1
|
Agnihotri SK, Cai J, Wang Z. Exploring the synchronization of cortical networks via entrainment to intrinsic frequencies. Heliyon 2024; 10:e41034. [PMID: 39720065 PMCID: PMC11665456 DOI: 10.1016/j.heliyon.2024.e41034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024] Open
Abstract
Introduction Transcranial electrical stimulation (tES), including transcranial alternating current stimulation (tACS) and transcranial direct current stimulation (tDCS), is widely studied for its potential to modulate brain oscillations and connectivity, offering treatment options for neurological disorders like Alzheimer's, Parkinson's, and insomnia. In this study, we focus on investigating the efficacy of tACS and tDCS in entraining intrinsic cortical network oscillations through a computational model. Materials and methods We developed a 2D computational cortical neuron model with 2000 neurons (1600 pyramidal and 400 inhibitory), based on the Izhikevich neuron model. The network was structured to generate low-frequency oscillations, particularly within the delta (4 Hz) range. Both tACS and tDCS were simulated to assess their effect on network synchronization. An algorithm was employed to extract the network's intrinsic frequency and align stimulation frequencies accordingly. Results Our model successfully generated 4 Hz oscillations, characteristic of delta waves, associated with sleep states. t-ACS stimulation enhanced the power of the 4 Hz frequency, achieving effective synchronization with the intrinsic network dynamics. In contrast, tDCS failed to increase the power of 4 Hz oscillations and disrupted the excitatory-inhibitory balance of the network, reducing connectivity and synchronization. Our results demonstrate that tACS effectively enhances network synchronization and maintains excitatory-inhibitory balance by aligning with the network's intrinsic oscillatory frequency. In contrast, tDCS disrupts these dynamics, reducing connectivity and failing to entrain the target frequency. These findings suggest that tACS may hold greater potential for applications requiring precise network synchronization, while tDCS may have distinct but more limited efficacy in influencing oscillatory activity. Conclusion The study demonstrates the superior efficacy of tACS over tDCS in enhancing the synchronization of cortical networks by entraining intrinsic frequencies. Future research may extend this model by incorporating long-term plasticity mechanisms to better understand tES effects over longer time scales.
Collapse
Affiliation(s)
- Sandeep Kumar Agnihotri
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, Guangdong, China
| | - Jiang Cai
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, Guangdong, China
| | - Zhen Wang
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, Guangdong, China
| |
Collapse
|
2
|
Mantovani E, Bressan MM, Tinazzi M, Tamburin S. Towards multimodal cognition-based treatment for cognitive impairment in Parkinson's disease: drugs, exercise, non-invasive brain stimulation and technologies. Curr Opin Neurol 2024; 37:629-637. [PMID: 39132779 DOI: 10.1097/wco.0000000000001310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
PURPOSE OF REVIEW Cognitive impairment is one of the most challenging non-motor symptoms of Parkinson's disease (PD) and may occur during all PD stages. There are no established pharmacological treatments for PD-related cognitive impairment, which may be improved by cognition-based interventions (i.e., cognitive stimulation, cognitive training, cognitive rehabilitation). Multimodal cognition-based interventions by adjunctive drugs, exercise, non-invasive brain stimulation and technologies may be effective in PD. RECENT FINDINGS Exercise combined with cognitive training may enhance global, memory, visuospatial and executive functioning, transcranial direct current stimulation delivered alongside cognitive training may improve attention and executive functioning, and exergames, semi-immersive virtual reality (VR) and telerehabilitation plus non-immersive VR combined with cognitive training may ameliorate global and executive functioning in PD patients. SUMMARY The evidence reviewed here, despite preliminary, is very encouraging and suggests strong rationale for combining pharmacological and non-pharmacological interventions with cognition-based treatments in PD. To overcome limitations of current studies, we propose some recommendations for future trials on drugs, exercise, non-invasive brain stimulation and technologies combined with cognition-based treatments for cognitive impairment in PD.
Collapse
Affiliation(s)
- Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | | | | |
Collapse
|
3
|
Angius L, Ansdell P, Škarabot J, Goodall S, Thomas K, Cowper G, Santarnecchi E, Kidgell DJ, Howatson G. Anodal tDCS improves neuromuscular adaptations to short-term resistance training of the knee extensors in healthy individuals. J Neurophysiol 2024; 132:1793-1804. [PMID: 39475491 DOI: 10.1152/jn.00289.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Experimental studies show improvement in physical performance following acute application of transcranial direct current stimulation (tDCS). This study examined the neuromuscular and neural responses to a single training session (Part 1) and following a 3 wk resistance training program (Part 2) performed with the knee extensors, preceded by tDCS over the primary motor cortex. Twenty-four participants (age, 30 ± 7 yr; stature, 172 ± 8 cm; mass, 72 ± 15 kg) were randomly allocated to perform either resistance training with anodal tDCS (a-tDCS) or a placebo tDCS (Sham). Resistance training consisted of 3 × 10 isometric contractions of 3 s at 75% maximal voluntary contraction (MVC). Measures of neuromuscular function (MVC, voluntary activation, and potentiated twitch force), corticospinal excitability, along with short and long cortical inhibition were assessed. Acute tDCS did not affect neuromuscular and neural responses to a single training session (all P ≥ 0.10). Conversely, after the 3 wk training program, MVC increased in both groups (P < 0.01) with a greater increase observed for a-tDCS vs. Sham (∼6%, P = 0.04). Additionally, increased voluntary activation (∼2%, P = 0.04) and corticospinal excitability (∼22%, P = 0.04), accompanied by a shorter silent period (-13%, P = 0.04) were found after a-tDCS vs. Sham. The potentiated twitch force and measures of short and long cortical inhibition did not change after the training program (all P ≥ 0.29). Pretraining administration of tDCS only resulted in greater neuromuscular adaptations following 3 wk of resistance training. These results provide new evidence that tDCS facilitates adaptations to resistance training in healthy individuals.NEW & NOTEWORTHY The initial increase in maximal strength during resistance training is attributed to neural adaptations. Acute administration of transcranial direct current stimulation (tDCS) has been shown to improve motor function and neural adaptations in healthy and clinical populations. This study measured the neuromuscular and neural response to acute (single training session) and short-term (3 wk) resistance training with tDCS. Greater neuromuscular and neural adaptations were only found following 3 wk of resistance training.
Collapse
Affiliation(s)
- Luca Angius
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Physical Activity Sport and Recreation Research Group, North-West University, Potchefstroom, South Africa
| | - Kevin Thomas
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Gavin Cowper
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Dawson J Kidgell
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Monash University, Melbourne, Victoria, Australia
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Water Research Group, North-West University, Potchefstroom, South Africa
| |
Collapse
|
4
|
Zhang S, Cui X, Yu S, Li X. Is transcranial alternating current stimulation effective for improving working memory? A three-level meta-analysis. Psychon Bull Rev 2024:10.3758/s13423-024-02595-0. [PMID: 39438426 DOI: 10.3758/s13423-024-02595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Working memory, an essential component of cognitive function, can be improved through specific methods. This meta-analysis evaluates the effectiveness of transcranial alternating current stimulation (tACS), an emerging technique for enhancing working memory, and explores its efficacy, influencing factors, and underlying mechanisms. A PRISMA systematic search was conducted. Hedges's g was used to quantify effect sizes. We constructed a three-level meta-analytic model to account for all effect sizes and performed subgroup analyses to assess moderating factors. Recognizing the distinct neural underpinnings of various working memory processes, we separately assessed the effects on n-back tasks and traditional working memory tasks. A total of 39 studies with 405 effect sizes were included (170 from n-back tasks and 235 from other tasks). The overall analysis indicated a net benefit of g = 0.060 of tACS on working memory. Separate analyses showed that tACS had a small positive effect on n-back tasks (g = 0.102), but almost no effect on traditional working memory tasks (g = 0.045). Further analyses revealed mainly: A moderately positive effect of theta tACS (without anti-phase stimulation) on n-back tasks (g = 0.207); and a small effect of offline stimulation on working memory maintenance (g = 0.127). Overall, tACS has minimal impact on working memory improvement, but it shows potential under certain conditions. Specifically, both online and offline theta tACS can improve n-back task performance, while only offline stimulation enhances working memory maintenance. More research is needed to understand the mechanisms behind these effects to make tACS an effective method.
Collapse
Affiliation(s)
- Siyuan Zhang
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Cui
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Yu
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Li
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Aksu S, Indahlastari A, O'Shea A, Marsiske M, Cohen R, Alexander GE, DeKosky ST, Hishaw GA, Dai Y, Wu SS, Woods AJ. Facilitation of working memory capacity by transcranial direct current stimulation: a secondary analysis from the augmenting cognitive training in older adults (ACT) study. GeroScience 2024; 46:4075-4110. [PMID: 38789832 PMCID: PMC11336148 DOI: 10.1007/s11357-024-01205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Aging is a public health concern with an ever-increasing magnitude worldwide. An array of neuroscience-based approaches like transcranial direct current stimulation (tDCS) and cognitive training have garnered attention in the last decades to ameliorate the effects of cognitive aging in older adults. This study evaluated the effects of 3 months of bilateral tDCS over the frontal cortices with multimodal cognitive training on working memory capacity. Two hundred ninety-two older adults without dementia were allocated to active or sham tDCS paired with cognitive training. These participants received repeated sessions of bilateral tDCS over the bilateral frontal cortices, combined with multimodal cognitive training. Working memory capacity was assessed with the digit span forward, backward, and sequencing tests. No baseline differences between active and sham groups were observed. Multiple linear regressions indicated more improvement of the longest digit span backward from baseline to post-intervention (p = 0.021) and a trend towards greater improvement (p = 0.056) of the longest digit span backward from baseline to 1 year in the active tDCS group. No significant between-group changes were observed for digit span forward or digit span sequencing. The present results provide evidence for the potential for tDCS paired with cognitive training to remediate age-related declines in working memory capacity. These findings are sourced from secondary outcomes in a large randomized clinical trial and thus deserve future targeted investigation in older adult populations.
Collapse
Affiliation(s)
- Serkan Aksu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey.
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Yunfeng Dai
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel S Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Pang X, Xiao F, Zheng T, Zhao L, Ge X, Xie S, Zhang Z, Xu N, Wei Z, Xiao Z. Integration Analysis of miRNA Circulating Expression Following Cerebellar Transcranial Direct Current Stimulation in Patients with Ischemic Stroke. Biochem Genet 2024:10.1007/s10528-024-10912-4. [PMID: 39304639 DOI: 10.1007/s10528-024-10912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The aim of this study was to explore the molecular mechanisms underlying cerebellar transcranial direct current stimulation (ctDCS) as a rehabilitation intervention for patients with ischemic stroke, focusing on the role of microRNAs (miRNAs). Whole-transcriptome sequencing was employed to obtain circulating expression profiles of miRNAs, long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and mRNAs in patients with ischemic stroke before and after 3-week ctDCS. miRanda software was used to predict the target genes of miRNAs, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to identify biological functions and signaling pathways. Subsequently, competing endogenous RNA (ceRNA) regulatory networks comprising circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA interactions were constructed. Key miRNAs in blood samples were validated through quantitative RT-PCR. In total, 43 miRNAs, 807 lncRNAs, 1,111 circRNAs, and 201 mRNAs were differentially expressed after ctDCS compared with before ctDCS. Bioinformatics analyses revealed significant enrichment of target genes regulated by differentially expressed miRNAs across multiple biological pathways. CeRNA regulatory networks implied that several miRNAs were closely related to the ctDCS. Among them, hsa-miR-181a-5p, hsa-miR-224-5p, and hsa-miR-340-3p showed significantly downregulated expression levels as confirmed by qRT-PCR. This study conducted the first-ever assessment of miRNA expression patterns in patients with ischemic stroke undergoing ctDCS. The findings revealed that ctDCS induces alterations in miRNA levels, suggesting their potential utility as therapeutic markers.
Collapse
Affiliation(s)
- Xiaomin Pang
- Department of Rehabilitation, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fang Xiao
- Department of Neurology, the First Peoples Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianqing Zheng
- Department of Rehabilitation, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liren Zhao
- Department of Rehabilitation, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaorong Ge
- Department of Rehabilitation, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaojun Xie
- Department of Rehabilitation, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhao Zhang
- Department of Neurology, the First Peoples Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ning Xu
- Department of Neurology, the First Peoples Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zongyong Wei
- Department of Rehabilitation, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Zhanhong Xiao
- Department of Rehabilitation, the First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
7
|
Li Z, Zhang R, Li W, Li M, Chen X, Cui H. Enhancement of Hybrid BCI System Performance Based on Motor Imagery and SSVEP by Transcranial Alternating Current Stimulation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3222-3230. [PMID: 39196738 DOI: 10.1109/tnsre.2024.3451015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The hybrid brain-computer interface (BCI) is verified to reduce disadvantages of conventional BCI systems. Transcranial electrical stimulation (tES) can also improve the performance and applicability of BCI. However, enhancement in BCI performance attained solely from the perspective of users or solely from the angle of BCI system design is limited. In this study, a hybrid BCI system combining MI and SSVEP was proposed. Furthermore, transcranial alternating current stimulation (tACS) was utilized to enhance the performance of the proposed hybrid BCI system. The stimulation interface presented a depiction of grabbing a ball with both of hands, with left-hand and right-hand flickering at frequencies of 34 Hz and 35 Hz. Subjects watched the interface and imagined grabbing a ball with either left hand or right hand to perform SSVEP and MI task. The MI and SSVEP signals were processed separately using filter bank common spatial patterns (FBCSP) and filter bank canonical correlation analysis (FBCCA) algorithms, respectively. A fusion method was proposed to fuse the features extracted from MI and SSVEP. Twenty healthy subjects took part in the online experiment and underwent tACS sequentially. The fusion accuracy post-tACS reached 90.25% ± 11.40%, which was significantly different from pre-tACS. The fusion accuracy also surpassed MI accuracy and SSVEP accuracy respectively. These results indicated the superior performance of the hybrid BCI system and tACS would improve the performance of the hybrid BCI system.
Collapse
|
8
|
Eliason M, Kalbande PP, Saleem GT. Is non-invasive neuromodulation a viable technique to improve neuroplasticity in individuals with acquired brain injury? A review. Front Hum Neurosci 2024; 18:1341707. [PMID: 39296918 PMCID: PMC11408216 DOI: 10.3389/fnhum.2024.1341707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/22/2024] [Indexed: 09/21/2024] Open
Abstract
Objective This study aimed to explore and evaluate the efficacy of non-invasive brain stimulation (NIBS) as a standalone or coupled intervention and understand its mechanisms to produce positive alterations in neuroplasticity and behavioral outcomes after acquired brain injury (ABI). Data sources Cochrane Library, Web of Science, PubMed, and Google Scholar databases were searched from January 2013 to January 2024. Study selection Using the PICO framework, transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) randomized controlled trials (RCTs), retrospective, pilot, open-label, and observational large group and single-participant case studies were included. Two authors reviewed articles according to pre-established inclusion criteria. Data extraction Data related to participant and intervention characteristics, mechanisms of change, methods, and outcomes were extracted by two authors. The two authors performed quality assessments using SORT. Results Twenty-two studies involving 657 participants diagnosed with ABIs were included. Two studies reported that NIBS was ineffective in producing positive alterations or behavioral outcomes. Twenty studies reported at least one, or a combination of, positively altered neuroplasticity and improved neuropsychological, neuropsychiatric, motor, or somatic symptoms. Twenty-eight current articles between 2020 and 2024 have been studied to elucidate potential mechanisms of change related to NIBS and other mediating or confounding variables. Discussion tDCS and TMS may be efficacious as standalone interventions or coupled with neurorehabilitation therapies to positively alter maladaptive brain physiology and improve behavioral symptomology resulting from ABI. Based on postintervention and follow-up results, evidence suggests NIBS may offer a direct or mediatory contribution to improving behavioral outcomes post-ABI. Conclusion More research is needed to better understand the extent of rTMS and tDCS application in affecting changes in symptoms after ABI.
Collapse
Affiliation(s)
- Michelle Eliason
- Rehabilitation Science Department, University at Buffalo, Buffalo, NY, United States
| | | | - Ghazala T Saleem
- Rehabilitation Science Department, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
9
|
Moreau N, Korai SA, Sepe G, Panetsos F, Papa M, Cirillo G. Peripheral and central neurobiological effects of botulinum toxin A (BoNT/A) in neuropathic pain: a systematic review. Pain 2024; 165:1674-1688. [PMID: 38452215 DOI: 10.1097/j.pain.0000000000003204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 03/09/2024]
Abstract
ABSTRACT Botulinum toxin (BoNT), a presynaptic inhibitor of acetylcholine (Ach) release at the neuromuscular junction (NMJ), is a successful and safe drug for the treatment of several neurological disorders. However, a wide and recent literature review has demonstrated that BoNT exerts its effects not only at the "periphery" but also within the central nervous system (CNS). Studies from animal models, in fact, have shown a retrograde transport to the CNS, thus modulating synaptic function. The increasing number of articles reporting efficacy of BoNT on chronic neuropathic pain (CNP), a complex disease of the CNS, demonstrates that the central mechanisms of BoNT are far from being completely elucidated. In this new light, BoNT might interfere with the activity of spinal, brain stem, and cortical circuitry, modulating excitability and the functional organization of CNS in healthy conditions. Botulinum toxins efficacy on CNP is the result of a wide and complex action on many and diverse mechanisms at the basis of the maladaptive plasticity, the core of the pathogenesis of CNP. This systematic review aims to discuss in detail the BoNT's mechanisms and effects on peripheral and central neuroplasticity, at the basis for the clinical efficacy in CNP syndromes.
Collapse
Affiliation(s)
- Nathan Moreau
- Laboratoire de Neurobiologie oro-faciale, EA 7543, Université Paris Cité, Paris, France
| | - Sohaib Ali Korai
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Sepe
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, Silk Biomed SL, Madrid, Spain
| | - Michele Papa
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Cirillo
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
10
|
Schroeder PA, Nuerk HC, Svaldi J. High-definition turns timing-dependent: Different behavioural consequences during and following cathodal high-definition transcranial direct current stimulation (HD tDCS) in a magnitude classification task. Eur J Neurosci 2024; 59:2967-2978. [PMID: 38566366 DOI: 10.1111/ejn.16321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/09/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Neuromodulation with transcranial direct current stimulation (tDCS) can transiently alter neural activity, but its spatial precision is low. High-definition (HD) tDCS was introduced to increase spatial precision by placing additional electrodes over the scalp. Initial evaluations of HD tDCS indicated polarity-specific neurophysiological effects-similar to conventional tDCS albeit with greater spatial precision. Here, we compared the effects of cathodal tDCS or HD tDCS in a 4 × 1 configuration over prefrontal cortex (PFC) regions on behavioural outcomes in a magnitude classification task. We report results on overall performance, on the numerical distance effect as a measure of numerical processing, and on the spatial-numerical associations of response codes (SNARC) effect, which was previously affected by prefrontal tDCS. Healthy volunteers (n = 68) received sham or cathodal HD tDCS at 1 mA over the left dorsolateral prefrontal cortex (DLPFC) or the left inferior frontal gyrus (IFG). Results were compared to an identical protocol with conventional cathodal tDCS to the left PFC versus sham (n = 64). Mixed effects models showed performance gains relative to sham tDCS in all conditions after tDCS (i.e. 'offline'), whereas montages over PFC and DLPFC already showed performance gains during tDCS (i.e. 'online'). In contrast to conventional tDCS, HD tDCS did not reduce the SNARC effect. Neither condition affected numerical processing, as expected. The results suggest that HD tDCS with cathodal polarity might require further adjustments (i.e. regarding tDCS intensity) for effective modulations of cognitive-behavioural performance, which could be achieved by individualised current density in electric field modelling.
Collapse
Affiliation(s)
- Philipp A Schroeder
- Department of Psychology, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Hans-Christoph Nuerk
- Department of Psychology, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Jennifer Svaldi
- Department of Psychology, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| |
Collapse
|
11
|
Miraglia F, Pappalettera C, Barbati SA, Podda MV, Grassi C, Rossini PM, Vecchio F. Brain complexity in stroke recovery after bihemispheric transcranial direct current stimulation in mice. Brain Commun 2024; 6:fcae137. [PMID: 38741663 PMCID: PMC11089417 DOI: 10.1093/braincomms/fcae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Stroke is one of the leading causes of disability worldwide. There are many different rehabilitation approaches aimed at improving clinical outcomes for stroke survivors. One of the latest therapeutic techniques is the non-invasive brain stimulation. Among non-invasive brain stimulation, transcranial direct current stimulation has shown promising results in enhancing motor and cognitive recovery both in animal models of stroke and stroke survivors. In this framework, one of the most innovative methods is the bihemispheric transcranial direct current stimulation that simultaneously increases excitability in one hemisphere and decreases excitability in the contralateral one. As bihemispheric transcranial direct current stimulation can create a more balanced modulation of brain activity, this approach may be particularly useful in counteracting imbalanced brain activity, such as in stroke. Given these premises, the aim of the current study has been to explore the recovery after stroke in mice that underwent a bihemispheric transcranial direct current stimulation treatment, by recording their electric brain activity with local field potential and by measuring behavioural outcomes of Grip Strength test. An innovative parameter that explores the complexity of signals, namely the Entropy, recently adopted to describe brain activity in physiopathological states, was evaluated to analyse local field potential data. Results showed that stroke mice had higher values of Entropy compared to healthy mice, indicating an increase in brain complexity and signal disorder due to the stroke. Additionally, the bihemispheric transcranial direct current stimulation reduced Entropy in both healthy and stroke mice compared to sham stimulated mice, with a greater effect in stroke mice. Moreover, correlation analysis showed a negative correlation between Entropy and Grip Strength values, indicating that higher Entropy values resulted in lower Grip Strength engagement. Concluding, the current evidence suggests that the Entropy index of brain complexity characterizes stroke pathology and recovery. Together with this, bihemispheric transcranial direct current stimulation can modulate brain rhythms in animal models of stroke, providing potentially new avenues for rehabilitation in humans.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, 00163, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, 22060, Como, Italy
| | - Chiara Pappalettera
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, 00163, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, 22060, Como, Italy
| | - Saviana Antonella Barbati
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Vittoria Podda
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, 00163, Rome, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, 00163, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, 22060, Como, Italy
| |
Collapse
|
12
|
Wang Y, Monai H. Transcranial direct current stimulation alters cerebrospinal fluid-interstitial fluid exchange in mouse brain. Brain Stimul 2024; 17:620-632. [PMID: 38688399 DOI: 10.1016/j.brs.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has gained prominence recently. Clinical studies have explored tDCS as an adjunct to neurologic disease rehabilitation, with evidence suggesting its potential in modulating brain clearance mechanisms. The glymphatic system, a proposed brain waste clearance system, posits that cerebrospinal fluid-interstitial fluid (CSF-ISF) exchange aids in efficient metabolic waste removal. While some studies have linked tDCS to astrocytic inositol trisphosphate (IP3)/Ca2+ signaling, the impact of tDCS on CSF-ISF exchange dynamics remains unclear. HYPOTHESIS tDCS influences the dynamics of CSF-ISF exchange through astrocytic IP3/Ca2+ signaling. METHODS In this study, we administered tDCS (0.1 mA for 10 min) to C57BL/6N mice anesthetized with ketamine-xylazine (KX). The anode was positioned on the cranial bone above the cortex, and the cathode was inserted into the neck. Following tDCS, we directly assessed brain fluid dynamics by injecting biotinylated dextran amine (BDA) as a CSF tracer into the cisterna magna (CM). The brain was then extracted after either 30 or 60 min and fixed. After 24 h, the sectioned brain slices were stained with Alexa 594-conjugated streptavidin (SA) to visualize BDA using immunohistochemistry. We conducted Electroencephalography (EEG) recordings and aquaporin 4 (AQP4)/CD31 immunostaining to investigate the underlying mechanisms of tDCS. Additionally, we monitored the efflux of Evans blue, injected into the cisterna magna, using cervical lymph node imaging. Some experiments were subsequently repeated with inositol trisphosphate receptor type 2 (IP3R2) knockout (KO) mice. RESULTS Post-tDCS, we observed an increased CSF tracer influx, indicating a modulation of CSF-ISF exchange by tDCS. Additionally, tDCS appeared to enhance the brain's metabolic waste efflux. EEG recordings showed an increase in delta wave post-tDCS. But no significant change in AQP4 expression was detected 30 min post-tDCS. Besides, we found no alteration in CSF-ISF exchange and delta wave activity in IP3R2 KO mice after tDCS. CONCLUSION Our findings suggest that tDCS augments the glymphatic system's influx and efflux. Through astrocytic IP3/Ca2+ signaling, tDCS was found to modify the delta wave, which correlates positively with brain clearance. This study underscores the potential of tDCS in modulating brain metabolic waste clearance.
Collapse
Affiliation(s)
- Yan Wang
- Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Hiromu Monai
- Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan.
| |
Collapse
|
13
|
Jiang Y, Ramasawmy P, Antal A. Uncorking the limitation-improving dual tasking using transcranial electrical stimulation and task training in the elderly: a systematic review. Front Aging Neurosci 2024; 16:1267307. [PMID: 38650865 PMCID: PMC11033383 DOI: 10.3389/fnagi.2024.1267307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction With aging, dual task (DT) ability declines and is more cognitively demanding than single tasks. Rapidly declining DT performance is regarded as a predictor of neurodegenerative disease. Task training and non-invasive transcranial electrical stimulation (tES) are methods applied to optimize the DT ability of the elderly. Methods A systematic search was carried out in the PUBMED, TDCS (transcranial direct current stimulation) databases, as well as Web of Science, and a qualitative analysis was conducted in 56 included studies. Aiming to summarize the results of studies that implemented tES, task training, or the combination for improving DT ability and related performance changes in healthy elderly and geriatric patients. For different approaches, the training procedures, parameters, as well as outcomes were discussed. Results Task training, particularly cognitive-motor DT training, has more notable effects on improving DT performance in the elderly when compared to the neuromodulation method. Discussion Anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (L-DLPFC), or its combination with task training could be promising tools. However, additional evidence is required from aged healthy people and patients, as well as further exploration of electrode montage.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Neurology, University Medical Center, Georg August University of Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
14
|
Meng H, Houston M, Zhang Y, Li S. Exploring the Prospects of Transcranial Electrical Stimulation (tES) as a Therapeutic Intervention for Post-Stroke Motor Recovery: A Narrative Review. Brain Sci 2024; 14:322. [PMID: 38671974 PMCID: PMC11047964 DOI: 10.3390/brainsci14040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Stroke survivors often have motor impairments and related functional deficits. Transcranial Electrical Stimulation (tES) is a rapidly evolving field that offers a wide range of capabilities for modulating brain function, and it is safe and inexpensive. It has the potential for widespread use for post-stroke motor recovery. Transcranial Direct Current Stimulation (tDCS), Transcranial Alternating Current Stimulation (tACS), and Transcranial Random Noise Stimulation (tRNS) are three recognized tES techniques that have gained substantial attention in recent years but have different mechanisms of action. tDCS has been widely used in stroke motor rehabilitation, while applications of tACS and tRNS are very limited. The tDCS protocols could vary significantly, and outcomes are heterogeneous. PURPOSE the current review attempted to explore the mechanisms underlying commonly employed tES techniques and evaluate their prospective advantages and challenges for their applications in motor recovery after stroke. CONCLUSION tDCS could depolarize and hyperpolarize the potentials of cortical motor neurons, while tACS and tRNS could target specific brain rhythms and entrain neural networks. Despite the extensive use of tDCS, the complexity of neural networks calls for more sophisticated modifications like tACS and tRNS.
Collapse
Affiliation(s)
- Hao Meng
- Department of Physical Medicine & Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA;
| | - Sheng Li
- Department of Physical Medicine & Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| |
Collapse
|
15
|
Visibelli E, Vigna G, Nascimben C, Benavides-Varela S. Neurobiology of numerical learning. Neurosci Biobehav Rev 2024; 158:105545. [PMID: 38220032 DOI: 10.1016/j.neubiorev.2024.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Numerical abilities are complex cognitive skills essential for dealing with requirements of the modern world. Although the brain structures and functions underlying numerical cognition in different species have long been appreciated, genetic and molecular techniques have more recently expanded the knowledge about the mechanisms underlying numerical learning. In this review, we discuss the status of the research related to the neurobiological bases of numerical abilities. We consider how genetic factors have been associated with mathematical capacities and how these link to the current knowledge of brain regions underlying these capacities in human and non-human animals. We further discuss the extent to which significant variations in the levels of specific neurotransmitters may be used as potential markers of individual performance and learning difficulties and take into consideration the therapeutic potential of brain stimulation methods to modulate learning and improve interventional outcomes. The implications of this research for formulating a more comprehensive view of the neural basis of mathematical learning are discussed.
Collapse
Affiliation(s)
- Emma Visibelli
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Giulia Vigna
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Chiara Nascimben
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| |
Collapse
|
16
|
Sochal M, Binienda A, Tarasiuk A, Gabryelska A, Białasiewicz P, Ditmer M, Turkiewicz S, Karuga FF, Fichna J, Wysokiński A. The Relationship between Sleep Parameters Measured by Polysomnography and Selected Neurotrophic Factors. J Clin Med 2024; 13:893. [PMID: 38337587 PMCID: PMC10856018 DOI: 10.3390/jcm13030893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The molecular underpinnings of insufficient sleep remain underexplored, with disruptions in the neurotrophic signaling pathway emerging as a potential explanation. Neurotrophins (NTs), including brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), neurotrophin 4 (NT4), and glial-cell-line-derived growth factor (GDNF), play crucial roles in nerve cell growth and repair. However, their associations with sleep patterns are poorly understood. This study aimed to investigate the relationship between the chosen neurotrophins and objective sleep parameters. METHODS The study involved 81 participants subjected to polysomnography (PSG). Blood samples were collected after PSG. The mRNA expression and serum protein concentrations of BDNF, GDNF, NT3, and NT4 were measured using real-time quantitative reverse-transcription PCR (qRT-PCR) or enzyme-linked immunosorbent assay (ELISA) methods, respectively. RESULTS BDNF and NT3 proteins were negatively correlated with NREM events, while NT4 protein positively correlated with REM events. Electroencephalography power analysis revealed BDNF protein's negative correlation with delta waves during rapid eye movement and non-rapid eye movement sleep. CONCLUSION The study highlights associations between neurotrophins and sleep, emphasizing BDNF's role in regulating NREM and REM sleep. The EEG power analysis implicated BDNF in delta wave modulation, shedding light on potential neurotrophic mechanisms underlying sleep effects on cognitive and mood processes.
Collapse
Affiliation(s)
- Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (A.G.); (P.B.); (S.T.); (F.F.K.)
| | - Agata Binienda
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (A.B.); (A.T.); (J.F.)
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (A.B.); (A.T.); (J.F.)
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (A.G.); (P.B.); (S.T.); (F.F.K.)
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (A.G.); (P.B.); (S.T.); (F.F.K.)
| | - Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (A.G.); (P.B.); (S.T.); (F.F.K.)
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (A.G.); (P.B.); (S.T.); (F.F.K.)
| | - Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (A.G.); (P.B.); (S.T.); (F.F.K.)
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (A.B.); (A.T.); (J.F.)
| | - Adam Wysokiński
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| |
Collapse
|
17
|
Agrawal B, Boulos S, Khatib S, Feuermann Y, Panov J, Kaphzan H. Molecular Insights into Transcranial Direct Current Stimulation Effects: Metabolomics and Transcriptomics Analyses. Cells 2024; 13:205. [PMID: 38334596 PMCID: PMC10854682 DOI: 10.3390/cells13030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) is an evolving non-invasive neurostimulation technique. Despite multiple studies, its underlying molecular mechanisms are still unclear. Several previous human studies of the effect of tDCS suggest that it generates metabolic effects. The induction of metabolic effects by tDCS could provide an explanation for how it generates its long-term beneficial clinical outcome. AIM Given these hints of tDCS metabolic effects, we aimed to delineate the metabolic pathways involved in its mode of action. METHODS To accomplish this, we utilized a broad analytical approach of co-analyzing metabolomics and transcriptomic data generated from anodal tDCS in rat models. Since no metabolomic dataset was available, we performed a tDCS experiment of bilateral anodal stimulation of 200 µA for 20 min and for 5 consecutive days, followed by harvesting the brain tissue below the stimulating electrode and generating a metabolomics dataset using LC-MS/MS. The analysis of the transcriptomic dataset was based on a publicly available dataset. RESULTS Our analyses revealed that tDCS alters the metabolic profile of brain tissue, affecting bioenergetic-related pathways, such as glycolysis and mitochondrial functioning. In addition, we found changes in calcium-related signaling. CONCLUSIONS We conclude that tDCS affects metabolism by modulating energy production-related processes. Given our findings concerning calcium-related signaling, we suggest that the immediate effects of tDCS on calcium dynamics drive modifications in distinct metabolic pathways. A thorough understanding of the underlying molecular mechanisms of tDCS has the potential to revolutionize its applicability, enabling the generation of personalized medicine in the field of neurostimulation and thus contributing to its optimization.
Collapse
Affiliation(s)
- Bhanumita Agrawal
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
| | - Soad Boulos
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
| | - Soliman Khatib
- Department of Biotechnology, Tel-Hai College, Upper Galilee 1220800, Israel
| | - Yonatan Feuermann
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
| | - Julia Panov
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
- Tauber Bioinformatics Research Center, University of Haifa, Haifa 3103301, Israel
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
- Tauber Bioinformatics Research Center, University of Haifa, Haifa 3103301, Israel
| |
Collapse
|
18
|
Lu H, Zhang Y, Qiu H, Zhang Z, Tan X, Huang P, Zhang M, Miao D, Zhu X. A new perspective for evaluating the efficacy of tACS and tDCS in improving executive functions: A combined tES and fNIRS study. Hum Brain Mapp 2024; 45:e26559. [PMID: 38083976 PMCID: PMC10789209 DOI: 10.1002/hbm.26559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Executive function enhancement is considered necessary for improving the quality of life of patients with neurological or psychiatric disorders, such as attention-deficit/hyperactivity disorder, obsessive-compulsive disorder and Alzheimer's disease. Transcranial electrical stimulation (tES) has been shown to have some beneficial effects on executive functioning, but the quantification of these improvements remains controversial. We aimed to explore the potential beneficial effects on executive functioning induced by the use of transcranial alternating current stimulation (tACS)/transcranial direct current stimulation (tDCS) on the right inferior frontal gyrus (IFG) and the accompanying brain function variations in the resting state. METHODS We recruited 229 healthy adults to participate in Experiments 1 (105 participants) and 2 (124 participants). The participants in each experiment were randomly divided into tACS, tDCS, and sham groups. The participants completed cognitive tasks to assess behavior related to three core components of executive functions. Functional near-infrared spectroscopy (fNIRS) was used to monitor the hemodynamic changes in crucial cortical regions in the resting state. RESULTS Inhibition and cognitive flexibility (excluding working memory) were significantly increased after tACS/tDCS, but there were no significant behavioral differences between the tACS and tDCS groups. fNIRS revealed that tDCS induced decreases in the functional connectivity (increased neural efficiency) of the relevant cortices. CONCLUSIONS Enhancement of executive function was observed after tES, and the beneficial effects of tACS/tDCS may need to be precisely evaluated via brain imaging indicators at rest. tDCS revealed better neural benefits than tACS during the stimulation phase. These findings might provide new insights for selecting intervention methods in future studies and for evaluating the clinical efficacy of tES.
Collapse
Affiliation(s)
- Hongliang Lu
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Yajuan Zhang
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Huake Qiu
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Zhilong Zhang
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Xuanyi Tan
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Peng Huang
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Mingming Zhang
- Department of Psychology, College of EducationShanghai Normal UniversityShanghaiChina
| | - Danmin Miao
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Xia Zhu
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| |
Collapse
|
19
|
Zhang DW, Johnstone SJ, Sauce B, Arns M, Sun L, Jiang H. Remote neurocognitive interventions for attention-deficit/hyperactivity disorder - Opportunities and challenges. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110802. [PMID: 37257770 DOI: 10.1016/j.pnpbp.2023.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Improving neurocognitive functions through remote interventions has been a promising approach to developing new treatments for attention-deficit/hyperactivity disorder (AD/HD). Remote neurocognitive interventions may address the shortcomings of the current prevailing pharmacological therapies for AD/HD, e.g., side effects and access barriers. Here we review the current options for remote neurocognitive interventions to reduce AD/HD symptoms, including cognitive training, EEG neurofeedback training, transcranial electrical stimulation, and external cranial nerve stimulation. We begin with an overview of the neurocognitive deficits in AD/HD to identify the targets for developing interventions. The role of neuroplasticity in each intervention is then highlighted due to its essential role in facilitating neuropsychological adaptations. Following this, each intervention type is discussed in terms of the critical details of the intervention protocols, the role of neuroplasticity, and the available evidence. Finally, we offer suggestions for future directions in terms of optimizing the existing intervention protocols and developing novel protocols.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Department of Psychology/Center for Place-Based Education, Yangzhou University, Yangzhou, China; Department of Psychology, Monash University Malaysia, Bandar Sunway, Malaysia.
| | - Stuart J Johnstone
- School of Psychology, University of Wollongong, Wollongong, Australia; Brain & Behaviour Research Institute, University of Wollongong, Australia
| | - Bruno Sauce
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Martijn Arns
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, Netherlands; Department of Experimental Psychology, Utrecht University, Utrecht, Netherlands; NeuroCare Group, Nijmegen, Netherlands
| | - Li Sun
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Han Jiang
- College of Special Education, Zhejiang Normal University, Hangzhou, China
| |
Collapse
|
20
|
Rufener KS, Zaehle T, Krauel K. Combined multi-session transcranial alternating current stimulation (tACS) and language skills training improves individual gamma band activity and literacy skills in developmental dyslexia. Dev Cogn Neurosci 2023; 64:101317. [PMID: 37898018 PMCID: PMC10630593 DOI: 10.1016/j.dcn.2023.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Developmental dyslexia is characterized by the pathologically diminished ability to acquire reading and spelling skills. Accurate processing of acoustic information at the phonemic scale is crucial for successful sound-to-letter-mapping which, in turn, is elemental in reading and spelling. Altered activation patterns in the auditory cortex are thought to provide the neurophysiological basis for the inaccurate phonemic perception. Recently, transcranial electrical stimulation has been shown to be an effective method to ameliorate cortical activation patterns in the auditory cortex. In a sample of children and adolescents with dyslexia, we investigated the effect of multi-session transcranial alternating current stimulation delivered concurrently with a phonological training and in combination with a behavioral literacy skills training. Over a 5-week period the participants received 10 training sessions while gamma-tACS was administered over bilateral auditory cortex. We found that gamma-tACS shifted the peak frequency of auditory gamma oscillations reflecting a more fine-grained processing of time-critical acoustic information. This amelioration was accompanied by increased phonemic processing skills. Moreover, individuals who received gamma-tACS showed significant improvements in their spelling skills four months after the intervention. Our results demonstrate that multi-session gamma-tACS enhances the effects of a behavioral intervention and induces long-term improvement on literacy skills in dyslexia.
Collapse
Affiliation(s)
- Katharina S Rufener
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; DZPG (German Center for Mental Health), partner site Halle-Jena, Magdeburg, Germany.
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Department of Medical Psychology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; DZPG (German Center for Mental Health), partner site Halle-Jena, Magdeburg, Germany
| | - Kerstin Krauel
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; DZPG (German Center for Mental Health), partner site Halle-Jena, Magdeburg, Germany
| |
Collapse
|
21
|
Zhang R, Ren J, Zhang C. Efficacy of transcranial alternating current stimulation for schizophrenia treatment: A systematic review. J Psychiatr Res 2023; 168:52-63. [PMID: 37897837 DOI: 10.1016/j.jpsychires.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) is an innovative noninvasive technique in brain stimulation that involves applying a low-intensity electrical current to the scalp. And increasing evidence has revealed its potential in schizophrenia treatment. OBJECTIVE This systematic review aimed to evaluate the efficacy of tACS as a novel neurostimulation technique for improving cognitive impairment and alleviating psychotic symptoms in schizophrenia. Additionally, this review attempted to explore the impact of stimulation parameters on the effectiveness of tACS treatment. METHODS A systematic literature search was conducted across five databases, including Web of Science, Embase, PubMed, CENTRAL, and PsycINFO, to identify studies investigating the use of tACS in schizophrenia. Only studies that involved the experimental use of tACS in patients with schizophrenia were included in this review. RESULTS Nineteen studies were included in this review. The most frequently used current intensities were 2 mA and 1 mA, and the most commonly used frequencies were alpha (10 Hz), theta (4.5 Hz and 6 Hz), and gamma (40 Hz). Some studies showed that tACS may have a potential therapeutic effect by improving cognitive functions in various cognitive domains and/or ameliorating negative symptoms, hallucinations, and delusions in patients with schizophrenia, while others showed no significant change. These studies also implicated that tACS treatment is safe and well tolerated. CONCLUSIONS Overall, this systematic review suggests that tACS has promise as a novel, effective, and adjunctive treatment approach for treating schizophrenia. Future research is needed to determine the optimal parameters of tACS for treating this complex disorder.
Collapse
Affiliation(s)
- Rong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juanjuan Ren
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Herzog R, Bolte C, Radecke JO, von Möller K, Lencer R, Tzvi E, Münchau A, Bäumer T, Weissbach A. Neuronavigated Cerebellar 50 Hz tACS: Attenuation of Stimulation Effects by Motor Sequence Learning. Biomedicines 2023; 11:2218. [PMID: 37626715 PMCID: PMC10452137 DOI: 10.3390/biomedicines11082218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Cerebellar transcranial alternating current stimulation (tACS) is an emerging non-invasive technique that induces electric fields to modulate cerebellar function. Although the effect of cortical tACS seems to be state-dependent, the impact of concurrent motor activation and the duration of stimulation on the effects of cerebellar tACS has not yet been examined. In our study, 20 healthy subjects received neuronavigated 50 Hz cerebellar tACS for 40 s or 20 min, each during performance using a motor sequence learning task (MSL) and at rest. We measured the motor evoked potential (MEP) before and at two time points after tACS application to assess corticospinal excitability. Additionally, we investigated the online effect of tACS on MSL. Individual electric field simulations were computed to evaluate the distribution of electric fields, showing a focal electric field in the right cerebellar hemisphere with the highest intensities in lobe VIIb, VIII and IX. Corticospinal excitability was only increased after tACS was applied for 40 s or 20 min at rest, and motor activation during tACS (MSL) cancelled this effect. In addition, performance was better (shorter reaction times) for the learned sequences after 20 min of tACS, indicating more pronounced learning under 20 min of tACS compared to tACS applied only in the first 40 s.
Collapse
Affiliation(s)
- Rebecca Herzog
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Neurology, University Hospital Schleswig Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Christina Bolte
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jan-Ole Radecke
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Kathinka von Möller
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Rebekka Lencer
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Elinor Tzvi
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103 Leipzig, Germany
- Syte Institute, Hohe Bleichen 8, 20354 Hamburg, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
23
|
Antonenko D, Fromm AE, Thams F, Grittner U, Meinzer M, Flöel A. Microstructural and functional plasticity following repeated brain stimulation during cognitive training in older adults. Nat Commun 2023; 14:3184. [PMID: 37268628 DOI: 10.1038/s41467-023-38910-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
The combination of repeated behavioral training with transcranial direct current stimulation (tDCS) holds promise to exert beneficial effects on brain function beyond the trained task. However, little is known about the underlying mechanisms. We performed a monocenter, single-blind randomized, placebo-controlled trial comparing cognitive training to concurrent anodal tDCS (target intervention) with cognitive training to concurrent sham tDCS (control intervention), registered at ClinicalTrial.gov (Identifier NCT03838211). The primary outcome (performance in trained task) and secondary behavioral outcomes (performance on transfer tasks) were reported elsewhere. Here, underlying mechanisms were addressed by pre-specified analyses of multimodal magnetic resonance imaging before and after a three-week executive function training with prefrontal anodal tDCS in 48 older adults. Results demonstrate that training combined with active tDCS modulated prefrontal white matter microstructure which predicted individual transfer task performance gain. Training-plus-tDCS also resulted in microstructural grey matter alterations at the stimulation site, and increased prefrontal functional connectivity. We provide insight into the mechanisms underlying neuromodulatory interventions, suggesting tDCS-induced changes in fiber organization and myelin formation, glia-related and synaptic processes in the target region, and synchronization within targeted functional networks. These findings advance the mechanistic understanding of neural tDCS effects, thereby contributing to more targeted neural network modulation in future experimental and translation tDCS applications.
Collapse
Affiliation(s)
- Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.
| | | | - Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Berlin, Germany
| | - Marcus Meinzer
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| |
Collapse
|
24
|
Duan Q, Liu W, Yang J, Huang B, Shen J. Effect of Cathodal Transcranial Direct Current Stimulation for Lower Limb Subacute Stroke Rehabilitation. Neural Plast 2023; 2023:1863686. [PMID: 37274448 PMCID: PMC10239296 DOI: 10.1155/2023/1863686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Methods A pilot double-blind and randomized clinical trial. Ninety-one subjects with subacute stroke were treated with cathodal/sham stimulation tDCS based on CGR (physiotherapy 40 min/d and occupational therapy 20 min/d) once daily for 20 consecutive working days. Computer-based stratified randomization (1 : 1) was employed by considering age and sex, with concealed assignments in opaque envelopes to ensure no allocation errors after disclosure at the study's end. Patients were evaluated at T0 before treatment, T1 immediately after the posttreatment assessment, and T2 assessment one month after the end of the treatment. The primary outcome index was assessed: lower limb Fugl-Meyer motor score (FMA-LE); secondary endpoints were other gait assessment and relevant stroke scale assessment. Results Patients in the trial group performed significantly better than the control group in all primary outcome indicators assessed posttreatment T1 and at follow-up T2: FMA-LE outcome indicators between the two groups in T1 (P = 0.032; effect size 1.00, 95% CI: 0.00 to 2.00) and FMA-LE outcome indicators between the two groups in T2 (P = 0.010; effect size 2.00, 95% CI: 1.00 to 3.00). Conclusion In the current pilot study, ctDCS plus CGR was an effective treatment modality to improve lower limb motor function with subacute stroke. The effectiveness of cathodal tDCS in poststroke lower limb motor dysfunction is inconclusive. Therefore, a large randomized controlled trial is needed to verify its effectiveness.
Collapse
Affiliation(s)
- Qian Duan
- Department of Rehabilitation, The Eighth People's Hospital of Shanghai, Shanghai 200105, China
| | - Wenying Liu
- Department of Rehabilitation, The Eighth People's Hospital of Shanghai, Shanghai 200105, China
| | - Jinhui Yang
- Department of Rehabilitation, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Ben Huang
- Department of Rehabilitation, The Eighth People's Hospital of Shanghai, Shanghai 200105, China
| | - Jie Shen
- Department of Rehabilitation, The Eighth People's Hospital of Shanghai, Shanghai 200105, China
| |
Collapse
|
25
|
He Y, Liu S, Chen L, Ke Y, Ming D. Neurophysiological mechanisms of transcranial alternating current stimulation. Front Neurosci 2023; 17:1091925. [PMID: 37090788 PMCID: PMC10117687 DOI: 10.3389/fnins.2023.1091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
Neuronal oscillations are the primary basis for precise temporal coordination of neuronal processing and are linked to different brain functions. Transcranial alternating current stimulation (tACS) has demonstrated promising potential in improving cognition by entraining neural oscillations. Despite positive findings in recent decades, the results obtained are sometimes rife with variance and replicability problems, and the findings translation to humans is quite challenging. A thorough understanding of the mechanisms underlying tACS is necessitated for accurate interpretation of experimental results. Animal models are useful for understanding tACS mechanisms, optimizing parameter administration, and improving rational design for broad horizons of tACS. Here, we review recent electrophysiological advances in tACS from animal models, as well as discuss some critical issues for results coordination and translation. We hope to provide an overview of neurophysiological mechanisms and recommendations for future consideration to improve its validity, specificity, and reproducibility.
Collapse
Affiliation(s)
- Yuchen He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yufeng Ke
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin International Joint Research Center for Neural Engineering, Tianjin, China
| |
Collapse
|
26
|
Cirillo G, Pepe R, Siciliano M, Ippolito D, Ricciardi D, de Stefano M, Buonanno D, Atripaldi D, Abbadessa S, Perfetto B, Sharbafshaaer M, Sepe G, Bonavita S, Iavarone A, Todisco V, Papa M, Tedeschi G, Esposito S, Trojsi F. Long-Term Neuromodulatory Effects of Repetitive Transcranial Magnetic Stimulation (rTMS) on Plasmatic Matrix Metalloproteinases (MMPs) Levels and Visuospatial Abilities in Mild Cognitive Impairment (MCI). Int J Mol Sci 2023; 24:ijms24043231. [PMID: 36834642 PMCID: PMC9961904 DOI: 10.3390/ijms24043231] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique that is used against cognitive impairment in mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the neurobiological mechanisms underlying the rTMS therapeutic effects are still only partially investigated. Maladaptive plasticity, glial activation, and neuroinflammation, including metalloproteases (MMPs) activation, might represent new potential targets of the neurodegenerative process and progression from MCI to AD. In this study, we aimed to evaluate the effects of bilateral rTMS over the dorsolateral prefrontal cortex (DLPFC) on plasmatic levels of MMP1, -2, -9, and -10; MMPs-related tissue inhibitors TIMP1 and TIMP2; and cognitive performances in MCI patients. Patients received high-frequency (10 Hz) rTMS (MCI-TMS, n = 9) or sham stimulation (MCI-C, n = 9) daily for four weeks, and they were monitored for six months after TMS. The plasmatic levels of MMPs and TIMPs and the cognitive and behavioral scores, based on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), Beck Depression Inventory II, Beck Anxiety Inventory, and Apathy Evaluation Scale, were assessed at baseline (T0) and after 1 month (T1) and 6 months (T2) since rTMS. In the MCI-TMS group, at T2, plasmatic levels of MMP1, -9, and -10 were reduced and paralleled by increased plasmatic levels of TIMP1 and TIMP2 and improvement of visuospatial performances. In conclusion, our findings suggest that targeting DLPFC by rTMS might result in the long-term modulation of the MMPs/TIMPs system in MCI patients and the neurobiological mechanisms associated with MCI progression to dementia.
Collapse
Affiliation(s)
- Giovanni Cirillo
- Neuronal Networks Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence:
| | - Roberta Pepe
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mattia Siciliano
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Domenico Ippolito
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Neurologic Unit, Centro Traumatologico Ortopedico (CTO) Hospital, Azienda Ospedaliera di Rilievo Nazionale (AORN) “Ospedali Dei Colli”, 80138 Naples, Italy
| | - Dario Ricciardi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Manuela de Stefano
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Daniela Buonanno
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Danilo Atripaldi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Salvatore Abbadessa
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Brunella Perfetto
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Minoo Sharbafshaaer
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanna Sepe
- Neuronal Networks Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Simona Bonavita
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessandro Iavarone
- Neurologic Unit, Centro Traumatologico Ortopedico (CTO) Hospital, Azienda Ospedaliera di Rilievo Nazionale (AORN) “Ospedali Dei Colli”, 80138 Naples, Italy
| | - Vincenzo Todisco
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Michele Papa
- Neuronal Networks Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gioacchino Tedeschi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Sabrina Esposito
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesca Trojsi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
27
|
Weightman M, Lalji N, Lin CHS, Galea JM, Jenkinson N, Miall RC. Short duration event related cerebellar TDCS enhances visuomotor adaptation. Brain Stimul 2023; 16:431-441. [PMID: 36720304 DOI: 10.1016/j.brs.2023.01.1673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (TDCS) is typically applied before or during a task, for periods ranging from 5 to 30 min. HYPOTHESIS We hypothesise that briefer stimulation epochs synchronous with individual task actions may be more effective. METHODS In two separate experiments, we applied brief bursts of event-related anodal stimulation (erTDCS) to the cerebellum during a visuomotor adaptation task. RESULTS The first study demonstrated that 1 s duration erTDCS time-locked to the participants' reaching actions enhanced adaptation significantly better than sham. A close replication in the second study demonstrated 0.5 s erTDCS synchronous with the reaching actions again resulted in better adaptation than standard TDCS, significantly better than sham. Stimulation either during the inter-trial intervals between movements or after movement, during assessment of visual feedback, had no significant effect. Because short duration stimulation with rapid onset and offset is more readily perceived by the participants, we additionally show that a non-electrical vibrotactile stimulation of the scalp, presented with the same timing as the erTDCS, had no significant effect. CONCLUSIONS We conclude that short duration, event related, anodal TDCS targeting the cerebellum enhances motor adaptation compared to the standard model. We discuss possible mechanisms of action and speculate on neural learning processes that may be involved.
Collapse
Affiliation(s)
- Matthew Weightman
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK; School of Psychology, University of Birmingham, UK
| | - Neeraj Lalji
- School of Psychology, University of Birmingham, UK
| | - Chin-Hsuan Sophie Lin
- Cognitive Neuroscience and Computational Psychiatry Lab, University of Melbourne, Australia
| | | | - Ned Jenkinson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | | |
Collapse
|
28
|
Aksu S, Hasırcı Bayır BR, Sayman C, Soyata AZ, Boz G, Karamürsel S. Working memory ımprovement after transcranial direct current stimulation paired with working memory training ın diabetic peripheral neuropathy. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-14. [PMID: 36630270 DOI: 10.1080/23279095.2022.2164717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Association of cognitive deficits and diabetic peripheral neuropathy (DPN) is frequent. Working memory (WM) deficits result in impairment of daily activities, diminished functionality, and treatment compliance. Mounting evidence suggests that transcranial Direct Current Stimulation (tDCS) with concurrent working memory training (WMT) ameliorates cognitive deficits. Emboldening results of tDCS were shown in DPN. The study aimed to evaluate the efficacy of anodal tDCS over the left dorsolateral prefrontal cortex (DLPFC) coupled with cathodal right DLPFC with concurrent WMT in DPN for the first time. The present randomized triple-blind parallel-group sham-controlled study evaluated the efficacy of 5 sessions of tDCS over the DLPFC concurrent with WMT in 28 individuals with painful DPN on cognitive (primary) and pain-related, psychiatric outcome measures before, immediately after, and 1-month after treatment protocol. tDCS enhanced the efficacy of WMT on working memory and yielded lower anxiety levels than sham tDCS but efficacy was not superior to sham on other cognitive domains, pain severity, quality of life, and depression. tDCS with concurrent WMT enhanced WM and ameliorated anxiety in DPN without affecting other cognitive and pain-related outcomes. Further research scrutinizing the short/long-term efficacy with larger samples is accredited.
Collapse
Affiliation(s)
- Serkan Aksu
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Türkiye
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Buse Rahime Hasırcı Bayır
- Department of Neurology, Health Sciences University, Haydarpaşa Numune Education and Research Hospital, Istanbul, Türkiye
| | - Ceyhun Sayman
- Translational Neurodevelopmental Neuroscience Phd Programme, Institute of Health Science, Istanbul University, Istanbul, Türkiye
| | - Ahmet Zihni Soyata
- Psychiatry Outpatient Clinic, Başakşehir State Hospital, İstanbul, Turkey
| | - Gökalp Boz
- Department of Psychology, Istanbul University, Istanbul, Türkiye
| | - Sacit Karamürsel
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Koc University, Istanbul, Türkiye
| |
Collapse
|
29
|
Wang Y, Zhang Y, Hou P, Dong G, Shi L, Li W, Wei R, Li X. Excitability changes induced in the human auditory cortex by transcranial alternating current stimulation. Neurosci Lett 2023; 792:136960. [PMID: 36372094 DOI: 10.1016/j.neulet.2022.136960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Transcranial alternating current stimulation (tACS) has been widely studied for its ability to regulate motor, perceptual, and cognitive functions. Given the unique frequency specificity of tACS, it is expected to directly target rhythmic activity in the typical electroencephalogram (EEG) range. After tACS stimulation, changes in stimulation-induced and evoked activities can be inspected. Detecting changes in auditory evoked activity after different frequencies of tACS stimulation will be helpful for further revealing the influence of tACS on the excitation/inhibition of γ activity in the auditory cortex. Using a randomized repeated measures design, this study assessed the effects of alpha(α)-tACS and gamma(γ)-tACS on the auditory steady-state response (ASSR) in 11 normal-hearing participants. Participants attended four sessions held at least one week apart, receiving tACS or sham treatment. The results indicated that α-tACS had an inhibitory effect on 40-Hz ASSR compared to both γ-tACS and sham tACS, which occurred 30 min after stimulation. Taken together, these findings contribute to the understanding of tACS-induced excitability changes in the human auditory cortex, helping reveal the neurophysiological changes after tACS.
Collapse
Affiliation(s)
- Yao Wang
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China; School of Precision Instruments and Optoelectronics Engineering Tianjin University, Tianjin University, Tianjin 300072, China
| | - Yue Zhang
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Peiyun Hou
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Gaoyuan Dong
- School of Electrical and Electronic Engineering, Tiangong University, Tianjin 300387, China
| | - Limeng Shi
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Weiming Li
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Ran Wei
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Xiaojie Li
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
30
|
Cirillo G, Negrete-Diaz F, Yucuma D, Virtuoso A, Korai SA, De Luca C, Kaniusas E, Papa M, Panetsos F. Vagus Nerve Stimulation: A Personalized Therapeutic Approach for Crohn's and Other Inflammatory Bowel Diseases. Cells 2022; 11:cells11244103. [PMID: 36552867 PMCID: PMC9776705 DOI: 10.3390/cells11244103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are incurable autoimmune diseases characterized by chronic inflammation of the gastrointestinal tract. There is increasing evidence that inappropriate interaction between the enteric nervous system and central nervous system and/or low activity of the vagus nerve, which connects the enteric and central nervous systems, could play a crucial role in their pathogenesis. Therefore, it has been suggested that appropriate neuroprosthetic stimulation of the vagus nerve could lead to the modulation of the inflammation of the gastrointestinal tract and consequent long-term control of these autoimmune diseases. In the present paper, we provide a comprehensive overview of (1) the cellular and molecular bases of the immune system, (2) the way central and enteric nervous systems interact and contribute to the immune responses, (3) the pathogenesis of the inflammatory bowel disease, and (4) the therapeutic use of vagus nerve stimulation, and in particular, the transcutaneous stimulation of the auricular branch of the vagus nerve. Then, we expose the working hypotheses for the modulation of the molecular processes that are responsible for intestinal inflammation in autoimmune diseases and the way we could develop personalized neuroprosthetic therapeutic devices and procedures in favor of the patients.
Collapse
Affiliation(s)
- Giovanni Cirillo
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Flor Negrete-Diaz
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, 28040 Madrid, Spain
| | - Daniela Yucuma
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Andalusian School of Public Health, University of Granada, 18011 Granada, Spain
| | - Assunta Virtuoso
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Sohaib Ali Korai
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Ciro De Luca
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Michele Papa
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence: (M.P.); (F.P.)
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Correspondence: (M.P.); (F.P.)
| |
Collapse
|
31
|
Guidetti M, Arlotti M, Bocci T, Bianchi AM, Parazzini M, Ferrucci R, Priori A. Electric Fields Induced in the Brain by Transcranial Electric Stimulation: A Review of In Vivo Recordings. Biomedicines 2022; 10:biomedicines10102333. [PMID: 36289595 PMCID: PMC9598743 DOI: 10.3390/biomedicines10102333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023] Open
Abstract
Transcranial electrical stimulation (tES) techniques, such as direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), cause neurophysiological and behavioral modifications as responses to the electric field are induced in the brain. Estimations of such electric fields are based mainly on computational studies, and in vivo measurements have been used to expand the current knowledge. Here, we review the current tDCS- and tACS-induced electric fields estimations as they are recorded in humans and non-human primates using intracerebral electrodes. Direct currents and alternating currents were applied with heterogeneous protocols, and the recording procedures were characterized by a tentative methodology. However, for the clinical stimulation protocols, an injected current seems to reach the brain, even at deep structures. The stimulation parameters (e.g., intensity, frequency and phase), the electrodes’ positions and personal anatomy determine whether the intensities might be high enough to affect both neuronal and non-neuronal cell activity, also deep brain structures.
Collapse
Affiliation(s)
- Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | | | - Tommaso Bocci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), 20133 Milan, Italy
| | - Roberta Ferrucci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
- Correspondence:
| |
Collapse
|
32
|
Williams NP, Kushwah N, Dhawan V, Zheng XS, Cui XT. Effects of central nervous system electrical stimulation on non-neuronal cells. Front Neurosci 2022; 16:967491. [PMID: 36188481 PMCID: PMC9521315 DOI: 10.3389/fnins.2022.967491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past few decades, much progress has been made in the clinical use of electrical stimulation of the central nervous system (CNS) to treat an ever-growing number of conditions from Parkinson's disease (PD) to epilepsy as well as for sensory restoration and many other applications. However, little is known about the effects of microstimulation at the cellular level. Most of the existing research focuses on the effects of electrical stimulation on neurons. Other cells of the CNS such as microglia, astrocytes, oligodendrocytes, and vascular endothelial cells have been understudied in terms of their response to stimulation. The varied and critical functions of these cell types are now beginning to be better understood, and their vital roles in brain function in both health and disease are becoming better appreciated. To shed light on the importance of the way electrical stimulation as distinct from device implantation impacts non-neuronal cell types, this review will first summarize common stimulation modalities from the perspective of device design and stimulation parameters and how these different parameters have an impact on the physiological response. Following this, what is known about the responses of different cell types to different stimulation modalities will be summarized, drawing on findings from both clinical studies as well as clinically relevant animal models and in vitro systems.
Collapse
Affiliation(s)
- Nathaniel P. Williams
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Neetu Kushwah
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vaishnavi Dhawan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Xin Sally Zheng
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| |
Collapse
|
33
|
Barbati SA, Podda MV, Grassi C. Tuning brain networks: The emerging role of transcranial direct current stimulation on structural plasticity. Front Cell Neurosci 2022; 16:945777. [PMID: 35936497 PMCID: PMC9351051 DOI: 10.3389/fncel.2022.945777] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique (NIBS) that has been proven to promote beneficial effects in a range of neurological and psychiatric disorders. Unfortunately, although has been widely investigated, the mechanism comprehension around tDCS effects presents still some gaps. Therefore, scientists are still trying to uncover the cellular and molecular mechanisms behind its positive effects to permit a more suitable application. Experimental models have provided converging evidence that tDCS elicits improvements in learning and memory by modulating both excitability and synaptic plasticity in neurons. Recently, among tDCS neurobiological effects, neural synchronization and dendritic structural changes have been reported in physiological and pathological conditions, suggesting possible effects at the neuronal circuit level. In this review, we bring in to focus the emerging effects of tDCS on the structural plasticity changes and neuronal rewiring, with the intent to match these two aspects with the underpinning molecular mechanisms identified so far, providing a new perspective to work on to unveil novel tDCS therapeutic use to treat brain dysfunctions.
Collapse
Affiliation(s)
| | - Maria Vittoria Podda
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- *Correspondence: Maria Vittoria Podda,
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
34
|
Pilloni G, Charvet LE, Bikson M, Palekar N, Kim MJ. Potential of Transcranial Direct Current Stimulation in Alzheimer's Disease: Optimizing Trials Toward Clinical Use. J Clin Neurol 2022; 18:391-400. [PMID: 35796264 PMCID: PMC9262447 DOI: 10.3988/jcn.2022.18.4.391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a safe and well-tolerated noninvasive method for stimulating the brain that is rapidly developing into a treatment method for various neurological and psychiatric conditions. In particular, there is growing evidence of a therapeutic role for tDCS in ameliorating or delaying the cognitive decline in Alzheimer's disease (AD). We provide a brief overview of the current development and application status of tDCS as a nonpharmacological therapeutic method for AD and mild cognitive impairment (MCI), summarize the levels of evidence, and identify the improvements needed for clinical applications. We also suggest future directions for large-scale controlled clinical trials of tDCS in AD and MCI, and emphasize the necessity of identifying the mechanistic targets to facilitate clinical applications.
Collapse
Affiliation(s)
- Giuseppina Pilloni
- Department of Neurology, New York University Langone Health, New York, NY, USA
| | - Leigh E Charvet
- Department of Neurology, New York University Langone Health, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, City University of New York, NY, USA
| | - Nikhil Palekar
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Min-Jeong Kim
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
35
|
Mussigmann T, Bardel B, Lefaucheur JP. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review. Neuroimage 2022; 258:119351. [PMID: 35659993 DOI: 10.1016/j.neuroimage.2022.119351] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022] Open
Abstract
Diagnosis and management of chronic neuropathic pain are challenging, leading to current efforts to characterize 'objective' biomarkers of pain using imaging or neurophysiological techniques, such as electroencephalography (EEG). A systematic literature review was conducted in PubMed-Medline and Web-of-Science until October 2021 to identify EEG biomarkers of chronic neuropathic pain in humans. The risk of bias was assessed by the Newcastle-Ottawa-Scale. Experimental, provoked, or chronic non-neuropathic pain studies were excluded. We identified 14 studies, in which resting-state EEG spectral analysis was compared between patients with pain related to a neurological disease and patients with the same disease but without pain or healthy controls. From these heterogeneous exploratory studies, some conclusions can be drawn, even if they must be weighted by the fact that confounding factors, such as medication and association with anxio-depressive disorders, are generally not taken into account. Overall, EEG signal power was increased in the θ band (4-7Hz) and possibly in the high-β band (20-30Hz), but decreased in the high-α-low-β band (10-20Hz) in the presence of ongoing neuropathic pain, while increased γ band oscillations were not evidenced, unlike in experimental pain. Consequently, the dominant peak frequency was decreased in the θ-α band and increased in the whole-β band in neuropathic pain patients. Disappointingly, pain intensity correlated with various EEG changes across studies, with no consistent trend. This review also discusses the location of regional pain-related EEG changes in the pain connectome, as the perspectives offered by advanced techniques of EEG signal analysis (source location, connectivity, or classification methods based on artificial intelligence). The biomarkers provided by resting-state EEG are of particular interest for optimizing the treatment of chronic neuropathic pain by neuromodulation techniques, such as transcranial alternating current stimulation or neurofeedback procedures.
Collapse
Affiliation(s)
- Thibaut Mussigmann
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Benjamin Bardel
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France.
| |
Collapse
|
36
|
Esposito S, Trojsi F, Cirillo G, de Stefano M, Di Nardo F, Siciliano M, Caiazzo G, Ippolito D, Ricciardi D, Buonanno D, Atripaldi D, Pepe R, D’Alvano G, Mangione A, Bonavita S, Santangelo G, Iavarone A, Cirillo M, Esposito F, Sorbi S, Tedeschi G. Repetitive Transcranial Magnetic Stimulation (rTMS) of Dorsolateral Prefrontal Cortex May Influence Semantic Fluency and Functional Connectivity in Fronto-Parietal Network in Mild Cognitive Impairment (MCI). Biomedicines 2022; 10:biomedicines10050994. [PMID: 35625731 PMCID: PMC9138229 DOI: 10.3390/biomedicines10050994] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 12/28/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique that is increasingly used as a nonpharmacological intervention against cognitive impairment in Alzheimer’s disease (AD) and other dementias. Although rTMS has been shown to modify cognitive performances and brain functional connectivity (FC) in many neurological and psychiatric diseases, there is still no evidence about the possible relationship between executive performances and resting-state brain FC following rTMS in patients with mild cognitive impairment (MCI). In this preliminary study, we aimed to evaluate the possible effects of rTMS of the bilateral dorsolateral prefrontal cortex (DLPFC) in 27 MCI patients randomly assigned to two groups: one group received high-frequency (10 Hz) rTMS (HF-rTMS) for four weeks (n = 11), and the other received sham stimulation (n = 16). Cognitive and psycho-behavior scores, based on the Repeatable Battery for the Assessment of Neuropsychological Status, Beck Depression Inventory-II, Beck Anxiety Inventory, Apathy Evaluation Scale, and brain FC, evaluated by independent component analysis of resting state functional MRI (RS-fMRI) networks, together with the assessment of regional atrophy measures, evaluated by whole-brain voxel-based morphometry (VBM), were measured at baseline, after five weeks, and six months after rTMS stimulation. Our results showed significantly increased semantic fluency (p = 0.026) and visuo-spatial (p = 0.014) performances and increased FC within the salience network (p ≤ 0.05, cluster-level corrected) at the short-term timepoint, and increased FC within the left fronto-parietal network (p ≤ 0.05, cluster-level corrected) at the long-term timepoint, in the treated group but not in the sham group. Conversely, regional atrophy measures did not show significant longitudinal changes between the two groups across six months. Our preliminary findings suggest that targeting DLPFC by rTMS application may lead to a significant long-term increase in FC in MCI patients in a RS network associated with executive functions, and this process might counteract the progressive cortical dysfunction affecting this domain.
Collapse
Affiliation(s)
- Sabrina Esposito
- First Division of Neurology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.E.); (M.d.S.); (D.I.); (D.R.); (D.B.); (G.D.); (G.T.)
| | - Francesca Trojsi
- First Division of Neurology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.E.); (M.d.S.); (D.I.); (D.R.); (D.B.); (G.D.); (G.T.)
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
- Correspondence: ; Tel.: +39-08-1566-5659
| | - Giovanni Cirillo
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Manuela de Stefano
- First Division of Neurology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.E.); (M.d.S.); (D.I.); (D.R.); (D.B.); (G.D.); (G.T.)
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Domenico Ippolito
- First Division of Neurology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.E.); (M.d.S.); (D.I.); (D.R.); (D.B.); (G.D.); (G.T.)
| | - Dario Ricciardi
- First Division of Neurology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.E.); (M.d.S.); (D.I.); (D.R.); (D.B.); (G.D.); (G.T.)
| | - Daniela Buonanno
- First Division of Neurology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.E.); (M.d.S.); (D.I.); (D.R.); (D.B.); (G.D.); (G.T.)
| | - Danilo Atripaldi
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Roberta Pepe
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Giulia D’Alvano
- First Division of Neurology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.E.); (M.d.S.); (D.I.); (D.R.); (D.B.); (G.D.); (G.T.)
| | - Antonella Mangione
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Gabriella Santangelo
- Department of Psychology, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy;
| | - Alessandro Iavarone
- Neurological Unit, CTO Hospital, AORN Ospedali Dei Colli, 80131 Naples, Italy;
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| | - Sandro Sorbi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Florence, Italy;
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50134 Florence, Italy
| | - Gioacchino Tedeschi
- First Division of Neurology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.E.); (M.d.S.); (D.I.); (D.R.); (D.B.); (G.D.); (G.T.)
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.N.); (M.S.); (G.C.); (D.A.); (R.P.); (A.M.); (S.B.); (M.C.); (F.E.)
| |
Collapse
|
37
|
De Icco R, Putortì A, Allena M, Avenali M, Dagna C, Martinelli D, Cristina S, Grillo V, Fresia M, Bitetto V, Cosentino G, Valentino F, Alfonsi E, Sandrini G, Pisani A, Tassorelli C. Non-Invasive Neuromodulation in the Rehabilitation of Pisa Syndrome in Parkinson's Disease: A Randomized Controlled Trial. Front Neurol 2022; 13:849820. [PMID: 35493824 PMCID: PMC9046718 DOI: 10.3389/fneur.2022.849820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background Pisa syndrome (PS) is a frequent postural complication of Parkinson's disease (PD). PS poorly responds to anti-parkinsonian drugs and the improvement achieved with neurorehabilitation tends to fade in 6 months or less. Transcranial direct current stimulation (t-DCS) is a non-invasive neuromodulation technique that showed promising results in improving specific symptoms in different movement disorders. Objectives This study aimed to evaluate the role of bi-hemispheric t-DCS as an add-on to a standardized hospital rehabilitation program in the management of PS in PD. Methods This study included 28 patients with PD and PS (21 men, aged 72.9 ± 5.1 years) who underwent a 4-week intensive neurorehabilitation treatment and were randomized to receive: i) t-DCS (t-DCS group, n = 13) for 5 daily sessions (20 min−2 mA) with bi-hemispheric stimulation over the primary motor cortex (M1), or ii) sham stimulation (sham group, n = 15) with the same duration and cadence. At baseline (T0), end of rehabilitation (T1), and 6 months later (T2) patients were evaluated with both trunk kinematic analysis and clinical scales, including UPDRS-III, Functional Independence Measure (FIM), and Numerical Rating Scale for lumbar pain. Results When compared to the sham group, the t-DCS group achieved a more pronounced improvement in several variables: overall posture (p = 0.014), lateral trunk inclination (p = 0.013) during upright standing position, total range of motion of the trunk (p = 0.012), FIM score (p = 0.048), and lumbar pain intensity (p = 0.017). Conclusions Our data support the use of neuromodulation with t-DCS as an add-on to neurorehabilitation for the treatment of patients affected by PS in PD.
Collapse
Affiliation(s)
- Roberto De Icco
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- *Correspondence: Roberto De Icco
| | - Alessia Putortì
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Marta Allena
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Micol Avenali
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Carlotta Dagna
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Daniele Martinelli
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Silvano Cristina
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Valentina Grillo
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Mauro Fresia
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Vito Bitetto
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Giuseppe Cosentino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Clinical Neurophysiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesca Valentino
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Enrico Alfonsi
- Clinical Neurophysiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Giorgio Sandrini
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Antonio Pisani
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
38
|
Bierman-Duquette RD, Safarians G, Huang J, Rajput B, Chen JY, Wang ZZ, Seidlits SK. Engineering Tissues of the Central Nervous System: Interfacing Conductive Biomaterials with Neural Stem/Progenitor Cells. Adv Healthc Mater 2022; 11:e2101577. [PMID: 34808031 PMCID: PMC8986557 DOI: 10.1002/adhm.202101577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/31/2021] [Indexed: 12/19/2022]
Abstract
Conductive biomaterials provide an important control for engineering neural tissues, where electrical stimulation can potentially direct neural stem/progenitor cell (NS/PC) maturation into functional neuronal networks. It is anticipated that stem cell-based therapies to repair damaged central nervous system (CNS) tissues and ex vivo, "tissue chip" models of the CNS and its pathologies will each benefit from the development of biocompatible, biodegradable, and conductive biomaterials. Here, technological advances in conductive biomaterials are reviewed over the past two decades that may facilitate the development of engineered tissues with integrated physiological and electrical functionalities. First, one briefly introduces NS/PCs of the CNS. Then, the significance of incorporating microenvironmental cues, to which NS/PCs are naturally programmed to respond, into biomaterial scaffolds is discussed with a focus on electrical cues. Next, practical design considerations for conductive biomaterials are discussed followed by a review of studies evaluating how conductive biomaterials can be engineered to control NS/PC behavior by mimicking specific functionalities in the CNS microenvironment. Finally, steps researchers can take to move NS/PC-interfacing, conductive materials closer to clinical translation are discussed.
Collapse
Affiliation(s)
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, USA
| | - Joyce Huang
- Department of Bioengineering, University of California Los Angeles, USA
| | - Bushra Rajput
- Department of Bioengineering, University of California Los Angeles, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, USA
- David Geffen School of Medicine, University of California Los Angeles, USA
| | - Ze Zhong Wang
- Department of Bioengineering, University of California Los Angeles, USA
| | | |
Collapse
|
39
|
Mathematical Model Insights into EEG Origin under Transcranial Direct Current Stimulation (tDCS) in the Context of Psychosis. J Clin Med 2022; 11:jcm11071845. [PMID: 35407453 PMCID: PMC8999473 DOI: 10.3390/jcm11071845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a psychotic disease that develops progressively over years with a transition from prodromal to psychotic state associated with a disruption in brain activity. Transcranial Direct Current Stimulation (tDCS), known to alleviate pharmaco-resistant symptoms in patients suffering from schizophrenia, promises to prevent such a psychotic transition. To understand better how tDCS affects brain activity, we propose a neural cortico-thalamo-cortical (CTC) circuit model involving the Ascending Reticular Arousal System (ARAS) that permits to describe major impact features of tDCS, such as excitability for short-duration stimulation and electroencephalography (EEG) power modulation for long-duration stimulation. To this end, the mathematical model relates stimulus duration and Long-Term Plasticity (LTP) effect, in addition to describing the temporal LTP decay after stimulus offset. This new relation promises to optimize future stimulation protocols. Moreover, we reproduce successfully EEG-power modulation under tDCS in a ketamine-induced psychosis model and confirm the N-methyl-d-aspartate (NMDA) receptor hypofunction hypothesis in the etiopathophysiology of schizophrenia. The model description points to an important role of the ARAS and the δ-rhythm synchronicity in CTC circuit in early-stage psychosis.
Collapse
|
40
|
Lee S, Smith PF, Lee WH, McKeown MJ. Frequency-Specific Effects of Galvanic Vestibular Stimulation on Response-Time Performance in Parkinson's Disease. Front Neurol 2021; 12:758122. [PMID: 34795633 PMCID: PMC8593161 DOI: 10.3389/fneur.2021.758122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Galvanic vestibular stimulation (GVS) is being increasingly explored as a non-invasive brain stimulation technique to treat symptoms in Parkinson's disease (PD). To date, behavioral GVS effects in PD have been explored with only two stimulus types, direct current and random noise (RN). The interaction between GVS effects and anti-parkinsonian medication is unknown. In the present study, we designed multisine (ms) stimuli and investigated the effects of ms and RN GVS on motor response time. In comparison to the RN stimulus, the ms stimuli contained sinusoidal components only at a set of desired frequencies and the phases were optimized to improve participants' comfort. We hypothesized GVS motor effects were a function of stimulation frequency, and specifically, that band-limited ms-GVS would result in better motor performance than conventionally used broadband RN-GVS. Materials and Methods: Eighteen PD patients (PDMOFF/PDMON: off-/on-levodopa medication) and 20 healthy controls (HC) performed a simple reaction time task while receiving sub-threshold GVS. Each participant underwent nine stimulation conditions: off-stimulation, RN (4–200 Hz), ms-θ (4–8 Hz), ms-α (8–13 Hz), ms-β (13–30 Hz), ms-γ (30–50 Hz), ms-h1 (50–100 Hz), ms-h2 (100–150 Hz), and ms-h3 (150–200 Hz). Results: The ms-γ resulted in shorter response time (RPT) in both PDMOFF and HC groups compared with the RN. In addition, the RPT of the PDMOFF group decreased during the ms-β while the RPT of the HC group decreased during the ms-α, ms-h1, ms-h2, and ms-h3. There was considerable inter-subject variability in the optimum stimulus type, although the frequency range tended to fall within 8–100 Hz. Levodopa medication significantly reduced the baseline RPT of the PD patients. In contrast to the off-medication state, GVS did not significantly change RPT of the PD patients in the on-medication state. Conclusions: Using band-limited ms-GVS, we demonstrated that the GVS frequency for the best RPT varied considerably across participants and was >30 Hz for half of the PDMOFF patients. Moreover, dopaminergic medication was found to influence GVS effects in PD patients. Our results indicate the common “one-size-fits-all” RN approach is suboptimal for PD, and therefore personalized stimuli aiming to address this variability is warranted to improve GVS effects.
Collapse
Affiliation(s)
- Soojin Lee
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada.,Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Won Hee Lee
- Department of Software Convergence, Kyung Hee University, Yongin, South Korea
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Sanie-Jahromi F, Azizi A, Shariat S, Johari M. Effect of Electrical Stimulation on Ocular Cells: A Means for Improving Ocular Tissue Engineering and Treatments of Eye Diseases. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6548554. [PMID: 34840978 PMCID: PMC8612806 DOI: 10.1155/2021/6548554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/25/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023]
Abstract
Tissue engineering is biomedical engineering that uses suitable biochemical and physicochemical factors to assemble functional constructs that restore or improve damaged tissues. Recently, cell therapies as a subset of tissue engineering have been very promising in the treatment of ocular diseases. One of the most important biophysical factors to make this happen is noninvasive electrical stimulation (ES) to target ocular cells that may preserve vision in multiple retinal and optic nerve diseases. The science of cellular and biophysical interactions is very exciting in regenerative medicine now. Although the exact effect of ES on cells is unknown, multiple mechanisms are considered to underlie the effects of ES, including increased production of neurotrophic agents, improved cell migration, and inhibition of proinflammatory cytokines and cellular apoptosis. In this review, we highlighted the effects of ES on ocular cells, especially on the corneal, retinal, and optic nerve cells. Initially, we summarized the current literature on the in vitro and in vivo effects of ES on ocular cells and then we provided the clinical studies describing the effect of ES on ocular complications. For each area, we used some of the most impactful articles to show the important concepts and results that advanced the state of these interactions. We conclude with reflections on emerging new areas and perspectives for future development in this field.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Azizi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Shariat
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadkarim Johari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|