1
|
Valdés Hernández MC, Duarte Coello R, Morozova A, McFadden J, Jardine C, Barclay G, McIntyre D, Chappell FM, Stringer M, Thrippleton MJ, Wardlaw JM. Avenues in the Analysis of Enlarged Perivascular Spaces Quantified from Brain Magnetic Resonance Images Acquired at 1.5T and 3T Magnetic Field Strengths. Neuroimaging Clin N Am 2025; 35:251-265. [PMID: 40210381 DOI: 10.1016/j.nic.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
MR imaging-visible perivascular spaces (PVS) have been associated with disease phenotypes, risk factors, sleep measures, and overall brain health. We review avenues in the analysis of PVS quantified from brain MR imaging across dissimilar acquisition protocols, imaging modalities, scanner manufacturers and magnetic field strengths. We conduct a pilot analysis to evaluate different avenues to harmonise PVS assessments from using different parameters using brain MR imaging from 100 adult volunteers, acquired at two different magnetic field strengths with different sequence parameters. The 2024 MICCAI Enlarged Perivascular Spaces Segmentation Challenge provides a representative MRI dataset on which to test other harmonization methods.
Collapse
Affiliation(s)
- Maria C Valdés Hernández
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK; UK Dementia Research Institute Centre, University of Edinburgh, Room FU427, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Roberto Duarte Coello
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK; UK Dementia Research Institute Centre, University of Edinburgh, Room FU427, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Alexandra Morozova
- Third Faculty of Medicine, Charles University, Ruská 2411, 100 00 Praha 10-Vinohrady, Czechia
| | - John McFadden
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK; UK Dementia Research Institute Centre, University of Edinburgh, Room FU427, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Charlotte Jardine
- Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | - Gayle Barclay
- Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | - Donna McIntyre
- Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | - Francesca M Chappell
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK; Deanery of Clinical Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Michael Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK; UK Dementia Research Institute Centre, University of Edinburgh, Room FU427, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK; UK Dementia Research Institute Centre, University of Edinburgh, Room FU427, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| |
Collapse
|
2
|
Rudilosso S, Muñoz-Moreno E, Laredo C, Calvet A, Rodríguez-Vázquez A, Girona A, Dels Angels Calderon M, Zarco F, Gil-López F, Arboix A, Hernandez MV, Coello RD, Urra X, Wardlaw JM, Chamorro Á. Perivascular and parenchymal brain fluid diffusivity in patients with a recent small subcortical infarct. Neuroradiology 2025; 67:599-611. [PMID: 39853343 DOI: 10.1007/s00234-025-03546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
PURPOSE Fluid exchanges between perivascular spaces (PVS) and interstitium may contribute to the pathophysiology of small vessel disease (SVD). We aimed to analyze water diffusivity measures and their relationship with PVS and other SVD imaging markers. METHODS We enrolled 50 consecutive patients with a recent small subcortical infarct. We collected clinical variables, including vascular risk factors and sleep quality scales. All patients underwent a 3-Tesla MRI with standard structural sequences and multishell-diffusion images to obtain extracellular free water content (FW) and water diffusivity along the perivascular space (ALPS) index. We obtained volumetric measurements of white matter hyperintensities (WMH) and PVS, and the number of lacunes and microbleeds. To analyze the association between PVS, ALPS index, FW, and SVD imaging features, we utilized linear regression models including age, sex, history of hypertension and diabetes, Pittsburgh Sleep Quality Index, WMH, and brain volume. RESULTS All patients (mean age 70 years, 36% women) had usable data. FW and PVS were strongly associated in all models (0.008 < Beta < 0.054; P < 0.045). Higher FW was related to the other SVD features in univariable models and remained significant for WMH (1.175 < Beta < 1.262; P < 0.001) and brain volume (Beta < 0.0001; P < 0.002) in multivariable models. ALPS index was not associated with FW, PVS, or any other SVD markers. CONCLUSIONS The increased extracellular water in SVD suggests that impaired brain fluid exchanges, PVS dilation, and other SVD features are linked. Further investigation is needed to determine the specificity of the ALPS index to PVS diffusion.
Collapse
Affiliation(s)
- Salvatore Rudilosso
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, Villarroel 170, 08036, Barcelona, Spain.
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036, Barcelona, Spain.
| | - Emma Muñoz-Moreno
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036, Barcelona, Spain
| | - Carlos Laredo
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036, Barcelona, Spain
| | - Angels Calvet
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036, Barcelona, Spain
| | - Alejandro Rodríguez-Vázquez
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, Villarroel 170, 08036, Barcelona, Spain
| | - Andres Girona
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, Villarroel 170, 08036, Barcelona, Spain
| | | | - Federico Zarco
- Department of Radiology, Hospital Clinic, Villarroel 170, 08036, Barcelona, Spain
| | - Francisco Gil-López
- Department of Neurology, Grupo Quirónsalud, Hospital Universitari Sagrat Cor, Universitat de Barcelona, 08029, Barcelona, Spain
| | - Adrià Arboix
- Department of Neurology, Grupo Quirónsalud, Hospital Universitari Sagrat Cor, Universitat de Barcelona, 08029, Barcelona, Spain
| | - Maria Valdes Hernandez
- Centre for Clinical Brain Sciences, Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Roberto Duarte Coello
- Centre for Clinical Brain Sciences, Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Xabier Urra
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, Villarroel 170, 08036, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ángel Chamorro
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, Villarroel 170, 08036, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Casanova 143, 08036, Barcelona, Spain
| |
Collapse
|
3
|
Ha J, Lee S, Kim S, Lee JS, Ahn JH, Cho JW, Fasano A, Youn J. The "Hedgehog-Halo Sign" Is Associated with Gait Symptom Severity and Tap Response in Normal Pressure Hydrocephalus. Mov Disord Clin Pract 2025; 12:21-33. [PMID: 39503269 PMCID: PMC11736875 DOI: 10.1002/mdc3.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/26/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Reduced cerebrospinal fluid (CSF) clearance may play a vital role in the pathogenesis of normal pressure hydrocephalus (NPH), but the radiologic marker is yet to be elucidated. OBJECTIVES This open-label study presents two novel neuroimaging biomarkers based on enlarged perivascular spaces (ePVS) of the sub-insular territory: the Hedgehog and Hedgehog-Halo (H-H) sign, designed to predict gait symptom severity and tap response in NPH. METHODS We retrospectively reviewed 203 patients with possible NPH with baseline magnetic resonance imaging and gait analyses before and after lumbar puncture (LP). The Hedgehog/H-H sign was scored using T2-weighted images. The clinical severity at baseline and post-tap gait improvement was compared in patients with and without Hedgehog/H-H sign. The association between Hedgehog/H-H sign and post-tap gait outcomes was assessed using multivariate regression. The diagnostic performance of Hedgehog/H-H sign was compared with conventional radiological markers. RESULTS Patients with H-H showed higher global disability and more severe gait impairment than those without any signs. Following LP, patients with Hedgehog/H-H sign significantly improved in various gait parameters, unlike those with neither sign. Additionally, sub-insular ePVS was significantly associated with post-tap gait improvement after adjusting covariates. Finally, the Hedgehog/H-H sign showed a higher performance than conventional markers in predicting post-tap gait response. CONCLUSIONS The Hedgehog/H-H sign is a useful neuroimaging biomarker related to the severity and tap response in NPH. This biomarker can be readily applied in clinical practice before undergoing LP, independent of conventional radiological signs. Further research is warranted to determine applicability in predicting post-shunt gait response.
Collapse
Affiliation(s)
- Jongmok Ha
- Department of NeurologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
- Neuroscience Center, Samsung Medical CenterSeoulKorea
- Department of NeurologyEmory School of MedicineAtlantaGeorgiaUSA
| | - Suin Lee
- Department of NeurologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
- Neuroscience Center, Samsung Medical CenterSeoulKorea
| | - Seongmi Kim
- Department of NeurologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
- Neuroscience Center, Samsung Medical CenterSeoulKorea
| | - Jun Seok Lee
- Department of NeurologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
- Neuroscience Center, Samsung Medical CenterSeoulKorea
| | - Jong Hyeon Ahn
- Department of NeurologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
- Neuroscience Center, Samsung Medical CenterSeoulKorea
| | - Jin Whan Cho
- Department of NeurologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
- Neuroscience Center, Samsung Medical CenterSeoulKorea
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western HospitalUniversity Health NetworkTorontoOntarioCanada
- Division of NeurologyUniversity of TorontoTorontoOntarioCanada
- Krembil Brain Institute, NeuroscienceTorontoOntarioCanada
| | - Jinyoung Youn
- Department of NeurologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
- Neuroscience Center, Samsung Medical CenterSeoulKorea
| |
Collapse
|
4
|
Filippi M, Preziosa P, Barkhof F, Ciccarelli O, Cossarizza A, De Stefano N, Gasperini C, Geraldes R, Granziera C, Haider L, Lassmann H, Margoni M, Pontillo G, Ropele S, Rovira À, Sastre-Garriga J, Yousry TA, Rocca MA. The ageing central nervous system in multiple sclerosis: the imaging perspective. Brain 2024; 147:3665-3680. [PMID: 39045667 PMCID: PMC11531849 DOI: 10.1093/brain/awae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/25/2024] Open
Abstract
The interaction between ageing and multiple sclerosis is complex and carries significant implications for patient care. Managing multiple sclerosis effectively requires an understanding of how ageing and multiple sclerosis impact brain structure and function. Ageing inherently induces brain changes, including reduced plasticity, diminished grey matter volume, and ischaemic lesion accumulation. When combined with multiple sclerosis pathology, these age-related alterations may worsen clinical disability. Ageing may also influence the response of multiple sclerosis patients to therapies and/or their side effects, highlighting the importance of adjusted treatment considerations. MRI is highly sensitive to age- and multiple sclerosis-related processes. Accordingly, MRI can provide insights into the relationship between ageing and multiple sclerosis, enabling a better understanding of their pathophysiological interplay and informing treatment selection. This review summarizes current knowledge on the immunopathological and MRI aspects of ageing in the CNS in the context of multiple sclerosis. Starting from immunosenescence, ageing-related pathological mechanisms and specific features like enlarged Virchow-Robin spaces, this review then explores clinical aspects, including late-onset multiple sclerosis, the influence of age on diagnostic criteria, and comorbidity effects on imaging features. The role of MRI in understanding neurodegeneration, iron dynamics and myelin changes influenced by ageing and how MRI can contribute to defining treatment effects in ageing multiple sclerosis patients, are also discussed.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1N 3BG, UK
| | - Olga Ciccarelli
- Queen Square MS Centre, UCL Institute of Neurology, UCL, London WC1N 3BG, UK
- NIHR (National Institute for Health and Care Research) UCLH (University College London Hospitals) BRC (Biomedical Research Centre), London WC1N 3BG, UK
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Claudio Gasperini
- Department of Neurosciences, S Camillo Forlanini Hospital Rome, 00152 Rome, Italy
| | - Ruth Geraldes
- Clinical Neurology, John Radcliffe Hospital, Oxford University Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Cristina Granziera
- Department of Neurology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, 4031 Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Lukas Haider
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1N 3BG, UK
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppe Pontillo
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1N 3BG, UK
- Department of Advanced Biomedical Sciences, University “Federico II”, 80138 Naples, Italy
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, 8010 Graz, Austria
| | - Àlex Rovira
- Neuroradiology Section, Department of Radiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Jaume Sastre-Garriga
- Neurology Department and Multiple Sclerosis Centre of Catalunya (Cemcat), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Tarek A Yousry
- Lysholm Department of Neuroradiology, UCLH National Hospital for Neurology and Neurosurgery, Neuroradiological Academic Unit, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
5
|
Sozzi C, Brenlla C, Bartolomé I, Girona A, Muñoz-Moreno E, Laredo C, Rodríguez-Vázquez A, Doncel-Moriano A, Rudilosso S, Chamorro Á. Clinical Relevance of Different Loads of Perivascular Spaces According to Their Localization in Patients with a Recent Small Subcortical Infarct. J Cardiovasc Dev Dis 2024; 11:345. [PMID: 39590188 PMCID: PMC11594638 DOI: 10.3390/jcdd11110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background and Purpose: Perivascular spaces (PVS) are usually enlarged in small vessel disease (SVD). However, the significance of PVS patterns in different locations is uncertain. Hence, we analyzed the distribution of PVS in patients with a recent small subcortical infarct (RSSI) and their correlation with clinical and imaging factors. Materials and Methods: In a cohort of 71 patients with an RSSI with complete clinical data, including the Pittsburgh Sleep Quality Index (PSQI), we segmented PVS in white matter (WM-PVS), basal ganglia (BG-PVS), and brainstems (BS-PVS) on 3T-MRI T2-weighted sequences, obtaining fractional volumes (%), and calculated the WM/BG-PVS ratio. We analyzed the Pearson's correlation coefficients between PVS regional loads. We used normalized PVS measures to assess the associations with clinical and MRI-SVD features (white matter hyperintensities (WMHs), number of lacunes, and microbleeds) in univariable and multivariable linear regressions adjusted for age, sex, and hypertension. Results: In our cohort (mean age 70 years; 27% female), the Pearson's correlation coefficients between WM-PVS/BG-PVS, WM-PVS/BS-PVS, and BG-PVS/BS-PVS were 0.67, 0.61, and 0.59 (all p < 0.001). In the adjusted models, BG-PVS were associated with lacunes (p = 0.034), WMHs (p = 0.006), and microbleeds (p = 0.017); WM-PVS with lacunes (p = 0.003); while BS-PVS showed no associations. The WM/BG-PVS ratio was associated with lacunes (p = 0.018) and the PSQI (p = 0.046). Conclusions: PVS burdens in different regions are highly correlated in patients with RSSI but with different SVD patterns. Sleep quality impairment might affect waste removal mechanisms differently in the WM and BG regions.
Collapse
Affiliation(s)
- Caterina Sozzi
- Neurology Department, University of Milano Bicocca, 20126 Milan, Italy;
| | - Carla Brenlla
- Neurology Department, Hospital Clínic, 08036 Barcelona, Spain (A.G.)
| | - Inés Bartolomé
- Neurology Department, Hospital Clínic, 08036 Barcelona, Spain (A.G.)
| | - Andrés Girona
- Neurology Department, Hospital Clínic, 08036 Barcelona, Spain (A.G.)
| | - Emma Muñoz-Moreno
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Laredo
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | | | - Antonio Doncel-Moriano
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clínic, 08036 Barcelona, Spain; (A.R.-V.)
| | - Salvatore Rudilosso
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clínic, 08036 Barcelona, Spain; (A.R.-V.)
| | - Ángel Chamorro
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clínic, 08036 Barcelona, Spain; (A.R.-V.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
6
|
Menze I, Bernal J, Kaya P, Aki Ç, Pfister M, Geisendörfer J, Yakupov R, Coello RD, Valdés-Hernández MDC, Heneka MT, Brosseron F, Schmid MC, Glanz W, Incesoy EI, Butryn M, Rostamzadeh A, Meiberth D, Peters O, Preis L, Lammerding D, Gref D, Priller J, Spruth EJ, Altenstein S, Lohse A, Hetzer S, Schneider A, Fliessbach K, Kimmich O, Vogt IR, Wiltfang J, Bartels C, Schott BH, Hansen N, Dechent P, Buerger K, Janowitz D, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Goerss D, Laske C, Munk MH, Sanzenbacher C, Hinderer P, Scheffler K, Spottke A, Roy-Kluth N, Lüsebrink F, Neumann K, Wardlaw J, Jessen F, Schreiber S, Düzel E, Ziegler G. Perivascular space enlargement accelerates in ageing and Alzheimer's disease pathology: evidence from a three-year longitudinal multicentre study. Alzheimers Res Ther 2024; 16:242. [PMID: 39482759 PMCID: PMC11526621 DOI: 10.1186/s13195-024-01603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Perivascular space (PVS) enlargement in ageing and Alzheimer's disease (AD) and the drivers of such a structural change in humans require longitudinal investigation. Elucidating the effects of demographic factors, hypertension, cerebrovascular dysfunction, and AD pathology on PVS dynamics could inform the role of PVS in brain health function as well as the complex pathophysiology of AD. METHODS We studied PVS in centrum semiovale (CSO) and basal ganglia (BG) computationally over three to four annual visits in 503 participants (255 females; meanage = 70.78 ± 5.78) of the ongoing observational multicentre "DZNE Longitudinal Cognitive Impairment and Dementia Study" (DELCODE) cohort. We analysed data from subjects who were cognitively unimpaired (n = 401), had amnestic mild cognitive impairment (n = 71), or had AD (n = 31). We used linear mixed-effects modelling to test for changes of PVS volumes in relation to cross-sectional and longitudinal age, as well as sex, years of education, hypertension, white matter hyperintensities, AD diagnosis, and cerebrospinal-fluid-derived amyloid (A) and tau (T) status (available for 46.71%; A-T-/A + T-/A + T + n = 143/48/39). RESULTS PVS volumes increased significantly over follow-ups (CSO: B = 0.03 [0.02, 0.05], p < 0.001; BG: B = 0.05 [0.03, 0.07], p < 0.001). PVS enlargement rates varied substantially across subjects and depended on the participant's age, white matter hyperintensities volumes, and amyloid and tau status. PVS volumes were higher across elderly participants, regardless of region of interest (CSO: B = 0.12 [0.02, 0.21], p = 0.017; BG: B = 0.19 [0.09, 0.28], p < 0.001). Faster BG-PVS enlargement related to lower baseline white matter hyperintensities volumes (ρspearman = -0.17, pFDR = 0.001) and was more pronounced in individuals who presented with combined amyloid and tau positivity versus negativity (A + T + > A-T-, pFDR = 0.004) or who were amyloid positive but tau negative (A + T + > A + T-, pFDR = 0.07). CSO-PVS volumes increased at a faster rate with amyloid positivity as compared to amyloid negativity (A + T-/A + T + > A-T-, pFDR = 0.021). CONCLUSION Our longitudinal evidence supports the relevance of PVS enlargement in presumably healthy ageing as well as in AD pathology. We further discuss the region-specific involvement of white matter hyperintensities and neurotoxic waste accumulation in PVS enlargement and the possibility of additional factors contributing to PVS progression. A comprehensive understanding of PVS dynamics could facilitate the understanding of pathological cascades and might inform targeted treatment strategies. TRIAL REGISTRATION German Clinical Trials Register DRKS00007966. Registered 04.05.2015 - retrospectively registered, https://drks.de/search/en/trial/DRKS00007966 .
Collapse
Affiliation(s)
- Inga Menze
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany.
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany.
| | - Jose Bernal
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
| | - Pinar Kaya
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Çağla Aki
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Malte Pfister
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Jonas Geisendörfer
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Renat Yakupov
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Roberto Duarte Coello
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
| | - Maria D C Valdés-Hernández
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, 6 Avenue du Swing 4367 , Esch-Belval, Luxembourg
| | - Frederic Brosseron
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Matthias C Schmid
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Wenzel Glanz
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Enise I Incesoy
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Michaela Butryn
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Ayda Rostamzadeh
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, Cologne, 50924, Germany
| | - Dix Meiberth
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, Cologne, 50924, Germany
| | - Oliver Peters
- German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany
- Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Lukas Preis
- Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Dominik Lammerding
- Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Daria Gref
- Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Josef Priller
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
- German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany
- School of Medicine, Department of Psychiatry and Psychotherapy, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Eike J Spruth
- German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany
| | - Slawek Altenstein
- German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany
| | - Andrea Lohse
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité, Charitéplatz 1, Berlin, 10117, Germany
| | - Anja Schneider
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Klaus Fliessbach
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Okka Kimmich
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Ina R Vogt
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Jens Wiltfang
- German Centre for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany
| | - Björn H Schott
- German Centre for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany
- Leibniz Institute for Neurobiology, Brenneckestraße 6, Magdeburg, 39118, Germany
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany
| | - Peter Dechent
- Department of Cognitive Neurology, MR-Research in Neurosciences, Georg-August-University Goettingen, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Katharina Buerger
- German Centre for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, Munich, 81377, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, Munich, 81377, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, Munich, 81377, Germany
| | - Robert Perneczky
- German Centre for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, Munich, 81377, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, Munich, München, 80336 , Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, Munich, 81377, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, London, W6 8RP, UK
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, Munich, München, 80336 , Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385a Glossop Rd, Sheffield, Broomhall, Sheffield, S10 2HQ, UK
- Department of Neuroradiology, University Hospital LMU, Marchioninistr. 15, Munich, 81377, Germany
| | - Stefan Teipel
- German Centre for Neurodegenerative Diseases (DZNE), Gehlsheimer Straße 20, Rostock, 18147, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Ingo Kilimann
- German Centre for Neurodegenerative Diseases (DZNE), Gehlsheimer Straße 20, Rostock, 18147, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Doreen Goerss
- German Centre for Neurodegenerative Diseases (DZNE), Gehlsheimer Straße 20, Rostock, 18147, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Christoph Laske
- German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Osianderstraße 24, Tübingen, 72076, Germany
| | - Matthias H Munk
- German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Osianderstraße 24, Tübingen, 72076 , Germany
| | - Carolin Sanzenbacher
- German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
| | - Petra Hinderer
- German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Straße 51, Tübingen, 72076, Germany
| | - Annika Spottke
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Neurology, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Nina Roy-Kluth
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Falk Lüsebrink
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Katja Neumann
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
| | - Frank Jessen
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, Cologne, 50924, Germany
- Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
| | - Stefanie Schreiber
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Emrah Düzel
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Gabriel Ziegler
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| |
Collapse
|
7
|
Clancy U, Arteaga-Reyes C, Jaime Garcia D, Hewins W, Locherty R, Valdés Hernández MDC, Wiseman SJ, Stringer MS, Thrippleton M, Chappell FM, Jochems ACC, Liu X, Cheng Y, Zhang J, Rudilosso S, Kampaite A, Hamilton OKL, Brown R, Bastin ME, Muñoz Maniega S, Hamilton I, Job D, Doubal FN, Wardlaw JM. Incident Infarcts in Patients With Stroke and Cerebral Small Vessel Disease: Frequency and Relation to Clinical Outcomes. Neurology 2024; 103:e209750. [PMID: 39159417 PMCID: PMC11361828 DOI: 10.1212/wnl.0000000000209750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/25/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Factors associated with cerebral small vessel disease (SVD) progression, including incident infarcts, are unclear. We aimed to determine the frequency of incident infarcts over 1 year after minor stroke and their relation to baseline SVD burden, vascular risks, and recurrent stroke and cognitive outcomes. METHODS We recruited patients with lacunar or nondisabling cortical stroke. After diagnostic imaging, we repeated structural MRI at 3-6 monthly intervals for 12 months, visually assessing incident infarcts on diffusion-weighted imaging or FLAIR. We used logistic regression to determine associations of baseline vascular risks, SVD score, and index stroke subtype with subsequent incident infarcts. We assessed cognitive and functional outcomes at 1 year using Montreal Cognitive Assessment (MoCA) and modified Rankin scale (mRS), adjusting for baseline age, mRS, MoCA, premorbid intelligence, and SVD score. RESULTS We recruited 229 participants, mean age 65.9 (SD 11.1). Over half of all participants, 131 of 229 (57.2%) had had an index lacunar stroke. From baseline to 1-year MRI, we detected 117 incident infarcts in n = 57/229 (24.8%) participants. Incident infarcts were mainly of the small subcortical (86/117 [73.5%] in n = 38/57 [66.7%]) vs cortical infarct subtype (n = 19/57 [33.3%]). N = 39/57 participants had incident infarcts at 1 visit; 18 of 57 at 2 or more visits; and 19 of 57 participants had multiple infarcts at a single visit. Only 7 of 117 incident infarcts corresponded temporally to clinical stroke syndromes. The baseline SVD score was the strongest predictor of incident infarcts (adjusted odds ratio [OR] 1.87, 95% CI 1.39-2.58), while mean arterial pressure was not associated. All participants with incident infarcts were prescribed an antiplatelet or anticoagulant. Lower 1-year MoCA was associated with lower baseline MoCA (β 0.47, 95% CI 0.33-0.61), lower premorbid intelligence, and older age. Higher 1-year mRS was associated with higher baseline mRS only (OR 5.57 [3.52-9.10]). Neither outcome was associated with incident infarcts. DISCUSSION In the year after stroke in a population enriched for lacunar stroke, incident infarcts occurred in one-quarter and were associated with worse baseline SVD. Most incident infarcts detected on imaging did not correspond to clinical stroke/transient ischemic attack. Worse 1-year cognition and function were not associated with incident infarcts.
Collapse
Affiliation(s)
- Una Clancy
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Carmen Arteaga-Reyes
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Daniela Jaime Garcia
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Will Hewins
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Rachel Locherty
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Maria Del C Valdés Hernández
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Stewart J Wiseman
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Michael S Stringer
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Michael Thrippleton
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Francesca M Chappell
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Angela C C Jochems
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Xiaodi Liu
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Yajun Cheng
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Junfang Zhang
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Salvatore Rudilosso
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Agniete Kampaite
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Olivia K L Hamilton
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Rosalind Brown
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Mark E Bastin
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Susana Muñoz Maniega
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Iona Hamilton
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Dominic Job
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Fergus N Doubal
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Joanna M Wardlaw
- From the Row Fogo Centre for Research into Ageing and the Brain, Centre for Clinical Brain Sciences, and UK Dementia Research Institute (U.C., C.A.-R., D.J.G., W.H., R.L., M.D.C.V.H., S.J.W., M.S.S., M.T., F.M.C., A.C.C.J., A.K., O.K.L.H., R.B., M.E.B., S.M.M., I.H., D.J., F.N.D., J.M.W.), University of Edinburgh; Division of Neurology (X.L.), Department of Medicine, The University of Hong Kong; Department of Neurology (Y.C.), West China Hospital, Sichuan University, Chengdu, China; Department of Neurology (J.Z.), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China; Comprehensive Stroke Center (S.R.), Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute, Spain; and MRC/CSO Social and Public Health Sciences Unit (O.K.L.H.), School of Health and Wellbeing, University of Glasgow, United Kingdom
| |
Collapse
|
8
|
Waymont JMJ, Valdés Hernández MDC, Bernal J, Duarte Coello R, Brown R, Chappell FM, Ballerini L, Wardlaw JM. Systematic review and meta-analysis of automated methods for quantifying enlarged perivascular spaces in the brain. Neuroimage 2024; 297:120685. [PMID: 38914212 DOI: 10.1016/j.neuroimage.2024.120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Research into magnetic resonance imaging (MRI)-visible perivascular spaces (PVS) has recently increased, as results from studies in different diseases and populations are cementing their association with sleep, disease phenotypes, and overall health indicators. With the establishment of worldwide consortia and the availability of large databases, computational methods that allow to automatically process all this wealth of information are becoming increasingly relevant. Several computational approaches have been proposed to assess PVS from MRI, and efforts have been made to summarise and appraise the most widely applied ones. We systematically reviewed and meta-analysed all publications available up to September 2023 describing the development, improvement, or application of computational PVS quantification methods from MRI. We analysed 67 approaches and 60 applications of their implementation, from 112 publications. The two most widely applied were the use of a morphological filter to enhance PVS-like structures, with Frangi being the choice preferred by most, and the use of a U-Net configuration with or without residual connections. Older adults or population studies comprising adults from 18 years old onwards were, overall, more frequent than studies using clinical samples. PVS were mainly assessed from T2-weighted MRI acquired in 1.5T and/or 3T scanners, although combinations using it with T1-weighted and FLAIR images were also abundant. Common associations researched included age, sex, hypertension, diabetes, white matter hyperintensities, sleep and cognition, with occupation-related, ethnicity, and genetic/hereditable traits being also explored. Despite promising improvements to overcome barriers such as noise and differentiation from other confounds, a need for joined efforts for a wider testing and increasing availability of the most promising methods is now paramount.
Collapse
Affiliation(s)
- Jennifer M J Waymont
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Maria Del C Valdés Hernández
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK.
| | - José Bernal
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK; German Centre for Neurodegenerative Diseases (DZNE), Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany
| | - Roberto Duarte Coello
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Rosalind Brown
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Francesca M Chappell
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | | | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| |
Collapse
|
9
|
Elias-Mas A, Wang JY, Rodríguez-Revenga L, Kim K, Tassone F, Hessl D, Rivera SM, Hagerman R. Enlarged perivascular spaces and their association with motor, cognition, MRI markers and cerebrovascular risk factors in male fragile X premutation carriers. J Neurol Sci 2024; 461:123056. [PMID: 38772058 PMCID: PMC12005344 DOI: 10.1016/j.jns.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
FMR1 premutation carriers (55-200 CGG repeats) are at risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disorder associated with motor and cognitive impairment. Bilateral hyperintensities of the middle cerebellar peduncles (MCP sign) are the major radiological hallmarks of FXTAS. In the general population, enlarged perivascular spaces (PVS) are biomarkers of small vessel disease and glymphatic dysfunction and are associated with cognitive decline. Our aim was to determine if premutation carriers show higher ratings of PVS than controls and whether enlarged PVS are associated with motor and cognitive impairment, MRI features of neurodegeneration, cerebrovascular risk factors and CGG repeat length. We evaluated 655 MRIs (1-10 visits/participant) from 229 carriers (164 with FXTAS and 65 without FXTAS) and 133 controls. PVS in the basal ganglia (BG-EPVS), centrum semiovale, and midbrain were evaluated with a semiquantitative scale. Mixed-effects models were used for statistical analysis adjusting for age. In carriers with FXTAS, we revealed that (1) BG-PVS ratings were higher than those of controls and carriers without FXTAS; (2) BG-PVS severity was associated with brain atrophy, white matter hyperintensities, enlarged ventricles, FXTAS stage and abnormal gait; (3) age-related increase in BG-PVS was associated with cognitive dysfunction; and (4) PVS ratings of all three regions showed robust associations with CGG repeat length and were higher in carriers with the MCP sign than carriers without the sign. This study demonstrates clinical relevance of PVS in FXTAS especially in the basal ganglia region and suggests microangiopathy and dysfunctional cerebrospinal fluid circulation in FXTAS physiopathology.
Collapse
Affiliation(s)
- Andrea Elias-Mas
- Radiology Department, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain; Institute for Research and Innovation Parc Taulí (I3PT), Sabadell, Spain; Genetics Doctorate Program, Universitat de Barcelona (UB), Barcelona, Spain.
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, CA, United States.
| | - Laia Rodríguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Spain; CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain; Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Kyoungmi Kim
- Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento, CA, United States.
| | - Flora Tassone
- MIND Institute, University of California Davis, Sacramento, CA, United States; Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, United States.
| | - David Hessl
- MIND Institute, University of California Davis, Sacramento, CA, United States; Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States.
| | - Susan M Rivera
- Center for Mind and Brain, University of California Davis, CA, United States; MIND Institute, University of California Davis, Sacramento, CA, United States; Department of Psychology, University of Maryland, College Park, MD, United States.
| | - Randi Hagerman
- MIND Institute, University of California Davis, Sacramento, CA, United States; Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA, United States.
| |
Collapse
|
10
|
Valdés Hernández MDC, Duarte Coello R, Xu W, Bernal J, Cheng Y, Ballerini L, Wiseman SJ, Chappell FM, Clancy U, Jaime García D, Arteaga Reyes C, Zhang JF, Liu X, Hewins W, Stringer M, Doubal F, Thrippleton MJ, Jochems A, Brown R, Wardlaw JM. Influence of threshold selection and image sequence in in-vivo segmentation of enlarged perivascular spaces. J Neurosci Methods 2024; 403:110037. [PMID: 38154663 DOI: 10.1016/j.jneumeth.2023.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Growing interest surrounds perivascular spaces (PVS) as a clinical biomarker of brain dysfunction given their association with cerebrovascular risk factors and disease. Neuroimaging techniques allowing quick and reliable quantification are being developed, but, in practice, they require optimisation as their limits of validity are usually unspecified. NEW METHOD We evaluate modifications and alternatives to a state-of-the-art (SOTA) PVS segmentation method that uses a vesselness filter to enhance PVS discrimination, followed by thresholding of its response, applied to brain magnetic resonance images (MRI) from patients with sporadic small vessel disease acquired at 3 T. RESULTS The method is robust against inter-observer differences in threshold selection, but separate thresholds for each region of interest (i.e., basal ganglia, centrum semiovale, and midbrain) are required. Noise needs to be assessed prior to selecting these thresholds, as effect of noise and imaging artefacts can be mitigated with a careful optimisation of these thresholds. PVS segmentation from T1-weighted images alone, misses small PVS, therefore, underestimates PVS count, may overestimate individual PVS volume especially in the basal ganglia, and is susceptible to the inclusion of calcified vessels and mineral deposits. Visual analyses indicated the incomplete and fragmented detection of long and thin PVS as the primary cause of errors, with the Frangi filter coping better than the Jerman filter. COMPARISON WITH EXISTING METHODS Limits of validity to a SOTA PVS segmentation method applied to 3 T MRI with confounding pathology are given. CONCLUSIONS Evidence presented reinforces the STRIVE-2 recommendation of using T2-weighted images for PVS assessment wherever possible. The Frangi filter is recommended for PVS segmentation from MRI, offering robust output against variations in threshold selection and pathology presentation.
Collapse
Affiliation(s)
- Maria Del C Valdés Hernández
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK.
| | - Roberto Duarte Coello
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - William Xu
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - José Bernal
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK; German Centre for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yajun Cheng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Lucia Ballerini
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK; University for Foreigner of Perugia, Perugia, Italy
| | - Stewart J Wiseman
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Francesca M Chappell
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Una Clancy
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniela Jaime García
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Carmen Arteaga Reyes
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Jun-Fang Zhang
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK; Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodi Liu
- Division of Neurology, Department of Medicine, The University of Hong Kong, Hong Kong
| | - Will Hewins
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Michael Stringer
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Fergus Doubal
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Angela Jochems
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Rosalind Brown
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
11
|
Agarwal N, Lewis LD, Hirschler L, Rivera LR, Naganawa S, Levendovszky SR, Ringstad G, Klarica M, Wardlaw J, Iadecola C, Hawkes C, Octavia Carare R, Wells J, Bakker EN, Kurtcuoglu V, Bilston L, Nedergaard M, Mori Y, Stoodley M, Alperin N, de Leon M, van Osch MJ. Current Understanding of the Anatomy, Physiology, and Magnetic Resonance Imaging of Neurofluids: Update From the 2022 "ISMRM Imaging Neurofluids Study group" Workshop in Rome. J Magn Reson Imaging 2024; 59:431-449. [PMID: 37141288 PMCID: PMC10624651 DOI: 10.1002/jmri.28759] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Neurofluids is a term introduced to define all fluids in the brain and spine such as blood, cerebrospinal fluid, and interstitial fluid. Neuroscientists in the past millennium have steadily identified the several different fluid environments in the brain and spine that interact in a synchronized harmonious manner to assure a healthy microenvironment required for optimal neuroglial function. Neuroanatomists and biochemists have provided an incredible wealth of evidence revealing the anatomy of perivascular spaces, meninges and glia and their role in drainage of neuronal waste products. Human studies have been limited due to the restricted availability of noninvasive imaging modalities that can provide a high spatiotemporal depiction of the brain neurofluids. Therefore, animal studies have been key in advancing our knowledge of the temporal and spatial dynamics of fluids, for example, by injecting tracers with different molecular weights. Such studies have sparked interest to identify possible disruptions to neurofluids dynamics in human diseases such as small vessel disease, cerebral amyloid angiopathy, and dementia. However, key differences between rodent and human physiology should be considered when extrapolating these findings to understand the human brain. An increasing armamentarium of noninvasive MRI techniques is being built to identify markers of altered drainage pathways. During the three-day workshop organized by the International Society of Magnetic Resonance in Medicine that was held in Rome in September 2022, several of these concepts were discussed by a distinguished international faculty to lay the basis of what is known and where we still lack evidence. We envision that in the next decade, MRI will allow imaging of the physiology of neurofluid dynamics and drainage pathways in the human brain to identify true pathological processes underlying disease and to discover new avenues for early diagnoses and treatments including drug delivery. Evidence level: 1 Technical Efficacy: Stage 3.
Collapse
Affiliation(s)
- Nivedita Agarwal
- Neuroradiology Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Laura D. Lewis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lydiane Hirschler
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonardo Rivera Rivera
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Geir Ringstad
- Department of Radiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway
| | - Marijan Klarica
- Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences and UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh, UK
| | - Costantino Iadecola
- Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Cheryl Hawkes
- Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | | | - Jack Wells
- UCL Centre for Advanced Biomedical Imaging, University College of London, London, UK
| | - Erik N.T.P. Bakker
- Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | | | - Lynne Bilston
- Neuroscience Research Australia and UNSW Medicine, Sydney, Australia
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Marcus Stoodley
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Department of Neurosurgery, Macquarie University Hospital, Sydney, Australia
| | - Noam Alperin
- Department of Radiology and Biomedical Engineering, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Mony de Leon
- Weil Cornell Medicine, Department of Radiology, Brain Health Imaging Institute, New York City, New York, USA
| | - Matthias J.P. van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Duering M, Biessels GJ, Brodtmann A, Chen C, Cordonnier C, de Leeuw FE, Debette S, Frayne R, Jouvent E, Rost NS, Ter Telgte A, Al-Shahi Salman R, Backes WH, Bae HJ, Brown R, Chabriat H, De Luca A, deCarli C, Dewenter A, Doubal FN, Ewers M, Field TS, Ganesh A, Greenberg S, Helmer KG, Hilal S, Jochems ACC, Jokinen H, Kuijf H, Lam BYK, Lebenberg J, MacIntosh BJ, Maillard P, Mok VCT, Pantoni L, Rudilosso S, Satizabal CL, Schirmer MD, Schmidt R, Smith C, Staals J, Thrippleton MJ, van Veluw SJ, Vemuri P, Wang Y, Werring D, Zedde M, Akinyemi RO, Del Brutto OH, Markus HS, Zhu YC, Smith EE, Dichgans M, Wardlaw JM. Neuroimaging standards for research into small vessel disease-advances since 2013. Lancet Neurol 2023; 22:602-618. [PMID: 37236211 DOI: 10.1016/s1474-4422(23)00131-x] [Citation(s) in RCA: 320] [Impact Index Per Article: 160.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/03/2023] [Accepted: 03/28/2023] [Indexed: 05/28/2023]
Abstract
Cerebral small vessel disease (SVD) is common during ageing and can present as stroke, cognitive decline, neurobehavioural symptoms, or functional impairment. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive and other symptoms and affect activities of daily living. Standards for Reporting Vascular Changes on Neuroimaging 1 (STRIVE-1) categorised and standardised the diverse features of SVD that are visible on structural MRI. Since then, new information on these established SVD markers and novel MRI sequences and imaging features have emerged. As the effect of combined SVD imaging features becomes clearer, a key role for quantitative imaging biomarkers to determine sub-visible tissue damage, subtle abnormalities visible at high-field strength MRI, and lesion-symptom patterns, is also apparent. Together with rapidly emerging machine learning methods, these metrics can more comprehensively capture the effect of SVD on the brain than the structural MRI features alone and serve as intermediary outcomes in clinical trials and future routine practice. Using a similar approach to that adopted in STRIVE-1, we updated the guidance on neuroimaging of vascular changes in studies of ageing and neurodegeneration to create STRIVE-2.
Collapse
Affiliation(s)
- Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Medical Image Analysis Center, University of Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland.
| | - Geert Jan Biessels
- Department of Neurology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Amy Brodtmann
- Cognitive Health Initiative, Central Clinical School, Monash University, Melbourne, VIC, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Christopher Chen
- Department of Pharmacology, Memory Aging and Cognition Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Psychological Medicine, Memory Aging and Cognition Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Charlotte Cordonnier
- Université de Lille, INSERM, CHU Lille, U1172-Lille Neuroscience and Cognition (LilNCog), Lille, France
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Center for Medical Neuroscience, Radboudumc, Nijmegen, Netherlands
| | - Stéphanie Debette
- Bordeaux Population Health Research Center, University of Bordeaux, INSERM, UMR 1219, Bordeaux, France; Department of Neurology, Institute for Neurodegenerative Diseases, CHU de Bordeaux, Bordeaux, France
| | - Richard Frayne
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Eric Jouvent
- AP-HP, Lariboisière Hospital, Translational Neurovascular Centre, FHU NeuroVasc, Université Paris Cité, Paris, France; Université Paris Cité, INSERM UMR 1141, NeuroDiderot, Paris, France
| | - Natalia S Rost
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Walter H Backes
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands; School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Hee-Joon Bae
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea; Cerebrovascular Disease Center, Seoul National University Bundang Hospital, Seongn-si, South Korea
| | - Rosalind Brown
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Hugues Chabriat
- Centre Neurovasculaire Translationnel, CERVCO, INSERM U1141, FHU NeuroVasc, Université Paris Cité, Paris, France
| | - Alberto De Luca
- Image Sciences Institute, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Charles deCarli
- Department of Neurology and Center for Neuroscience, University of California, Davis, CA, USA
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Fergus N Doubal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Thalia S Field
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Vancouver Stroke Program, Division of Neurology, University of British Columbia, Vancouver, BC, Canada
| | - Aravind Ganesh
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
| | - Steven Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Karl G Helmer
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Angela C C Jochems
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Hanna Jokinen
- Division of Neuropsychology, HUS Neurocenter, Helsinki University Hospital, University of Helsinki, Helsinki, Finland; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hugo Kuijf
- Image Sciences Institute, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bonnie Y K Lam
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Margaret KL Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jessica Lebenberg
- AP-HP, Lariboisière Hospital, Translational Neurovascular Centre, FHU NeuroVasc, Université Paris Cité, Paris, France; Université Paris Cité, INSERM UMR 1141, NeuroDiderot, Paris, France
| | - Bradley J MacIntosh
- Sandra E Black Centre for Brain Resilience and Repair, Hurvitz Brain Sciences, Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Computational Radiology and Artificial Intelligence Unit, Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Pauline Maillard
- Department of Neurology and Center for Neuroscience, University of California, Davis, CA, USA
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Margaret KL Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Leonardo Pantoni
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Salvatore Rudilosso
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Neurology, Boston University Medical Center, Boston, MA, USA; Framingham Heart Study, Framingham, MA, USA
| | - Markus D Schirmer
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Julie Staals
- School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, Netherlands; Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Edinburgh Imaging and Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Yilong Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - David Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Marialuisa Zedde
- Neurology Unit, Stroke Unit, Department of Neuromotor Physiology and Rehabilitation, Azienda Unità Sanitaria-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oscar H Del Brutto
- School of Medicine and Research Center, Universidad de Especialidades Espiritu Santo, Ecuador
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Yi-Cheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Eric E Smith
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; German Centre for Cardiovascular Research (DZHK), Munich, Germany
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
13
|
Pham W, Lynch M, Spitz G, O’Brien T, Vivash L, Sinclair B, Law M. A critical guide to the automated quantification of perivascular spaces in magnetic resonance imaging. Front Neurosci 2022; 16:1021311. [PMID: 36590285 PMCID: PMC9795229 DOI: 10.3389/fnins.2022.1021311] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
The glymphatic system is responsible for waste clearance in the brain. It is comprised of perivascular spaces (PVS) that surround penetrating blood vessels. These spaces are filled with cerebrospinal fluid and interstitial fluid, and can be seen with magnetic resonance imaging. Various algorithms have been developed to automatically label these spaces in MRI. This has enabled volumetric and morphological analyses of PVS in healthy and disease cohorts. However, there remain inconsistencies between PVS measures reported by different methods of automated segmentation. The present review emphasizes that importance of voxel-wise evaluation of model performance, mainly with the Sørensen Dice similarity coefficient. Conventional count correlations for model validation are inadequate if the goal is to assess volumetric or morphological measures of PVS. The downside of voxel-wise evaluation is that it requires manual segmentations that require large amounts of time to produce. One possible solution is to derive these semi-automatically. Additionally, recommendations are made to facilitate rigorous development and validation of automated PVS segmentation models. In the application of automated PVS segmentation tools, publication of image quality metrics, such as the contrast-to-noise ratio, alongside descriptive statistics of PVS volumes and counts will facilitate comparability between studies. Lastly, a head-to-head comparison between two algorithms, applied to two cohorts of astronauts reveals how results can differ substantially between techniques.
Collapse
Affiliation(s)
- William Pham
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Miranda Lynch
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gershon Spitz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Terence O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin Sinclair
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Radiology, Alfred Health Hospital, Melbourne, VIC, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia
| |
Collapse
|