1
|
Dopierała AAW, López Pérez D, Mercure E, Pluta A, Malinowska-Korczak A, Evans S, Wolak T, Tomalski P. Watching talking faces: The development of cortical representation of visual syllables in infancy. BRAIN AND LANGUAGE 2023; 244:105304. [PMID: 37481794 DOI: 10.1016/j.bandl.2023.105304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
From birth, we perceive speech by hearing and seeing people talk. In adults cortical representations of visual speech are processed in the putative temporal visual speech area (TVSA), but it remains unknown how these representations develop. We measured infants' cortical responses to silent visual syllables and non-communicative mouth movements using functional Near-Infrared Spectroscopy. Our results indicate that cortical specialisation for visual speech may emerge during infancy. The putative TVSA was active to both visual syllables and gurning around 5 months of age, and more active to gurning than to visual syllables around 10 months of age. Multivariate pattern analysis classification of distinct cortical responses to visual speech and gurning was successful at 10, but not at 5 months of age. These findings imply that cortical representations of visual speech change between 5 and 10 months of age, showing that the putative TVSA is initially broadly tuned and becomes selective with age.
Collapse
Affiliation(s)
- Aleksandra A W Dopierała
- Faculty of Psychology, University of Warsaw, Warsaw, Poland; Department of Psychology, University of British Columbia, Vancouver, Canada.
| | - David López Pérez
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland.
| | | | - Agnieszka Pluta
- Faculty of Psychology, University of Warsaw, Warsaw, Poland; Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Centre, Warsaw, Poland.
| | | | - Samuel Evans
- University of Westminister, London, UK; Kings College London, London, UK.
| | - Tomasz Wolak
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Centre, Warsaw, Poland.
| | - Przemysław Tomalski
- Faculty of Psychology, University of Warsaw, Warsaw, Poland; Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Yates TS, Ellis CT, Turk‐Browne NB. Face processing in the infant brain after pandemic lockdown. Dev Psychobiol 2023; 65:e22346. [PMID: 36567649 PMCID: PMC9877889 DOI: 10.1002/dev.22346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/13/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
The role of visual experience in the development of face processing has long been debated. We present a new angle on this question through a serendipitous study that cannot easily be repeated. Infants viewed short blocks of faces during fMRI in a repetition suppression task. The same identity was presented multiple times in half of the blocks (repeat condition) and different identities were presented once each in the other half (novel condition). In adults, the fusiform face area (FFA) tends to show greater neural activity for novel versus repeat blocks in such designs, suggesting that it can distinguish same versus different face identities. As part of an ongoing study, we collected data before the COVID-19 pandemic and after an initial local lockdown was lifted. The resulting sample of 12 infants (9-24 months) divided equally into pre- and post-lockdown groups with matching ages and data quantity/quality. The groups had strikingly different FFA responses: pre-lockdown infants showed repetition suppression (novel > repeat), whereas post-lockdown infants showed the opposite (repeat > novel), often referred to as repetition enhancement. These findings provide speculative evidence that altered visual experience during the lockdown, or other correlated environmental changes, may have affected face processing in the infant brain.
Collapse
Affiliation(s)
| | - Cameron T. Ellis
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Nicholas B. Turk‐Browne
- Department of PsychologyYale UniversityNew HavenConnecticutUSA,Wu Tsai InstituteYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
3
|
Filippetti ML, Andreu-Perez J, de Klerk C, Richmond C, Rigato S. Are advanced methods necessary to improve infant fNIRS data analysis? An assessment of baseline-corrected averaging, general linear model (GLM) and multivariate pattern analysis (MVPA) based approaches. Neuroimage 2022. [DOI: 10.1016/j.neuroimage.2022.119756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
4
|
Chen Y, Allison O, Green HL, Kuschner ES, Liu S, Kim M, Slinger M, Mol K, Chiang T, Bloy L, Roberts TPL, Edgar JC. Maturational trajectory of fusiform gyrus neural activity when viewing faces: From 4 months to 4 years old. Front Hum Neurosci 2022; 16:917851. [PMID: 36034116 PMCID: PMC9411513 DOI: 10.3389/fnhum.2022.917851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Infant and young child electrophysiology studies have provided information regarding the maturation of face-encoding neural processes. A limitation of previous research is that very few studies have examined face-encoding processes in children 12-48 months of age, a developmental period characterized by rapid changes in the ability to encode facial information. The present study sought to fill this gap in the literature via a longitudinal study examining the maturation of a primary node in the face-encoding network-the left and right fusiform gyrus (FFG). Whole-brain magnetoencephalography (MEG) data were obtained from 25 infants with typical development at 4-12 months, and with follow-up MEG exams every ∼12 months until 3-4 years old. Children were presented with color images of Face stimuli and visual noise images (matched on spatial frequency, color distribution, and outer contour) that served as Non-Face stimuli. Using distributed source modeling, left and right face-sensitive FFG evoked waveforms were obtained from each child at each visit, with face-sensitive activity identified via examining the difference between the Non-Face and Face FFG timecourses. Before 24 months of age (Visits 1 and 2) the face-sensitive FFG M290 response was the dominant response, observed in the left and right FFG ∼250-450 ms post-stimulus. By 3-4 years old (Visit 4), the left and right face-sensitive FFG response occurred at a latency consistent with a face-sensitive M170 response ∼100-250 ms post-stimulus. Face-sensitive left and right FFG peak latencies decreased as a function of age (with age explaining greater than 70% of the variance in face-sensitive FFG latency), and with an adult-like FFG latency observed at 3-4 years old. Study findings thus showed face-sensitive FFG maturational changes across the first 4 years of life. Whereas a face-sensitive M290 response was observed under 2 years of age, by 3-4 years old, an adult-like face-sensitive M170 response was observed bilaterally. Future studies evaluating the maturation of face-sensitive FFG activity in infants at risk for neurodevelopmental disorders are of interest, with the present findings suggesting age-specific face-sensitive neural markers of a priori interest.
Collapse
Affiliation(s)
- Yuhan Chen
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Olivia Allison
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Heather L. Green
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Emily S. Kuschner
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Michelle Slinger
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kylie Mol
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Taylor Chiang
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Timothy P. L. Roberts
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - J. Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Siddiqui MF, Pinti P, Lloyd-Fox S, Jones EJH, Brigadoi S, Collins-Jones L, Tachtsidis I, Johnson MH, Elwell CE. Regional Haemodynamic and Metabolic Coupling in Infants. Front Hum Neurosci 2022; 15:780076. [PMID: 35185494 PMCID: PMC8854371 DOI: 10.3389/fnhum.2021.780076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic pathways underlying brain function remain largely unexplored during neurodevelopment, predominantly due to the lack of feasible techniques for use with awake infants. Broadband near-infrared spectroscopy (bNIRS) provides the opportunity to explore the relationship between cerebral energy metabolism and blood oxygenation/haemodynamics through the measurement of changes in the oxidation state of mitochondrial respiratory chain enzyme cytochrome-c-oxidase (ΔoxCCO) alongside haemodynamic changes. We used a bNIRS system to measure ΔoxCCO and haemodynamics during functional activation in a group of 42 typically developing infants aged between 4 and 7 months. bNIRS measurements were made over the right hemisphere over temporal, parietal and central cortical regions, in response to social and non-social visual and auditory stimuli. Both ΔoxCCO and Δ[HbO2] displayed larger activation for the social condition in comparison to the non-social condition. Integration of haemodynamic and metabolic signals revealed networks of stimulus-selective cortical regions that were not apparent from analysis of the individual bNIRS signals. These results provide the first spatially resolved measures of cerebral metabolic activity alongside haemodynamics during functional activation in infants. Measuring synchronised changes in metabolism and haemodynamics have the potential for uncovering the development of cortical specialisation in early infancy.
Collapse
Affiliation(s)
- Maheen F. Siddiqui
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, United Kingdom
| | - Paola Pinti
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, United Kingdom
| | - Sarah Lloyd-Fox
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Emily J. H. Jones
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, United Kingdom
| | - Sabrina Brigadoi
- Department of Development and Social Psychology, University of Padua, Padua, Italy
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Liam Collins-Jones
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Mark H. Johnson
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Clare E. Elwell
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
6
|
Kobayashi M, Kanazawa S, Yamaguchi MK, O'Toole AJ. Cortical processing of dynamic bodies in the superior occipito-temporal regions of the infants' brain: Difference from dynamic faces and inversion effect. Neuroimage 2021; 244:118598. [PMID: 34587515 DOI: 10.1016/j.neuroimage.2021.118598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Previous functional neuroimaging studies imply a crucial role of the superior temporal regions (e.g., superior temporal sulcus: STS) for processing of dynamic faces and bodies. However, little is known about the cortical processing of moving faces and bodies in infancy. The current study used functional near-infrared spectroscopy (fNIRS) to directly compare cortical hemodynamic responses to dynamic faces (videos of approaching people with blurred bodies) and dynamic bodies (videos of approaching people with blurred faces) in infants' brain. We also examined the body-inversion effect in 5- to 8-month-old infants using hemodynamic responses as a measure. We found significant brain activity for the dynamic faces and bodies in the superior area of bilateral temporal cortices in both 5- to 6-month-old and 7- to 8-month-old infants. The hemodynamic responses to dynamic faces occurred across a broader area of cortex in 7- to 8-month-olds than in 5- to 6-month-olds, but we did not find a developmental change for dynamic bodies. There was no significant activation when the stimuli were presented upside down, indicating that these activation patterns did not result from the low-level visual properties of dynamic faces and bodies. Additionally, we found that the superior temporal regions showed a body inversion effect in infants aged over 5 months: the upright dynamic body stimuli induced stronger activation compared to the inverted stimuli. The most important contribution of the present study is that we identified cortical areas responsive to dynamic bodies and faces in two groups of infants (5-6-months and 7-8-months of age) and we found different developmental trends for the processing of bodies and faces.
Collapse
Affiliation(s)
- Megumi Kobayashi
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Japan.
| | - So Kanazawa
- Department of Psychology, Japan Women's University, Japan
| | | | - Alice J O'Toole
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| |
Collapse
|
7
|
Devezas MÂM. Shedding light on neuroscience: Two decades of functional near-infrared spectroscopy applications and advances from a bibliometric perspective. J Neuroimaging 2021; 31:641-655. [PMID: 34002425 DOI: 10.1111/jon.12877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical brain-imaging technique that detects changes in hemoglobin concentration in the cerebral cortex. fNIRS devices are safe, silent, portable, robust against motion artifacts, and have good temporal resolution. fNIRS is reliable and trustworthy, as well as an alternative and a complement to other brain-imaging modalities, such as electroencephalography or functional magnetic resonance imaging. Given these advantages, fNIRS has become a well-established tool for neuroscience research, used not only for healthy cortical activity but also as a biomarker during clinical assessment in individuals with schizophrenia, major depressive disorder, bipolar disease, epilepsy, Alzheimer's disease, vascular dementia, and cancer screening. Owing to its wide applicability, studies on fNIRS have increased exponentially over the last two decades. In this study, scientific publications indexed in the Web of Science databases were collected and a bibliometric-type methodology was developed. For this purpose, a comprehensive science mapping analysis, including top-ranked authors, journals, institutions, countries, and co-occurring keywords network, was conducted. From a total of 2310 eligible documents, 6028 authors and 531 journals published fNIRS-related papers, Fallgatter published the highest number of articles and was the most cited author. University of Tübingen in Germany has produced the most trending papers since 2000. USA was the most prolific country with the most active institutions, followed by China, Japan, Germany, and South Korea. The results also revealed global trends in emerging areas of research, such as neurodevelopment, aging, and cognitive and emotional assessment.
Collapse
|
8
|
Ichikawa H, Nakato E, Igarashi Y, Okada M, Kanazawa S, Yamaguchi MK, Kakigi R. A longitudinal study of infant view-invariant face processing during the first 3-8 months of life. Neuroimage 2018; 186:817-824. [PMID: 30529397 DOI: 10.1016/j.neuroimage.2018.11.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 11/27/2022] Open
Abstract
View-invariant face processing emerges early in life. A previous study (Nakato et al., 2009) measured infant hemodynamic responses to faces from the frontal and profile views in the bilateral temporal areas, which have been reported to be involved in face processing using near-infrared spectroscopy. It was reported that 5-month-old infants showed increased oxyhemoglobin (oxy-Hb) responses to frontal faces, but not to profile faces. In contrast, 8-month-old infants displayed increased oxy-Hb responses to profile faces as well as to frontal faces. In this study, we used the experimental method developed in the previous study to investigate the development of view-invariant face processing, every month for 5 months (from the first 3-8 months of life). We longitudinally measured hemodynamic responses to faces from the frontal and profile views in 14 infants. The longitudinal measurements allowed us to investigate individual differences in each participant. We modeled each infant's hemodynamic oxy-Hb responses to frontal and profile faces using linear regression analysis. Processing of profile faces emerged later and underwent larger improvements than that of frontal faces. We also found an anticorrelation between the speed of improvement in face processing and the hemodynamic response to faces at the age of 3- months. Group analysis of the averaged hemodynamic data from the 14 infants using linear regression revealed that the processing of profile faces emerged between 5 and 6 months of age. Infant view-invariant face processing developed first for frontal faces. This was followed by the emergence of processing of profile faces.
Collapse
Affiliation(s)
- Hiroko Ichikawa
- Department of Psychology, Chuo University, Hachioji, Tokyo, 192-0393, Japan; Research and Development Initiative, Chuo University, Chiyoda, Tokyo, 112-8551, Japan; Japan Society for the Promotion of Sciences, Chiyoda, Tokyo, 102-8471, Japan.
| | - Emi Nakato
- Research and Development Initiative, Chuo University, Chiyoda, Tokyo, 112-8551, Japan; Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Yasuhiko Igarashi
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Masato Okada
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan; RIKEN Brain Science Institute, Wako, Saitama, 351-0106, Japan
| | - So Kanazawa
- Department of Psychology, Japan Women's University, Kawasaki, Kanagawa, 214-8565, Japan
| | - Masami K Yamaguchi
- Department of Psychology, Chuo University, Hachioji, Tokyo, 192-0393, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| |
Collapse
|
9
|
Yabe M, Oshima S, Eifuku S, Taira M, Kobayashi K, Yabe H, Niwa SI. Effects of storytelling on the childhood brain: near-infrared spectroscopic comparison with the effects of picture-book reading. Fukushima J Med Sci 2018; 64:125-132. [PMID: 30429413 DOI: 10.5387/fms.2018-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In children, storytelling provides many psychological and educational benefits, such as enhanced imagination to help visualize spoken words, improved vocabulary, and more refined communication skills. However, the brain mechanisms underlying the effects of storytelling on children are not clear. In this study, the effects of storytelling on the brains of children were assessed by using near-infrared spectroscopy (NIRS). Results indicated significant decreases of the blood flow in the bilateral prefrontal areas during picture-book reading when the subjects were familiarized in comparison to the cases of the subject naïve to the stories. However, no significant differences in the blood flow were found during storytelling between the subjects naïve and familiarized to the stories. The results indicated more sustained brain activation to storytelling in comparison with picture-book reading, suggesting possible advantages of storytelling as a psychological and educational medium in children.
Collapse
Affiliation(s)
- Miyuki Yabe
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan.,Department of Systems Neuroscience, Fukushima Medical University, Fukushima, Japan.,Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Sachie Oshima
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Satoshi Eifuku
- Department of Systems Neuroscience, Fukushima Medical University, Fukushima, Japan
| | - Masato Taira
- Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Sin-Ichi Niwa
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
10
|
Sakuta Y, Kanazawa S, Yamaguchi MK. Infants prefer a trustworthy person: An early sign of social cognition in infants. PLoS One 2018; 13:e0203541. [PMID: 30188941 PMCID: PMC6126855 DOI: 10.1371/journal.pone.0203541] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 08/22/2018] [Indexed: 11/19/2022] Open
Abstract
Recently, various studies have clarified that humans can immediately make social evaluations from facial appearance and that such judgment have an important role in several social contexts. However, the origins and early development of this skill have not been well investigated. To clarify the mechanisms for the acquisition of this skill, we examined whether 6- to 8-month-old infants show a preference for a more trustworthy-looking person. Results showed that infants preferred a trustworthy face to an untrustworthy one when both faces were high in dominance. This difference was not seen when both faces were low in dominance. Moreover, this preference disappeared when the faces were upside down. These findings suggest that the perception of trustworthiness based on facial appearance emerges in early development with little social experience. Further research is needed to verify whether infants also perceive other traits, such as competence.
Collapse
Affiliation(s)
- Yuiko Sakuta
- Faculty of Human Life Sciences, Jissen Women’s University, Hino, Tokyo, Japan
| | - So Kanazawa
- Department of Psychology, Japan Women’s University, Kawasaki, Kanagawa, Japan
| | | |
Collapse
|
11
|
Maria A, Shekhar S, Nissilä I, Kotilahti K, Huotilainen M, Karlsson L, Karlsson H, Tuulari JJ. Emotional Processing in the First 2 Years of Life: A Review of Near-Infrared Spectroscopy Studies. J Neuroimaging 2018; 28:441-454. [PMID: 29883005 PMCID: PMC6175097 DOI: 10.1111/jon.12529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/21/2018] [Indexed: 12/16/2022] Open
Abstract
Emotional stimuli processing during childhood helps us to detect salient cues in our environment and prepares us for our social life. In early childhood, the emotional valences of auditory and visual input are salient and relevant cues of social aspects of the environment, and it is of special interest to understand how exactly the processing of emotional stimuli develops. Near‐infrared spectroscopy (NIRS) is a noninvasive neuroimaging tool that has proven valuable in studying emotional processing in children. After conducting a systematic search of PubMed, Web of Science, and Embase databases, we examined 50 NIRS studies performed to study emotional stimuli processing in children in the first 2 years of age. We found that the majority of these studies are done in infants and the most commonly used stimuli are visual and auditory. Many of the reviewed studies suggest the involvement of bilateral temporal areas in emotional processing of visual and auditory stimuli. It is unclear which neural activation patterns reflect maturation and at what age the emotional encoding reaches those typically seen in adults. Our review provides an overview of the database on emotional processing in children up to 2 years of age. Furthermore, it demonstrates the need to include the less‐studied age range of 1 to 2 years, and suggests the use of combined audio‐visual stimuli and longitudinal studies for future research on emotional processing in children. Thus, NIRS might be a vital tool to study the associations between the early pattern of neural responses and socioemotional development later in life.
Collapse
Affiliation(s)
- Ambika Maria
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland.,Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Shashank Shekhar
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland.,Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| | - Ilkka Nissilä
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, Espoo, Finland
| | - Kalle Kotilahti
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, Espoo, Finland
| | - Minna Huotilainen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland.,Cognitive Brain Research Unit and Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland.,Department of Child Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland.,Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland.,Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
12
|
Issard C, Gervain J. Variability of the hemodynamic response in infants: Influence of experimental design and stimulus complexity. Dev Cogn Neurosci 2018; 33:182-193. [PMID: 29397345 PMCID: PMC6969282 DOI: 10.1016/j.dcn.2018.01.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/27/2022] Open
Abstract
Measuring brain activity in developmental populations remains a major challenge despite great technological advances. Among the numerous available methods, functional near-infrared spectroscopy (fNIRS), an imaging modality that probes the hemodynamic response, is a powerful tool for recording brain activity in a great variety of situations and populations. Neurocognitive studies with infants have often reported inverted hemodynamic responses, i.e. a decrease instead of an increase in regional blood oxygenation, but the exact physiological explanation and cognitive interpretation of this response remain unclear. Here, we first provide an overview of the basic principles of NIRS and its use in cognitive developmental neuroscience. We then review the infant fNIRS literature to show that the hemodynamic response is modulated by experimental design and stimulus complexity, sometimes leading to hemodynamic responses with non-canonical shapes. We also argue that this effect is further modulated by the age of participants, the cortical regions involved, and the developmental stage of the tested cognitive process. We argue that this variability needs to be taken into account when designing and interpreting developmental studies measuring the hemodynamic response.
Collapse
Affiliation(s)
- Cécile Issard
- Laboratoire Psychologie de la Perception, Université Paris Descartes, Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France.
| | - Judit Gervain
- Laboratoire Psychologie de la Perception, Université Paris Descartes, Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France; Laboratoire Psychologie de la Perception, CNRS UMR 8242, Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
13
|
Kobayashi M, Macchi Cassia V, Kanazawa S, Yamaguchi MK, Kakigi R. Perceptual narrowing towards adult faces is a cross-cultural phenomenon in infancy: a behavioral and near-infrared spectroscopy study with Japanese infants. Dev Sci 2018; 21:e12498. [PMID: 27921339 PMCID: PMC5763342 DOI: 10.1111/desc.12498] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 08/08/2016] [Indexed: 11/30/2022]
Abstract
Recent data showed that, in Caucasian infants, perceptual narrowing occurs for own-race adult faces between 3 and 9 months of age, possibly as a consequence of the extensive amount of social and perceptual experience accumulated with caregivers and/or other adult individuals of the same race of the caregiver. The neural correlates of this developmental process remain unexplored, and it is currently unknown whether perceptual tuning towards adult faces can be extended to other cultures. To this end, in the current study we tested the ability of 3- and 9-month-old Japanese infants to discriminate among adult and infant Asian faces in a visual familiarization task (Experiment 1), and compared 9-month-olds' cerebral hemodynamic responses to adult and infant faces as measured by near-infrared spectroscopy (NIRS) (Experiment 2). Results showed that 3-month-olds exhibit above-chance discrimination of adult and infant faces, whereas 9-month-olds discriminate adult faces but not infant faces (Experiment 1). Moreover, adult faces, but not infant faces, induced significant increases in hemodynamic responses in the right temporal areas of 9-month-old infants. Overall, our data suggest that perceptual narrowing towards adult faces is a cross-cultural phenomenon occurring between 3 and 9 months of age, and translates by 9 months of age into a right-hemispheric specialization in the processing of adult faces.
Collapse
Affiliation(s)
- Megumi Kobayashi
- Department of Integrative PhysiologyNational Institute for Physiological SciencesJapan
- Japan Society for Promotion of ScienceJapan
| | | | - So Kanazawa
- Department of PsychologyJapan Women's UniversityJapan
| | | | - Ryusuke Kakigi
- Department of Integrative PhysiologyNational Institute for Physiological SciencesJapan
| |
Collapse
|
14
|
Right but not left hemispheric discrimination of faces in infancy. Nat Hum Behav 2017; 2:67-79. [DOI: 10.1038/s41562-017-0249-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/19/2017] [Indexed: 11/08/2022]
|
15
|
Powell LJ, Deen B, Saxe R. Using individual functional channels of interest to study cortical development with fNIRS. Dev Sci 2017; 21:e12595. [PMID: 28944612 DOI: 10.1111/desc.12595] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 06/10/2017] [Indexed: 12/01/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that could be uniquely effective for investigating cortical function in human infants. However, prior efforts have been hampered by the difficulty of aligning arrays of fNIRS optodes placed on the scalp to anatomical or functional regions of underlying cortex. This challenge can be addressed by identifying channels of interest in individual participants, and then testing the reliability of those channels' response profiles in independent data. Using this approach, cortical regions with preferential responses to faces versus scenes, and to scenes versus faces, were observed reliably in both adults and infants. By contrast, standard analysis techniques did not reliably identify significant responses to both categories in either age group. These results reveal scene-responsive regions, and confirm face-responsive regions, in preverbal infants. More generally, the analysis approach will be a robust and sensitive tool for future characterization of the early functional development of the human brain.
Collapse
Affiliation(s)
- Lindsey J Powell
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ben Deen
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Laboratory of Neural Systems, The Rockefeller University, New York, USA
| | - Rebecca Saxe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Emberson LL, Cannon G, Palmeri H, Richards JE, Aslin RN. Using fNIRS to examine occipital and temporal responses to stimulus repetition in young infants: Evidence of selective frontal cortex involvement. Dev Cogn Neurosci 2017; 23:26-38. [PMID: 28012401 PMCID: PMC5253300 DOI: 10.1016/j.dcn.2016.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/06/2016] [Accepted: 11/11/2016] [Indexed: 12/24/2022] Open
Abstract
How does the developing brain respond to recent experience? Repetition suppression (RS) is a robust and well-characterized response of to recent experience found, predominantly, in the perceptual cortices of the adult brain. We use functional near-infrared spectroscopy (fNIRS) to investigate how perceptual (temporal and occipital) and frontal cortices in the infant brain respond to auditory and visual stimulus repetitions (spoken words and faces). In Experiment 1, we find strong evidence of repetition suppression in the frontal cortex but only for auditory stimuli. In perceptual cortices, we find only suggestive evidence of auditory RS in the temporal cortex and no evidence of visual RS in any ROI. In Experiments 2 and 3, we replicate and extend these findings. Overall, we provide the first evidence that infant and adult brains respond differently to stimulus repetition. We suggest that the frontal lobe may support the development of RS in perceptual cortices.
Collapse
|
17
|
Nordt M, Hoehl S, Weigelt S. The use of repetition suppression paradigms in developmental cognitive neuroscience. Cortex 2016; 80:61-75. [DOI: 10.1016/j.cortex.2016.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/29/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022]
|
18
|
The development of category specificity in infancy – What can we learn from electrophysiology? Neuropsychologia 2016; 83:114-122. [DOI: 10.1016/j.neuropsychologia.2015.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 08/11/2015] [Accepted: 08/20/2015] [Indexed: 11/18/2022]
|
19
|
Inoue T, Sakuta Y, Shimamura K, Ichikawa H, Kobayashi M, Otani R, Yamaguchi MK, Kanazawa S, Kakigi R, Sakuta R. Differences in the Pattern of Hemodynamic Response to Self-Face and Stranger-Face Images in Adolescents with Anorexia Nervosa: A Near-Infrared Spectroscopic Study. PLoS One 2015; 10:e0132050. [PMID: 26151754 PMCID: PMC4494813 DOI: 10.1371/journal.pone.0132050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022] Open
Abstract
There have been no reports concerning the self-face perception in patients with anorexia nervosa (AN). The purpose of this study was to compare the neuronal correlates of viewing self-face images (i.e. images of familiar face) and stranger-face images (i.e. images of an unfamiliar face) in female adolescents with and without AN. We used near-infrared spectroscopy (NIRS) to measure hemodynamic responses while the participants viewed full-color photographs of self-face and stranger-face. Fifteen females with AN (mean age, 13.8 years) and 15 age- and intelligence quotient (IQ)-matched female controls without AN (mean age, 13.1 years) participated in the study. The responses to photographs were compared with the baseline activation (response to white uniform blank). In the AN group, the concentration of oxygenated hemoglobin (oxy-Hb) significantly increased in the right temporal area during the presentation of both the self-face and stranger-face images compared with the baseline level. In contrast, in the control group, the concentration of oxy-Hb significantly increased in the right temporal area only during the presentation of the self-face image. To our knowledge the present study is the first report to assess brain activities during self-face and stranger-face perception among female adolescents with AN. There were different patterns of brain activation in response to the sight of the self-face and stranger-face images in female adolescents with AN and controls.
Collapse
Affiliation(s)
- Takeshi Inoue
- Department of pediatrics, center for child development and psychosomatic, Dokkyo medical university Koshigaya hospital, Koshigaya, Saitama, Japan
| | - Yuiko Sakuta
- Faculty of Human Life Sciences, Jissen Women’s University, Hino, Tokyo, Japan
| | - Keiichi Shimamura
- Department of pediatrics, center for child development and psychosomatic, Dokkyo medical university Koshigaya hospital, Koshigaya, Saitama, Japan
| | - Hiroko Ichikawa
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Megumi Kobayashi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Ryoko Otani
- Department of pediatrics, center for child development and psychosomatic, Dokkyo medical university Koshigaya hospital, Koshigaya, Saitama, Japan
| | | | - So Kanazawa
- Department of Psychology, Japan Women's University, Kawasaki, Kanagawa, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Ryoichi Sakuta
- Department of pediatrics, center for child development and psychosomatic, Dokkyo medical university Koshigaya hospital, Koshigaya, Saitama, Japan
| |
Collapse
|
20
|
Wilcox T, Biondi M. fNIRS in the developmental sciences. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2015; 6:263-83. [PMID: 26263229 DOI: 10.1002/wcs.1343] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/18/2014] [Accepted: 01/02/2015] [Indexed: 11/09/2022]
Abstract
With the introduction of functional near-infrared spectroscopy (fNIRS) into the experimental setting, developmental scientists have, for the first time, the capacity to investigate the functional activation of the infant brain in awake, engaged participants. The advantages of fNIRS clearly outweigh the limitations, and a description of how this technology is implemented in infant populations is provided. Most fNIRS research falls into one of three content domains: object processing, processing of biologically and socially relevant information, and language development. Within these domains, there are ongoing debates about the origins and development of human knowledge, making early neuroimaging particularly advantageous. The use of fNIRS has allowed investigators to begin to identify the localization of early object, social, and linguistic knowledge in the immature brain and the ways in which this changes with time and experience. In addition, there is a small but growing body of research that provides insight into the neural mechanisms that support and facilitate learning during the first year of life. At the same time, as with any emerging field, there are limitations to the conclusions that can be drawn on the basis of current findings. We offer suggestions as to how to optimize the use of this technology to answer questions of theoretical and practical importance to developmental scientists.
Collapse
Affiliation(s)
- Teresa Wilcox
- Department of Psychology, Texas A&M University, College Station, TX, USA
| | - Marisa Biondi
- Department of Psychology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
21
|
Abstract
Over the past 20 years, the field of cognitive neuroscience has relied heavily on hemodynamic measures of blood oxygenation in local regions of the brain to make inferences about underlying cognitive processes. These same functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) techniques have recently been adapted for use with human infants. We review the advantages and disadvantages of these two neuroimaging methods for studies of infant cognition, with a particular emphasis on their technical limitations and the linking hypotheses that are used to draw conclusions from correlational data. In addition to summarizing key findings in several domains of infant cognition, we highlight the prospects of improving the quality of fNIRS data from infants to address in a more sophisticated way how cognitive development is mediated by changes in underlying neural mechanisms.
Collapse
Affiliation(s)
- Richard N Aslin
- Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627; ,
| | | | | |
Collapse
|
22
|
Ichikawa H, Kitazono J, Nagata K, Manda A, Shimamura K, Sakuta R, Okada M, Yamaguchi MK, Kanazawa S, Kakigi R. Novel method to classify hemodynamic response obtained using multi-channel fNIRS measurements into two groups: exploring the combinations of channels. Front Hum Neurosci 2014; 8:480. [PMID: 25071510 PMCID: PMC4078995 DOI: 10.3389/fnhum.2014.00480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/13/2014] [Indexed: 11/13/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) in psychiatric studies has widely demonstrated that cerebral hemodynamics differs among psychiatric patients. Recently we found that children with attention-deficit/hyperactivity disorder (ADHD) and children with autism spectrum disorders (ASD) showed different hemodynamic responses to their own mother’s face. Based on this finding, we may be able to classify the hemodynamic data into two those groups and predict to which diagnostic group an unknown participant belongs. In the present study, we proposed a novel statistical method for classifying the hemodynamic data of these two groups. By applying a support vector machine (SVM), we searched the combination of measurement channels at which the hemodynamic response differed between the ADHD and the ASD children. The SVM found the optimal subset of channels in each data set and successfully classified the ADHD data from the ASD data. For the 24-dimensional hemodynamic data, two optimal subsets classified the hemodynamic data with 84% classification accuracy, while the subset contained all 24 channels classified with 62% classification accuracy. These results indicate the potential application of our novel method for classifying the hemodynamic data into two groups and revealing the combinations of channels that efficiently differentiate the two groups.
Collapse
Affiliation(s)
- Hiroko Ichikawa
- Department of Psychology, Chuo University Tokyo, Japan ; Research and Development Initiative, Chuo University Tokyo, Japan ; Japan Society for the Promotion of Sciences Tokyo, Japan
| | - Jun Kitazono
- Department of Complexity Science and Engineering, The University of Tokyo Kashiwa, Japan
| | - Kenji Nagata
- Department of Complexity Science and Engineering, The University of Tokyo Kashiwa, Japan
| | - Akira Manda
- Department of Complexity Science and Engineering, The University of Tokyo Kashiwa, Japan
| | - Keiichi Shimamura
- Department of Pediatrics, Dokkyo Medical University Koshigaya Hospital Koshigaya, Japan ; Center for Child Development and Psychosomatic Medicine, Dokkyo Medical University Koshigaya Hospital Koshigaya, Japan
| | - Ryoichi Sakuta
- Department of Pediatrics, Dokkyo Medical University Koshigaya Hospital Koshigaya, Japan ; Center for Child Development and Psychosomatic Medicine, Dokkyo Medical University Koshigaya Hospital Koshigaya, Japan
| | - Masato Okada
- Department of Complexity Science and Engineering, The University of Tokyo Kashiwa, Japan ; RIKEN Brain Science Institute Wako, Japan
| | - Masami K Yamaguchi
- Department of Psychology, Chuo University Tokyo, Japan ; Research and Development Initiative, Chuo University Tokyo, Japan
| | - So Kanazawa
- Department of Psychology, Japan Women's University Kawasaki, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences Okazaki, Japan
| |
Collapse
|
23
|
Kobayashi M, Otsuka Y, Kanazawa S, Yamaguchi MK, Kakigi R. The processing of faces across non-rigid facial transformation develops at 7 month of age: a fNIRS-adaptation study. BMC Neurosci 2014; 15:81. [PMID: 24965204 PMCID: PMC4230271 DOI: 10.1186/1471-2202-15-81] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/19/2014] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Using near-infrared spectroscopy (NIRS), our previous neural adaptation studies found that infants' bilateral temporal regions process facial identity (FiHN 5:153, 2011). In addition, we revealed that size-invariant processing of facial identity develops by 5 months of age (NR 23:984-988, 2012), while view-invariant processing develops around 7 months of age (FiHN 5:153, 2011). The aim in the current study was to examine whether infants' brains process facial identity across the non-rigid transformation of facial features by using the neural adaptation paradigm. We used NIRS to compare hemodynamic changes in the bilateral temporal areas of 5- to 6-month-olds and 7- to 8-month-olds during presentations of an identical face and of different faces. RESULTS We found that (1) the oxyhemoglobin concentration around the T5 and T6 positions increased significantly during the presentation of different faces only in 7- to 8-month-olds and (2) 7- to 8-month-olds, but not 5- to 6-month-olds, showed attenuation in these channels to the presentation of the same face rather than to the presentation of different faces, regardless of non-rigid changes in facial features. CONCLUSIONS Our results suggest that the processing of facial identity with non-rigid facial transformation develops around 7 months after birth.
Collapse
Affiliation(s)
- Megumi Kobayashi
- Department of Integrative Physiology, National Institute for Physiological Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Japan Society for the Promotion of Science, 5-3-1, Koujimachi, Chiyoda, Tokyo 102-0083, Japan
| | - Yumiko Otsuka
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - So Kanazawa
- Department of Psychology, Japan Women’s University, 1-1-1, Nishi-ikuta, Tama, Kawasaki, Kanagawa 214-8565, Japan
| | - Masami K Yamaguchi
- Department of Psychology, Chuo University, 742-1, Higashi-nakano, Hachioji, Tokyo 192-0393, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
24
|
Southgate V, Begus K, Lloyd-Fox S, di Gangi V, Hamilton A. Goal representation in the infant brain. Neuroimage 2014; 85 Pt 1:294-301. [PMID: 23994126 PMCID: PMC3898941 DOI: 10.1016/j.neuroimage.2013.08.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 11/30/2022] Open
Abstract
It is well established that, from an early age, human infants interpret the movements of others as actions directed towards goals. However, the cognitive and neural mechanisms which underlie this ability are hotly debated. The current study was designed to identify brain regions involved in the representation of others' goals early in development. Studies with adults have demonstrated that the anterior intraparietal sulcus (aIPS) exhibits repetition suppression for repeated goals and a release from suppression for new goals, implicating this specific region in goal representation in adults. In the current study, we used a modified paired repetition suppression design with 9-month-old infants to identify which cortical regions are suppressed when the infant observes a repeated goal versus a new goal. We find a strikingly similar response pattern and location of activity as had been reported in adults; the only brain region displaying significant repetition suppression for repeated goals and a release from suppression for new goals was the left anterior parietal region. Not only does our data suggest that the left anterior parietal region is specialized for representing the goals of others' actions from early in life, this demonstration presents an opportunity to use this method and design to elucidate the debate over the mechanisms and cues which contribute to early action understanding.
Collapse
Affiliation(s)
- Victoria Southgate
- Centre for Brain and Cognitive Development, Birkbeck College, Malet Street, London, UK.
| | | | | | | | | |
Collapse
|
25
|
Contrast reversal of the eyes impairs infants' face processing: a near-infrared spectroscopic study. Neuropsychologia 2013; 51:2556-61. [PMID: 24012650 DOI: 10.1016/j.neuropsychologia.2013.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/23/2013] [Accepted: 08/28/2013] [Indexed: 11/23/2022]
Abstract
Human can easily detect other's eyes and gaze from early in life. Such sensitivity is supported by the contrast polarity of human eyes, which have a white sclera contrasting with the darker colored iris (Kobayashi & Kohshima, (1997). Nature, 387, 767-768; Kobayashi & Kohshima, (2001). Journal of Human Evolution, 40, 419-435). Recent studies suggest that the contrast polarity around the eyes plays an important role in infants' face processing. Newborns preferred upright face images to inverted ones in contrast-preserved faces, but not in contrast-reversed faces (Farroni et al., (2005). Proceedings of National Academy of Sciences of the United States of America, 102, p. 17245-17250). Seven- to 8-month-old infants failed to discriminate between faces when the contrast polarity of eyes was reversed (Otsuka et al., (2013). Journal of Experimental Child Psychology, 115, 598-606). Neuroimaging study with adults revealed that full-negative faces induced less activation in the right fusiform gyrus than either full-positive faces or negative faces with contrast-preserved eyes (Gilad et al., (2009). Proceedings of National Academy of Sciences of the United States of America, 106, p. 5353-5358). In the present study, we investigated whether contrast-reversed eyes diminish infants' brain activity related to face processing. We measured hemodynamic responses in the bilateral temporal area of 5- to 6-month-old infants. Their hemodynamic responses to faces with positive eyes and those with negative eyes were compared against the baseline activation during the presentation of object images. We found that the presentation of faces with positive eyes increased the concentration of oxy-Hb in the right temporal area and those of total-Hb in the bilateral temporal areas. No such change occurred for faces with negative eyes. Our results suggest the importance of contrast polarity of the eyes in the face-selective neural responses from early development.
Collapse
|
26
|
Otsuka Y. Face recognition in infants: A review of behavioral and near-infrared spectroscopic studies. JAPANESE PSYCHOLOGICAL RESEARCH 2013. [DOI: 10.1111/jpr.12024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Abstract
We studied whether 5-month-old to 8-month-old infants process faces in a size-invariant manner by applying the fNIRS-adaptation paradigm used in our previous study. We used near-infrared spectroscopy to measure hemodynamic responses in the temporal regions of infants' brains during the repeated presentation of an identical face and different faces while changing the size of the faces. As a result, we found that (a) the hemodynamic responses in the channels around the T5 and T6 positions increased significantly during the presentation of different faces and (b) the hemodynamic responses in these channels showed attenuation to the presentation of the same face compared with the presentation of different faces even when the size of the faces altered. Our findings indicated that infants could show adaptation to the same face despite size alterations and that this processing occurred in the bilateral temporal areas.
Collapse
|
28
|
Liao SM, Ferradal SL, White BR, Gregg N, Inder TE, Culver JP. High-density diffuse optical tomography of term infant visual cortex in the nursery. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:081414. [PMID: 23224175 PMCID: PMC3391961 DOI: 10.1117/1.jbo.17.8.081414] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 06/05/2012] [Accepted: 06/08/2012] [Indexed: 05/19/2023]
Abstract
Advancements in antenatal and neonatal medicine over the last few decades have led to significant improvement in the survival rates of sick newborn infants. However, this improvement in survival has not been matched by a reduction in neurodevelopmental morbidities with increasing recognition of the diverse cognitive and behavioral challenges that preterm infants face in childhood. Conventional neuroimaging modalities, such as cranial ultrasound and magnetic resonance imaging, provide an important definition of neuroanatomy with recognition of brain injury. However, they fail to define the functional integrity of the immature brain, particularly during this critical developmental period. Diffuse optical tomography methods have established success in imaging adult brain function; however, few studies exist to demonstrate their feasibility in the neonatal population. We demonstrate the feasibility of using recently developed high-density diffuse optical tomography (HD-DOT) to map functional activation of the visual cortex in healthy term-born infants. The functional images show high contrast-to-noise ratio obtained in seven neonates. These results illustrate the potential for HD-DOT and provide a foundation for investigations of brain function in more vulnerable newborns, such as preterm infants.
Collapse
Affiliation(s)
- Steve M. Liao
- Washington University School of Medicine, Department of Pediatrics, 660 S. Euclid Ave, St. Louis, Missouri 63110
| | - Silvina L. Ferradal
- Washington University, Department of Biomedical Engineering, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130
- Washington University School of Medicine, Department of Radiology, 660 S. Euclid Ave, St. Louis, Missouri 63110
| | - Brian R. White
- Washington University School of Medicine, Department of Radiology, 660 S. Euclid Ave, St. Louis, Missouri 63110
- Washington University, Department of Physics, Campus Box 1105, One Brookings Drive, St. Louis, Missouri 63130
| | - Nicholas Gregg
- University of Pittsburgh School of Medicine, M240 Scaife Hall, 3550 Terrace Street, Pittsburgh, Pennsylvania 15261
| | - Terrie E. Inder
- Washington University School of Medicine, Department of Pediatrics, 660 S. Euclid Ave, St. Louis, Missouri 63110
| | - Joseph P. Culver
- Washington University, Department of Biomedical Engineering, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130
- Washington University School of Medicine, Department of Radiology, 660 S. Euclid Ave, St. Louis, Missouri 63110
- Washington University, Department of Physics, Campus Box 1105, One Brookings Drive, St. Louis, Missouri 63130
- Address all correspondence to: Joseph P. Culver, Washington University School of Medicine, Department of Radiology, 4525 Scott Avenue, Room 1137, St. Louis, Missouri 63110. Tel: 314-747-1341; E-mail:
| |
Collapse
|