1
|
Waschke L, Kamp F, van den Elzen E, Krishna S, Lindenberger U, Rutishauser U, Garrett DD. Single-neuron spiking variability in hippocampus dynamically tracks sensory content during memory formation in humans. Nat Commun 2025; 16:236. [PMID: 39747026 DOI: 10.1038/s41467-024-55406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
During memory formation, the hippocampus is presumed to represent the content of stimuli, but how it does so is unknown. Using computational modelling and human single-neuron recordings, we show that the more precisely hippocampal spiking variability tracks the composite features of each individual stimulus, the better those stimuli are later remembered. We propose that moment-to-moment spiking variability may provide a new window into how the hippocampus constructs memories from the building blocks of our sensory world.
Collapse
Affiliation(s)
- Leonhard Waschke
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Fabian Kamp
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Evi van den Elzen
- Tilburg School of Social and Behavioral Sciences, Tilburg University, Tilburg, The Netherlands
| | - Suresh Krishna
- Department of Physiology, McGill University, Montreal, Canada
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany.
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
2
|
Ye Q, Fidalgo C, Byrne P, Muñoz LE, Cant JS, Lee ACH. Using imagination and the contents of memory to create new scene and object representations: A functional MRI study. Neuropsychologia 2024; 204:109000. [PMID: 39271053 DOI: 10.1016/j.neuropsychologia.2024.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Humans can use the contents of memory to construct scenarios and events that they have not encountered before, a process colloquially known as imagination. Much of our current understanding of the neural mechanisms mediating imagination is limited by paradigms that rely on participants' subjective reports of imagined content. Here, we used a novel behavioral paradigm that was designed to systematically evaluate the contents of an individual's imagination. Participants first learned the layout of four distinct rooms containing five wall segments with differing geometrical characteristics, each associated with a unique object. During functional MRI, participants were then shown two different wall segments or objects on each trial and asked to first, retrieve the associated objects or walls, respectively (retrieval phase) and then second, imagine the two objects side-by-side or combine the two wall segments (imagination phase). Importantly, the contents of each participant's imagination were interrogated by having them make a same/different judgment about the properties of the imagined objects or scenes. Using univariate and multivariate analyses, we observed widespread activity across occipito-temporal cortex for the retrieval of objects and for the imaginative creation of scenes. Interestingly, a classifier, whether trained on the imagination or retrieval data, was able to successfully differentiate the neural patterns associated with the imagination of scenes from that of objects. Our results reveal neural differences in the cued retrieval of object and scene memoranda, demonstrate that different representations underlie the creation and/or imagination of scene and object content, and highlight a novel behavioral paradigm that can be used to systematically evaluate the contents of an individual's imagination.
Collapse
Affiliation(s)
- Qun Ye
- Intelligent Laboratory of Child and Adolescent Mental Health and Crisis Intervention of Zhejiang Province, School of Psychology, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Celia Fidalgo
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Patrick Byrne
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Luis Eduardo Muñoz
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Jonathan S Cant
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada.
| | - Andy C H Lee
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada; Rotman Research Institute, Baycrest Centre, Toronto, Ontario, M6A 2E1, Canada.
| |
Collapse
|
3
|
Tarder-Stoll H, Baldassano C, Aly M. The brain hierarchically represents the past and future during multistep anticipation. Nat Commun 2024; 15:9094. [PMID: 39438448 PMCID: PMC11496687 DOI: 10.1038/s41467-024-53293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Memory for temporal structure enables both planning of future events and retrospection of past events. We investigated how the brain flexibly represents extended temporal sequences into the past and future during anticipation. Participants learned sequences of environments in immersive virtual reality. Pairs of sequences had the same environments in a different order, enabling context-specific learning. During fMRI, participants anticipated upcoming environments multiple steps into the future in a given sequence. Temporal structure was represented in the hippocampus and across higher-order visual regions (1) bidirectionally, with graded representations into the past and future and (2) hierarchically, with further events into the past and future represented in successively more anterior brain regions. In hippocampus, these bidirectional representations were context-specific, and suppression of far-away environments predicted response time costs in anticipation. Together, this work sheds light on how we flexibly represent sequential structure to enable planning over multiple timescales.
Collapse
Affiliation(s)
- Hannah Tarder-Stoll
- Department of Psychology, Columbia University, New York, USA.
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada.
| | | | - Mariam Aly
- Department of Psychology, Columbia University, New York, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
4
|
Chen K, Forrest AM, Burgos GG, Kozai TDY. Neuronal functional connectivity is impaired in a layer dependent manner near chronically implanted intracortical microelectrodes in C57BL6 wildtype mice. J Neural Eng 2024; 21:036033. [PMID: 38788704 DOI: 10.1088/1741-2552/ad5049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Objective.This study aims to reveal longitudinal changes in functional network connectivity within and across different brain structures near chronically implanted microelectrodes. While it is well established that the foreign-body response (FBR) contributes to the gradual decline of the signals recorded from brain implants over time, how the FBR affects the functional stability of neural circuits near implanted brain-computer interfaces (BCIs) remains unknown. This research aims to illuminate how the chronic FBR can alter local neural circuit function and the implications for BCI decoders.Approach.This study utilized single-shank, 16-channel,100µm site-spacing Michigan-style microelectrodes (3 mm length, 703µm2 site area) that span all cortical layers and the hippocampal CA1 region. Sex balanced C57BL6 wildtype mice (11-13 weeks old) received perpendicularly implanted microelectrode in left primary visual cortex. Electrophysiological recordings were performed during both spontaneous activity and visual sensory stimulation. Alterations in neuronal activity near the microelectrode were tested assessing cross-frequency synchronization of local field potential (LFP) and spike entrainment to LFP oscillatory activity throughout 16 weeks after microelectrode implantation.Main results. The study found that cortical layer 4, the input-receiving layer, maintained activity over the implantation time. However, layers 2/3 rapidly experienced severe impairment, leading to a loss of proper intralaminar connectivity in the downstream output layers 5/6. Furthermore, the impairment of interlaminar connectivity near the microelectrode was unidirectional, showing decreased connectivity from Layers 2/3 to Layers 5/6 but not the reverse direction. In the hippocampus, CA1 neurons gradually became unable to properly entrain to the surrounding LFP oscillations.Significance. This study provides a detailed characterization of network connectivity dysfunction over long-term microelectrode implantation periods. This new knowledge could contribute to the development of targeted therapeutic strategies aimed at improving the health of the tissue surrounding brain implants and potentially inform engineering of adaptive decoders as the FBR progresses. Our study's understanding of the dynamic changes in the functional network over time opens the door to developing interventions for improving the long-term stability and performance of intracortical microelectrodes.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Adam M Forrest
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | | | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States of America
| |
Collapse
|
5
|
Kim K, Nokia MS, Palva S. Distinct Hippocampal Oscillation Dynamics in Trace Eyeblink Conditioning Task for Retrieval and Consolidation of Associations. eNeuro 2024; 11:ENEURO.0030-23.2024. [PMID: 38627063 PMCID: PMC11046259 DOI: 10.1523/eneuro.0030-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Trace eyeblink conditioning (TEBC) has been widely used to study associative learning in both animals and humans. In this paradigm, conditioned responses (CRs) to conditioned stimuli (CS) serve as a measure for retrieving learned associations between the CS and the unconditioned stimuli (US) within a trial. Memory consolidation, that is, learning over time, can be quantified as an increase in the proportion of CRs across training sessions. However, how hippocampal oscillations differentiate between successful memory retrieval within a session and consolidation across TEBC training sessions remains unknown. To address this question, we recorded local field potentials (LFPs) from the rat dorsal hippocampus during TEBC and investigated hippocampal oscillation dynamics associated with these two functions. We show that transient broadband responses to the CS were correlated with memory consolidation, as indexed by an increase in CRs across TEBC sessions. In contrast, induced alpha (8-10 Hz) and beta (16-20 Hz) band responses were correlated with the successful retrieval of the CS-US association within a session, as indexed by the difference in trials with and without CR.
Collapse
Affiliation(s)
- Kayeon Kim
- Neuroscience Center, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki FI-00014, Finland
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Miriam S Nokia
- Department of Psychology, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Satu Palva
- Neuroscience Center, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki FI-00014, Finland
- Centre for Cognitive Neuroscience, School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QQ, Scotland
- Division of psychology, VISE, Faculty of Education and Psychology, University of Oulu, Oulu, Ostrobothnia FI-90014, Finland
| |
Collapse
|
6
|
Yonelinas AP. The role of recollection and familiarity in visual working memory: A mixture of threshold and signal detection processes. Psychol Rev 2024; 131:321-348. [PMID: 37326544 PMCID: PMC11089539 DOI: 10.1037/rev0000432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Whether working memory reflects a thresholded recollection process whereby only a limited number of items are maintained in memory, or a signal detection process in which each studied item is increased in familiarity strength, is a topic of considerable debate. A review of visual working memory studies that have examined receiver operating characteristics (ROCs) across a broad set of materials and test conditions indicates that both signal detection and threshold processes contribute to working memory. In addition, the role that these two processes play varies systematically across conditions, such that a threshold process plays a particularly critical role when binary old/new judgments are required, when changes are relatively discrete, and when the hippocampus does not contribute to performance. In contrast, a signal detection process plays a greater role when confidence judgments are required, when the materials or the changes are global in nature, and when the hippocampus contributes to performance. In addition, the ROC results indicate that in standard single-probe tests of working memory, items that are maintained in an active recollected state support both recall-to-accept and recall-to-reject responses; whereas in complex-probe tests, recollection preferentially supports recall-to-reject; and in item-recognition tests it preferentially supports recall-to-accept. Moreover, there is growing evidence that these threshold and strength-based processes are related to distinct states of conscious awareness whereby they support perceiving- and sensing-based responses, respectively. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
|
7
|
Waschke L, Kamp F, van den Elzen E, Krishna S, Lindenberger U, Rutishauser U, Garrett DD. Single-neuron spiking variability in hippocampus dynamically tracks sensory content during memory formation in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.23.529684. [PMID: 36865320 PMCID: PMC9980052 DOI: 10.1101/2023.02.23.529684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
During memory formation, the hippocampus is presumed to represent the content of stimuli, but how it does so is unknown. Using computational modelling and human single-neuron recordings, we show that the more precisely hippocampal spiking variability tracks the composite features of each individual stimulus, the better those stimuli are later remembered. We propose that moment-to-moment spiking variability may provide a new window into how the hippocampus constructs memories from the building blocks of our sensory world.
Collapse
|
8
|
Read ML, Berry SC, Graham KS, Voets NL, Zhang J, Aggleton JP, Lawrence AD, Hodgetts CJ. Scene-selectivity in CA1/subicular complex: Multivoxel pattern analysis at 7T. Neuropsychologia 2024; 194:108783. [PMID: 38161052 DOI: 10.1016/j.neuropsychologia.2023.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Prior univariate functional magnetic resonance imaging (fMRI) studies in humans suggest that the anteromedial subicular complex of the hippocampus is a hub for scene-based cognition. However, it is possible that univariate approaches were not sufficiently sensitive to detect scene-related activity in other subfields that have been implicated in spatial processing (e.g., CA1). Further, as connectivity-based functional gradients in the hippocampus do not respect classical subfield boundary definitions, category selectivity may be distributed across anatomical subfields. Region-of-interest approaches, therefore, may limit our ability to observe category selectivity across discrete subfield boundaries. To address these issues, we applied searchlight multivariate pattern analysis to 7T fMRI data of healthy adults who undertook a simultaneous visual odd-one-out discrimination task for scene and non-scene (including face) visual stimuli, hypothesising that scene classification would be possible in multiple hippocampal regions within, but not constrained to, anteromedial subicular complex and CA1. Indeed, we found that the scene-selective searchlight map overlapped not only with anteromedial subicular complex (distal subiculum, pre/para subiculum), but also inferior CA1, alongside posteromedial (including retrosplenial) and parahippocampal cortices. Probabilistic overlap maps revealed gradients of scene category selectivity, with the strongest overlap located in the medial hippocampus, converging with searchlight findings. This was contrasted with gradients of face category selectivity, which had stronger overlap in more lateral hippocampus, supporting ideas of parallel processing streams for these two categories. Our work helps to map the scene, in contrast to, face processing networks within, and connected to, the human hippocampus.
Collapse
Affiliation(s)
- Marie-Lucie Read
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Samuel C Berry
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Kim S Graham
- School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Natalie L Voets
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, John Radcliffe Hospital, Oxford, OX3 9DU2, UK
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Mathematics and Computer Science, Swansea University, Swansea SA1 8DD, UK
| | - John P Aggleton
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
9
|
Memon A, Moore JA, Kang C, Ismail Z, Forkert ND. Visual Functions Are Associated with Biomarker Changes in Alzheimer's Disease. J Alzheimers Dis 2024; 99:623-637. [PMID: 38669529 DOI: 10.3233/jad-231084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background While various biomarkers of Alzheimer's disease (AD) have been associated with general cognitive function, their association to visual-perceptive function across the AD spectrum warrant more attention due to its significant impact on quality of life. Thus, this study explores how AD biomarkers are associated with decline in this cognitive domain. Objective To explore associations between various fluid and imaging biomarkers and visual-based cognitive assessments in participants across the AD spectrum. Methods Data from participants (N = 1,460) in the Alzheimer's Disease Neuroimaging Initiative were analyzed, including fluid and imaging biomarkers. Along with the Mini-Mental State Examination (MMSE), three specific visual-based cognitive tests were investigated: Trail Making Test (TMT) A and TMT B, and the Boston Naming Test (BNT). Locally estimated scatterplot smoothing curves and Pearson correlation coefficients were used to examine associations. Results MMSE showed the strongest correlations with most biomarkers, followed by TMT-B. The p-tau181/Aβ1-42 ratio, along with the volume of the hippocampus and entorhinal cortex, had the strongest associations among the biomarkers. Conclusions Several biomarkers are associated with visual processing across the disease spectrum, emphasizing their potential in assessing disease severity and contributing to progression models of visual function and cognition.
Collapse
Affiliation(s)
- Ashar Memon
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jasmine A Moore
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Program, University of Calgary, Calgary, AB, Canada
| | - Chris Kang
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Zahinoor Ismail
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Departments of Clinical Neurosciences, Psychiatry, Community Health Sciences, and Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Nils D Forkert
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Departments of Clinical Neurosciences, Psychiatry, Community Health Sciences, and Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Departments of Clinical Neurosciences, Psychiatry, Community Health Sciences, and Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Chen K, Forrest A, Gonzalez Burgos G, Kozai TDY. Neuronal functional connectivity is impaired in a layer dependent manner near the chronically implanted microelectrodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565852. [PMID: 37986883 PMCID: PMC10659303 DOI: 10.1101/2023.11.06.565852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Objective This study aims to reveal longitudinal changes in functional network connectivity within and across different brain structures near the chronically implanted microelectrode. While it is well established that the foreign-body response (FBR) contributes to the gradual decline of the signals recorded from brain implants over time, how does the FBR impact affect the functional stability of neural circuits near implanted Brain-Computer Interfaces (BCIs) remains unknown. This research aims to illuminate how the chronic FBR can alter local neural circuit function and the implications for BCI decoders. Approach This study utilized multisite Michigan-style microelectrodes that span all cortical layers and the hippocampal CA1 region to collect spontaneous and visually-evoked electrophysiological activity. Alterations in neuronal activity near the microelectrode were tested assessing cross-frequency synchronization of LFP and spike entrainment to LFP oscillatory activity throughout 16 weeks after microelectrode implantation. Main Results The study found that cortical layer 4, the input-receiving layer, maintained activity over the implantation time. However, layers 2/3 rapidly experienced severe impairment, leading to a loss of proper intralaminar connectivity in the downstream output layers 5/6. Furthermore, the impairment of interlaminar connectivity near the microelectrode was unidirectional, showing decreased connectivity from Layers 2/3 to Layers 5/6 but not the reverse direction. In the hippocampus, CA1 neurons gradually became unable to properly entrain to the surrounding LFP oscillations. Significance This study provides a detailed characterization of network connectivity dysfunction over long-term microelectrode implantation periods. This new knowledge could contribute to the development of targeted therapeutic strategies aimed at improving the health of the tissue surrounding brain implants and potentially inform engineering of adaptive decoders as the FBR progresses. Our study's understanding of the dynamic changes in the functional network over time opens the door to developing interventions for improving the long-term stability and performance of intracortical microelectrodes.
Collapse
|
11
|
Gardette J, Mosca C, Asien C, Borg C, Mazzola L, Convers P, Gal G, Banjac S, Baciu M, Durocher B, Kahane P, Hot P. Complex visual discrimination is impaired after right, but not left, anterior temporal lobectomy. Hippocampus 2023; 33:1113-1122. [PMID: 37483092 DOI: 10.1002/hipo.23569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/24/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
The prevailing view in human cognitive neuroscience associates the medial temporal lobes (MTLs) with declarative memory. Compelling experimental evidence has, however, demonstrated that these regions are specialized according to the representations processed, irrespective of the cognitive domain assessed. This account was supported by the study of patients with bilateral medial temporal amnesia, who exhibit impairments in perceptual tasks involving complex visual stimuli. Yet, little is known regarding the impact of unilateral MTL damage on complex visual abilities. To address this issue, we administered a visual matching task to 20 patients who underwent left (N = 12) or right (N = 8) anterior temporal lobectomy for drug-resistant epilepsy and to 38 healthy controls. Presentation viewpoint was manipulated to increase feature ambiguity, as this is critical to reveal impairments in perceptual tasks. Similar to control participants, patients with left-sided damage succeeded in all task conditions. In contrast, patients with right-sided damage had decreased accuracy compared with that of the other two groups, as well as increased response time. Notably, the accuracy of those with right-sided damage did not exceed chance level when feature ambiguity was high (i.e., when stimuli were presented from different viewpoints) for the most complex classes of stimuli (i.e., scenes and buildings, compared with single objects). The pattern reported in bilateral patients in previous studies was therefore reproduced in patients with right, but not left, resection. These results suggest that the complex visual-representation functions supported by the MTL are right-lateralized, and raise the question as to how the representational account of these regions applies to representations supported by left MTL regions.
Collapse
Affiliation(s)
- Jeremy Gardette
- LPNC, CNRS, UMR 5105, Université Grenoble Alpes, Université Savoie Mont Blanc, Grenoble, France
| | - Chrystèle Mosca
- Neurology Department, Chu Grenoble-Alpes, Univ. Grenoble Alpes, Grenoble Institut Neuroscience, Inserm U1216, Grenoble, France
| | - Cassandra Asien
- LPNC, CNRS, UMR 5105, Université Grenoble Alpes, Université Savoie Mont Blanc, Grenoble, France
- Neurology Department, Chu Grenoble-Alpes, Univ. Grenoble Alpes, Grenoble Institut Neuroscience, Inserm U1216, Grenoble, France
| | - Céline Borg
- Neurology Department, University Hospital, Saint-Etienne, France
| | - Laure Mazzola
- Neurology Department, University Hospital, Saint-Etienne, France
| | - Philippe Convers
- Neurology Department, University Hospital, Saint-Etienne, France
| | - Guillaume Gal
- Neurology Department, University Hospital, Saint-Etienne, France
| | - Sonja Banjac
- LPNC, CNRS, UMR 5105, Université Grenoble Alpes, Université Savoie Mont Blanc, Grenoble, France
| | - Monica Baciu
- LPNC, CNRS, UMR 5105, Université Grenoble Alpes, Université Savoie Mont Blanc, Grenoble, France
| | - Bastien Durocher
- LPNC, CNRS, UMR 5105, Université Grenoble Alpes, Université Savoie Mont Blanc, Grenoble, France
| | - Philippe Kahane
- Neurology Department, Chu Grenoble-Alpes, Univ. Grenoble Alpes, Grenoble Institut Neuroscience, Inserm U1216, Grenoble, France
| | - Pascal Hot
- LPNC, CNRS, UMR 5105, Université Grenoble Alpes, Université Savoie Mont Blanc, Grenoble, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
12
|
Alahmadi AA, Alotaibi NO, Hakami NY, Almutairi RS, Darwesh AM, Abdeen R, Alghamdi J, Abdulaal OM, Alsharif W, Sultan SR, Kanbayti IH. Gender and cytoarchitecture differences: Functional connectivity of the hippocampal sub-regions. Heliyon 2023; 9:e20389. [PMID: 37780771 PMCID: PMC10539667 DOI: 10.1016/j.heliyon.2023.e20389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction The hippocampus plays a significant role in learning, memory encoding, and spatial navigation. Typically, the hippocampus is investigated as a whole region of interest. However, recent work has developed fully detailed atlases based on cytoarchitecture properties of brain regions, and the hippocampus has been sub-divided into seven sub-areas that have structural differences in terms of distinct numbers of cells, neurons, and other structural and chemical properties. Moreover, gender differences are of increasing concern in neuroscience research. Several neuroscience studies have found structural and functional variations between the brain regions of females and males, and the hippocampus is one of these regions. Aim The aim of this study to explore whether the cytoarchitecturally distinct sub-regions of the hippocampus have varying patterns of functional connectivity with different networks of the brain and how these functional connections differ in terms of gender differences. Method This study investigated 200 healthy participants using seed-based resting-state functional magnetic resonance imaging (rsfMRI). The primary aim of this study was to explore the resting connectivity and gender distinctions associated with specific sub-regions of the hippocampus and their relationship with major functional brain networks. Results The findings revealed that the majority of the seven hippocampal sub-regions displayed functional connections with key brain networks, and distinct patterns of functional connectivity were observed between the hippocampal sub-regions and various functional networks within the brain. Notably, the default and visual networks exhibited the most consistent functional connections. Additionally, gender-based analysis highlighted evident functional resemblances and disparities, particularly concerning the anterior section of the hippocampus. Conclusion This study highlighted the functional connectivity patterns and involvement of the hippocampal sub-regions in major brain functional networks, indicating that the hippocampus should be investigated as a region of multiple distinct functions and should always be examined as sub-regions of interest. The results also revealed clear gender differences in functional connectivity.
Collapse
Affiliation(s)
- Adnan A.S. Alahmadi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Nada O. Alotaibi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Norah Y. Hakami
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raghad S. Almutairi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afnan M.F. Darwesh
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rawan Abdeen
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamaan Alghamdi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osamah M. Abdulaal
- Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
| | - Walaa Alsharif
- Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
| | - Salahaden R. Sultan
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahem H. Kanbayti
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Sanders DMW, Cowell RA. The locus of recognition memory signals in human cortex depends on the complexity of the memory representations. Cereb Cortex 2023; 33:9835-9849. [PMID: 37401000 DOI: 10.1093/cercor/bhad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
According to a "Swiss Army Knife" model of the brain, cognitive functions such as episodic memory and face perception map onto distinct neural substrates. In contrast, representational accounts propose that each brain region is best explained not by which specialized function it performs, but by the type of information it represents with its neural firing. In a functional magnetic resonance imaging study, we asked whether the neural signals supporting recognition memory fall mandatorily within the medial temporal lobes (MTL), traditionally thought the seat of declarative memory, or whether these signals shift within cortex according to the content of the memory. Participants studied objects and scenes that were unique conjunctions of pre-defined visual features. Next, we tested recognition memory in a task that required mnemonic discrimination of both simple features and complex conjunctions. Feature memory signals were strongest in posterior visual regions, declining with anterior progression toward the MTL, while conjunction memory signals followed the opposite pattern. Moreover, feature memory signals correlated with feature memory discrimination performance most strongly in posterior visual regions, whereas conjunction memory signals correlated with conjunction memory discrimination most strongly in anterior sites. Thus, recognition memory signals shifted with changes in memory content, in line with representational accounts.
Collapse
Affiliation(s)
- D Merika W Sanders
- Department of Psychology, Harvard University, Cambridge, MA 02138, United States
| | - Rosemary A Cowell
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309, United States
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, United States
| |
Collapse
|
14
|
Ng R, Harris J, Fahrner JA, Bjornsson HT. Individuals with Wiedemann-Steiner syndrome show nonverbal reasoning and visuospatial defects with relative verbal skill sparing. J Int Neuropsychol Soc 2023; 29:512-518. [PMID: 36062544 DOI: 10.1017/s1355617722000467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Wiedemann-Steiner syndrome (WSS) is a rare Mendelian disorder of the epigenetic machinery caused by heterozygous pathogenic variants in KMT2A. Currently, the specific neurocognitive profile of this syndrome remains unknown. This case series provides insight into the cognitive phenotype of WSS. METHODS This study involves a retrospective medical chart review of 10 pediatric patients, each with a molecularly confirmed diagnosis of WSS who underwent clinical neuropsychological evaluation at an academic medical center. RESULTS The majority of patients performed in the below average to very low ranges in Nonverbal Reasoning, Visual/Spatial Perception, Visuoconstruction, Visual Memory, Attention, Working Memory and Math Computation skills. In contrast, over half the sample performed within normal limits on Receptive Vocabulary, Verbal Memory, and Word Reading. Wilcoxon signed rank test showed weaker Nonverbal versus Verbal Reasoning skills (p = .005). Most caregivers reported deficits in executive functioning, most notably in emotion regulation. CONCLUSIONS Nonverbal reasoning/memory, visuospatial/construction, attention, working memory, executive functioning, and math computation skills are areas of weakness among those with WSS. These findings overlap with research on Kabuki syndrome, which is caused by variants in KMT2D, and suggest disruption in the neurogenesis of the hippocampal formation may drive shared pathogenesis of the two syndromes.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans Tomas Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
15
|
Chang CH, Zehra S, Nestor A, Lee ACH. Using image reconstruction to investigate face perception in amnesia. Neuropsychologia 2023; 185:108573. [PMID: 37119985 DOI: 10.1016/j.neuropsychologia.2023.108573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Damage to the medial temporal lobe (MTL), which is traditionally considered to subserve memory exclusively, has been reported to contribute to impaired face perception. However, it remains unknown how exactly such brain lesions may impact face representations and in particular facial shape and surface information, both of which are crucial for face perception. The present study employed a behavioral-based image reconstruction approach to reveal the pictorial representations of face perception in two amnesic patients: DA, who has an extensive bilateral MTL lesion that extends beyond the MTL in the right hemisphere, and BL, who has damage to the hippocampal dentate gyrus (DG). Both patients and their respective matched controls completed similarity judgments for pairs of faces, from which facial shape and surface features were subsequently derived and synthesized to create images of reconstructed facial appearance. Participants also completed a face oddity judgment task (FOJT) that has previously been shown to be sensitive to MTL cortical damage. While BL exhibited an impaired pattern of performance on the FOJT, DA demonstrated intact performance accuracy. Notably, the recovered pictorial content of faces was comparable between both patients and controls, although there was evidence for atypical face representations in BL particularly with regards to color. Our work provides novel insight into the face representations underlying face perception in two well-studied amnesic patients in the literature and demonstrates the applicability of the image reconstruction approach to individuals with brain damage.
Collapse
Affiliation(s)
- Chi-Hsun Chang
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada
| | - Sukhan Zehra
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada
| | - Adrian Nestor
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada
| | - Andy C H Lee
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada; Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Fiore G, Veneri F, Di Lorenzo R, Generali L, Vinceti M, Filippini T. Fluoride Exposure and ADHD: A Systematic Review of Epidemiological Studies. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040797. [PMID: 37109754 PMCID: PMC10143272 DOI: 10.3390/medicina59040797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
Background and objectives: Attention deficit hyperactivity disorder (ADHD) is a childhood-onset neurodevelopmental disorder characterized by two dimensions: inattentiveness and hyperactivity/impulsivity. ADHD may be the result of complex interactions between genetic, biological and environmental factors possibly including fluoride exposure. Materials and methods: A literature search was performed on 31 March 2023 in the following databases: PubMed, Embase and Web of Science. We defined the following inclusion criteria according to the PECOS statement: a healthy child and adolescent population (P), fluoride exposure of any type (E), comparison with low or null exposure (C), ADHD spectrum disorder (O), and ecological, cross-sectional, case-control and cohort studies (S). Results: We found eight eligible records corresponding to seven different studies investigating the effect of fluoride exposure on children and adolescents. One study had a cohort design and one a case-control one, while five were cross-sectional. Only three studies applied validated questionnaires for the purpose of ADHD diagnosis. As regards exposure assessment, levels of fluoride in urine and tap water were, respectively used in three and two studies, while two used both. Three studies reported a positive association with ADHD risk, all assessing exposure through fluoride levels. By using urinary fluoride, conversely, a positive correlation with inattention, internalizing symptoms, cognitive and psychosomatic problems was found in three studies, but no relation was found in the other one. Conclusions: The present review suggests that early exposure to fluoride may have neurotoxic effects on neurodevelopment affecting behavioral, cognitive and psychosomatic symptoms related to ADHD diagnosis. However, due to the heterogeneity of the studies included, current evidence does not allow to conclusively confirm that fluoride exposure is specifically linked to ADHD development.
Collapse
Affiliation(s)
- Gianluca Fiore
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Federica Veneri
- Unit of Dentistry & Oral-Maxillo-Facial Surgery, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), University of Modena and Reggio Emilia, 41124 Modena, Italy
- PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences-University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rosaria Di Lorenzo
- Service of Psychiatric Diagnosis and Care (SPDC), Department of Mental Health and Drug Abuse, AUSL Modena, 41124 Modena, Italy
| | - Luigi Generali
- Unit of Dentistry & Oral-Maxillo-Facial Surgery, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
17
|
Amer T, Davachi L. Extra-hippocampal contributions to pattern separation. eLife 2023; 12:e82250. [PMID: 36972123 PMCID: PMC10042541 DOI: 10.7554/elife.82250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Pattern separation, or the process by which highly similar stimuli or experiences in memory are represented by non-overlapping neural ensembles, has typically been ascribed to processes supported by the hippocampus. Converging evidence from a wide range of studies, however, suggests that pattern separation is a multistage process supported by a network of brain regions. Based on this evidence, considered together with related findings from the interference resolution literature, we propose the 'cortico-hippocampal pattern separation' (CHiPS) framework, which asserts that brain regions involved in cognitive control play a significant role in pattern separation. Particularly, these regions may contribute to pattern separation by (1) resolving interference in sensory regions that project to the hippocampus, thus regulating its cortical input, or (2) directly modulating hippocampal processes in accordance with task demands. Considering recent interest in how hippocampal operations are modulated by goal states likely represented and regulated by extra-hippocampal regions, we argue that pattern separation is similarly supported by neocortical-hippocampal interactions.
Collapse
Affiliation(s)
- Tarek Amer
- Department of Psychology, University of VictoriaVictoriaCanada
| | - Lila Davachi
- Department of Psychology, Columbia UniversityNew YorkUnited States
- Nathan Kline Research InstituteOrangeburgUnited States
| |
Collapse
|
18
|
Veneri F, Vinceti M, Generali L, Giannone ME, Mazzoleni E, Birnbaum LS, Consolo U, Filippini T. Fluoride exposure and cognitive neurodevelopment: Systematic review and dose-response meta-analysis. ENVIRONMENTAL RESEARCH 2023; 221:115239. [PMID: 36639015 DOI: 10.1016/j.envres.2023.115239] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Many uncertainties still surround the possible harmful effect of fluoride exposure on cognitive neurodevelopment in children. The aim of this systematic review and meta-analysis was to characterize this relation through a dose-response approach, by comparing the intelligence quotient (IQ) scores in the highest versus the lowest fluoride exposure category with a random-effects model, within a one-stage dose-response meta-analysis based on a cubic spline random-effects model. Out of 1996 potentially relevant literature records, 33 studies were eligible for this review, 30 of which were also suitable for meta-analysis. The summary mean difference of IQ score, comparing highest versus lowest fluoride categories and considering all types of exposure, was -4.68 (95% confidence interval-CI -6.45; -2.92), with a value of -5.60 (95% CI -7.76; -3.44) for drinking water fluoride and -3.84 (95% CI -7.93; 0.24) for urinary fluoride. Dose-response analysis showed a substantially linear IQ decrease for increasing water fluoride above 1 mg/L, with -3.05 (95% CI -4.06; -2.04) IQ points per 1 mg/L up to 2 mg/L, becoming steeper above such level. A weaker and substantially linear decrease of -2.15 (95% CI -4.48; 0.18) IQ points with increasing urinary fluoride emerged above 0.28 mg/L (approximately reflecting a water fluoride content of 0.7 mg/L). The inverse association between fluoride exposure and IQ was particularly strong in the studies at high risk of bias, while no adverse effect emerged in the only study judged at low risk of bias. Overall, most studies suggested an adverse effect of fluoride exposure on children's IQ, starting at low levels of exposure. However, a major role of residual confounding could not be ruled out, thus indicating the need of additional prospective studies at low risk of bias to conclusively assess the relation between fluoride exposure and cognitive neurodevelopment.
Collapse
Affiliation(s)
- Federica Veneri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery - University of Modena and Reggio Emilia, Modena, Italy; PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences - University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School - University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Luigi Generali
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery - University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Edvige Giannone
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School - University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Mazzoleni
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School - University of Modena and Reggio Emilia, Modena, Italy
| | - Linda S Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Ugo Consolo
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery - University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School - University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
19
|
Bouffard NR, Golestani A, Brunec IK, Bellana B, Park JY, Barense MD, Moscovitch M. Single voxel autocorrelation uncovers gradients of temporal dynamics in the hippocampus and entorhinal cortex during rest and navigation. Cereb Cortex 2023; 33:3265-3283. [PMID: 36573396 PMCID: PMC10388386 DOI: 10.1093/cercor/bhac480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/28/2022] Open
Abstract
During navigation, information at multiple scales needs to be integrated. Single-unit recordings in rodents suggest that gradients of temporal dynamics in the hippocampus and entorhinal cortex support this integration. In humans, gradients of representation are observed, such that granularity of information represented increases along the long axis of the hippocampus. The neural underpinnings of this gradient in humans, however, are still unknown. Current research is limited by coarse fMRI analysis techniques that obscure the activity of individual voxels, preventing investigation of how moment-to-moment changes in brain signal are organized and how they are related to behavior. Here, we measured the signal stability of single voxels over time to uncover previously unappreciated gradients of temporal dynamics in the hippocampus and entorhinal cortex. Using our novel, single voxel autocorrelation technique, we show a medial-lateral hippocampal gradient, as well as a continuous autocorrelation gradient along the anterolateral-posteromedial entorhinal extent. Importantly, we show that autocorrelation in the anterior-medial hippocampus was modulated by navigational difficulty, providing the first evidence that changes in signal stability in single voxels are relevant for behavior. This work opens the door for future research on how temporal gradients within these structures support the integration of information for goal-directed behavior.
Collapse
Affiliation(s)
- Nichole R Bouffard
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada
| | - Ali Golestani
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
| | - Iva K Brunec
- Department of Psychology, Temple University, 1701 North 13th Street, Philadelphia, PA 19122, USA
- Department of Psychology, University of Pennsylvania, 3720 Walnut Street, Philadelphia, PA 19104, USA
| | - Buddhika Bellana
- Department of Psychology, Glendon College—York University, 2275 Bayview Ave, North York, ON M4N 3M6, Canada
| | - Jun Young Park
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
- Department of Statistical Sciences, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada
| |
Collapse
|
20
|
Ekman M, Kusch S, de Lange FP. Successor-like representation guides the prediction of future events in human visual cortex and hippocampus. eLife 2023; 12:e78904. [PMID: 36729024 PMCID: PMC9894584 DOI: 10.7554/elife.78904] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Human agents build models of their environment, which enable them to anticipate and plan upcoming events. However, little is known about the properties of such predictive models. Recently, it has been proposed that hippocampal representations take the form of a predictive map-like structure, the so-called successor representation (SR). Here, we used human functional magnetic resonance imaging to probe whether activity in the early visual cortex (V1) and hippocampus adhere to the postulated properties of the SR after visual sequence learning. Participants were exposed to an arbitrary spatiotemporal sequence consisting of four items (A-B-C-D). We found that after repeated exposure to the sequence, merely presenting single sequence items (e.g., - B - -) resulted in V1 activation at the successor locations of the full sequence (e.g., C-D), but not at the predecessor locations (e.g., A). This highlights that visual representations are skewed toward future states, in line with the SR. Similar results were also found in the hippocampus. Moreover, the hippocampus developed a coactivation profile that showed sensitivity to the temporal distance in sequence space, with fading representations for sequence events in the more distant past and future. V1, in contrast, showed a coactivation profile that was only sensitive to spatial distance in stimulus space. Taken together, these results provide empirical evidence for the proposition that both visual and hippocampal cortex represent a predictive map of the visual world akin to the SR.
Collapse
Affiliation(s)
- Matthias Ekman
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and BehaviourNijmegenNetherlands
| | - Sarah Kusch
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and BehaviourNijmegenNetherlands
| | - Floris P de Lange
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and BehaviourNijmegenNetherlands
| |
Collapse
|
21
|
Lee SM, Shin J, Lee I. Significance of visual scene-based learning in the hippocampal systems across mammalian species. Hippocampus 2022; 33:505-521. [PMID: 36458555 DOI: 10.1002/hipo.23483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 12/04/2022]
Abstract
The hippocampus and its associated cortical regions in the medial temporal lobe play essential roles when animals form a cognitive map and use it to achieve their goals. As the nature of map-making involves sampling different local views of the environment and putting them together in a spatially cohesive way, visual scenes are essential ingredients in the formative process of cognitive maps. Visual scenes also serve as important cues during information retrieval from the cognitive map. Research in humans has shown that there are regions in the brain that selectively process scenes and that the hippocampus is involved in scene-based memory tasks. The neurophysiological correlates of scene-based information processing in the hippocampus have been reported as "spatial view cells" in nonhuman primates. Like primates, it is widely accepted that rodents also use visual scenes in their background for spatial navigation and other kinds of problems. However, in rodents, it is not until recently that researchers examined the neural correlates of the hippocampus from the perspective of visual scene-based information processing. With the advent of virtual reality (VR) systems, it has been demonstrated that place cells in the hippocampus exhibit remarkably similar firing correlates in the VR environment compared with that of the real-world environment. Despite some limitations, the new trend of studying hippocampal functions in a visually controlled environment has the potential to allow investigation of the input-output relationships of network functions and experimental testing of traditional computational predictions more rigorously by providing well-defined visual stimuli. As scenes are essential for navigation and episodic memory in humans, further investigation of the rodents' hippocampal systems in scene-based tasks will provide a critical functional link across different mammalian species.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Jhoseph Shin
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
22
|
Hippocampal activity during memory and visual perception: The role of representational content. Cortex 2022; 157:14-29. [PMID: 36272329 DOI: 10.1016/j.cortex.2022.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022]
Abstract
The functional organisation of the medial temporal lobe (MTL) has long been described on the basis of cognitive processes such as recollection or familiarity. However, this view has recently been challenged, and researchers have proposed decomposing cognitive phenomena into representations and operations. According to the representational view, representations, such as scenes for the hippocampus and objects for the perirhinal cortex, are critical in understanding the role of MTL regions in cognition. In the present study, 51 healthy young participants underwent functional magnetic resonance imaging (fMRI) while completing a visual-discrimination task. Subsequently, half of the participants performed a patch-cue recognition procedure in which "Rec" responses are believed to reflect the operation of pattern completion, whereas the other half performed a whole-item remember/know procedure. We replicated the previously-reported demonstration that hippocampal involvement in pattern completion is preferential for scenes as compared with objects. In contrast, the perirhinal cortex was more recruited for object processing than for scene processing. We further extended these results to the operations of strength-signal memory and visual discrimination. Finally, the modulation of hippocampal engagement in pattern completion by representational content was found to be specific to its anterior segment. This observation is consistent with the proposal that this segment would process broad/global representations, whereas the posterior hippocampus would perform sharp/local representations. Taken together, these results favour the representational view of MTL functional organisation, but support that this specialisation differs along the hippocampal long-axis.
Collapse
|
23
|
Dalton MA, D'Souza A, Lv J, Calamante F. New insights into anatomical connectivity along the anterior–posterior axis of the human hippocampus using in vivo quantitative fibre tracking. eLife 2022; 11:76143. [PMID: 36345716 PMCID: PMC9643002 DOI: 10.7554/elife.76143] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
The hippocampus supports multiple cognitive functions including episodic memory. Recent work has highlighted functional differences along the anterior–posterior axis of the human hippocampus, but the neuroanatomical underpinnings of these differences remain unclear. We leveraged track-density imaging to systematically examine anatomical connectivity between the cortical mantle and the anterior–posterior axis of the in vivo human hippocampus. We first identified the most highly connected cortical areas and detailed the degree to which they preferentially connect along the anterior–posterior axis of the hippocampus. Then, using a tractography pipeline specifically tailored to measure the location and density of streamline endpoints within the hippocampus, we characterised where these cortical areas preferentially connect within the hippocampus. Our results provide new and detailed insights into how specific regions along the anterior–posterior axis of the hippocampus are associated with different cortical inputs/outputs and provide evidence that both gradients and circumscribed areas of dense extrinsic anatomical connectivity exist within the human hippocampus. These findings inform conceptual debates in the field and emphasise the importance of considering the hippocampus as a heterogeneous structure. Overall, our results represent a major advance in our ability to map the anatomical connectivity of the human hippocampus in vivo and inform our understanding of the neural architecture of hippocampal-dependent memory systems in the human brain. The brain allows us to perceive and interact with our environment and to create and recall memories about our day-to-day lives. A sea-horse shaped structure in the brain, called the hippocampus, is critical for translating our perceptions into memories, and it does so in coordination with other brain regions. For example, different regions of the cerebral cortex (the outer layer of the brain) support different aspects of cognition, and pathways of information flow between the cerebral cortex and hippocampus underpin the healthy functioning of memory. Decades of research conducted into the brains of non-human primates show that specific regions of the cerebral cortex anatomically connect with different parts of the hippocampus to support this information flow. These insights form the foundation for existing theoretical models of how networks of neurons in the hippocampus and the cerebral cortex are connected. However, the human cerebral cortex has greatly expanded during our evolution, meaning that patterns of connectivity in the human brain may diverge from those in the brains of non-human primates. Deciphering human brain circuits in greater detail is crucial if we are to gain a better understanding of the structure and operation of the healthy human brain. However, obtaining comprehensive maps of anatomical connections between the hippocampus and cerebral cortex has been hampered by technical limitations. For example, magnetic resonance imaging (MRI), an approach that can be used to study the living human brain, suffers from insufficient image resolution. To overcome these issues, Dalton et al. used an imaging technique called diffusion weighted imaging which is used to study white matter pathways in the brain. They developed a tailored approach to create high-resolution maps showing how the hippocampus anatomically connects with the cerebral cortex in the healthy human brain. Dalton et al. produced detailed maps illustrating which areas of the cerebral cortex have high anatomical connectivity with the hippocampus and how different parts of the hippocampus preferentially connect to different neural circuits in the cortex. For example, the experiments demonstrate that highly connected areas in a cortical region called the temporal cortex connect to very specific, circumscribed regions within the hippocampus. These findings suggest that the hippocampus may consist of different neural circuits, each preferentially linked to defined areas of the cortex which are, in turn, associated with specific aspects of cognition. These observations further our knowledge of hippocampal-dependant memory circuits in the human brain and provide a foundation for the study of memory decline in aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Marshall A Dalton
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney
- Brain and Mind Centre, The University of Sydney
- School of Psychology, Faculty of Science, The University of Sydney
| | - Arkiev D'Souza
- Brain and Mind Centre, The University of Sydney
- Faculty of Medicine and Health Translational Research Collective, The University of Sydney
- Sydney Imaging, University of Sydney
| | - Jinglei Lv
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney
- Brain and Mind Centre, The University of Sydney
| | - Fernando Calamante
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney
- Brain and Mind Centre, The University of Sydney
- Sydney Imaging, University of Sydney
| |
Collapse
|
24
|
Sun YHP, Zhang X, Lu N, Li J, Wang Z. Your face looks the same as before, only prettier: The facial skin homogeneity effects on face change detection and facial attractiveness perception. Front Psychol 2022; 13:935347. [PMID: 36405180 PMCID: PMC9667065 DOI: 10.3389/fpsyg.2022.935347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2023] Open
Abstract
Previous studies suggested that (1) facial attractiveness perception can be increased with facial skin homogeneity improving; and (2) human's facial change detection increases along with facial skin homogeneity increases. However, it's unknown whether a face can be perceived prettier than it did before while still being considered as physically the same. It is possible that these two kinds of cognitive-aesthetic processing may have separate mathematical functions in psychophysical studies. In other words, human's facial attractiveness differentiation may be more sensitive than facial change detection. In this current study, we explored the above questions. Using three types of psychophysical techniques to manipulate facial skin homogeneity, we measured how participants' sensitivity to facial skin homogeneity and attractiveness change. Results showed a linear function curve for facial physical change detection and a logarithmic function curve was drawn in the forced-choice technique, which was the most sensitive one, indicating that participants can judge a face prettier than before without being aware of it has physically changed. Besides, two linear function curves were shown in the same/different technique and a rating technique. Taken together, this current study revealed that facial attractiveness can be enhanced and discriminated by improving facial skin homogeneity, without being realized by people with conscious awareness that the face has been changed.
Collapse
Affiliation(s)
- Yu-Hao P. Sun
- Department of Psychology, Zhejiang Sci-Tech University, Zhejiang, China
| | - Xiaohui Zhang
- Department of Psychology, Zhejiang Sci-Tech University, Zhejiang, China
| | - Ningyan Lu
- Department of Psychology, Zhejiang Sci-Tech University, Zhejiang, China
| | - Jing Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Wang
- Department of Psychology, Zhejiang Sci-Tech University, Zhejiang, China
| |
Collapse
|
25
|
Rodríguez-Flores TC, Palomo-Briones GA, Robles F, Ramos F. Proposal for a computational model of incentive memory. COGN SYST RES 2022. [DOI: 10.1016/j.cogsys.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Pullin AN, Farrar VS, Loxterkamp JW, Jones CT, Calisi RM, Horback K, Lein PJ, Makagon MM. Providing height to pullets does not influence hippocampal dendritic morphology or brain-derived neurotrophic factor at the end of the rearing period. Poult Sci 2022; 101:102161. [PMID: 36252500 PMCID: PMC9579382 DOI: 10.1016/j.psj.2022.102161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 01/16/2023] Open
Abstract
Pullets reared with diverse behavioral experiences are faster to learn spatial cognition tasks and acclimate more successfully to laying environments with elevated structures. However, the neural underpinnings of the improved spatial abilities are unclear. The objective of this study was to determine whether providing structural height in the rearing environment affected the development of the hippocampus and whether hippocampal neural metrics correlated with individual behavior on spatial cognition tasks. Female Dekalb White pullets were reared in a floor pen (FL), single-tiered aviary (ST), or two-tiered aviary (TT; 5 pens/treatment). Pullets completed floor-based Y-maze and elevated visual cliff tasks to evaluate depth perception at 15 and 16 wk, respectively. At 16 wk, brains were removed for Golgi-Cox staining (n = 12 for FL, 13 for ST, 13 total pullets for TT; 2 to 3 pullets/pen) and qPCR to measure gene expression of brain-derived neurotrophic factor (BDNF; n = 10 for FL, 11 for ST, and 9 pullets for TT). Rearing environment did not affect various morphometric outcomes of dendritic arborization, including Sholl profiles; mean dendritic length; sum dendritic length; number of dendrites, terminal tips, or nodes; soma size; or BDNF mRNA expression (P > 0.05). Hippocampal subregion did affect dendritic morphology, with multipolar neurons from the ventral subregion differing in several characteristics from multipolar neurons in the dorsomedial or dorsolateral subregions (P < 0.05). Neural metrics did not correlate with individual differences in behavior during the spatial cognition tasks. Overall, providing height during rearing did not affect dendritic morphology or BDNF at 16 wk of age, but other metrics in the hippocampus or other brain regions warrant further investigation. Additionally, other structural or social components or the role of animal personality are areas of future interest for how rearing environments influence pullet behavior.
Collapse
Affiliation(s)
- Allison N. Pullin
- Center for Animal Welfare, Department of Animal Science, University of California, Davis, CA 95616, USA,Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA,Corresponding author:
| | - Victoria S. Farrar
- Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA,Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Jason W. Loxterkamp
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Claire T. Jones
- Center for Animal Welfare, Department of Animal Science, University of California, Davis, CA 95616, USA,Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Rebecca M. Calisi
- Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA,Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Kristina Horback
- Center for Animal Welfare, Department of Animal Science, University of California, Davis, CA 95616, USA,Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Maja M. Makagon
- Center for Animal Welfare, Department of Animal Science, University of California, Davis, CA 95616, USA,Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
27
|
Goodman CV, Bashash M, Green R, Song P, Peterson KE, Schnaas L, Mercado-García A, Martínez-Medina S, Hernández-Avila M, Martinez-Mier A, Téllez-Rojo MM, Hu H, Till C. Domain-specific effects of prenatal fluoride exposure on child IQ at 4, 5, and 6-12 years in the ELEMENT cohort. ENVIRONMENTAL RESEARCH 2022; 211:112993. [PMID: 35276192 PMCID: PMC9890727 DOI: 10.1016/j.envres.2022.112993] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Prenatal exposure to fluoride has been associated with adverse neurodevelopmental outcomes. However, the neuropsychological profile of fluoride's developmental neurotoxicity at low levels and the stability of this relationship across childhood has not been characterized. We investigated the longitudinal and domain specific effect of prenatal fluoride exposure on IQ among children ages 4, 5, and 6-12 years in the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) cohort. METHODS We measured the average of maternal urinary fluoride at each trimester of pregnancy adjusted for creatinine (MUFCRE). Children were administered the McCarthy Scales of Children's Abilities at ages 4 (N = 386) and 5 (N = 308), and the Wechsler Abbreviated Scale of Intelligence at age 6-12 (N = 278). We used generalized estimating equation (GEE) models to estimate the population averaged effect of MUFCRE concentration on longitudinal General Cognitive Index (GCI)/Full-Scale IQ (FSIQ), Verbal IQ (VIQ), and Performance IQ (PIQ) scores (N = 348). We tested for possible interactions between MUFCRE and child sex as well as for MUFCRE and time point on children's IQ. All models controlled for relevant available covariates. RESULTS The mean/median MUFCRE concentration was 0.90/0.83 mg/L (SD = 0.39; IQR, 0.64-1.11 mg/L). A 0.5 mg/L increase in MUFCRE predicted an average 2.12-point decrease in GCI/FSIQ (95% CI: -3.49, -0.75) and 2.63-point decrease in PIQ (95% CI: -3.87, -1.40). MUFCRE was marginally associated with VIQ across time (B = -1.29, 95% CI: -2.60, 0.01). No interactions between MUFCRE and child sex or MUFCRE and time were observed. CONCLUSION The negative association between prenatal fluoride exposure and longitudinal IQ was driven by decrements in non-verbal intelligence (i.e. PIQ), suggesting that visual-spatial and perceptual reasoning abilities may be more impacted by prenatal fluoride exposure as compared to verbal abilities.
Collapse
Affiliation(s)
- Carly V Goodman
- Faculty of Health, York University, Toronto, Ontario, Canada
| | - Morteza Bashash
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Rivka Green
- Faculty of Health, York University, Toronto, Ontario, Canada
| | - Peter Song
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Karen E Peterson
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | - Howard Hu
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christine Till
- Faculty of Health, York University, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Niu J, Zhang J, Yan J, Xu Z, Fang X, You J, Liu Z, Wu W, Li T. Neural Dysconnectivity in the Hippocampus Correlates With White Matter Lesions and Cognitive Measures in Patients With Coronary Artery Disease. Front Aging Neurosci 2022; 14:786253. [PMID: 35832064 PMCID: PMC9271740 DOI: 10.3389/fnagi.2022.786253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeRecent neuroimaging reports have shown the microstructural changes in coronary artery disease (CAD) and its correlation with cognitive dysfunction while little is known about the functional characteristics of CAD. We hypothesize that functional characteristics may give clues to underlying pathology in CAD and its link with cognitive dysfunction. Degree centrality (DC), a graph-based assessment of network organization was performed to explore the neural connectivity changes in CAD patients compared with healthy controls and their correlation with cognitive measures.MethodsThirty CAD patients and 36 healthy controls were included in our study. All participants underwent functional magnetic resonance imaging (fMRI) of the brain. We performed DC analysis to identify voxels that showed changes in whole-brain functional connectivity with other voxels. DC was measured by the fMRI graph method and comparisons between the two groups were done. All participants underwent neuropsychological assessment (Montreal Cognitive Assessment, MoCA and Mini-Mental State Examination, MMSE).ResultsOur data analysis included 30 CAD patients (59.90 ± 7.53 years) and 36 HCs (61.61 ± 6.19 years). CAD patients showed a greater prevalence of white matter lesions using the Fazekas score than healthy controls (P < 0.001). Importantly, CAD patients showed significantly lower (P < 0.001) MoCA and MMSE scores compared with healthy controls. CAD patients showed significantly decreased DC value (P < 0.001) in the right hippocampus (hippocampus_R), right lingual gyrus (lingual_R), and significantly increased DC value (P < 0.001) in the left middle frontal gyrus (Frontal_Mid_L) when compared with healthy controls respectively. DC value in the hippocampus_R significantly correlated (P < 0.00) with MMSE and MoCA scores in CAD patients. Fazekas scores in CAD patients showed a significant correlation (P < 0.001) with the DC value in the hippocampus_R.ConclusionThese findings suggest that reduced cerebral neural connectivity in CAD may contribute to their cognitive impairment and white matter microstructural damage.
Collapse
|
29
|
Li AY, Fukuda K, Barense MD. Independent features form integrated objects: Using a novel shape-color “conjunction task” to reconstruct memory resolution for multiple object features simultaneously. Cognition 2022; 223:105024. [DOI: 10.1016/j.cognition.2022.105024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
|
30
|
Lifelong changes of neurotransmitter receptor expression and debilitation of hippocampal synaptic plasticity following early postnatal blindness. Sci Rep 2022; 12:9142. [PMID: 35650390 PMCID: PMC9160005 DOI: 10.1038/s41598-022-13127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022] Open
Abstract
In the weeks immediately after onset of sensory loss, extensive reorganization of both the cortex and hippocampus occurs. Two fundamental characteristics comprise widespread changes in the relative expression of GABA and glutamate receptors and debilitation of hippocampal synaptic plasticity. Here, we explored whether recovery from adaptive changes in the expression of plasticity-related neurotransmitter receptors and hippocampal synaptic plasticity occurs in the time-period of up to 12 months after onset of sensory loss. We compared receptor expression in CBA/J mice that develop hereditary blindness, with CBA/CaOlaHsd mice that have intact vision and no deficits in other sensory modalities throughout adulthood. GluN1-subunit expression was reduced and the GluN2A:GluN2B ratio was persistently altered in cortex and hippocampus. GABA-receptor expression was decreased and metabotropic glutamate receptor expression was altered. Hippocampal synaptic plasticity was persistently compromised in vivo. But although LTP in blind mice was chronically impaired throughout adulthood, a recovery of the early phase of LTP became apparent when the animals reached 12 months of age. These data show that cortical and hippocampal adaptation to early postnatal blindness progresses into advanced adulthood and is a process that compromises hippocampal function. A partial recovery of hippocampal synaptic plasticity emerges in advanced adulthood, however.
Collapse
|
31
|
Dulas MR, Morrow EL, Schwarb H, Cohen NJ, Duff MC. Temporal order memory impairments in individuals with moderate-severe traumatic brain injury. J Clin Exp Neuropsychol 2022; 44:210-225. [PMID: 35876336 PMCID: PMC9422773 DOI: 10.1080/13803395.2022.2101620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Temporal order memory is a core cognitive function that underlies much of our behavior. The ability to bind together information within and across events, and to reconstruct that sequence of information, critically relies upon the hippocampal relational memory system. Recent work has suggested traumatic brain injury (TBI) may particularly impact hippocampally mediated relational memory. However, it is currently unclear whether such deficits extend to temporal order memory, and whether deficits only arise at large memory loads. The present study assessed temporal order memory in individuals with chronic, moderate-severe TBI across multiple set sizes. METHOD Individuals with TBI and Neurotypical Comparison participants studied sequences of three to nine objects, one a time. At test, all items were re-presented in pseudorandom order, and participants indicated the temporal position (i.e., first, second, etc.) in which each object had appeared. Critically, we assessed both the frequency and the magnitude of errors (i.e., how far from its studied position was an item remembered). RESULTS Individuals with TBI were not impaired for the smallest set size, but showed significant impairments at 5+ items. Group differences in the error frequency did not increase further with larger set sizes, but group differences in error magnitude did increase with larger memory loads. Individuals with TBI showed spared performance for the first object of each list (primacy) but were impaired on the last object (recency), though error frequency was better for last compared to middle items. CONCLUSIONS Our findings demonstrate that TBI results in impaired temporal order memory for lists as small as five items, and that impairments are exacerbated with increasing memory loads. Assessments that test only small set sizes may be insufficient to detect these deficits. Further, these data highlight the importance of additional, sensitive measures in the assessment of cognitive impairments in TBI.
Collapse
Affiliation(s)
- Michael R. Dulas
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana (IL)
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana (IL)
| | - Emily L. Morrow
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville (TN)
| | - Hillary Schwarb
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana (IL)
- Interdisciplinary Health Sciences Institutes, University of Illinois at Urbana-Champaign, Urbana (IL)
| | - Neal J. Cohen
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana (IL)
- Interdisciplinary Health Sciences Institutes, University of Illinois at Urbana-Champaign, Urbana (IL)
| | - Melissa C. Duff
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville (TN)
| |
Collapse
|
32
|
Wittfoth D, Beise J, Manuel J, Bohne M, Wittfoth M. Bifocal emotion regulation through acupoint tapping in fear of flying. Neuroimage Clin 2022; 34:102996. [PMID: 35378497 PMCID: PMC8980501 DOI: 10.1016/j.nicl.2022.102996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
Very few studies have investigated the neural underpinnings of bifocal-multisensory interventions such as acupoint tapping (tapping) despite their well-documented efficacy. The present study aims to investigate the neural and behavioral responses to tapping during the perception of phobic and generally fear-inducing stimulation in a group of participants with fear of flying. We studied 29 flight-phobic participants who were exposed to phobia-related, fear-inducing and neutral stimulation while undergoing fMRI and a bifocal-multisensory intervention session consisting of tapping plus cognitive restructuring in a within-subject design. During tapping we found an up-regulation of neural activation in the amygdala, and a down-regulation in the hippocampus and temporal pole. These effects were different from automatic emotion regulatory processes which entailed down-regulation in the amygdala, hippocampus, and temporal pole. Mean scores (±SD) on the Fear of Flying scale dropped from 2.51(±0.65) before the intervention to 1.27(±0.68) after the intervention (p <.001). The proportion of participants meeting the criteria for fear of flying also dropped from 89.7 percent before the intervention to 24.0 percent after the intervention (p <.001). Taken together, our results lend support to the effectiveness of tapping as a means of emotion regulation across multiple contexts and add to previous findings of increased amygdala activation during tapping, as opposed to amygdala down-regulation found in other emotion regulation techniques. They expand on previous knowledge by suggesting that tapping might modulate the processing of complex visual scene representations and their binding with visceral emotional reponses, reflected by the down-regulation of activation in the hippocampus and temporal pole. Bifocal emotion regulation was useful in ameliorating aversive reactions to phobic stimuli in people with fear of flying.
Collapse
Affiliation(s)
- Dina Wittfoth
- Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany.
| | - Jelena Beise
- Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jorge Manuel
- Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany; Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Michael Bohne
- Fortbildungsinstitut für PEP, Tiedgestrasse 5, Hannover, Germany
| | - Matthias Wittfoth
- Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
33
|
Del Rio-Bermudez C, Blumberg MS. Sleep as a window on the sensorimotor foundations of the developing hippocampus. Hippocampus 2022; 32:89-97. [PMID: 33945190 PMCID: PMC9118132 DOI: 10.1002/hipo.23334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/21/2021] [Indexed: 02/03/2023]
Abstract
The hippocampal formation plays established roles in learning, memory, and related cognitive functions. Recent findings also suggest that the hippocampus integrates sensory feedback from self-generated movements to modulate ongoing motor responses in a changing environment. Such findings support the view of Bland and Oddie (Behavioural Brain Research, 2001, 127, 119-136) that the hippocampus is a site of sensorimotor integration. In further support of this view, we review neurophysiological evidence in developing rats that hippocampal function is built on a sensorimotor foundation and that this foundation is especially evident early in development. Moreover, at those ages when the hippocampus is first establishing functional connectivity with distant sensory and motor structures, that connectivity is preferentially expressed during periods of active (or REM) sleep. These findings reinforce the notion that sleep, as the predominant state of early infancy, provides a critical context for sensorimotor development, including development of the hippocampus and its associated network.
Collapse
Affiliation(s)
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
34
|
Yin X, Chen L, Ma M, Zhang H, Gao M, Wu X, Li Y. Altered Brain Structure and Spontaneous Functional Activity in Children With Concomitant Strabismus. Front Hum Neurosci 2021; 15:777762. [PMID: 34867247 PMCID: PMC8634149 DOI: 10.3389/fnhum.2021.777762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Strabismus occurs in about 2% of children and may result in amblyopia or lazy eyes and loss of depth perception. However, whether/how long-term strabismus shapes the brain structure and functions in children with concomitant strabismus (CS) is still unclear. In this study, a total of 26 patients with CS and 28 age-, sex-, and education-matched healthy controls (HCs) underwent structural and resting-state functional magnetic resonance imaging examination. The cortical thickness and amplitude of low-frequency fluctuation (ALFF) were calculated to assess the structural and functional plasticity in children with CS. Compared with HCs group, patients with CS showed increased cortical thickness in the precentral gyrus and angular gyrus while decreased cortical thickness in the left intraparietal sulcus, parieto-occipital sulcus, superior and middle temporal gyrus, right ventral premotor cortex, anterior insula, orbitofrontal cortex, and paracentral lobule. Meanwhile, CS patients exhibited increased ALFF in the prefrontal cortex and superior temporal gyrus, and decreased ALFF in the caudate and hippocampus. These results show that children with CS have abnormal structure and function in brain regions subserving eye movement, controls, and high-order cognitive functions. Our findings revealed the structural and functional abnormalities induced by CS and may provide new insight into the underlying neural mechanisms for CS.
Collapse
Affiliation(s)
- Xiaohui Yin
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lingjun Chen
- Department of Radiology, Gaoling District Hospital, Xi'an, China
| | - Mingyue Ma
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hong Zhang
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming Gao
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoping Wu
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongqiang Li
- Department of CT and MRI, Weinan Hospital of Traditional Chinese Medicine, Weinan, China
| |
Collapse
|
35
|
Mann LG, Hay KR, Song AK, Errington SP, Trujillo P, Zald DH, Yan Y, Kang H, Logan GD, Claassen DO. D 2-Like Receptor Expression in the Hippocampus and Amygdala Informs Performance on the Stop-Signal Task in Parkinson's Disease. J Neurosci 2021; 41:10023-10030. [PMID: 34750225 PMCID: PMC8638685 DOI: 10.1523/jneurosci.0968-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/23/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
The stop-signal task is a well-established assessment of response inhibition, and in humans, proficiency is linked to dorsal striatum D2 receptor availability. Parkinson's disease (PD) is characterized by changes to efficiency of response inhibition. Here, we studied 17 PD patients (6 female and 11 male) using the stop-signal paradigm in a single-blinded d-amphetamine (dAMPH) study. Participants completed [18F]fallypride positron emission topography (PET) imaging in both placebo and dAMPH conditions. A voxel-wise analysis of the relationship between binding potential (BPND) and stop-signal reaction time (SSRT) revealed that faster SSRT is associated with greater D2-like BPND in the amygdala and hippocampus (right cluster qFDR-corr = 0.026, left cluster qFDR-corr = 0.002). A region of interest (ROI) examination confirmed this association in both the amygdala (coefficient = -48.26, p = 0.005) and hippocampus (coefficient = -104.94, p = 0.007). As healthy dopaminergic systems in the dorsal striatum appear to regulate response inhibition, we interpret our findings in PD to indicate either nigrostriatal damage unmasking a mesolimbic contribution to response inhibition, or a compensatory adaptation from the limbic and mesial temporal dopamine systems. These novel results expand the conceptualization of action-control networks, whereby limbic and motor loops may be functionally connected.SIGNIFICANCE STATEMENT While Parkinson's disease (PD) is characteristically recognized for its motor symptoms, some patients develop impulsive and compulsive behaviors (ICBs), manifested as repetitive and excessive participation in reward-driven activities, including sex, gambling, shopping, eating, and hobbyism. Such cognitive alterations compel a consideration of response inhibition in PD. To investigate inhibitory control and assess the brain regions that may participate, we assessed PD patients using a single-blinded d-amphetamine (dAMPH) study, with [18F]fallypride positron emission topography (PET) imaging, and stop-signal task performance. We find a negative relationship between D2-like binding in the mesial temporal region and top-signal reaction time (SSRT), with greater BPND associated with a faster SSRT. These discoveries indicate a novel role for mesolimbic dopamine in response inhibition, and advocate for limbic regulation of action control in this clinical population.
Collapse
Affiliation(s)
- Leah G Mann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Kaitlyn R Hay
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Alexander K Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Steven P Errington
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - David H Zald
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240
- Department of Psychiatry, Rutgers University, Piscataway, New Jersey 08854
| | - Yan Yan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee 37203
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee 37203
| | - Gordon D Logan
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
36
|
Awathale SN, Waghade AM, Kawade HM, Jadhav G, Choudhary AG, Sagarkar S, Sakharkar AJ, Subhedar NK, Kokare DM. Neuroplastic Changes in the Superior Colliculus and Hippocampus in Self-rewarding Paradigm: Importance of Visual Cues. Mol Neurobiol 2021; 59:890-915. [PMID: 34797522 DOI: 10.1007/s12035-021-02597-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
Coincident excitation via different sensory modalities encoding objects of positive salience is known to facilitate learning and memory. With a view to dissect the contribution of visual cues in inducing adaptive neural changes, we monitored the lever press activity of a rat conditioned to self-administer sweet food pellets in the presence/absence of light cues. Application of light cues facilitated learning and consolidation of long-term memory. The superior colliculus (SC) of rats trained on light cue showed increased neuronal activity, dendritic branching, and brain-derived neurotrophic factor (BDNF) protein and mRNA expression. Concomitantly, the hippocampus showed augmented neurogenesis as well as BDNF protein and mRNA expression. While intra-SC administration of U0126 (inhibitor of ERK 1/2 and long-term memory) impaired memory formation, lidocaine (local anaesthetic) hindered memory recall. The light cue-dependent sweet food pellet self-administration was coupled with increased efflux of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens shell (AcbSh). In conditioned rats, pharmacological inhibition of glutamatergic signalling in dentate gyrus (DG) reduced lever press activity, as well as DA and DOPAC secretion in the AcbSh. We suggest that the neuroplastic changes in the SC and hippocampus might represent memory engrams sculpted by visual cues encoding reward information.
Collapse
Affiliation(s)
- Sanjay N Awathale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Akash M Waghade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Harish M Kawade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Gouri Jadhav
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Amit G Choudhary
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Sneha Sagarkar
- Department of Zoology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India.
| |
Collapse
|
37
|
Bourbon-Teles J, Jorge L, Canário N, Castelo-Branco M. Structural impairments in hippocampal and occipitotemporal networks specifically contribute to decline in place and face category processing but not to other visual object categories in healthy aging. Brain Behav 2021; 11:e02127. [PMID: 34184829 PMCID: PMC8413757 DOI: 10.1002/brb3.2127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Functional neuroimaging studies have identified a set of nodes in the occipital-temporal cortex that preferentially respond to faces in comparison with other visual objects. By contrast, the processing of places seems to rely on parahippocampal cortex and structures heavily implicated in memory (e.g., the hippocampus). It has been suggested that human aging leads to decreased neural specialization of core face and place processing areas and impairments in face and place perception. METHODS Using mediation analysis, we tested the potential contribution of micro- and macrostructure within the hippocampal and occipitotemporal systems to age-associated effects in face and place category processing (as measured by 1-back working memory tasks) in 55 healthy adults (age range 23-79 years). To test for specific contributions of the studied structures to face/place processing, we also studied a distinct tract (i.e., the anterior thalamic radiation [ATR]) and cognitive performance for other visual object categories (objects, bodies, and verbal material). Constrained spherical deconvolution-based tractography was used to reconstruct the fornix, the inferior longitudinal fasciculus (ILF), and the ATR. Hippocampal volumetric measures were segmented from FSL-FIRST toolbox. RESULTS It was found that age associates with (a) decreases in fractional anisotropy (FA) in the fornix, in right ILF (but not left ILF), and in the ATR (b) reduced volume in the right and left hippocampus and (c) decline in visual object category processing. Importantly, mediation analysis showed that micro- and macrostructural impairments in the fornix and right hippocampus, respectively, associated with age-dependent decline in place processing. Alternatively, microstructural impairments in right hemispheric ILF associated with age-dependent decline in face processing. There were no other mediator effects of micro- and macrostructural variables on age-cognition relationships. CONCLUSION Together, the findings support specific contributions of the fornix and right hippocampus in visuospatial scene processing and of the long-range right hemispheric occipitotemporal network in face category processing.
Collapse
Affiliation(s)
- José Bourbon-Teles
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lília Jorge
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
38
|
Mille J, Brambati SM, Izaute M, Vallet GT. Low-Resolution Neurocognitive Aging and Cognition: An Embodied Perspective. Front Syst Neurosci 2021; 15:687393. [PMID: 34385911 PMCID: PMC8353153 DOI: 10.3389/fnsys.2021.687393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Consistent with embodied cognition, a growing evidence in young adults show that sensorimotor processing is at the core of cognition. Considering that this approach predicts direct interaction between sensorimotor processing and cognition, embodied cognition may thus be particularly relevant to study aging, since this population is characterized by concomitant changes in sensorimotor and cognitive processing. The present perspective aims at showing the value and interest to explore normal aging throughout embodiment by focusing on the neurophysiological and cognitive changes occurring in aging. To this end, we report some of the neurophysiological substrates underpinning the perceptual and memory interactions in older adults, from the low and high perceptual processing to the conjunction in the medial temporal lobe. We then explore how these changes could explain more broadly the cognitive changes associated with aging in terms of losses and gains.
Collapse
Affiliation(s)
- Jordan Mille
- CNRS, LAPSCO (UMR CNRS 6024), Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Marie Izaute
- CNRS, LAPSCO (UMR CNRS 6024), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Guillaume T Vallet
- CNRS, LAPSCO (UMR CNRS 6024), Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
39
|
Levinson M, Podvalny E, Baete SH, He BJ. Cortical and subcortical signatures of conscious object recognition. Nat Commun 2021; 12:2930. [PMID: 34006884 PMCID: PMC8131711 DOI: 10.1038/s41467-021-23266-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
The neural mechanisms underlying conscious recognition remain unclear, particularly the roles played by the prefrontal cortex, deactivated brain areas and subcortical regions. We investigated neural activity during conscious object recognition using 7 Tesla fMRI while human participants viewed object images presented at liminal contrasts. Here, we show both recognized and unrecognized images recruit widely distributed cortical and subcortical regions; however, recognized images elicit enhanced activation of visual, frontoparietal, and subcortical networks and stronger deactivation of the default-mode network. For recognized images, object category information can be decoded from all of the involved cortical networks but not from subcortical regions. Phase-scrambled images trigger strong involvement of inferior frontal junction, anterior cingulate cortex and default-mode network, implicating these regions in inferential processing under increased uncertainty. Our results indicate that content-specific activity in both activated and deactivated cortical networks and non-content-specific subcortical activity support conscious recognition. Cortical and subcortical neural activity supporting conscious object recognition has not yet been well defined. Here, the authors describe these networks and show recognition-related category information can be decoded from widespread cortical activity but not subcortical activity.
Collapse
Affiliation(s)
- Max Levinson
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Ella Podvalny
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Steven H Baete
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Biyu J He
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA. .,Department of Radiology, New York University School of Medicine, New York, NY, USA. .,Department of Neurology, New York University School of Medicine, New York, NY, USA. .,Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
40
|
Steel A, Billings MM, Silson EH, Robertson CE. A network linking scene perception and spatial memory systems in posterior cerebral cortex. Nat Commun 2021; 12:2632. [PMID: 33976141 PMCID: PMC8113503 DOI: 10.1038/s41467-021-22848-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/05/2021] [Indexed: 02/03/2023] Open
Abstract
The neural systems supporting scene-perception and spatial-memory systems of the human brain are well-described. But how do these neural systems interact? Here, using fine-grained individual-subject fMRI, we report three cortical areas of the human brain, each lying immediately anterior to a region of the scene perception network in posterior cerebral cortex, that selectively activate when recalling familiar real-world locations. Despite their close proximity to the scene-perception areas, network analyses show that these regions constitute a distinct functional network that interfaces with spatial memory systems during naturalistic scene understanding. These "place-memory areas" offer a new framework for understanding how the brain implements memory-guided visual behaviors, including navigation.
Collapse
Affiliation(s)
- Adam Steel
- grid.254880.30000 0001 2179 2404Department of Psychology and Brain Sciences, Dartmouth College, Hanover, NH USA
| | - Madeleine M. Billings
- grid.254880.30000 0001 2179 2404Department of Psychology and Brain Sciences, Dartmouth College, Hanover, NH USA
| | - Edward H. Silson
- grid.4305.20000 0004 1936 7988Psychology, School of Philosophy, Psychology, and Language Sciences, University of Edinburgh, Edinburgh, EH8 9JZ UK
| | - Caroline E. Robertson
- grid.254880.30000 0001 2179 2404Department of Psychology and Brain Sciences, Dartmouth College, Hanover, NH USA
| |
Collapse
|
41
|
Salsano I, Santangelo V, Macaluso E. The lateral intraparietal sulcus takes viewpoint changes into account during memory-guided attention in natural scenes. Brain Struct Funct 2021; 226:989-1006. [PMID: 33533985 PMCID: PMC8036207 DOI: 10.1007/s00429-021-02221-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 01/14/2021] [Indexed: 11/26/2022]
Abstract
Previous studies demonstrated that long-term memory related to object-position in natural scenes guides visuo-spatial attention during subsequent search. Memory-guided attention has been associated with the activation of memory regions (the medial-temporal cortex) and with the fronto-parietal attention network. Notably, these circuits represent external locations with different frames of reference: egocentric (i.e., eyes/head-centered) in the dorsal attention network vs. allocentric (i.e., world/scene-centered) in the medial temporal cortex. Here we used behavioral measures and fMRI to assess the contribution of egocentric and allocentric spatial information during memory-guided attention. At encoding, participants were presented with real-world scenes and asked to search for and memorize the location of a high-contrast target superimposed in half of the scenes. At retrieval, participants viewed again the same scenes, now all including a low-contrast target. In scenes that included the target at encoding, the target was presented at the same scene-location. Critically, scenes were now shown either from the same or different viewpoint compared with encoding. This resulted in a memory-by-view design (target seen/unseen x same/different view), which allowed us teasing apart the role of allocentric vs. egocentric signals during memory-guided attention. Retrieval-related results showed greater search-accuracy for seen than unseen targets, both in the same and different views, indicating that memory contributes to visual search notwithstanding perspective changes. This view-change independent effect was associated with the activation of the left lateral intra-parietal sulcus. Our results demonstrate that this parietal region mediates memory-guided attention by taking into account allocentric/scene-centered information about the objects' position in the external world.
Collapse
Affiliation(s)
- Ilenia Salsano
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy.
| | - Valerio Santangelo
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Emiliano Macaluso
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- ImpAct Team, Lyon Neuroscience Research Center, Lyon, France
| |
Collapse
|
42
|
The impact of training methodology and representation on rule-based categorization: An fMRI study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:717-735. [PMID: 33825123 DOI: 10.3758/s13415-021-00882-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 11/08/2022]
Abstract
Hélie, Shamloo, & Ell (2017) showed that regular classification learning instructions (A/B) promote between-category knowledge in rule-based categorization whereas conceptual learning instructions (YES/NO) promote learning within-category knowledge with the same categories. Here we explore how these tasks affect brain activity using fMRI. Participants learned two sets of two categories. Computational models were fit to the behavioral data to determine the type of knowledge learned by each participant. fMRI contrasts were computed to compare BOLD signal between the tasks and between the types of knowledge. The results show that participants in the YES/NO task had more activity in the pre-supplementary motor area, prefrontal cortex, and the angular/supramarginal gyrus. These brain areas are related to working memory and part of the dorsal attention network, which showed increased task-based functional connectivity with the medial temporal lobes. In contrast, participants in the A/B task had more activity in the thalamus and caudate. These results suggest that participants in the YES/NO task used bivalent rules and may have treated each contextual question as a separate task, switching task each time the question changed. Activity in the A/B condition was more consistent with participants applying direct Stimulus → Response rules. With regards to knowledge representation, there was a large shared network of brain areas, but participants learning between-category information showed additional posterior parietal activity, which may be related to the inhibition of incorrect motor programs.
Collapse
|
43
|
Gellersen HM, Trelle AN, Henson RN, Simons JS. Executive function and high ambiguity perceptual discrimination contribute to individual differences in mnemonic discrimination in older adults. Cognition 2021; 209:104556. [PMID: 33450438 PMCID: PMC8223497 DOI: 10.1016/j.cognition.2020.104556] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/03/2022]
Abstract
Mnemonic discrimination deficits, or impaired ability to discriminate between similar events in memory, is a hallmark of cognitive aging, characterised by a stark age-related increase in false recognition. While individual differences in mnemonic discrimination have gained attention due to potential relevance for early detection of Alzheimer's disease, our understanding of the component processes that contribute to variability in task performance across older adults remains limited. The present investigation explores the roles of representational quality, indexed by perceptual discrimination of objects and scenes with overlapping features, and strategic retrieval ability, indexed by standardised tests of executive function, to mnemonic discrimination in a large cohort of older adults (N=124). We took an individual differences approach and characterised the contributions of these factors to performance under Forced Choice (FC) and Yes/No (YN) recognition memory formats, which place different demands on strategic retrieval. Performance in both test formats declined with age. Accounting for age, individual differences in FC memory performance were best explained by perceptual discrimination score, whereas YN memory performance was best explained by executive functions. A linear mixed model and dominance analyses confirmed the relatively greater importance of perceptual discrimination over executive functioning for FC performance, while the opposite was true for YN. These findings highlight parallels between perceptual and mnemonic discrimination in aging, the importance of considering demands on executive functions in the context of mnemonic discrimination, and the relevance of test format for modulating the impact of these factors on performance in older adults.
Collapse
Affiliation(s)
| | - Alexandra N Trelle
- Department of Psychology, University of Cambridge, Cambridge, UK; Department of Psychology, Stanford University, Palo Alto, USA
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit, and Department of Psychiatry, University of Cambridge, UK
| | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
44
|
Chu S, Margerison M, Thavabalasingam S, O'Neil EB, Zhao YF, Ito R, Lee ACH. Perirhinal Cortex is Involved in the Resolution of Learned Approach-Avoidance Conflict Associated with Discrete Objects. Cereb Cortex 2021; 31:2701-2719. [PMID: 33429427 DOI: 10.1093/cercor/bhaa384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rodent ventral and primate anterior hippocampus have been implicated in approach-avoidance (AA) conflict processing. It is unclear, however, whether this structure contributes to AA conflict detection and/or resolution, and if its involvement extends to conditions of AA conflict devoid of spatial/contextual information. To investigate this, neurologically healthy human participants first learned to approach or avoid single novel visual objects with the goal of maximizing earned points. Approaching led to point gain and loss for positive and negative objects, respectively, whereas avoidance had no impact on score. Pairs of these objects, each possessing nonconflicting (positive-positive/negative-negative) or conflicting (positive-negative) valences, were then presented during functional magnetic resonance imaging. Participants either made an AA decision to score points (Decision task), indicated whether the objects had identical or differing valences (Memory task), or followed a visual instruction to approach or avoid (Action task). Converging multivariate and univariate results revealed that within the medial temporal lobe, perirhinal cortex, rather than the anterior hippocampus, was predominantly associated with object-based AA conflict resolution. We suggest the anterior hippocampus may not contribute equally to all learned AA conflict scenarios and that stimulus information type may be a critical and overlooked determinant of the neural mechanisms underlying AA conflict behavior.
Collapse
Affiliation(s)
- Sonja Chu
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | - Matthew Margerison
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada
| | | | - Edward B O'Neil
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada
| | - Yuan-Fang Zhao
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada
| | - Rutsuko Ito
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Andy C H Lee
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
| |
Collapse
|
45
|
McCormick C, Dalton MA, Zeidman P, Maguire EA. Characterising the hippocampal response to perception, construction and complexity. Cortex 2021; 137:1-17. [PMID: 33571913 PMCID: PMC8048772 DOI: 10.1016/j.cortex.2020.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022]
Abstract
The precise role played by the hippocampus in supporting cognitive functions such as episodic memory and future thinking is debated, but there is general agreement that it involves constructing representations comprised of numerous elements. Visual scenes have been deployed extensively in cognitive neuroscience because they are paradigmatic multi-element stimuli. However, questions remain about the specificity and nature of the hippocampal response to scenes. Here, we devised a paradigm in which we had participants search pairs of images for either colour or layout differences, thought to be associated with perceptual or spatial constructive processes respectively. Importantly, images depicted either naturalistic scenes or phase-scrambled versions of the same scenes, and were either simple or complex. Using this paradigm during functional MRI scanning, we addressed three questions: 1. Is the hippocampus recruited specifically during scene processing? 2. If the hippocampus is more active in response to scenes, does searching for colour or layout differences influence its activation? 3. Does the complexity of the scenes affect its response? We found that, compared to phase-scrambled versions of the scenes, the hippocampus was more responsive to scene stimuli. Moreover, a clear anatomical distinction was evident, with colour detection in scenes engaging the posterior hippocampus whereas layout detection in scenes recruited the anterior hippocampus. The complexity of the scenes did not influence hippocampal activity. These findings seem to align with perspectives that propose the hippocampus is especially attuned to scenes, and its involvement occurs irrespective of the cognitive process or the complexity of the scenes.
Collapse
Affiliation(s)
- Cornelia McCormick
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Marshall A Dalton
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK.
| |
Collapse
|
46
|
Should context hold a special place in hippocampal memory? PSYCHOLOGY OF LEARNING AND MOTIVATION 2021. [DOI: 10.1016/bs.plm.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Snytte J, Elshiekh A, Subramaniapillai S, Manning L, Pasvanis S, Devenyi GA, Olsen RK, Rajah MN. The ratio of posterior–anterior medial temporal lobe volumes predicts source memory performance in healthy young adults. Hippocampus 2020; 30:1209-1227. [DOI: 10.1002/hipo.23251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 02/01/2023]
Affiliation(s)
- Jamie Snytte
- Integrated Program in Neuroscience, Faculty of Medicine McGill University Montreal Quebec Canada
| | - Abdelhalim Elshiekh
- Integrated Program in Neuroscience, Faculty of Medicine McGill University Montreal Quebec Canada
| | | | - Lyssa Manning
- Massachusetts General Hospital Boston Massachusetts USA
| | - Stamatoula Pasvanis
- Cerebral Imaging Centre Douglas Mental Health University Institute Montreal Quebec Canada
| | - Gabriel A. Devenyi
- Cerebral Imaging Centre Douglas Mental Health University Institute Montreal Quebec Canada
- Department of Psychiatry McGill University Montreal Quebec Canada
| | - Rosanna K. Olsen
- Department of Psychology University of Toronto Toronto Ontario Canada
- Rotman Research Institute Baycrest Health Sciences Toronto Ontario Canada
| | - Maria Natasha Rajah
- Cerebral Imaging Centre Douglas Mental Health University Institute Montreal Quebec Canada
- Department of Psychiatry McGill University Montreal Quebec Canada
| |
Collapse
|
48
|
Morrow EL, Dulas MR, Cohen NJ, Duff MC. Relational Memory at Short and Long Delays in Individuals With Moderate-Severe Traumatic Brain Injury. Front Hum Neurosci 2020; 14:270. [PMID: 32754022 PMCID: PMC7366514 DOI: 10.3389/fnhum.2020.00270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/16/2020] [Indexed: 11/13/2022] Open
Abstract
Memory deficits are a common and frequently-cited consequence of moderate-severe traumatic brain injury (TBI). However, we know less about how TBI influences relational memory, which allows the binding of the arbitrary elements of experience and the flexible use and recombination of relational representations in novel situations. Relational memory is of special interest for individuals with TBI, given the vulnerability of the hippocampus to injury mechanisms, as well as a growing body of literature establishing the role of relational memory in flexible and goal-directed behavior. In this study, participants with and without a history of moderate-severe TBI completed a continuous relational memory task for face-scene pairings. Participants with TBI exhibited a disruption in relational memory not only when tested after a delay, but also when tested with no experimenter-imposed delay after stimulus presentation. Further, canonical assessments of working and episodic memory did not correspond with performance on the face-scene task, suggesting that this task may tap into relational memory differently and with greater sensitivity than standardized memory assessments. These results highlight the need for rigorous assessment of relational memory in TBI, which is likely to detect deficits that have specific consequences for community reintegration and long-term functional outcomes.
Collapse
Affiliation(s)
- Emily L Morrow
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Michael R Dulas
- Beckman Institute, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Neal J Cohen
- Beckman Institute, The University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Interdisciplinary Health Sciences Institutes, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Melissa C Duff
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
49
|
Knowledge Across Reference Frames: Cognitive Maps and Image Spaces. Trends Cogn Sci 2020; 24:606-619. [PMID: 32586649 DOI: 10.1016/j.tics.2020.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/29/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
In human and non-human animals, conceptual knowledge is partially organized according to low-dimensional geometries that rely on brain structures and computations involved in spatial representations. Recently, two separate lines of research have investigated cognitive maps, that are associated with the hippocampal formation and are similar to world-centered representations of the environment, and image spaces, that are associated with the parietal cortex and are similar to self-centered spatial relationships. We review evidence supporting cognitive maps and image spaces, and we propose a hippocampal-parietal network that can account for the organization and retrieval of knowledge across multiple reference frames. We also suggest that cognitive maps and image spaces may be two manifestations of a more general propensity of the mind to create low-dimensional internal models.
Collapse
|
50
|
Kuriki S, Higuchi S, Nakayama H, Mihara S, Okazaki Y, Ono Y, Kobayashi H. Neurobiological influence of comorbid conditions in young patients diagnosed with gaming disorder: A whole-brain functional connectivity study based on a data driven method. PLoS One 2020; 15:e0233780. [PMID: 32469991 PMCID: PMC7259694 DOI: 10.1371/journal.pone.0233780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Gaming disorder, which is characterized by multiple cognitive and behavioral symptoms, often has comorbid psychiatric conditions such as depression and attention-deficit hyperactivity disorder. Neurobiological effects of the comorbid disorders so far reported are not converging, exhibiting positive and negative alterations of the connectivity in brain networks. In this study, we conducted resting-state functional magnetic-resonance imaging and whole brain functional connectivity analyses for young participants consisting of 40 patients diagnosed with the gaming disorder, with and without comorbid conditions, and 29 healthy controls. Compared to healthy controls, the gaming disorder-alone patients had partially diminished connectivities in the reward system and executive control network, within which there existed central nodes that served as a hub of diminished connections. In the gaming disorder patients who had comorbidity of autism spectrum disorder, the diminished connections were enlarged, with alteration of the hub nodes, to the entire brain areas involved in the reward system including cortical, subcortical and limbic areas that are crucial for reward processing, and to the whole cortical areas composing the executive control network. These observations suggest that the neurodevelopmental condition coexisting with the gaming disorder induced substantial impairment of the neural organizations associated with executive/cognitive and emotional functions, which are plausibly causal to the behavioral addiction, by rearranging and diminishing functional connectivities in the network.
Collapse
Affiliation(s)
- Shinya Kuriki
- School of Science and Engineering, Tokyo Denki University, Saitama, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- * E-mail:
| | - Susumu Higuchi
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Japan
| | - Hideki Nakayama
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Japan
| | - Satoko Mihara
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Japan
| | - Yasuomi Okazaki
- Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yumie Ono
- School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Hiroshi Kobayashi
- School of Information Environment, Tokyo Denki University, Tokyo, Japan
| |
Collapse
|