibilities for the treatment of age-related neural disorders.
Collapse
Affiliation(s)
- Tatsuyuki Matsudaira
- Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Sosuke Nakano
- Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Konishi
- Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shimpei Kawamoto
- Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ken Uemura
- Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tamae Kondo
- Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takaaki Ozawa
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomonori Matsumoto
- Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiji Hara
- Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Diseases Education and Research (CiDER), Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
24
|
Nelson TJ, Xu Y. Sting and p53 DNA repair pathways are compromised in Alzheimer's disease. Sci Rep 2023; 13:8304. [PMID: 37221295 PMCID: PMC10206146 DOI: 10.1038/s41598-023-35533-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. A common finding in AD is DNA damage. Double-strand DNA breaks (DSBs) are particularly hazardous to neurons because their post-mitotic state forces neurons to rely on error-prone and potentially mutagenic mechanisms to repair DNA breaks. However, it remains unclear whether DNA damage results from increased DNA damage or failure of DNA repair. Oligomerization of the tumor suppressor protein p53 is an essential part of DSB repair, and p53 phosphorylated on S15 is an indicator of DNA damage. We report that the monomer:dimer ratio of phosphorylated (S15) p53 is increased by 2.86-fold in temporal lobes of AD patients compared to age-matched controls, indicating that p53 oligomerization is compromised in AD. In vitro oxidation of p53 with 100 nM H2O2 produced a similar shift in the monomer:dimer ratio. A COMET test showed a higher level of DNA degradation in AD consistent with double-strand DNA damage or inhibition of repair. Protein carbonylation was also elevated (190% of control), indicating elevated oxidative stress in AD patients. Levels of the DNA repair support protein 14-3-3σ, γ-H2AX, a phosphorylated histone marking double strand DNA breaks, and phosphorylated ataxia telangiectasia mutated (ATM) protein were all increased. cGAS-STING-interferon signaling was impaired in AD and was accompanied by a depletion of STING protein from Golgi and a failure to elevate interferon despite the presence of DSBs. The results suggest that oxidation of p53 by ROS could inhibit the DDR and decrease its ability to orchestrate DSB repair by altering the oligomerization state of p53. The failure of immune-stimulated DNA repair may contribute to cell loss in AD and suggests new therapeutic targets for AD.
Collapse
Affiliation(s)
- Thomas J Nelson
- Department of Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, 25704, USA.
| | - Yunhui Xu
- Department of Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, 25704, USA
| |
Collapse
|
25
|
Knopp RC, Erickson MA, Rhea EM, Reed MJ, Banks WA. Cellular senescence and the blood-brain barrier: Implications for aging and age-related diseases. Exp Biol Med (Maywood) 2023; 248:399-411. [PMID: 37012666 PMCID: PMC10281623 DOI: 10.1177/15353702231157917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The blood-brain barrier (BBB) is a critical physiochemical interface that regulates communication between the brain and blood. It is comprised of brain endothelial cells which regulate the BBB's barrier and interface properties and is surrounded by supportive brain cell types including pericytes and astrocytes. Recent reports have suggested that the BBB undergoes dysfunction during normative aging and in disease. In this review, we consider the effect of cellular senescence, one of the nine hallmarks of aging, on the BBB. We first characterize known normative age-related changes at the BBB, and then evaluate changes in neurodegenerative diseases, with an emphasis on if/how cellular senescence is influencing these changes. We then discuss what insight has been gained from in vitro and in vivo studies of cellular senescence at the BBB. Finally, we evaluate mechanisms by which cellular senescence in peripheral pathologies can indirectly or directly affect BBB function.
Collapse
Affiliation(s)
- Rachel C Knopp
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - Michelle A Erickson
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - May J Reed
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| |
Collapse
|
26
|
Gonzales MM, Garbarino VR, Kautz T, Palavicini JP, Lopez-Cruzan M, Dehkordi SK, Mathews J, Zare H, Xu P, Zhang B, Franklin C, Habes M, Craft S, Petersen RC, Tchkonia T, Kirkland J, Salardini A, Seshadri S, Musi N, Orr ME. Senolytic therapy to modulate the progression of Alzheimer's Disease (SToMP-AD) - Outcomes from the first clinical trial of senolytic therapy for Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-2809973. [PMID: 37162971 PMCID: PMC10168460 DOI: 10.21203/rs.3.rs-2809973/v1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cellular senescence has been identified as a pathological mechanism linked to tau and amyloid beta (Aβ) accumulation in mouse models of Alzheimer's disease (AD). Clearance of senescent cells using the senolytic compounds dasatinib (D) and quercetin (Q) reduced neuropathological burden and improved clinically relevant outcomes in the mice. Herein, we conducted a vanguard open-label clinical trial of senolytic therapy for AD with the primary aim of evaluating central nervous system (CNS) penetrance, as well as exploratory data collection relevant to safety, feasibility, and efficacy. Participants with early-stage symptomatic AD were enrolled in an open-label, 12-week pilot study of intermittent orally-delivered D+Q. CNS penetrance was assessed by evaluating drug levels in cerebrospinal fluid (CSF) using high performance liquid chromatography with tandem mass spectrometry. Safety was continuously monitored with adverse event reporting, vitals, and laboratory work. Cognition, neuroimaging, and plasma and CSF biomarkers were assessed at baseline and post-treatment. Five participants (mean age: 76±5 years; 40% female) completed the trial. The treatment increased D and Q levels in the blood of all participants ranging from 12.7 to 73.5 ng/ml for D and 3.29-26.30 ng/ml for Q. D levels were detected in the CSF of four participants ranging from 0.281 to 0.536 ng/ml (t(4)=3.123, p=0.035); Q was not detected. Treatment was well-tolerated with no early discontinuation and six mild to moderate adverse events occurring across the study. Cognitive and neuroimaging endpoints did not significantly differ from baseline to post-treatment. CNS levels of IL-6 and GFAP increased from baseline to post-treatment (t(4)=3.913, p=008 and t(4)=3.354, p=0.028, respectively) concomitant with decreased levels of several cytokines and chemokines associated with senescence, and a trend toward higher levels of Aβ42 (t(4)=-2.338, p=0.079). Collectively the data indicate the CNS penetrance of D and provide preliminary support for the safety, tolerability, and feasibility of the intervention and suggest that astrocytes and Aβ may be particularly responsive to the treatment. While early results are promising, fully powered, placebo-controlled studies are needed to evaluate the potential of AD modification with the novel approach of targeting cellular senescence.
Collapse
Affiliation(s)
- Mitzi M Gonzales
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Valentina R Garbarino
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tiffany Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Juan Pablo Palavicini
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Marisa Lopez-Cruzan
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shiva Kazempour Dehkordi
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Julia Mathews
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Crystal Franklin
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamad Habes
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Suzanne Craft
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James Kirkland
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arash Salardini
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Nicolas Musi
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Geriatric Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Miranda E Orr
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
27
|
Vielee ST, Wise JP. Among Gerontogens, Heavy Metals Are a Class of Their Own: A Review of the Evidence for Cellular Senescence. Brain Sci 2023; 13:500. [PMID: 36979310 PMCID: PMC10046019 DOI: 10.3390/brainsci13030500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Advancements in modern medicine have improved the quality of life across the globe and increased the average lifespan of our population by multiple decades. Current estimates predict by 2030, 12% of the global population will reach a geriatric age and live another 3-4 decades. This swelling geriatric population will place critical stress on healthcare infrastructures due to accompanying increases in age-related diseases and comorbidities. While much research focused on long-lived individuals seeks to answer questions regarding how to age healthier, there is a deficit in research investigating what aspects of our lives accelerate or exacerbate aging. In particular, heavy metals are recognized as a significant threat to human health with links to a plethora of age-related diseases, and have widespread human exposures from occupational, medical, or environmental settings. We believe heavy metals ought to be classified as a class of gerontogens (i.e., chemicals that accelerate biological aging in cells and tissues). Gerontogens may be best studied through their effects on the "Hallmarks of Aging", nine physiological hallmarks demonstrated to occur in aged cells, tissues, and bodies. Evidence suggests that cellular senescence-a permanent growth arrest in cells-is one of the most pertinent hallmarks of aging and is a useful indicator of aging in tissues. Here, we discuss the roles of heavy metals in brain aging. We briefly discuss brain aging in general, then expand upon observations for heavy metals contributing to age-related neurodegenerative disorders. We particularly emphasize the roles and observations of cellular senescence in neurodegenerative diseases. Finally, we discuss the observations for heavy metals inducing cellular senescence. The glaring lack of knowledge about gerontogens and gerontogenic mechanisms necessitates greater research in the field, especially in the context of the global aging crisis.
Collapse
Affiliation(s)
- Samuel T. Vielee
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - John P. Wise
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
28
|
Bryant A, Li Z, Jayakumar R, Serrano-Pozo A, Woost B, Hu M, Woodbury ME, Wachter A, Lin G, Kwon T, Talanian RV, Biber K, Karran EH, Hyman BT, Das S, Bennett R. Endothelial Cells are Heterogeneous in Different Brain Regions and are Dramatically Altered in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528825. [PMID: 36824974 PMCID: PMC9948996 DOI: 10.1101/2023.02.16.528825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Vascular endothelial cells play an important role in maintaining brain health, but their contribution to Alzheimer's disease (AD) is obscured by limited understanding of the cellular heterogeneity in normal aged brain and in disease. To address this, we performed single nucleus RNAseq on tissue from 32 AD and non-AD donors each with five cortical regions: entorhinal cortex, inferior temporal gyrus, prefrontal cortex, visual association cortex and primary visual cortex. Analysis of 51,586 endothelial cells revealed unique gene expression patterns across the five regions in non-AD donors. Alzheimer's brain endothelial cells were characterized by upregulated protein folding genes and distinct transcriptomic differences in response to amyloid beta plaques and cerebral amyloid angiopathy (CAA). This dataset demonstrates previously unrecognized regional heterogeneity in the endothelial cell transcriptome in both aged non-AD and AD brain. Significance Statement In this work, we show that vascular endothelial cells collected from five different brain regions display surprising variability in gene expression. In the presence of Alzheimer's disease pathology, endothelial cell gene expression is dramatically altered with clear differences in regional and temporal changes. These findings help explain why certain brain regions appear to differ in susceptibility to disease-related vascular remodeling events that may impact blood flow.
Collapse
|
29
|
Milk Fat Globule Epidermal Growth Factor VIII Fragment Medin in Age-Associated Arterial Adverse Remodeling and Arterial Disease. Cells 2023; 12:cells12020253. [PMID: 36672188 PMCID: PMC9857039 DOI: 10.3390/cells12020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Medin, a small 50-amino acid peptide, is an internal cleaved product from the second discoidin domain of milk fat globule epidermal growth factor VIII (MFG-E8) protein. Medin has been reported as the most common amylogenic protein in the upper part of the arterial system, including aortic, temporal, and cerebral arterial walls in the elderly. Medin has a high affinity to elastic fibers and is closely associated with arterial degenerative inflammation, elastic fiber fragmentation, calcification, and amyloidosis. In vitro, treating with the medin peptide promotes the inflammatory phenotypic shift of both endothelial cells and vascular smooth muscle cells. In vitro, ex vivo, and in vivo studies demonstrate that medin enhances the abundance of reactive oxygen species and reactive nitrogen species produced by both endothelial cells and vascular smooth muscle cells and promotes vascular endothelial dysfunction and arterial stiffening. Immunostaining and immunoblotting analyses of human samples indicate that the levels of medin are increased in the pathogenesis of aortic aneurysm/dissection, temporal arteritis, and cerebrovascular dementia. Thus, medin peptide could be targeted as a biomarker diagnostic tool or as a potential molecular approach to curbing the arterial degenerative inflammatory remodeling that accompanies aging and disease.
Collapse
|
30
|
Tan Y, Tang W, Xiao W, Huang R, Li X, Peng W, Yan K, Cao Y, Zeng Y, Kang J. lncRNA-associated ceRNA network revealing the potential regulatory roles of ferroptosis and immune infiltration in Alzheimer's disease. Front Aging Neurosci 2023; 15:1105690. [PMID: 36875702 PMCID: PMC9979855 DOI: 10.3389/fnagi.2023.1105690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 02/18/2023] Open
Abstract
Background Alzheimer's disease (AD) is the most common form of dementia characterized by a prominent cognitive deterioration of sufficient magnitude to impair daily living. Increasing studies indicate that non-coding RNAs (ncRNAs) are involved in ferroptosis and AD progression. However, the role of ferroptosis-related ncRNAs in AD remains unexplored. Methods We obtained the intersection of differentially expressed genes in GSE5281 (brain tissue expression profile of patients with AD) from the GEO database and ferroptosis-related genes (FRGs) from the ferrDb database. Least absolute shrinkage and selection operator model along with weighted gene co-expression network analysis screened for FRGs highly associated with AD. Results A total of five FRGs were identified and further validated in GSE29378 (area under the curve = 0.877, 95% confidence interval = 0.794-0.960). A competing endogenous RNA (ceRNA) network of ferroptosis-related hub genes (EPT1, KLHL24, LRRFIP1, CXCL2 and CD44) was subsequently constructed to explore the regulatory mechanism between hub genes, lncRNAs and miRNAs. Finally, CIBERSORT algorithms were used to unravel the immune cell infiltration landscape in AD and normal samples. M1 macrophages and mast cells were more infiltrated whereas memory B cells were less infiltrated in AD samples than in normal samples. Spearman's correlation analysis revealed that LRRFIP1 was positively correlated with M1 macrophages (r = -0.340, P < 0.001) whereas ferroptosis-related lncRNAs were negatively correlated with immune cells, wherein miR7-3HG correlated with M1 macrophages and NIFK-AS1, EMX2OS and VAC14-AS1 correlated with memory B cells (|r| > 0.3, P < 0.001). Conclusion We constructed a novel ferroptosis-related signature model including mRNAs, miRNAs and lncRNAs, and characterized its association with immune infiltration in AD. The model provides novel ideas for the pathologic mechanism elucidation and targeted therapy development of AD.
Collapse
Affiliation(s)
- Yejun Tan
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Wang Tang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenbiao Xiao
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Roujie Huang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xin Li
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Kuipo Yan
- Department of Cardiology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Yuan Cao
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi Zeng
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jin Kang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
31
|
Wong GCN, Chow KHM. DNA Damage Response-Associated Cell Cycle Re-Entry and Neuronal Senescence in Brain Aging and Alzheimer's Disease. J Alzheimers Dis 2023; 94:S429-S451. [PMID: 35848025 PMCID: PMC10473156 DOI: 10.3233/jad-220203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/15/2022]
Abstract
Chronological aging is by far the strongest risk factor for age-related dementia and Alzheimer's disease. Senescent cells accumulated in the aging and Alzheimer's disease brains are now recognized as the keys to describing such an association. Cellular senescence is a classic phenomenon characterized by stable cell arrest, which is thought to be applicable only to dividing cells. Emerging evidence indicates that fully differentiated post-mitotic neurons are also capable of becoming senescent, with roles in contributing to both brain aging and disease pathogenesis. The key question that arises is the identity of the upstream triggers and the molecular mechanisms that underly such changes. Here, we highlight the potential role of persistent DNA damage response as the major driver of senescent phenotypes and discuss the current evidence and molecular mechanisms that connect DNA repair infidelity, cell cycle re-entry and terminal fate decision in committing neuronal cell senescence.
Collapse
Affiliation(s)
- Genper Chi-Ngai Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
32
|
Riessland M, Orr ME. Translating the Biology of Aging into New Therapeutics for Alzheimer's Disease: Senolytics. J Prev Alzheimers Dis 2023; 10:633-646. [PMID: 37874084 PMCID: PMC11103249 DOI: 10.14283/jpad.2023.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The recent FDA-approval for amyloid lowering therapies reflects an unwavering commitment from the Alzheimer's disease (AD) research community to identify treatments for this leading cause of dementia. The clinical benefits achieved by reducing amyloid, though modest, provide evidence that disease modification is possible. Expanding the same tenacity to interventions targeting upstream drivers of AD pathogenesis could significantly impact the disease course. Advanced age is the greatest risk factor for developing AD. Interventions targeting biological aging offer the possibility of disrupting a foundational cause of AD. Senescent cells accumulate with age and contribute to inflammation and age-related diseases like AD. Senolytic drugs that clear senescent cells improve healthy aging, halt AD disease progression in animal models and are undergoing clinical testing. This review explores the biology of aging, the role of senescent cells in AD pathology, and various senotherapeutic approaches such as senolytics, dampening the SASP (senescence associated secretory phenotype), senescence pathway inhibition, vaccines, and prodrugs. We highlight ongoing clinical trials evaluating the safety and efficacy of the most advanced senolytic approach, dasatinib and quercetin (D+Q), including an ongoing Phase II senolytic trial supported by the Alzheimer's Drug Discovery Foundation (ADDF). Challenges in the field of senotherapy for AD, including target engagement and biomarker development, are addressed. Ultimately, this research pursuit may lead to an effective treatment for AD and provide the field with another disease-modifying therapy to be used, alone or in combination, with other emerging treatment options.
Collapse
Affiliation(s)
- M Riessland
- Miranda E. Orr, 575 Patterson Ave, Winston-Salem, NC 27101, Telephone Number: (336)716-7804,
| | | |
Collapse
|
33
|
Abdul Y, Karakaya E, Chandran R, Jamil S, Ergul A. Endothelin A receptors contribute to senescence of brain microvascular endothelial cells. Can J Physiol Pharmacol 2022; 100:1087-1096. [PMID: 36384316 PMCID: PMC10052805 DOI: 10.1139/cjpp-2022-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cellular senescence plays a pivotal role in the aging and progression of neurodegenerative diseases, including vascular cognitive impairment and dementia (VCID). In postmortem brains from individuals with VCID, endothelin-1 (ET-1) levels closely correlate with blood barrier breakdown and cerebral hypoperfusion. Brain microvascular endothelial cells (BMVECs), previously thought to have exclusively endothelin B receptors, also possess endothelin A (ETA) receptors; however, the functional significance of this receptor in BMVECs is not known. We hypothesize that ETA receptors mediate BMVEC senescence. Serum-starved human BMVECs (HBEC5i) were incubated with ET-1 (1 µmol/L) in the presence/absence of ETA receptor antagonist BQ-123 (20 µmol/L). Cells were collected for Western blot and quantitative real-time PCR analyses. Treatment of ET-1 increased protein expression of ETA receptor, while it was prevented by the ETA receptor antagonist. ET-1 increased p21, p16, p53, LIF1 and cyclin D1 protein levels, and β-galactosidase accumulation, which were prevented in the presence of ETA blockade. While there was no change in tight junction proteins, ET-1 decreased adherent junction protein vascular endothelial cadherin (VE-cadherin) levels. In conclusion, ET-1 upregulates ETA receptors in BMVECs in an autocrine manner and triggers the activation of senescence. These in vitro findings need to be further studied in vivo to establish the role of ETA receptors in the progression of endothelial senescence in VCID.
Collapse
Affiliation(s)
- Yasir Abdul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Eda Karakaya
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Raghavendar Chandran
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Sarah Jamil
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| |
Collapse
|
34
|
Pan JX, Lee D, Sun D, Zhao K, Xiong L, Guo HH, Ren X, Chen P, Lopez de Boer R, Lu Y, Lin H, Mei L, Xiong WC. Muscular Swedish mutant APP-to-Brain axis in the development of Alzheimer's disease. Cell Death Dis 2022; 13:952. [PMID: 36357367 PMCID: PMC9649614 DOI: 10.1038/s41419-022-05378-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Notably, patients with AD often suffer from severe sarcopenia. However, their direct link and relationship remain poorly understood. Here, we generated a mouse line, TgAPPsweHSA, by crossing LSL (LoxP-STOP-LoxP)-APPswe with HSA-Cre mice, which express APPswe (Swedish mutant APP) selectively in skeletal muscles. Examining phenotypes in TgAPPsweHSA mice showed not only sarcopenia-like deficit, but also AD-relevant hippocampal inflammation, impairments in adult hippocampal neurogenesis and blood brain barrier (BBB), and depression-like behaviors. Further studies suggest that APPswe expression in skeletal muscles induces senescence and expressions of senescence-associated secretory phenotypes (SASPs), which include inflammatory cytokines and chemokines; but decreases growth factors, such as PDGF-BB and BDNF. These changes likely contribute to the systemic and hippocampal inflammation, deficits in neurogenesis and BBB, and depression-like behaviors, revealing a link of sarcopenia with AD, and uncovering an axis of muscular APPswe to brain in AD development.
Collapse
Affiliation(s)
- Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Dong Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kai Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Peng Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Raquel Lopez de Boer
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yuyi Lu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Helena Lin
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
35
|
Edgerton-Fulton M, Ergul A. Vascular contributions to cognitive impairment/dementia in diabetes: role of endothelial cells and pericytes. Am J Physiol Cell Physiol 2022; 323:C1177-C1189. [PMID: 36036445 PMCID: PMC9576164 DOI: 10.1152/ajpcell.00072.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Vascular contributions to cognitive impairment/dementia (VCID) are a leading cause of dementia, a known neurodegenerative disorder characterized by progressive cognitive decline. Although diabetes increases the risks of stroke and the development of cerebrovascular disease, the cellular and vascular mechanisms that lead to VCID in diabetes are yet to be determined. A growing body of research has identified that cerebrovascular cells within the neurovascular complex display an array of cellular responses that impact their survival and reparative properties, which plays a significant role in VCID development. Specifically, endothelial cells and pericytes are the primary cell types that have gained much attention in dementia-related studies due to their molecular and phenotypic heterogeneity. In this review, we will discuss the various morphological subclasses of endothelial cells and pericytes as well as their relative distribution throughout the cerebrovasculature. Furthermore, the use of diabetic and stroke animal models in preclinical studies has provided more insight into the impact of sex differences on cerebral vascularization in progressive VCID. Understanding how cellular responses and sex differences contribute to endothelial cell and pericyte survival and function will set the stage for the development of potential preventive therapies for dementia-related disorders in diabetes.
Collapse
Affiliation(s)
- Mia Edgerton-Fulton
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Adviye Ergul
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
36
|
Wise Jr JP. The intersection between toxicology and aging research: A toxic aging coin perspective. FRONTIERS IN AGING 2022; 3:1014675. [PMID: 36213344 PMCID: PMC9532842 DOI: 10.3389/fragi.2022.1014675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/06/2022] [Indexed: 01/11/2023]
Abstract
We are imminently faced with the challenges of an increasingly aging population and longer lifespans due to improved health care. Concomitantly, we are faced with ubiquitous environmental pollution linked with various health effects and age-related diseases which contribute to increased morbidity with age. Geriatric populations are rarely considered in the development of environmental regulations or in toxicology research. Today, life expectancy is often into one's 80s or beyond, which means multiple decades living as a geriatric individual. Hence, adverse health effects and late-onset diseases might be due to environmental exposures as a geriatric, and we currently have no way of knowing. Considering aging from a different perspective, the term "gerontogen" was coined in 1987 to describe chemicals that accelerate biological aging but has largely been left out of toxicology research. Thus, we are challenged with a two-faced problem that we can describe as a "toxic aging coin"; on one side we consider how age affects the toxic outcome of chemicals, whereas on the other side we consider how chemicals accelerate aging (i.e. how chemicals act as gerontogens). Conveniently, both sides of this coin can be tackled with a single animal study that considers multiple age groups and assesses basic toxicology of the chemical(s) tested and aging-focused endpoints. Here, I introduce the concept of this toxic aging coin and some key considerations for how it applies to toxicology research. My discussion of this concept will focus on the brain, my area of expertise, but could be translated to any organ system.
Collapse
|
37
|
Li Y, Lu J, Hou Y, Huang S, Pei G. Alzheimer’s Amyloid-β Accelerates Human Neuronal Cell Senescence Which Could Be Rescued by Sirtuin-1 and Aspirin. Front Cell Neurosci 2022; 16:906270. [PMID: 35783098 PMCID: PMC9249263 DOI: 10.3389/fncel.2022.906270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is a major biological process related to aging. Neuronal cell senescence contributes to the pathogenesis of many aging-related neurodegenerative diseases including Alzheimer’s disease (AD). In this study, we showed that amyloid-β42 oligomers (Aβ), one of the core pathological players of AD, significantly upregulated the expression of senescence markers, p21, plasminogen activator inhibitor-1 (PAI-1), and SA-β-gal (senescence-associated β-galactosidase) in multiple human neuronal cells, including SK-N-SH cells, SH-SY5Y cells, and neural stem cell (NSC)-derived neuronal cells. Moreover, it was consistently observed among the cells that Aβ promoted senescence-associated DNA damage as the levels of 8-OHdG staining, histone variant H2AX phosphorylation (γ-H2AX), and genomic DNA lesion increased. Mechanism study revealed that the exposure of Aβ markedly suppressed the expression of sirtuin-1 (SIRT1), a critical regulator of aging, and the exogenous expression of SIRT1 alleviated Aβ-induced cell senescence phenotypes. To our surprise, a widely used cardiovascular drug aspirin considerably rescued Aβ-induced cellular senescence at least partially through its regulation of SIRT1. In conclusion, our findings clearly demonstrate that exposure of Aβ alone is sufficient to accelerate the senescence of human neuronal cells through the downregulation of SIRT1.
Collapse
Affiliation(s)
- Yi Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Juan Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yujun Hou
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shichao Huang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Shichao Huang,
| | - Gang Pei
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Gang Pei,
| |
Collapse
|
38
|
Gonzales MM, Garbarino VR, Pollet E, Palavicini JP, Kellogg DL, Kraig E, Orr ME. Biological aging processes underlying cognitive decline and neurodegenerative disease. J Clin Invest 2022; 132:e158453. [PMID: 35575089 PMCID: PMC9106343 DOI: 10.1172/jci158453] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease and related dementias (ADRD) are among the top contributors to disability and mortality in later life. As with many chronic conditions, aging is the single most influential factor in the development of ADRD. Even among older adults who remain free of dementia throughout their lives, cognitive decline and neurodegenerative changes are appreciable with advancing age, suggesting shared pathophysiological mechanisms. In this Review, we provide an overview of changes in cognition, brain morphology, and neuropathological protein accumulation across the lifespan in humans, with complementary and mechanistic evidence from animal models. Next, we highlight selected aging processes that are differentially regulated in neurodegenerative disease, including aberrant autophagy, mitochondrial dysfunction, cellular senescence, epigenetic changes, cerebrovascular dysfunction, inflammation, and lipid dysregulation. We summarize research across clinical and translational studies to link biological aging processes to underlying ADRD pathogenesis. Targeting fundamental processes underlying biological aging may represent a yet relatively unexplored avenue to attenuate both age-related cognitive decline and ADRD. Collaboration across the fields of geroscience and neuroscience, coupled with the development of new translational animal models that more closely align with human disease processes, is necessary to advance novel therapeutic discovery in this realm.
Collapse
Affiliation(s)
- Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Neurology
| | | | - Erin Pollet
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
| | - Juan P. Palavicini
- Barshop Institute for Longevity and Aging Studies, and
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Dean L. Kellogg
- Barshop Institute for Longevity and Aging Studies, and
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Geriatric Research and Education Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Ellen Kraig
- Barshop Institute for Longevity and Aging Studies, and
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Miranda E. Orr
- Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
39
|
Phoenix A, Chandran R, Ergul A. Cerebral Microvascular Senescence and Inflammation in Diabetes. Front Physiol 2022; 13:864758. [PMID: 35574460 PMCID: PMC9098835 DOI: 10.3389/fphys.2022.864758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/14/2022] [Indexed: 01/16/2023] Open
Abstract
Stress-induced premature senescence can contribute to the accelerated metabolic aging process in diabetes. Progressive accumulation of senescent cells in the brain, especially those displaying the harmful inflammatory senescence-associated secretory phenotype (SASP), may lead to cognitive impairment linked with metabolic disturbances. In this context, the senescence within the neurovascular unit (NVU) should be studied as much as in the neurons as emerging evidence shows that neurogliovascular communication is critical for brain health. It is also known that cerebrovascular dysfunction and decreased cerebral blood flow (CBF) precede the occurrence of neuronal pathologies and overt cognitive impairment. Various studies have shown that endothelial cells, the major component of the NVU, acquire a senescent phenotype via various molecular mediators and pathways upon exposure to high glucose and other conditions mimicking metabolic disturbances. In addition, senescence in the other cells that are part of the NVU, like pericytes and vascular smooth cells, was also triggered upon exposure to diabetic conditions. The senescence within the NVU may compromise functional and trophic coupling among glial, vascular, and neuronal cells and the resulting SASP may contribute to the chronic neurovascular inflammation observed in Alzheimer's Disease and Related Dementias (ADRD). The link between diabetes-mediated cerebral microvascular dysfunction, NVU senescence, inflammation, and cognitive impairment must be widely studied to design therapeutic strategies.
Collapse
Affiliation(s)
- Ashley Phoenix
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Raghavendar Chandran
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States,*Correspondence: Adviye Ergul,
| |
Collapse
|
40
|
Damodarasamy M, Khaing ZZ, Hyde J, Keene CD, Bentov I, Banks WA, Reed MJ. Viable human brain microvessels for the study of aging and neurodegenerative diseases. Microvasc Res 2022; 140:104282. [PMID: 34813858 PMCID: PMC8846932 DOI: 10.1016/j.mvr.2021.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/28/2023]
Abstract
The brain microvasculature is altered in normal aging and in the presence of disease processes, such as neurodegeneration or ischemia, but there are few methods for studying living tissues. We now report that viable microvessels (MV) are readily isolated from brain tissue of subjects enrolled in studies of neurodegenerative diseases who undergo rapid autopsy (performed with <12 h postmortem interval - PMI). We find that these MV retain their morphology and cellular components and are fairly uniform in size. Sufficient MV (~3-5000) are obtained from 3 to 4 g of tissue to allow for studies of cellular composition as well as extracellular matrix (ECM). Using live/dead assays, these MV are viable for up to 5 days in tissue culture media (2D) designed to support endothelial cells and up to 11 days post-isolation in a 3-dimensional (3D) matrix (Low Growth Factor Matrigel™). Assays that measure the reducing potential of live cells \demonstrated that the majority of the MV maintain high levels of metabolic activity for a similar number of days as the live/dead assays. Functional cellular components (such as tight junctions and transporter proteins) and ECM of MV in tissue culture media, and to a lesser extent in 3D matrices, were readily visualized using immunofluorescence techniques. MV in tissue culture media are lysed and protein content analyzed, but MV in 3D matrix first require removal of the supporting matrix, which can confound the analysis of MV ECM. Finally, MV can be preserved in cryoprotective media, whereby over 50% retain their baseline viability upon thawing. In summary, we find that MV isolated from human brains undergoing rapid autopsy are viable in standard tissue culture for up to 5 days and the timeframe for experiments can be extended up to 11 days by use of a supportive 3D matrix. Viable human MV allow for temporal and spatial analysis of relevant cellular and ECM components that have implications for microvascular function in neurodegenerative diseases, vascular brain injury, and neurotrauma.
Collapse
Affiliation(s)
- Mamatha Damodarasamy
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA,VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, WA, USA
| | - Zin Z Khaing
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - Jeffrey Hyde
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, Division of Neuropathology, University of Washington, Seattle, WA, USA
| | - Itay Bentov
- Department of Pain and Anesthesia, University of Washington, Seattle, WA, USA
| | - William A Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA,VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, WA, USA
| | - May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA; VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, WA, USA.
| |
Collapse
|
41
|
Liu RM. Aging, Cellular Senescence, and Alzheimer's Disease. Int J Mol Sci 2022; 23:1989. [PMID: 35216123 PMCID: PMC8874507 DOI: 10.3390/ijms23041989] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/10/2023] Open
Abstract
Aging is the greatest risk factor for late-onset Alzheimer's disease (LOAD), which accounts for >95% of Alzheimer's disease (AD) cases. The mechanism underlying the aging-related susceptibility to LOAD is unknown. Cellular senescence, a state of permanent cell growth arrest, is believed to contribute importantly to aging and aging-related diseases, including AD. Senescent astrocytes, microglia, endothelial cells, and neurons have been detected in the brain of AD patients and AD animal models. Removing senescent cells genetically or pharmacologically ameliorates β-amyloid (Aβ) peptide and tau-protein-induced neuropathologies, and improves memory in AD model mice, suggesting a pivotal role of cellular senescence in AD pathophysiology. Nonetheless, although accumulated evidence supports the role of cellular senescence in aging and AD, the mechanisms that promote cell senescence and how senescent cells contribute to AD neuropathophysiology remain largely unknown. This review summarizes recent advances in this field. We believe that the removal of senescent cells represents a promising approach toward the effective treatment of aging-related diseases, such as AD.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| |
Collapse
|
42
|
Xu P, Wang M, Song WM, Wang Q, Yuan GC, Sudmant PH, Zare H, Tu Z, Orr ME, Zhang B. The landscape of human tissue and cell type specific expression and co-regulation of senescence genes. Mol Neurodegener 2022; 17:5. [PMID: 35000600 PMCID: PMC8744330 DOI: 10.1186/s13024-021-00507-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cellular senescence is a complex stress response that impacts cellular function and organismal health. Multiple developmental and environmental factors, such as intrinsic cellular cues, radiation, oxidative stress, oncogenes, and protein accumulation, activate genes and pathways that can lead to senescence. Enormous efforts have been made to identify and characterize senescence genes (SnGs) in stress and disease systems. However, the prevalence of senescent cells in healthy human tissues and the global SnG expression signature in different cell types are poorly understood. METHODS This study performed an integrative gene network analysis of bulk and single-cell RNA-seq data in non-diseased human tissues to investigate SnG co-expression signatures and their cell-type specificity. RESULTS Through a comprehensive transcriptomic network analysis of 50 human tissues in the Genotype-Tissue Expression Project (GTEx) cohort, we identified SnG-enriched gene modules, characterized SnG co-expression patterns, and constructed aggregated SnG networks across primary tissues of the human body. Our network approaches identified 51 SnGs highly conserved across the human tissues, including CDKN1A (p21)-centered regulators that control cell cycle progression and the senescence-associated secretory phenotype (SASP). The SnG-enriched modules showed remarkable cell-type specificity, especially in fibroblasts, endothelial cells, and immune cells. Further analyses of single-cell RNA-seq and spatial transcriptomic data independently validated the cell-type specific SnG signatures predicted by the network analysis. CONCLUSIONS This study systematically revealed the co-regulated organizations and cell type specificity of SnGs in major human tissues, which can serve as a blueprint for future studies to map senescent cells and their cellular interactions in human tissues.
Collapse
Affiliation(s)
- Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Institute for Precision Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Peter H. Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720 USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA 94720 USA
| | - Habil Zare
- Department of Cell Systems & Anatomy, The University of Texas Health Science Center, San Antonio, TX 78229 USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX 78229 USA
| | - Zhidong Tu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Miranda E. Orr
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Salisbury VA Medical Center, Salisbury, NC 28144 USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| |
Collapse
|
43
|
Gonzales MM, Garbarino VR, Marques Zilli E, Petersen RC, Kirkland JL, Tchkonia T, Musi N, Seshadri S, Craft S, Orr ME. Senolytic Therapy to Modulate the Progression of Alzheimer's Disease (SToMP-AD): A Pilot Clinical Trial. J Prev Alzheimers Dis 2022; 9:22-29. [PMID: 35098970 PMCID: PMC8612719 DOI: 10.14283/jpad.2021.62] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Preclinical studies indicate an age-associated accumulation of senescent cells across multiple organ systems. Emerging evidence suggests that tau protein accumulation, which closely correlates with cognitive decline in Alzheimer's disease and other tauopathies, drives cellular senescence in the brain. Pharmacologically clearing senescent cells in mouse models of tauopathy reduced brain pathogenesis. Compared to vehicle treated mice, intermittent senolytic administration reduced tau accumulation and neuroinflammation, preserved neuronal and synaptic density, restored aberrant cerebral blood flow, and reduced ventricular enlargement. Intermittent dosing of the senolytics, dasatinib plus quercetin, has shown an acceptable safety profile in clinical studies for other senescence-associated conditions. With these data, we proposed and herein describe the objectives and methods for a clinical vanguard study. This initial open-label clinical trial pilots an intermittent senolytic combination therapy of dasatinib plus quercetin in five older adults with early-stage Alzheimer's disease. The primary objective is to evaluate the central nervous system penetration of dasatinib and quercetin through analysis of cerebrospinal fluid collected at baseline and after 12 weeks of treatment. Further, through a series of secondary outcome measures to assess target engagement of the senolytic compounds and Alzheimer's disease-relevant cognitive, functional, and physical outcomes, we will collect preliminary data on safety, feasibility, and efficacy. The results of this study will be used to inform the development of a randomized, double-blind, placebo-controlled multicenter phase II trial to further explore of the safety, feasibility, and efficacy of senolytics for modulating the progression of Alzheimer's disease. Clinicaltrials.gov registration number and date: NCT04063124 (08/21/2019).
Collapse
Affiliation(s)
- Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Department of Neurology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - V. R. Garbarino
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Department of Neurology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - E. Marques Zilli
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Department of Neurology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | | | - J. L. Kirkland
- Mayo Clinic, Robert and Arlene Kogod Center on Aging, Rochester, MN USA
| | - T. Tchkonia
- Mayo Clinic, Robert and Arlene Kogod Center on Aging, Rochester, MN USA
| | - N. Musi
- University of Texas Health Science Center at San Antonio, Barshop Institute for Longevity and Aging Studies, San Antonio Geriatric Research, Education and Clinical Center (GRECC), Department of Medicine, San Antonio, TX USA
| | - S. Seshadri
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Department of Neurology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
- Boston University School of Medicine, Department of Neurology, Boston, MA USA
| | - S. Craft
- Wake Forest School of Medicine, Gerontology and Geriatric Medicine, 575 Patterson Avenue, Winston-Salem, NC 27101 USA
| | - Miranda E. Orr
- Wake Forest School of Medicine, Gerontology and Geriatric Medicine, 575 Patterson Avenue, Winston-Salem, NC 27101 USA
| |
Collapse
|
44
|
Finger CE, Moreno-Gonzalez I, Gutierrez A, Moruno-Manchon JF, McCullough LD. Age-related immune alterations and cerebrovascular inflammation. Mol Psychiatry 2022; 27:803-818. [PMID: 34711943 PMCID: PMC9046462 DOI: 10.1038/s41380-021-01361-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/20/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Aging is associated with chronic systemic inflammation, which contributes to the development of many age-related diseases, including vascular disease. The world's population is aging, leading to an increasing prevalence of both stroke and vascular dementia. The inflammatory response to ischemic stroke is critical to both stroke pathophysiology and recovery. Age is a predictor of poor outcomes after stroke. The immune response to stroke is altered in aged individuals, which contributes to the disparate outcomes between young and aged patients. In this review, we describe the current knowledge of the effects of aging on the immune system and the cerebral vasculature and how these changes alter the immune response to stroke and vascular dementia in animal and human studies. Potential implications of these age-related immune alterations on chronic inflammation in vascular disease outcome are highlighted.
Collapse
Affiliation(s)
- Carson E. Finger
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| | - Ines Moreno-Gonzalez
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA ,grid.10215.370000 0001 2298 7828Department of Cell Biology, Genetics and Physiology, Instituto de Investigacion Biomedica de Malaga-IBIMA, Faculty of Sciences, Malaga University, Malaga, Spain ,grid.418264.d0000 0004 1762 4012Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Malaga, Spain
| | - Antonia Gutierrez
- grid.10215.370000 0001 2298 7828Department of Cell Biology, Genetics and Physiology, Instituto de Investigacion Biomedica de Malaga-IBIMA, Faculty of Sciences, Malaga University, Malaga, Spain ,grid.418264.d0000 0004 1762 4012Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Malaga, Spain
| | - Jose Felix Moruno-Manchon
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| |
Collapse
|
45
|
Wu L, Wang W, Tian S, Zheng H, Liu P, Wu W. Identification of Hub Genes in Patients with Alzheimer Disease and Obstructive Sleep Apnea Syndrome Using Integrated Bioinformatics Analysis. Int J Gen Med 2021; 14:9491-9502. [PMID: 34916831 PMCID: PMC8668230 DOI: 10.2147/ijgm.s341078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background Obstructive sleep apnea syndrome (OSA) is associated with an increased risk of Alzheimer’s disease (AD). This study aimed to identify the key common genes in AD and OSA and explore molecular mechanism value in AD. Methods Expression profiles GSE5281 and GSE135917 were acquired from Gene Expression Omnibus (GEO) database, respectively. Weighted gene co-expression network analysis (WGCNA) and R 4.0.2 software were used for identifying differentially expressed genes (DEGs) related to AD and OSA. Function enrichment analyses using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and the protein–protein interaction network (PPI) using the STRING database were subsequently performed on the shared DEGs. Finally, the hub genes were screened from the PPI network using the MCC algorithm of CytoHubba plugin. Results Seven modules and four modules were the most significant with AD and OSA by WGCNA, respectively. A total of 33 common genes were screened in AD and OSA by VENN. Functional enrichment analysis indicated that DEGs were mainly involved in cellular response to oxidative stress, neuroinflammation. Among these DEGs, the top 10 hub genes (high scores in cytoHubba) were selected in the PPI network, including AREG, SPP1, CXCL2, ITGAX, DUSP1, COL1A1, SCD, ACTA2, CCND2, ATF3. Conclusion This study presented ten target genes on the basis of common genes to AD and OSA. These candidate genes may provide a novel perspective to explore the underlying mechanism that OSA leads to an increased risk of AD at the transcriptome level.
Collapse
Affiliation(s)
- Lanxiang Wu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Wenjun Wang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Sheng Tian
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Heqing Zheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Pan Liu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Wei Wu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| |
Collapse
|
46
|
Gonzales MM, Krishnamurthy S, Garbarino V, Daeihagh AS, Gillispie GJ, Deep G, Craft S, Orr ME. A geroscience motivated approach to treat Alzheimer's disease: Senolytics move to clinical trials. Mech Ageing Dev 2021; 200:111589. [PMID: 34687726 PMCID: PMC9059898 DOI: 10.1016/j.mad.2021.111589] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022]
Abstract
The pathogenic processes driving Alzheimer's disease (AD) are complex. An incomplete understanding of underlying disease mechanisms has presented insurmountable obstacles for developing effective disease-modifying therapies. Advanced chronological age is the greatest risk factor for developing AD. Intervening on biological aging may alter disease progression and represents a novel, complementary approach to current strategies. Toward this end, cellular senescence has emerged as a promising target. This complex stress response harbors damaged cells in a cell cycle arrested, apoptosis-resistant cell state. Senescent cells accumulate with age where they notoriously secrete molecules that contribute to chronic tissue dysfunction and disease. Thus, benefits of cell survival in a senescent fate are countered by their toxic secretome. The removal of senescent cells improves brain structure and function in rodent models at risk of developing AD, and in those with advanced Aβ and tau pathology. The present review describes the path to translating this promising treatment strategy to AD clinical trials. We review evidence for senescent cell accumulation in the human brain, considerations and strategies for senescence-targeting trials specific to AD, approaches to detect senescent brain cells in biofluids, and summarize the goals of the first senolytic trials for the treatment of AD (NCT04063124 and NCT04685590). This article is part of the Special Issue - Senolytics - Edited by Joao Passos and Diana Jurk.
Collapse
Affiliation(s)
- Mitzi M Gonzales
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sudarshan Krishnamurthy
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Bowman Gray Center for Medical Education, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Valentina Garbarino
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ali S Daeihagh
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Gregory J Gillispie
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Miranda E Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA; Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
47
|
Dehkordi SK, Walker J, Sah E, Bennett E, Atrian F, Frost B, Woost B, Bennett RE, Orr TC, Zhou Y, Andhey PS, Colonna M, Sudmant PH, Xu P, Wang M, Zhang B, Zare H, Orr ME. Profiling senescent cells in human brains reveals neurons with CDKN2D/p19 and tau neuropathology. NATURE AGING 2021; 1:1107-1116. [PMID: 35531351 PMCID: PMC9075501 DOI: 10.1038/s43587-021-00142-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
Senescent cells contribute to pathology and dysfunction in animal models1. Their sparse distribution and heterogenous phenotype have presented challenges for detecting them in human tissues. We developed a senescence eigengene approach to identify these rare cells within large, diverse populations of postmortem human brain cells. Eigengenes are useful when no single gene reliably captures a phenotype, like senescence; they also help to reduce noise, which is important in large transcriptomic datasets where subtle signals from low-expressing genes can be lost. Each of our eigengenes detected ~2% senescent cells from a population of ~140,000 single nuclei derived from 76 postmortem human brains with various levels of Alzheimer's disease (AD) pathology. More than 97% of the senescent cells were excitatory neurons and overlapped with tau-containing neurofibrillary tangles (NFTs). Cyclin dependent kinase inhibitor 2D (CDKN2D/p19) was predicted as the most significant contributor to the primary senescence eigengene. RNAscope and immunofluorescence confirmed its elevated expression in AD brain tissue whereby p19-expressing neurons had 1.8-fold larger nuclei and significantly more cells with lipofuscin than p19-negative neurons. These hallmark senescence phenotypes were further elevated in the presence of NFTs. Collectively, CDKN2D/p19-expressing neurons with NFTs represent a unique cellular population in human AD with a senescence phenotype. The eigengenes developed may be useful in future senescence profiling studies as they accurately identified senescent cells in snRNASeq datasets and predicted biomarkers for histological investigation.
Collapse
Affiliation(s)
- Shiva Kazempour Dehkordi
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, 7400 Merton Minter, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jamie Walker
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, 7400 Merton Minter, San Antonio, TX, 78229, USA
| | - Eric Sah
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Emma Bennett
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Farzaneh Atrian
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Bess Frost
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, 7400 Merton Minter, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Benjamin Woost
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rachel E. Bennett
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Timothy C. Orr
- Department of Healthcare Innovations, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Prabhakar S. Andhey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter H. Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, 7400 Merton Minter, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Miranda E. Orr
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Salisbury VA Medical Center, Salisbury, NC, USA
| |
Collapse
|
48
|
Gonzales MM, Krishnamurthy S, Garbarino V, Daeihagh AS, Gillispie GJ, Deep G, Craft S, Orr ME. A geroscience motivated approach to treat Alzheimer’s disease: Senolytics move to clinical trials. Mech Ageing Dev 2021. [DOI: 10.1016/j.mad.2021.111589
expr 868687188 + 807217478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
49
|
Pan JX, Sun D, Lee D, Xiong L, Ren X, Guo HH, Yao LL, Lu Y, Jung C, Xiong WC. Osteoblastic Swedish mutant APP expedites brain deficits by inducing endoplasmic reticulum stress-driven senescence. Commun Biol 2021; 4:1326. [PMID: 34824365 PMCID: PMC8617160 DOI: 10.1038/s42003-021-02843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
Patients with Alzheimer’s disease (AD) often have osteoporosis or osteopenia. However, their direct link and relationship remain largely unclear. Previous studies have detected osteoporotic deficits in young adult Tg2576 and TgAPPsweOCN mice, which express APPswe (Swedish mutant) ubiquitously and selectively in osteoblast (OB)-lineage cells. This raises the question, whether osteoblastic APPswe contributes to AD development. Here, we provide evidence that TgAPPsweOCN mice also exhibit AD-relevant brain pathologies and behavior phenotypes. Some brain pathologies include age-dependent and regional-selective increases in glial activation and pro-inflammatory cytokines, which are accompanied by behavioral phenotypes such as anxiety, depression, and altered learning and memory. Further cellular studies suggest that APPswe, but not APPwt or APPlon (London mutant), in OB-lineage cells induces endoplasmic reticulum-stress driven senescence, driving systemic and cortex inflammation as well as behavioral changes in 6-month-old TgAPPsweOCN mice. These results therefore reveal an unrecognized function of osteoblastic APPswe to brain axis in AD development. Jin-Xiu Pan et al. report that an osteoblast-specific expression of Swedish mutant amyloid precursor protein (APPswe) induces ER stress-driven senescence, leading to systemic inflammation and inflammation in the cortex that drives behavioral changes. The results demonstrate a previously unrecognized function of osteoblastic APPswe to brain axis in AD development.
Collapse
Affiliation(s)
- Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Dong Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ling-Ling Yao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yuyi Lu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Caroline Jung
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
50
|
Khan AF, Adewale Q, Baumeister TR, Carbonell F, Zilles K, Palomero-Gallagher N, Iturria-Medina Y. Personalized brain models identify neurotransmitter receptor changes in Alzheimer's disease. Brain 2021; 145:1785-1804. [PMID: 34605898 DOI: 10.1093/brain/awab375] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease (AD) involves many neurobiological alterations from molecular to macroscopic spatial scales, but we currently lack integrative, mechanistic brain models characterizing how factors across different biological scales interact to cause clinical deterioration in a way that is subject-specific or personalized. Neurotransmitter receptors, as important signaling molecules and potential drug targets, are key mediators of interactions between many neurobiological processes altered in AD. We present a neurotransmitter receptor-enriched multifactorial brain model, which integrates spatial distribution patterns of 15 neurotransmitter receptors from post-mortem autoradiography with multiple in-vivo neuroimaging modalities (tau, amyloid-β and glucose PET, and structural, functional and arterial spin labeling MRI) in a personalized, generative, whole-brain formulation. Applying this data-driven model to a heterogeneous aged population (N = 423, ADNI data), we observed that personalized receptor-neuroimaging interactions explained about 70% (± 20%) of the across-population variance in longitudinal changes to the six neuroimaging modalities, and up to 39.7% (P < 0.003, FWE-corrected) of inter-individual variability in AD cognitive deterioration via an axis primarily affecting executive function. Notably, based on their contribution to the clinical severity in AD, we found significant functional alterations to glutamatergic interactions affecting tau accumulation and neural activity dysfunction, and GABAergic interactions concurrently affecting neural activity dysfunction, amyloid and tau distributions, as well as significant cholinergic receptor effects on tau accumulation. Overall, GABAergic alterations had the largest effect on cognitive impairment (particularly executive function) in our AD cohort (N = 25). Furthermore, we demonstrate the clinical applicability of this approach by characterizing subjects based on individualized 'fingerprints' of receptor alterations. This study introduces the first robust, data-driven framework for integrating several neurotransmitter receptors, multi-modal neuroimaging and clinical data in a flexible and interpretable brain model. It enables further understanding of the mechanistic neuropathological basis of neurodegenerative progression and heterogeneity, and constitutes a promising step towards implementing personalized, neurotransmitter-based treatments.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4.,McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada H3A 2B4.,Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada H3A 2B4
| | - Quadri Adewale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4.,McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada H3A 2B4.,Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada H3A 2B4
| | - Tobias R Baumeister
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4.,McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada H3A 2B4.,Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada H3A 2B4
| | | | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany.,JARA, Translational Brain Medicine, 52074 Aachen, Germany
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4.,McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada H3A 2B4.,Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada H3A 2B4
| | | |
Collapse
|