1
|
Prigogine C, Ruiz JM, Cebolla AM, Deconinck N, Servais L, Gailly P, Dan B, Cheron G. Cerebellar dysfunction in the mdx mouse model of Duchenne muscular dystrophy: An electrophysiological and behavioural study. Eur J Neurosci 2024. [PMID: 39415418 DOI: 10.1111/ejn.16566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024]
Abstract
Patients with Duchenne muscular dystrophy (DMD) commonly show specific cognitive deficits in addition to a severe muscle impairment caused by the absence of dystrophin expression in skeletal muscle. These cognitive deficits have been related to the absence of dystrophin in specific regions of the central nervous system, notably cerebellar Purkinje cells (PCs). Dystrophin has recently been involved in GABAA receptors clustering at postsynaptic densities, and its absence, by disrupting this clustering, leads to decreased inhibitory input to PC. We performed an in vivo electrophysiological study of the dystrophin-deficient muscular dystrophy X-linked (mdx) mouse model of DMD to compare PC firing and local field potential (LFP) in alert mdx and control C57Bl/10 mice. We found that the absence of dystrophin is associated with altered PC firing and the emergence of fast (~160-200 Hz) LFP oscillations in the cerebellar cortex of alert mdx mice. These abnormalities were not related to the disrupted expression of calcium-binding proteins in cerebellar PC. We also demonstrate that cerebellar long-term depression is altered in alert mdx mice. Finally, mdx mice displayed a force weakness, mild impairment of motor coordination and balance during behavioural tests. These findings demonstrate the existence of cerebellar dysfunction in mdx mice. A similar cerebellar dysfunction may contribute to the cognitive deficits observed in patients with DMD.
Collapse
Affiliation(s)
- Cynthia Prigogine
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Electrophysiology, Université de Mons, Mons, Belgium
| | | | - Ana Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Deconinck
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | | | - Philippe Gailly
- Laboratory of Cell Physiology, Université Catholique de Louvain, Brussels, Belgium
| | - Bernard Dan
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
- Rehabilitation Hospital Inkendaal, Vlezenbeek, Belgium
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Electrophysiology, Université de Mons, Mons, Belgium
| |
Collapse
|
2
|
Ioakeimidis V, Busse M, Drew CJG, Pallmann P, Watson GB, Jones D, Palombo M, Schubert R, Rosser AE, Metzler-Baddeley C. Protocol for a randomised controlled unblinded feasibility trial of HD-DRUM: a rhythmic movement training application for cognitive and motor symptoms in people with Huntington's disease. BMJ Open 2024; 14:e082161. [PMID: 39089721 PMCID: PMC11418498 DOI: 10.1136/bmjopen-2023-082161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Huntington's disease (HD) is an inherited neurodegenerative disease causing progressive cognitive and motor decline, largely due to basal ganglia (BG) atrophy. Rhythmic training offers promise as therapy to counteract BG-regulated deficits. We have developed HD-DRUM, a tablet-based app to enhance movement synchronisation skills and improve cognitive and motor abilities in people with HD. This paper outlines a randomised controlled unblinded trial protocol to determine the feasibility of a larger effectiveness trial for HD-DRUM. Additionally, the trial investigates cognitive and motor function measures, along with brain microstructure, aiming to advance our understanding of the neural mechanisms underlying training effects. METHODS, DESIGN AND ANALYSIS 50 individuals with HD, confirmed by genetic testing, and a Total Functional Capacity (TFC) score of 9-13, will be recruited into a two-arm randomised controlled feasibility trial. Consenting individuals with HD will be randomised to the intervention group, which entails 8 weeks of at-home usage of HD-DRUM or a usual-activity control group. All participants will undergo cognitive and motor assessments, alongside ultra-strong gradient (300 mT/m) brain microstructural MRI before and after the 8-week period. The feasibility assessment will encompass recruitment, retention, adherence and acceptability of HD-DRUM following prespecified criteria. The study will also evaluate variations in cognitive and motor performance and brain microstructure changes resulting from the intervention to determine effect size estimates for future sample size calculations. ETHICS AND DISSEMINATION The study has received favourable ethical opinion from the Wales Research Ethics Committee 2 (REC reference: 22/WA/0147) and is sponsored by Cardiff University (SPON1895-22) (Research Integrity, Governance and Ethics Team, Research & Innovation Services, Cardiff University, second Floor, Lakeside Building, University Hospital of Wales, Cardiff, CF14 4XW). Findings will be disseminated to researchers and clinicians in peer-reviewed publications and conference presentations, and to participants, carers and the general public via newsletters and public engagement activities. Data will be shared with the research community via the Enroll-HD platform. TRIAL REGISTRATION NUMBER ISRCTN11906973.
Collapse
Affiliation(s)
- Vasileios Ioakeimidis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Monica Busse
- Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, UK
| | - Cheney J G Drew
- Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, UK
| | - Philip Pallmann
- Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, UK
| | - Guy B Watson
- HD Voice, Huntington's Disease Association, Liverpool, UK
| | - Derek Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | | | - Anne E Rosser
- Cardiff Brain Repair Group, Cardiff, UK
- Department of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Costa É, Gongora M, Bittencourt J, Marinho V, Cagy M, Teixeira S, Nicoliche E, Fernandes I, Machado C, Wienecke J, Ribeiro P, Gupta DS, Velasques B, Budde H. Decrease in reaction time for volleyball athletes during saccadic eye movement task: A preliminary study with evoked potentials. PLoS One 2024; 19:e0290142. [PMID: 38959207 PMCID: PMC11221644 DOI: 10.1371/journal.pone.0290142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/28/2024] [Indexed: 07/05/2024] Open
Abstract
AIM This preliminary study investigated the differences in event-related potential and reaction time under two groups (athletes vs. non-athletes). MATERIAL AND METHODS The P300 was analyzed for Fz, Cz, and Pz electrodes in thirty-one healthy volunteers divided into two groups (volleyball athletes and non-athletes). In addition, the participants performed a saccadic eye movement task to measure reaction time. RESULTS The EEG analysis showed that the athletes, in comparison to the no-athletes, have differences in the P300 in the frontal area (p = 0.021). In relation to reaction time, the results show lower reaction time for athletes (p = 0.001). CONCLUSIONS The volleyball athletes may present a greater allocation of attention during the execution of the inhibition task, since they have a lower reaction time for responses when compared to non-athletes.
Collapse
Affiliation(s)
- Élida Costa
- Laboratory of Neurophysiology and Neuropsychology of Attention, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Gongora
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Victor Marinho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Mauricio Cagy
- Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silmar Teixeira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Eduardo Nicoliche
- Laboratory of Neurophysiology and Neuropsychology of Attention, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabelle Fernandes
- Laboratory of Neurophysiology and Neuropsychology of Attention, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Machado
- Laboratory of Neurophysiology and Neuropsychology of Attention, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jacob Wienecke
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Pedro Ribeiro
- School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daya S. Gupta
- School of Pharmacy, South University, Savannah, Georgia, United States of America
| | - Bruna Velasques
- Laboratory of Neurophysiology and Neuropsychology of Attention, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henning Budde
- Faculty of Human Sciences, Institute for Systems Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Kim T, Rahimpour Jounghani A, Gozdas E, Hosseini SH. Cortical neurite microstructural correlates of time perception in healthy older adults. Heliyon 2024; 10:e32534. [PMID: 38975207 PMCID: PMC11225759 DOI: 10.1016/j.heliyon.2024.e32534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
The human experience is significantly impacted by timing as it structures how information is processed. Nevertheless, the neurological foundation of time perception remains largely unresolved. Understanding cortical microstructure related to timing is crucial for gaining insight into healthy aging and recognizing structural alterations that are typical of neurodegenerative diseases associated with age. Given the importance, this study aimed to determine the brain regions that are accountable for predicting time perception in older adults using microstructural measures of the brain. In this study, elderly healthy adults performed the Time-Wall Estimation task to measure time perception through average error time. We used support vector regression (SVR) analyses to predict the average error time using cortical neurite microstructures derived from orientation dispersion and density imaging based on multi-shell diffusion magnetic resonance imaging (dMRI). We found significant correlations between observed and predicted average error times for neurite arborization (ODI) and free water (FISO). Neurite arborization and free water properties in specific regions in the medial and lateral prefrontal, superior parietal, and medial and lateral temporal lobes were among the most significant predictors of timing ability in older adults. Further, our results revealed that greater branching along with lower free water in cortical structures result in shorter average error times. Future studies should assess whether these same networks are contributing to time perception in older adults with mild cognitive impairment (MCI) and whether degeneration of these networks contribute to early diagnosis or detection of dementia.
Collapse
Affiliation(s)
| | | | - Elveda Gozdas
- C-BRAIN Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1520 Page Mill Rd., Stanford, CA, 94304-5795, United States
| | - S.M. Hadi Hosseini
- C-BRAIN Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1520 Page Mill Rd., Stanford, CA, 94304-5795, United States
| |
Collapse
|
5
|
Fesce R, Gatti R. What networks in the brain system sustain imagination? FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1294866. [PMID: 38020245 PMCID: PMC10648867 DOI: 10.3389/fnetp.2023.1294866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
The brain cannot stop elaborating information. While the circuitries implied in processing sensory information, and those involved in programming and producing movements, have been extensively studied and characterized, what circuits elicit and sustain the endogenous activity (which might be referred to as imaginative activity) has not been clarified to a similar extent. The two areas which have been investigated most intensely are visual and motor imagery. Visual imagery mostly involves the same areas as visual processing and has been studied by having the subject face specific visual imagery tasks that are related to the use of the visual sketchpad as a component of the working memory system. Much less is known about spontaneous, free visual imagination, what circuits drive it, how and why. Motor imagery has been studied with several approaches: the neural circuits activated in the brain during performance of a movement have been compared with those involved in visually or kinaesthetically imagining performing the same movement, or in observing another person performing it. Some networks are similarly activated in these situations, although primary motor neurons are only activated during motor execution. Imagining the execution of an action seems unable to activate circuits involved in eliciting accompanying motor adjustments (such as postural adaptations) that are unconsciously (implicitly) associated to the execution of the movement. A more faithful neuronal activation is obtained through kinaesthetic motor imagination-imagining how it feels to perform the movement. Activation of sensory-motor and mirror systems, elicited by observing another person performing a transitive action, can also recruit circuits that sustain implicit motor responses that normally accompany the overt movement. This last aspect has originated the expanding and promising field of action observation therapy (AOT). The fact that the various kinds of motor imagery differentially involve the various brain networks may offer some hints on what neural networks sustain imagery in general, another activity that has an attentive component-recalling a memory, covertly rehearsing a speech, internally replaying a behaviour-and a vague, implicit component that arises from the freely flowing surfacing of internal images, not driven by intentional, conscious control.
Collapse
Affiliation(s)
- Riccardo Fesce
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Roberto Gatti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico, Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
6
|
Cundari M, Vestberg S, Gustafsson P, Gorcenco S, Rasmussen A. Neurocognitive and cerebellar function in ADHD, autism and spinocerebellar ataxia. Front Syst Neurosci 2023; 17:1168666. [PMID: 37415926 PMCID: PMC10321758 DOI: 10.3389/fnsys.2023.1168666] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
The cerebellum plays a major role in balance, motor control and sensorimotor integration, but also in cognition, language, and emotional regulation. Several neuropsychiatric disorders such as attention deficit-hyperactivity disorder (ADHD), autism spectrum disorder (ASD), as well as neurological diseases such as spinocerebellar ataxia type 3 (SCA3) are associated with differences in cerebellar function. Morphological abnormalities in different cerebellar subregions produce distinct behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. The specific contribution of the cerebellum to typical development may therefore involve the optimization of the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains. Here, we review cerebellar structural and functional differences between healthy and patients with ADHD, ASD, and SCA3, and explore how disruption of cerebellar networks affects the neurocognitive functions in these conditions. We discuss how cerebellar computations contribute to performance on cognitive and motor tasks and how cerebellar signals are interfaced with signals from other brain regions during normal and dysfunctional behavior. We conclude that the cerebellum plays a role in many cognitive functions. Still, more clinical studies with the support of neuroimaging are needed to clarify the cerebellum's role in normal and dysfunctional behavior and cognitive functioning.
Collapse
Affiliation(s)
- Maurizio Cundari
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Unit of Neuropsychiatry, Hospital of Helsingborg, Helsingborg, Sweden
- Unit of Neurology, Hospital of Helsingborg, Helsingborg, Sweden
| | - Susanna Vestberg
- Department of Psychology, Faculty of Social Science, Lund University, Lund, Sweden
| | - Peik Gustafsson
- Child and Adolescent Psychiatry, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
| | - Sorina Gorcenco
- Department for Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anders Rasmussen
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Alashram AR, Annino G. A Novel Neurorehabilitation Approach for Neural Plasticity
Overstimulation and Reorganization in Patients with Neurological
Disorders. PHYSIKALISCHE MEDIZIN, REHABILITATIONSMEDIZIN, KURORTMEDIZIN 2023. [DOI: 10.1055/a-2004-5836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
AbstractNeurological disorders are those that are associated with impairments in the
nervous system. These impairments affect the patient’s activities of
daily living. Recently, many advanced modalities have been used in the
rehabilitation field to treat various neurological impairments. However, many of
these modalities are available only in clinics, and some are expensive. Most
patients with neurological disorders have difficulty reaching clinics. This
review was designed to establish a new neurorehabilitation approach based on the
scientific way to improve patients’ functional recovery following
neurological disorders in clinics or at home. The human brain is a network, an
intricate, integrated system that coordinates operations among billions of
units. In fact, grey matter contains most of the neuronal cell bodies. It
includes the brain and the spinal cord areas involved in muscle control, sensory
perception, memory, emotions, decision-making, and self-control. Consequently,
patients’ functional ability results from complex interactions among
various brain and spinal cord areas and neuromuscular systems. While white
matter fibers connect numerous brain areas, stimulating or improving non-motor
symptoms, such as motivation, cognitive, and sensory symptoms besides motor
symptoms may enhance functional recovery in patients with neurological
disorders. The basic principles of the current treatment approach are
established based on brain connectivity. Using motor, sensory, motivation, and
cognitive (MSMC) interventions during rehabilitation may promote neural
plasticity and maximize functional recovery in patients with neurological
disorders. Experimental studies are strongly needed to verify our theories and
hypothesis.
Collapse
Affiliation(s)
- Anas R. Alashram
- Department of Physiotherapy, Middle East University, Amman,
Jordan
- Applied Science Research Center, Applied Science Private
University
| | - Giuseppe Annino
- Department of Medicine Systems, University of Rome “Tor
Vergata”, Rome, Italy
| |
Collapse
|
8
|
De Kock R, Zhou W, Datta P, Mychal Joiner W, Wiener M. The role of consciously timed movements in shaping and improving auditory timing. Proc Biol Sci 2023; 290:20222060. [PMID: 36722075 PMCID: PMC9890119 DOI: 10.1098/rspb.2022.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 02/02/2023] Open
Abstract
Our subjective sense of time is intertwined with a plethora of perceptual, cognitive and motor functions, and likewise, the brain is equipped to expertly filter, weight and combine these signals for seamless interactions with a dynamic world. Until relatively recently, the literature on time perception has excluded the influence of simultaneous motor activity, yet it has been found that motor circuits in the brain are at the core of most timing functions. Several studies have now identified that concurrent movements exert robust effects on perceptual timing estimates, but critically have not assessed how humans consciously judge the duration of their own movements. This creates a gap in our understanding of the mechanisms driving movement-related effects on sensory timing. We sought to address this gap by administering a sensorimotor timing task in which we explicitly compared the timing of isolated auditory tones and arm movements, or both simultaneously. We contextualized our findings within a Bayesian cue combination framework, in which separate sources of temporal information are weighted by their reliability and integrated into a unitary time estimate that is more precise than either unisensory estimate. Our results revealed differences in accuracy between auditory, movement and combined trials, and (crucially) that combined trials were the most accurately timed. Under the Bayesian framework, we found that participants' combined estimates were more precise than isolated estimates, yet were sub-optimal when compared with the model's prediction, on average. These findings elucidate previously unknown qualities of conscious motor timing and propose computational mechanisms that can describe how movements combine with perceptual signals to create unified, multimodal experiences of time.
Collapse
Affiliation(s)
- Rose De Kock
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | - Weiwei Zhou
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | - Poorvi Datta
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | - Wilsaan Mychal Joiner
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | - Martin Wiener
- Department of Psychology, George Mason University, Fairfax, VA, USA
| |
Collapse
|
9
|
Delay discounting in Parkinson’s disease: A systematic review and meta-analysis. Behav Brain Res 2023; 436:114101. [DOI: 10.1016/j.bbr.2022.114101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022]
|
10
|
Alhassen W, Alhassen S, Chen J, Monfared RV, Alachkar A. Cilia in the Striatum Mediate Timing-Dependent Functions. Mol Neurobiol 2023; 60:545-565. [PMID: 36322337 PMCID: PMC9849326 DOI: 10.1007/s12035-022-03095-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
Almost all brain cells contain cilia, antennae-like microtubule-based organelles. Yet, the significance of cilia, once considered vestigial organelles, in the higher-order brain functions is unknown. Cilia act as a hub that senses and transduces environmental sensory stimuli to generate an appropriate cellular response. Similarly, the striatum, a brain structure enriched in cilia, functions as a hub that receives and integrates various types of environmental information to drive appropriate motor response. To understand cilia's role in the striatum functions, we used loxP/Cre technology to ablate cilia from the dorsal striatum of male mice and monitored the behavioral consequences. Our results revealed an essential role for striatal cilia in the acquisition and brief storage of information, including learning new motor skills, but not in long-term consolidation of information or maintaining habitual/learned motor skills. A fundamental aspect of all disrupted functions was the "time perception/judgment deficit." Furthermore, the observed behavioral deficits form a cluster pertaining to clinical manifestations overlapping across psychiatric disorders that involve the striatum functions and are known to exhibit timing deficits. Thus, striatal cilia may act as a calibrator of the timing functions of the basal ganglia-cortical circuit by maintaining proper timing perception. Our findings suggest that dysfunctional cilia may contribute to the pathophysiology of neuro-psychiatric disorders, as related to deficits in timing perception.
Collapse
Affiliation(s)
- Wedad Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Sammy Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Jiaqi Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA ,UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697 USA ,Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92697 USA
| |
Collapse
|
11
|
Palmisano C, Beccaria L, Haufe S, Volkmann J, Pezzoli G, Isaias IU. Gait Initiation Impairment in Patients with Parkinson's Disease and Freezing of Gait. Bioengineering (Basel) 2022; 9:639. [PMID: 36354550 PMCID: PMC9687939 DOI: 10.3390/bioengineering9110639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 08/03/2023] Open
Abstract
Freezing of gait (FOG) is a sudden episodic inability to produce effective stepping despite the intention to walk. It typically occurs during gait initiation (GI) or modulation and may lead to falls. We studied the anticipatory postural adjustments (imbalance, unloading, and stepping phase) at GI in 23 patients with Parkinson's disease (PD) and FOG (PDF), 20 patients with PD and no previous history of FOG (PDNF), and 23 healthy controls (HCs). Patients performed the task when off dopaminergic medications. The center of pressure (CoP) displacement and velocity during imbalance showed significant impairment in both PDNF and PDF, more prominent in the latter patients. Several measurements were specifically impaired in PDF patients, especially the CoP displacement along the anteroposterior axis during unloading. The pattern of segmental center of mass (SCoM) movements did not show differences between groups. The standing postural profile preceding GI did not correlate with outcome measurements. We have shown impaired motor programming at GI in Parkinsonian patients. The more prominent deterioration of unloading in PDF patients might suggest impaired processing and integration of somatosensory information subserving GI. The unaltered temporal movement sequencing of SCoM might indicate some compensatory cerebellar mechanisms triggering time-locked models of body mechanics in PD.
Collapse
Affiliation(s)
- Chiara Palmisano
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Würzburg, Germany
| | - Laura Beccaria
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Würzburg, Germany
| | - Stefan Haufe
- Uncertainty, Inverse Modeling and Machine Learning Group, Faculty IV Electrical Engineering and Computer Science, Technical University of Berlin, 10623 Berlin, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Würzburg, Germany
| | - Gianni Pezzoli
- Centro Parkinson, ASST Gaetano Pini-CTO, 20122 Milano, Italy
| | - Ioannis U. Isaias
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Würzburg, Germany
- Centro Parkinson, ASST Gaetano Pini-CTO, 20122 Milano, Italy
| |
Collapse
|
12
|
Miyawaki EK. Review: Subjective Time Perception, Dopamine Signaling, and Parkinsonian Slowness. Front Neurol 2022; 13:927160. [PMID: 35899266 PMCID: PMC9311331 DOI: 10.3389/fneur.2022.927160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
The association between idiopathic Parkinson's disease, a paradigmatic dopamine-deficiency syndrome, and problems in the estimation of time has been studied experimentally for decades. I review that literature, which raises a question about whether and if dopamine deficiency relates not only to the motor slowness that is an objective and cardinal parkinsonian sign, but also to a compromised neural substrate for time perception. Why does a clinically (motorically) significant deficiency in dopamine play a role in the subjective perception of time's passage? After a discussion of a classical conception of basal ganglionic control of movement under the influence of dopamine, I describe recent work in healthy mice using optogenetics; the methodology visualizes dopaminergic neuronal firing in very short time intervals, then allows for correlation with motor behaviors in trained tasks. Moment-to-moment neuronal activity is both highly dynamic and variable, as assessed by photometry of genetically defined dopaminergic neurons. I use those animal data as context to review a large experimental experience in humans, spanning decades, that has examined subjective time perception mainly in Parkinson's disease, but also in other movement disorders. Although the human data are mixed in their findings, I argue that loss of dynamic variability in dopaminergic neuronal activity over very short intervals may be a fundamental sensory aspect in the pathophysiology of parkinsonism. An important implication is that therapeutic response in Parkinson's disease needs to be understood in terms of short-term alterations in dynamic neuronal firing, as has already been examined in novel ways—for example, in the study of real-time changes in neuronal network oscillations across very short time intervals. A finer analysis of a treatment's network effects might aid in any effort to augment clinical response to either medications or functional neurosurgical interventions in Parkinson's disease.
Collapse
Affiliation(s)
- Edison K. Miyawaki
- Department of Neurology, Mass General Brigham, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Edison K. Miyawaki
| |
Collapse
|
13
|
Geminiani A, Mockevicius A, D'Angelo E, Casellato C. Cerebellum involvement in dystonia: insights from a spiking neural network model during associative learning. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:5132-5135. [PMID: 36086302 DOI: 10.1109/embc48229.2022.9871205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dystonia is a neurological movement disorder characterized by twisting and repetitive movements or abnormal fixed postures. This complex brain disease has usually been associated with damages to the Basal Ganglia. However, recent studies point out the potential role of the cerebellum. Indeed, motor learning is impaired in dystonic patients, e.g. during eyeblink classical conditioning, a typical cerebellum-driven associative learning protocol, and rodents with local cerebellar damages exhibit dystonic movements. Alterations in the olivocerebellar circuit connectivity have been identified as a potential neural substrate of dystonia. Here, we investigated this hypothesis through simulations of eyeblink conditioning driven by a realistic spiking model of the cerebellum. The pathological model was generated by decreasing the signal transmission from the Inferior Olive to cerebellar cortex, as observed in animal experiments. The model was able to reproduce a reduced acquisition of eyeblink motor responses, with also an unproper timing. Indeed, this pathway is fundamental to drive cerebellar cortical plasticity, which is the basis of cerebellum-driven motor learning. Exploring different levels of damage, the model predicted the possible amount of underlying impairment associated with the misbehavior observed in patients. Simulations of other debated lesions reported in mouse models of dystonia will be run to investigate the cerebellar involvement in different types of dystonia. Indeed, the eyeblink conditioning phenotype could be used to discriminate between them, identifying specific deficits in the generation of motor responses. Future studies will also include simulations of pharmacological or deep brain stimulation treatments targeting the cerebellum, to predict their impact in improving symptoms.
Collapse
|
14
|
Puyjarinet F, Bégel V, Geny C, Driss V, Cuartero MC, De Cock VC, Pinto S, Dalla Bella S. At-Home Training With a Rhythmic Video Game for Improving Orofacial, Manual, and Gait Abilities in Parkinson’s Disease: A Pilot Study. Front Neurosci 2022; 16:874032. [PMID: 35769698 PMCID: PMC9235408 DOI: 10.3389/fnins.2022.874032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/12/2022] [Indexed: 01/10/2023] Open
Abstract
Rhythm disorders are consistently reported in Parkinson’s disease (PD). They manifest across motor domains, such as in orofacial (oral diadochokinesis), manual (finger tapping), and gait tasks. It is still unclear, however, whether these disorders are domain- and task-specific, or result from impaired common mechanisms supporting rhythm processing (general dysrhythmia). We tested the possibility that an at-home intervention delivered via a rhythmic video game on tablet improves motor performance across motor domains in PD. Patients with PD (n = 12) played at home a rhythmic video game (Rhythm Workers) on tablet, in which they finger-tapped to the beat of music, for 6 weeks. A control group (n = 11) played an active non-rhythmic video game (Tetris). A third group (n = 10) did not receive any intervention. We measured rhythmic abilities in orofacial, manual and gait motor domains, as well as rhythm perception, before and after the intervention. Patients who performed the rhythmic training improved their orofacial and manual rhythmic performance. This beneficial effect was linked to improved rhythm perception only following the rhythmic training period. We did not observe any improvement in rhythmic abilities in the other two groups. In this pilot study, we demonstrated that at-home intervention with a rhythmic video game using finger tapping can have beneficial effects on motor performance across different motor domains (manual and orofacial). This finding provides evidence of a general dysrhythmia in PD and paves the way to technology-driven interventions aiming at alleviating rhythm-related motor deficits in PD.
Collapse
Affiliation(s)
- Frédéric Puyjarinet
- University of Montpellier, Montpellier, France
- *Correspondence: Frédéric Puyjarinet,
| | - Valentin Bégel
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Christian Geny
- Department of Geriatrics, CHRU of Montpellier, Montpellier, France
| | - Valérie Driss
- Clinical Investigation Centre, CHRU of Montpellier, Montpellier, France
| | | | | | - Serge Pinto
- Aix Marseille Univ., CNRS, LPL, Aix-en-Provence, France
| | - Simone Dalla Bella
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada
- Department of Psychology, University of Montreal, Montreal, QC, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, QC, Canada
- University of Economics and Human Sciences in Warsaw, Warsaw, Poland
- Simone Dalla Bella,
| |
Collapse
|
15
|
Naro A, Pignolo L, Bruschetta D, Calabrò RS. What about the role of the cerebellum in music-associated functional recovery? A secondary EEG analysis of a randomized clinical trial in patients with Parkinson disease. Parkinsonism Relat Disord 2022; 96:57-64. [PMID: 35220062 DOI: 10.1016/j.parkreldis.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Abstract
Rhythmic Auditory Stimulation (RAS) has been shown to be of help in an effective gait training of people with idiopathic Parkinson's disease (PD). The cerebellum may play an important role in RAS aftereffects by compensating the detrimental internal clock for automatic and rhythmic motricity. However, the neurophysiological mechanisms underlying RAS aftereffects are still poorly understood. In the present study, we tested the contribution of the cerebellum to RAS-based gait training aftereffects in people with PD by examining cerebellum-cerebral connectivity indices using standard EEG recording. We enrolled 50 patients with PD who were randomly assigned to two different modalities of treadmill gait training using GaitTrainer3 with and without RAS (non_RAS) during an 8-week training program. We measured clinical and kinematic gait indices and electrophysiological data (standard EEG recording during walking on GaitTrainer3) of both the gait trainings. We found that the greater improvement in gait performance following RAS than non_RAS training, as per clinical and kinematic assessment, was paralleled by a more evident reshape of cerebellum-brain functional connectivity with regard to specific brain areas (pre-motor, sensorimotor and temporal cortices) and gait-cycle phases (mainly 25-75% of the gait cycle duration). These findings suggest that the cerebellum mediates the reshape of sensorimotor rhythms and fronto-centroparietal connectivity in relation to specific gait-cycle phases. This may be consistent with a recovery of the internal timing mechanisms generating and controlling motor rhythmicity, eventually improving gait performance. The precise definition of the cerebellar role to gait functional recovery in people with PD may be crucial to create patient-tailored rehabilitative approaches.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | |
Collapse
|
16
|
De Kock R, Gladhill KA, Ali MN, Joiner WM, Wiener M. How movements shape the perception of time. Trends Cogn Sci 2021; 25:950-963. [PMID: 34531138 PMCID: PMC9991018 DOI: 10.1016/j.tics.2021.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
In order to keep up with a changing environment, mobile organisms must be capable of deciding both where and when to move. This precision necessitates a strong sense of time, as otherwise we would fail in many of our movement goals. Yet, despite this intrinsic link, only recently have researchers begun to understand how these two features interact. Primarily, two effects have been observed: movements can bias time estimates, but they can also make them more precise. Here we review this literature and propose that both effects can be explained by a Bayesian cue combination framework, in which movement itself affords the most precise representation of time, which can influence perception in either feedforward or active sensing modes.
Collapse
|
17
|
Baldi P, Alhassen W, Chen S, Nguyen H, Khoudari M, Alachkar A. Large-scale analysis reveals spatiotemporal circadian patterns of cilia transcriptomes in the primate brain. J Neurosci Res 2021; 99:2610-2624. [PMID: 34310750 PMCID: PMC11391745 DOI: 10.1002/jnr.24919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 01/13/2023]
Abstract
Cilia are dynamic subcellular systems, with core structural and functional components operating in a highly coordinated manner. Since many environmental stimuli sensed by cilia are circadian in nature, it is reasonable to speculate that genes encoding cilia structural and functional components follow rhythmic circadian patterns of expression. Using computational methods and the largest spatiotemporal gene expression atlas of primates, we identified and analyzed the circadian rhythmic expression of cilia genes across 22 primate brain areas. We found that around 73% of cilia transcripts exhibited circadian rhythmicity across at least one of 22 brain regions. In 12 brain regions, cilia transcriptomes were significantly enriched with circadian oscillating transcripts, as compared to the rest of the transcriptome. The phase of the cilia circadian transcripts deviated from the phase of the majority of the background circadian transcripts, and transcripts coding for cilia basal body components accounted for the majority of cilia circadian transcripts. In addition, adjacent or functionally connected brain nuclei had large overlapping complements of circadian cilia genes. Most remarkably, cilia circadian transcripts shared across the basal ganglia nuclei and the prefrontal cortex peaked in these structures in sequential fashion that is similar to the sequential order of activation of the basal ganglia-cortical circuitry in connection with movement coordination, albeit on completely different timescales. These findings support a role for the circadian spatiotemporal orchestration of cilia gene expression in the normal physiology of the basal ganglia-cortical circuit and motor control. Studying orchestrated cilia rhythmicity in the basal ganglia-cortical circuits and other brain circuits may help develop better functional models, and shed light on the causal effects cilia functions have on these circuits and on the regulation of movement and other behaviors.
Collapse
Affiliation(s)
- Pierre Baldi
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA, USA
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA, USA
| | - Wedad Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA, USA
| | - Siwei Chen
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA, USA
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA, USA
| | - Henry Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA, USA
| | - Mohammad Khoudari
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA, USA
| | - Amal Alachkar
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
18
|
De Kock R, Zhou W, Joiner WM, Wiener M. Slowing the body slows down time perception. eLife 2021; 10:e63607. [PMID: 33830016 PMCID: PMC8051945 DOI: 10.7554/elife.63607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Interval timing is a fundamental component of action and is susceptible to motor-related temporal distortions. Previous studies have shown that concurrent movement biases temporal estimates, but have primarily considered self-modulated movement only. However, real-world encounters often include situations in which movement is restricted or perturbed by environmental factors. In the following experiments, we introduced viscous movement environments to externally modulate movement and investigated the resulting effects on temporal perception. In two separate tasks, participants timed auditory intervals while moving a robotic arm that randomly applied four levels of viscosity. Results demonstrated that higher viscosity led to shorter perceived durations. Using a drift-diffusion model and a Bayesian observer model, we confirmed these biasing effects arose from perceptual mechanisms, instead of biases in decision making. These findings suggest that environmental perturbations are an important factor in movement-related temporal distortions, and enhance the current understanding of the interactions of motor activity and cognitive processes.
Collapse
Affiliation(s)
- Rose De Kock
- University of California, DavisDavisUnited States
| | - Weiwei Zhou
- University of California, DavisDavisUnited States
| | | | | |
Collapse
|
19
|
Graziola F, Pellorca C, Di Criscio L, Vigevano F, Curatolo P, Capuano A. Impaired Motor Timing in Tourette Syndrome: Results From a Case-Control Study in Children. Front Neurol 2020; 11:552701. [PMID: 33192986 PMCID: PMC7658319 DOI: 10.3389/fneur.2020.552701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Tourette syndrome (TS) is a neurodevelopmental disorder characterized by motor and vocal tics. Co-occurrence of attention-deficit/hyperactivity disorder (ADHD) or obsessive–compulsive disorder (OCD) is very frequent in the pediatric population as well as the presence of an impairment of the executive functions. The aim of our study was to investigate motor timing, that is, the temporal organization of motor behavior, in a pediatric population of Tourette patients. Thirty-seven Tourette patients (divided in 22 “pure” Tourette patients and 15 with ADHD) were compared with 22 healthy age- and gender-matched subjects. All subjects underwent a neuropsychiatric screening and were tested for their planning and decision-making abilities by using a standardized test, such as Tower of London (ToL). Two experimental paradigms were adopted: finger-tapping test (FTT), a free motor tapping task, and synchronization–continuation task. An accuracy index was calculated as measure of ability of synchronization. We found that “pure” TS as well as TS+ADHD showed lower scores in the FTT for the dominant and non-dominant hands than controls. Moreover, in the synchronization and continuation test, we observed an overall lack of accuracy in both TS groups in the continuation phase for 2,000 ms (supra-second interval), interestingly, with opposite direction of accuracy index. Thus, “pure” TS patients were classified as “behind the beat,” whereas, TS+ADHD as “ahead of the beat.” The performance in the finger tapping was inversely correlated to ToL total scores and execution time, whereas we did not find any correlation with the accuracy index of the synchronization and continuation test. In conclusion, here, we explored motor timing ability in a childhood cohort of Tourette patients, confirming that patients exhibit an impaired temporal control of motor behavior and these findings may be explained by the common underlying neurobiology of TS and motor timing.
Collapse
Affiliation(s)
- Federica Graziola
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
| | - Chiara Pellorca
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorena Di Criscio
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
| | - Federico Vigevano
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | - Paolo Curatolo
- Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Capuano
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
20
|
Patterns of enhancement in paretic shoulder kinematics after stroke with musical cueing. Sci Rep 2020; 10:18109. [PMID: 33093633 PMCID: PMC7582907 DOI: 10.1038/s41598-020-75143-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 10/05/2020] [Indexed: 11/15/2022] Open
Abstract
Musical cueing has been widely utilised in post-stroke motor rehabilitation; however, the kinematic evidence on the effects of musical cueing is sparse. Further, the element-specific effects of musical cueing on upper-limb movements have rarely been investigated. This study aimed to kinematically quantify the effects of no auditory, rhythmic auditory, and melodic auditory cueing on shoulder abduction, holding, and adduction in patients who had experienced hemiparetic stroke. Kinematic data were obtained using inertial measurement units embedded in wearable bands. During the holding phase, melodic auditory cueing significantly increased the minimum Euler angle and decreased the range of motion compared with the other types of cueing. Further, the root mean square error in the angle measurements was significantly smaller and the duration of movement execution was significantly shorter during the holding phase when melodic auditory cueing was provided than when the other types of cueing were used. These findings indicated the important role of melodic auditory cueing for enhancing movement positioning, variability, and endurance. This study provides the first kinematic evidence on the effects of melodic auditory cueing on kinematic enhancement, thus suggesting the potential use of pitch-related elements in psychomotor rehabilitation.
Collapse
|
21
|
Affiliation(s)
- Sagar S Lad
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center, and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (Lad, Hurley, Taber); Departments of Psychiatry and Radiology, Wake Forest School of Medicine, Winston-Salem, N.C., and Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley); and Division of Biomedical Sciences, Via College of Osteopathic Medicine, Blacksburg, Va., and Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston (Taber)
| | - Robin A Hurley
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center, and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (Lad, Hurley, Taber); Departments of Psychiatry and Radiology, Wake Forest School of Medicine, Winston-Salem, N.C., and Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley); and Division of Biomedical Sciences, Via College of Osteopathic Medicine, Blacksburg, Va., and Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston (Taber)
| | - Katherine H Taber
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center, and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (Lad, Hurley, Taber); Departments of Psychiatry and Radiology, Wake Forest School of Medicine, Winston-Salem, N.C., and Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley); and Division of Biomedical Sciences, Via College of Osteopathic Medicine, Blacksburg, Va., and Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston (Taber)
| |
Collapse
|
22
|
Gallego Hiroyasu EM, Yotsumoto Y. Older adults preserve accuracy but not precision in explicit and implicit rhythmic timing. PLoS One 2020; 15:e0240863. [PMID: 33075063 PMCID: PMC7571673 DOI: 10.1371/journal.pone.0240863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/03/2020] [Indexed: 11/19/2022] Open
Abstract
Aging brings with it several forms of neurophysiological and cognitive deterioration, but whether a decline in temporal processing is part of the aging process is unclear. The current study investigated whether this timing deficit has a cause independent of those of memory and attention using rhythmic stimuli that reduce the demand for these higher cognitive functions. In Study 1, participants took part in two rhythmic timing tasks: explicit and implicit. Participants had to distinguish regular from irregular sequences while processing temporal information explicitly or implicitly. Results showed that while the accuracy in the implicit timing task was preserved, older adults had more noise in their performance in the explicit and implicit tasks. In Study 2, participants took part in a dual-implicit task to explore whether the performance of temporal tasks differed with increasing task difficulty. We found that increasing task difficulty magnifies age-related differences.
Collapse
Affiliation(s)
| | - Yuko Yotsumoto
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Yoshida N, Suzuki T, Ogahara K, Higashi T, Sugawara K. Somatosensory temporal discrimination threshold changes during motor learning. Somatosens Mot Res 2020; 37:313-319. [PMID: 33064045 DOI: 10.1080/08990220.2020.1830755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE Mechanisms underlying the somatosensory temporal discrimination threshold and its relationship with motor control have been reported; however, little is known regarding the change in temporal processing of tactile information during motor learning. We investigated the somatosensory temporal discrimination threshold changes during motor learning in a feedback-control task. MATERIALS AND METHODS We included 15 healthy individuals. The somatosensory temporal discrimination threshold was measured on the index finger. A 10-session coin rotation task was performed, with 2 min' training per session. The coin rotation scores were determined through tests (continuous coin rotation at 180° at maximum speed for 10 s). The coin rotation test score and the somatosensory temporal discrimination threshold were determined at baseline and after 5 and 10 sets of training, as follows: pre-test; training5set (1 set × 5); post-test5block; training5set (1 set × 5); and post-test10block. The coin rotation score and the somatosensory temporal discrimination threshold were compared between the tests. The latter was also compared between the right (the within-subject control) and left fingers. RESULTS The coin rotation score showed significant differences among all tests. In the somatosensory temporal discrimination threshold, there was a significant difference between the pre-test and post-test5block values, pre-test and post-test10block values of the left side and between the right and left sides in the post-test5block and the post-test10block values. CONCLUSIONS The somatosensory temporal discrimination threshold decreased along with task-performance progress following motor learning during a feedback-control task.
Collapse
Affiliation(s)
- Naoshin Yoshida
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Tomotaka Suzuki
- Faculty of Health and Social Work School of Rehabilitation, Kanagawa University of Human Services, Yokosuka, Japan
| | - Kakuya Ogahara
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Faculty of Health and Social Work School of Rehabilitation, Kanagawa University of Human Services, Yokosuka, Japan
| | - Toshio Higashi
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kenichi Sugawara
- Faculty of Health and Social Work School of Rehabilitation, Kanagawa University of Human Services, Yokosuka, Japan
| |
Collapse
|
24
|
Pu L, Qureshi NK, Ly J, Zhang B, Cong F, Tang WC, Liang Z. Therapeutic benefits of music-based synchronous finger tapping in Parkinson's disease-an fNIRS study protocol for randomized controlled trial in Dalian, China. Trials 2020; 21:864. [PMID: 33066811 PMCID: PMC7568348 DOI: 10.1186/s13063-020-04770-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/24/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Music therapy improves neuronal activity and connectivity of healthy persons and patients with clinical symptoms of neurological diseases like Parkinson's disease, Alzheimer's disease, and major depression. Despite the plethora of publications that have reported the positive effects of music interventions, little is known about how music improves neuronal activity and connectivity in afflicted patients. METHODS For patients suffering from Parkinson's disease (PD), we propose a daily 25-min music-based synchronous finger tapping (SFT) intervention for 8 weeks. Eligible participants with PD are split into two groups: an intervention group and a control arm. In addition, a third cohort of healthy controls will be recruited. Assessment of finger tapping performances, the Unified Parkinson's Disease Rating Scale (UPDRS), an n-back test, the Montreal Cognitive Assessment (MoCA), as well as oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (HbR), and total hemoglobin activation collected by functional near-infrared spectroscopy (fNIRS) are measured at baseline, week 4 (during), week 8 (post), and week 12 (retention) of the study. Data collected from the two PD groups are compared to baseline performances from healthy controls. DISCUSSION This exploratory prospective trial study investigates the cortical neuronal activity and therapeutic effects associated with an auditory external cue used to induce automatic and implicit synchronous finger tapping in patients diagnosed with PD. The extent to which the intervention is effective may be dependent on the severity of the disease. The study's findings are used to inform larger clinical studies for optimization and further exploration of the therapeutic effects of movement-based music therapy on neural activity in neurological diseases. TRIAL REGISTRATION ClinicalTrials.gov NCT04212897 . Registered on December 30, 2019. The participant recruitment and study protocol have received ethical approval from the First Affiliated Hospital of Dalian Medical University. The hospital Protocol Record number is PJ-KY-2019-123. The protocol was named "fNIRS Studies of Music Intervention of Parkinson's Disease." The current protocol is version 1.1, revised on September 1, 2020.
Collapse
Affiliation(s)
- Lanlan Pu
- Department of Neurology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Nauman Khalid Qureshi
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Joanne Ly
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Bingwei Zhang
- Department of Neurology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China
- Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| | - Zhanhua Liang
- Department of Neurology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| |
Collapse
|
25
|
Vicario CM, Nitsche MA, Salehinejad MA, Avanzino L, Martino G. Time Processing, Interoception, and Insula Activation: A Mini-Review on Clinical Disorders. Front Psychol 2020; 11:1893. [PMID: 32973605 PMCID: PMC7461974 DOI: 10.3389/fpsyg.2020.01893] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Time processing is a multifaceted skill crucial for managing different aspects of life. In the current work, we explored the relationship between interoception and time processing by examining research on clinical models. We investigated whether time processing deficits are associated with dysfunction of the interoceptive system and/or insular cortex activity, which is crucial in decoding internal body signaling. Furthermore, we explored whether insular activation predicts the subjective experience of time (i.e., the subjective duration of a target stimulus to be timed). Overall, our work suggests that alteration of the interoceptive system could be a common psychophysiological hallmark of mental disorders affected by time processing deficits.
Collapse
Affiliation(s)
- Carmelo Mario Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, Messina, Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Mohammad A Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Gabriella Martino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
26
|
Affective and cognitive theory of mind in patients with cervical dystonia with and without tremor. J Neural Transm (Vienna) 2020; 128:199-206. [PMID: 32770275 DOI: 10.1007/s00702-020-02237-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022]
Abstract
Theory of mind (ToM) refers to an individual's ability to attribute mental states to predict and explain another person's behavior. It has been shown that patients with cervical dystonia (CD) present impaired ToM ability supporting the idea that CD is a network disorder. An emerging hypothesis is that different phenotypes of CD reflect distinct key nodes in the malfunctioning cerebral network. The aim of the present study was to investigate whether the presence of tremor as additional phenotypic feature of CD influences the ability to attribute a cognitive or emotional state to another person. We enrolled 35 patients with CD, 21 with tremor (CD-T) and 14 without tremor (CD-NT) and 47 age-matched healthy subjects (HS). The Emotion Attribution Task (EAT) was adopted to assess the affective ToM ability while the Advanced Test (AT) was used to investigate the cognitive ToM ability. Results showed that CD patients' performance was worse than HS in recognizing the emotional feelings expressed in the EAT situations, with no difference between CD-T and CD-NT. Regarding cognitive ToM, both CD-T and CD-NT performed worse than HS in the AT task. However, it also emerged that CD-T were more impaired in AT task than CD-NT. Our results indicate that both affective and cognitive aspects of ToM are impaired in CD and that cognitive ToM is more impaired in patients presenting tremor respect to those without. These findings support the hypothesis that the cerebral network responsible of motor and non-motor impairments is more widespread in CD-T than CD-NT.
Collapse
|
27
|
Kishi T, Ogata T, Ora H, Shigeyama R, Nakayama M, Seki M, Orimo S, Miyake Y. Synchronized Tactile Stimulation on Upper Limbs Using a Wearable Robot for Gait Assistance in Patients With Parkinson's Disease. Front Robot AI 2020; 7:10. [PMID: 33501179 PMCID: PMC7806086 DOI: 10.3389/frobt.2020.00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate whether using a wearable robot applying interactive rhythmic stimulation on the upper limbs of patients with Parkinson's disease (PD) could affect their gait. The wearable robot presented tactile stimuli on the patients' upper limbs, which was mutually synchronized with the swing of their upper limbs. We conducted an evaluation experiment with PD patients (n = 30, Modified Hoehn-Yahr = 1-3, on-state) to investigate the assistance effect by the robot and the immediate after-effect of intervention. The participants were instructed to walk 30 m under four different conditions: (1) not wearing the robot before the intervention (Pre-condition), (2) wearing the robot without the rhythm assistance (RwoA condition), (3) wearing the robot with rhythm assistance (RwA condition), and (4) not wearing the robot immediately after the intervention (Post-condition). These conditions were conducted in this order over a single day. The third condition was performed three times and the others, once. The arm swing amplitude, stride length, and velocity were increased in the RwA condition compared to the RwoA condition. The coefficient of variance (CV) of the stride duration was decreased in the RwA condition compared to the RwoA condition. These results revealed that the assistance by the robot increased the gait performance of PD patients. In addition, the stride length and velocity were increased and the stride duration CV was decreased in the Post-condition compared to the Pre-condition. These results show that the effect of robot assistance on the patient's gait remained immediately after the intervention. These findings suggest that synchronized rhythmic stimulation on the upper limbs could influence the gait of PD patients and that the robot may assist with gait rehabilitation in these patients.
Collapse
Affiliation(s)
- Takayuki Kishi
- Department of Systems and Control Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Taiki Ogata
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroki Ora
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Ryo Shigeyama
- Department of Systems and Control Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | - Satoshi Orimo
- Department of Neurology, Kanto Central Hospital, Setagaya, Japan
| | - Yoshihiro Miyake
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
28
|
Simmons RW, Taggart TC, Thomas JD, Mattson SN, Riley EP. Gait control in children with attention-deficit/hyperactivity disorder. Hum Mov Sci 2020; 70:102584. [PMID: 32217203 DOI: 10.1016/j.humov.2020.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
Abstract
The current profile of gait control in children with ADHD is incomplete and predominately based on children walking forward at a self-selected pace. There are no studies of potential gait deficits in this clinical population when walking in different directions in combination with varying rates of stepping that are freely selected and entrained to an external stimulus. The purpose of the current study was to address this lack of information by assessing gait of children aged 7-17 years with (n = 17) and without (n = 26) ADHD. Participants walked forward and backward along an electronically instrumented carpet at a self-selected stepping rate and in synchrony to a metronome that dictated an increased and decreased stepping rate. Using repeated measures analysis of covariance (ANCOVA) to assess spatiotemporal gait parameters, results showed that children with ADHD exhibited a significantly exaggerated, toes 'turned out,' foot position for all walking conditions compared to typically developing children. When walking backward, children with ADHD produced an increased step width, higher stepping cadence, and increased velocity. Additionally, coefficient of variation ratios indicated that children with ADHD produced greater variability of velocity, cadence, and step time for all walking conditions, and greater variability for stride length when walking at an increased stepping rate. Results were interpreted in terms of clinical significance and practical ramifications that inform rehabilitation specialists in designing therapies that ameliorate the reported gait deficits.
Collapse
Affiliation(s)
- Roger W Simmons
- Motor Control Laboratory, School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, United States of America.
| | - Tenille C Taggart
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, United States of America; Clinical Psychology Doctoral Program, Department of Psychology, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Jennifer D Thomas
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, United States of America
| | - Sarah N Mattson
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, United States of America
| | - Edward P Riley
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, United States of America
| |
Collapse
|
29
|
Pekrul M, Seer C, Lange F, Dressler D, Kopp B. Flanker Task Performance in Isolated Dystonia (Blepharospasm): A Focus on Sequential Effects. Brain Sci 2020; 10:brainsci10020076. [PMID: 32024200 PMCID: PMC7071414 DOI: 10.3390/brainsci10020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022] Open
Abstract
Isolated dystonia manifests with involuntary muscle hyperactivity, but the extent of cognitive impairment remains controversial. We examined the executive functions in blepharospasm while accounting for motor symptom-related distractions as a factor often limiting the interpretability of neuropsychological studies in dystonia. Our control group comprised of patients with hemifacial spasm, which is a condition producing similar motor symptoms without any central nervous system pathology. Nineteen patients with blepharospasm and 22 patients with hemifacial spasm completed a flanker task. Stimulus congruency on the current trial, on the preceding trial, and a response sequence served as independent variables. We analyzed the response time and accuracy. Gross overall group differences were not discernible. While congruency, congruency sequence, and response sequence exerted the expected effects, no group differences emerged with regard to these variables. A difference between patients with blepharospasm and those with hemifacial spasm consisted in longer reaction times when responses had to be repeated following stimulus incongruency on the preceding trial. We conclude that patients with blepharospasm seem to have difficulties in repeating their responses when incongruency on preceding trials interferes with habit formation or other forms of fast routes to action. Our specific finding may provide an opportunity to study altered basal ganglia plasticity in focal dystonia.
Collapse
Affiliation(s)
- Max Pekrul
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (C.S.); (F.L.); (D.D.); (B.K.)
- Correspondence:
| | - Caroline Seer
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (C.S.); (F.L.); (D.D.); (B.K.)
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
- LBI—KU Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Florian Lange
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (C.S.); (F.L.); (D.D.); (B.K.)
- Behavioral Engineering Research Group, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium
| | - Dirk Dressler
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (C.S.); (F.L.); (D.D.); (B.K.)
- Movement Disorders Section, Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Bruno Kopp
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (C.S.); (F.L.); (D.D.); (B.K.)
| |
Collapse
|
30
|
Fernandes AC, Garcia-Marques T. The perception of time is dynamically interlocked with the facial muscle activity. Sci Rep 2019; 9:18737. [PMID: 31822706 PMCID: PMC6904682 DOI: 10.1038/s41598-019-55029-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/24/2019] [Indexed: 11/09/2022] Open
Abstract
Time perception relies on the motor system. Involves core brain regions of this system, including those associated with feelings generated from sensorimotor states. Perceptual timing is also distorted when movement occurs during timing tasks, possibly by interfering with sensorimotor afferent feedback. However, it is unknown if the perception of time is an active process associated with specific patterns of muscle activity. We explored this idea based on the phenomenon of electromyographic gradients, which consists of the dynamic increase of muscle activity during cognitive tasks that require sustained attention, a critical function in perceptual timing. We aimed to determine whether facial muscle dynamic activity indexes the subjective representation of time. We asked participants to judge stimuli durations (varying in familiarity) while we monitored the time course of the activity of the zygomaticus-major and corrugator-supercilii muscles, both associated with cognitive and affective feelings. The dynamic electromyographic activity in corrugator-supercilii over time reflected objective time and this relationship predicted subjective judgments of duration. Furthermore, the zygomaticus-major muscle signaled the bias that familiarity introduces in duration judgments. This suggests that subjective duration could be an embodiment process based in motor information changing over time and their associated feelings.
Collapse
Affiliation(s)
- Alexandre C Fernandes
- ISPA - Instituto Universitário, William James Center for Research, Lisboa, Portugal.
| | | |
Collapse
|
31
|
Martino D, Hartmann A, Pelosin E, Lagravinese G, Delorme C, Worbe Y, Avanzino L. Motor Timing in Tourette Syndrome: The Effect of Movement Lateralization and Bimanual Coordination. Front Neurol 2019; 10:385. [PMID: 31080434 PMCID: PMC6497760 DOI: 10.3389/fneur.2019.00385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/29/2019] [Indexed: 02/02/2023] Open
Abstract
The study of motor timing informs on how temporal information integrates with motor acts. Cortico-basal ganglia and cortico-cerebellar circuits control this integration, whereas transcallosal interhemispheric connectivity modulates finely timed lateralized or bimanual actions. Motor timing abilities are under-explored in Tourette syndrome (TS). We adopted a synchronization-continuation task to investigate motor timing in sequential movements in TS patients. We studied 14 adult TS patients and 19 age-matched healthy volunteers. They were asked to tap in synchrony with a metronome cue (SYNC) and then, when the tone stopped, to keep tapping, maintaining the same rhythm (CONT). We tested both a sub-second and a supra-second inter-stimulus interval between the cues. Subjects randomly performed a single-hand task with the right hand and a bimanual task using both hands simultaneously wearing sensor-engineered gloves. We measured the temporal error and the interval reproduction accuracy index. We also performed MRI-based diffusion tensor imaging and probabilistic tractography of inter-hemispheric corpus callosum (CC) connections between supplementary motor areas (SMA) and the left SMA-putamen fiber tract. TS patients were less accurate than healthy individuals only on the single-hand version of the CONT task when asked to reproduce supra-second time interval. Supra-second time processing improved in TS patients in the bimanual task, with the performance of the right hand on the bimanual version of the CONT task being more accurate than that of the right hand on the single-hand version of the task. We detected a significantly higher fractional anisotropy (FA) in both SMA-SMA callosal and left-sided SMA-putamen fiber tracts in TS patients. In TS patients only, the structural organization of transcallosal connections between the SMAs and of the left SMA-putamen tract was higher when the motor timing accuracy of the right hand on the bimanual version of the task was lower. Abnormal timing performance for supra-second time processing is suggestive of a defective network inter-connecting the striatum, the dorsolateral prefrontal cortex and the SMA. An increase in accuracy on the bimanual version of the CONT task may be the result of compensatory processes linked to self-regulation of motor control, as witnessed by plastic rearrangement of inter-hemispheric and cortical-subcortical fiber tracts.
Collapse
Affiliation(s)
- Davide Martino
- Department of Clinical Neurosciences, University of Calgary and Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Andreas Hartmann
- Sorbonne Université, UMR S 1127, CNRS UMR 7225, ICM, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83 boulevard de l'Hôpital, Paris, France.,French National Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, Genoa, Italy.,Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | - Giovanna Lagravinese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, Genoa, Italy
| | - Cecile Delorme
- Sorbonne Université, UMR S 1127, CNRS UMR 7225, ICM, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83 boulevard de l'Hôpital, Paris, France.,French National Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Yulia Worbe
- Sorbonne Université, UMR S 1127, CNRS UMR 7225, ICM, Paris, France.,Department of Physiology, Saint-Antoine Hospital, Paris, France
| | - Laura Avanzino
- Ospedale Policlinico San Martino-IRCCS, Genoa, Italy.,Section of Human Physiology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
32
|
Vicario CM, Caruso V, Craparo G, Felmingham K. Time is overestimated in obesity: A cohort study. J Health Psychol 2019; 26:771-785. [PMID: 30990091 DOI: 10.1177/1359105319842937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Food addiction and high impulsivity are common traits in obesity. In accordance with the evidence that time is overestimated in patients with a history of impulsivity and/or drug addiction, we tested the hypothesis that duration is overestimated in obesity. A total of 92 obese participants and 182 healthy controls completed a timing task of visual stimuli. In line with our prediction, obese participants overestimated the duration of the displayed visual stimuli than controls. Our result has potential clinical implications in the field of obesity, as it suggests a potential contribution of this cognitive dysfunction in the emergence and maintenance of obesity-related behaviour.
Collapse
|
33
|
Bareš M, Apps R, Avanzino L, Breska A, D'Angelo E, Filip P, Gerwig M, Ivry RB, Lawrenson CL, Louis ED, Lusk NA, Manto M, Meck WH, Mitoma H, Petter EA. Consensus paper: Decoding the Contributions of the Cerebellum as a Time Machine. From Neurons to Clinical Applications. CEREBELLUM (LONDON, ENGLAND) 2019; 18:266-286. [PMID: 30259343 DOI: 10.1007/s12311-018-0979-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Time perception is an essential element of conscious and subconscious experience, coordinating our perception and interaction with the surrounding environment. In recent years, major technological advances in the field of neuroscience have helped foster new insights into the processing of temporal information, including extending our knowledge of the role of the cerebellum as one of the key nodes in the brain for this function. This consensus paper provides a state-of-the-art picture from the experts in the field of the cerebellar research on a variety of crucial issues related to temporal processing, drawing on recent anatomical, neurophysiological, behavioral, and clinical research.The cerebellar granular layer appears especially well-suited for timing operations required to confer millisecond precision for cerebellar computations. This may be most evident in the manner the cerebellum controls the duration of the timing of agonist-antagonist EMG bursts associated with fast goal-directed voluntary movements. In concert with adaptive processes, interactions within the cerebellar cortex are sufficient to support sub-second timing. However, supra-second timing seems to require cortical and basal ganglia networks, perhaps operating in concert with cerebellum. Additionally, sensory information such as an unexpected stimulus can be forwarded to the cerebellum via the climbing fiber system, providing a temporally constrained mechanism to adjust ongoing behavior and modify future processing. Patients with cerebellar disorders exhibit impairments on a range of tasks that require precise timing, and recent evidence suggest that timing problems observed in other neurological conditions such as Parkinson's disease, essential tremor, and dystonia may reflect disrupted interactions between the basal ganglia and cerebellum.The complex concepts emerging from this consensus paper should provide a foundation for further discussion, helping identify basic research questions required to understand how the brain represents and utilizes time, as well as delineating ways in which this knowledge can help improve the lives of those with neurological conditions that disrupt this most elemental sense. The panel of experts agrees that timing control in the brain is a complex concept in whom cerebellar circuitry is deeply involved. The concept of a timing machine has now expanded to clinical disorders.
Collapse
Affiliation(s)
- Martin Bareš
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA.
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
- Centre for Parkinson's Disease and Movement Disorders, Ospedale Policlinico San Martino, Genoa, Italy
| | - Assaf Breska
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Egidio D'Angelo
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS), Pavia, Italy
| | - Pavel Filip
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-Essen, Duisburg, Germany
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Charlotte L Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Nicholas A Lusk
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium -Service des Neurosciences, UMons, Mons, Belgium
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Elijah A Petter
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
34
|
Kroneberg D, Elshehabi M, Meyer AC, Otte K, Doss S, Paul F, Nussbaum S, Berg D, Kühn AA, Maetzler W, Schmitz-Hübsch T. Less Is More - Estimation of the Number of Strides Required to Assess Gait Variability in Spatially Confined Settings. Front Aging Neurosci 2019; 10:435. [PMID: 30719002 PMCID: PMC6348278 DOI: 10.3389/fnagi.2018.00435] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Gait variability is an established marker of gait function that can be assessed using sensor-based approaches. In clinical settings, spatial constraints and patient condition impede the execution of longer distance walks for the recording of gait parameters. Turning paradigms are often used to overcome these constraints and commercial gait analysis systems algorithmically exclude turns for gait parameters calculations. We investigated the effect of turns in sensor-based assessment of gait variability. Methods: Continuous recordings from 31 patients with movement disorders (ataxia, essential tremor and Parkinson’s disease) and 162 healthy elderly (HE) performing level walks including 180° turns were obtained using an inertial sensor system. Accuracy of the manufacturer’s algorithm of turn-detection was verified by plotting stride time series. Strides before and after turn events were extracted and compared to respective average of all strides. Coefficient of variation (CoV) of stride length and stride time was calculated for entire set of strides, segments between turns and as cumulative values. Their variance and congruency was used to estimate the number of strides required to reliably assess the magnitude of stride variability. Results: Non-detection of turns in 5.8% of HE lead to falsely increased CoV for these individuals. Even after exclusion of these, strides before/after turns tended to be spatially shorter and temporally longer in all groups, contributing to an increase of CoV at group level and widening of confidence margins with increasing numbers of strides. This could be attenuated by a more generous turn excision as an alternative approach. Correlation analyses revealed excellent consistency for CoVs after at most 20 strides in all groups. Respective stride counts were even lower in patients using a more generous turn excision. Conclusion: Including turns to increase continuous walking distance in spatially confined settings does not necessarily improve the validity and reliability of gait variability measures. Specifically with gait pathology, perturbations of stride characteristics before/after algorithmically excised turns were observed that may increase gait variability with this paradigm. We conclude that shorter distance walks of around 15 strides suffice for reliable and valid recordings of gait variability in the groups studied here.
Collapse
Affiliation(s)
- Daniel Kroneberg
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany
| | - Morad Elshehabi
- Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany.,Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Anne-Christiane Meyer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany
| | - Karen Otte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany
| | - Sarah Doss
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Nussbaum
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany.,Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Andrea A Kühn
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Walter Maetzler
- Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany.,Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Tanja Schmitz-Hübsch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
35
|
Busan P, Del Ben G, Russo LR, Bernardini S, Natarelli G, Arcara G, Manganotti P, Battaglini PP. Stuttering as a matter of delay in neural activation: A combined TMS/EEG study. Clin Neurophysiol 2019; 130:61-76. [DOI: 10.1016/j.clinph.2018.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/27/2018] [Accepted: 10/15/2018] [Indexed: 10/27/2022]
|
36
|
Avanzino L, Fiorio M, Conte A. Actual and Illusory Perception in Parkinson's Disease and Dystonia: A Narrative Review. Front Neurol 2018; 9:584. [PMID: 30079051 PMCID: PMC6062595 DOI: 10.3389/fneur.2018.00584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Sensory information is continuously processed so as to allow behavior to be adjusted according to environmental changes. Before sensory information reaches the cortex, a number of subcortical neural structures select the relevant information to send to be consciously processed. In recent decades, several studies have shown that the pathophysiological mechanisms underlying movement disorders such as Parkinson's disease (PD) and dystonia involve sensory processing abnormalities related to proprioceptive and tactile information. These abnormalities emerge from psychophysical testing, mainly temporal discrimination, as well as from experimental paradigms based on bodily illusions. Although the link between proprioception and movement may be unequivocal, how temporal tactile information abnormalities and bodily illusions relate to motor disturbances in PD and dystonia is still a matter of debate. This review considers the role of altered sensory processing in the pathophysiology of movement disorders, focusing on how sensory alteration patterns differ between PD and dystonia. We also discuss the evidence available and the potential for developing new therapeutic strategies based on the manipulation of multi-sensory information and bodily illusions in patients with these movement disorders.
Collapse
Affiliation(s)
- Laura Avanzino
- Section of Human Physiology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Mirta Fiorio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
37
|
Cazzato V, Makris S, Flavell JC, Vicario CM. Group membership and racial bias modulate the temporal estimation of in-group/out-group body movements. Exp Brain Res 2018; 236:2427-2437. [PMID: 29916088 PMCID: PMC6061490 DOI: 10.1007/s00221-018-5313-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/12/2018] [Indexed: 11/02/2022]
Abstract
Social group categorization has been mainly studied in relation to ownership manipulations involving highly-salient multisensory cues. Here, we propose a novel paradigm that can implicitly activate the embodiment process in the presence of group affiliation information, whilst participants complete a task irrelevant to social categorization. Ethnically White participants watched videos of White- and Black-skinned models writing a proverb. The writing was interrupted 7, 4 or 1 s before completion. Participants were tasked with estimating the residual duration following interruption. A video showing only hand kinematic traces acted as a control condition. Residual duration estimates for out-group and control videos were significantly lower than those for in-group videos only for the longest duration. Moreover, stronger implicit racial bias was negatively correlated to estimates of residual duration for out-group videos. The underestimation bias for the out-group condition might be mediated by implicit embodiment, affective and attentional processes, and finalized to a rapid out-group categorization.
Collapse
Affiliation(s)
- Valentina Cazzato
- Division of Psychology, University of Bradford, Bradford, UK. .,School of Natural Science and Psychology, Liverpool John Moores University, Liverpool, UK.
| | - S Makris
- Department of Psychology, Edge Hill University, Ormskirk, Liverpool, UK
| | - J C Flavell
- School of Optometry and Vision Science, University of Bradford, Bradford, UK.,Department of Psychology, University of York, York, UK
| | - Carmelo Mario Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy. .,Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany. .,University Medical Hospital Bergmannsheil, Bochum, Germany. .,Scienze Cognitive della Formazione e degli Studi Culturali, University of Messina, Messina, Italy.
| |
Collapse
|
38
|
Murgia M, Pili R, Corona F, Sors F, Agostini TA, Bernardis P, Casula C, Cossu G, Guicciardi M, Pau M. The Use of Footstep Sounds as Rhythmic Auditory Stimulation for Gait Rehabilitation in Parkinson's Disease: A Randomized Controlled Trial. Front Neurol 2018; 9:348. [PMID: 29910764 PMCID: PMC5992388 DOI: 10.3389/fneur.2018.00348] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 04/30/2018] [Indexed: 01/24/2023] Open
Abstract
Background The use of rhythmic auditory stimulation (RAS) has been proven useful in the management of gait disturbances associated with Parkinson’s disease (PD). Typically, the RAS consists of metronome or music-based sounds (artificial RAS), while ecological footstep sounds (ecological RAS) have never been used for rehabilitation programs. Objective The aim of this study was to compare the effects of a rehabilitation program integrated either with ecological or with artificial RAS. Methods An observer-blind, randomized controlled trial was conducted to investigate the effects of 5 weeks of supervised rehabilitation integrated with RAS. Thirty-eight individuals affected by PD were randomly assigned to one of the two conditions (ecological vs. artificial RAS); thirty-two of them (age 68.2 ± 10.5, Hoehn and Yahr 1.5–3) concluded all phases of the study. Spatio-temporal parameters of gait and clinical variables were assessed before the rehabilitation period, at its end, and after a 3-month follow-up. Results Thirty-two participants were analyzed. The results revealed that both groups improved in the majority of biomechanical and clinical measures, independently of the type of sound. Moreover, exploratory analyses for separate groups were conducted, revealing improvements on spatio-temporal parameters only in the ecological RAS group. Conclusion Overall, our results suggest that ecological RAS is equally effective compared to artificial RAS. Future studies should further investigate the role of ecological RAS, on the basis of information revealed by our exploratory analyses. Theoretical, methodological, and practical issues concerning the implementation of ecological sounds in the rehabilitation of PD patients are discussed. Clinical Trial Registration www.ClinicalTrials.gov, identifier NCT03228888.
Collapse
Affiliation(s)
- Mauro Murgia
- Department of Life Sciences, University of Trieste, Trieste, Italy.,Department of Pedagogy, Psychology, Philosophy, University of Cagliari, Cagliari, Italy
| | - Roberta Pili
- AOB "G. Brotzu" General Hospital, Cagliari, Italy
| | - Federica Corona
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Fabrizio Sors
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Paolo Bernardis
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Carlo Casula
- AOB "G. Brotzu" General Hospital, Cagliari, Italy
| | | | - Marco Guicciardi
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, Cagliari, Italy
| | - Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| |
Collapse
|
39
|
Lee MS, Lee MJ, Conte A, Berardelli A. Abnormal somatosensory temporal discrimination in Parkinson’s disease: Pathophysiological correlates and role in motor control deficits. Clin Neurophysiol 2018; 129:442-447. [DOI: 10.1016/j.clinph.2017.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
|
40
|
Abstract
Cognitive deficits in Posttraumatic Stress Disorder (PTSD) and dissociative symptoms suggest there may be an underlying and persistent problem with temporal processing in PTSD, but this question has not been systematically examined. We investigated the ability of a group of PTSD participants in estimating the duration of supra-second visual stimuli relative to healthy controls. The data of 59 participants with PTSD and 62 healthy controls, collected from the BRID database, have been examined. Overall, our results indicate that PTSD patients overestimate the duration of the displayed stimuli. Moreover, we found that PTSD are more variable in the time estimation compared to the control group. Finally, we found evidence that working memory and attention impairments were associated with time overestimation in PTSD. The finding of time overestimation in PTSD accords with previous reports of time overestimation during stressful experiences associated with fear and arousal, but extends findings to suggest it remains in chronic PTSD populations processing non-emotional stimuli. The evidence of time overestimation in PTSD suggests the potential relevance of this factor as a cognitive marker in assessing the neuropsychological profile of this clinical population.
Collapse
|
41
|
Vicario CM, Felmingham K. The Perception of Time Is Underestimated in Adolescents With Anorexia Nervosa. Front Psychiatry 2018; 9:121. [PMID: 29686631 PMCID: PMC5900033 DOI: 10.3389/fpsyt.2018.00121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 03/22/2018] [Indexed: 01/29/2023] Open
Abstract
Research has revealed reduced temporal discounting (i.e., increased capacity to delay reward) and altered interoceptive awareness in anorexia nervosa (AN). In line with the research linking temporal underestimation with a reduced tendency to devalue a reward and reduced interoceptive awareness, we tested the hypothesis that time duration might be underestimated in AN. Our findings revealed that patients with AN displayed lower timing accuracy in the form of timing underestimation compared with controls. These results were not predicted by clinical, demographic factors, attention, and working memory performance of the participants. The evidence of a temporal underestimation bias in AN might be clinically relevant to explain their abnormal motivation in pursuing a long-term restrictive diet, in line with the evidence that increasing the subjective temporal proximity of remote future goals can boost motivation and the actual behavior to reach them.
Collapse
Affiliation(s)
- Carmelo M Vicario
- School of Psychology, University of Tasmania, Hobart, TAS, Australia.,Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli Studi Culturali, Messina, Italy.,Department of Psychology and Neurosciences Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
| | - Kim Felmingham
- School of Psychological Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
42
|
Does the Somatosensory Temporal Discrimination Threshold Change over Time in Focal Dystonia? Neural Plast 2017; 2017:9848070. [PMID: 29062576 PMCID: PMC5618781 DOI: 10.1155/2017/9848070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Background The somatosensory temporal discrimination threshold (STDT) is defined as the shortest interval at which an individual recognizes two stimuli as asynchronous. Some evidence suggests that STDT depends on cortical inhibitory interneurons in the basal ganglia and in primary somatosensory cortex. Several studies have reported that the STDT in patients with dystonia is abnormal. No longitudinal studies have yet investigated whether STDT values in different forms of focal dystonia change during the course of the disease. Methods We designed a follow-up study on 25 patients with dystonia (15 with blepharospasm and 10 with cervical dystonia) who were tested twice: upon enrolment and 8 years later. STDT values from dystonic patients at the baseline were also compared with those from a group of 30 age-matched healthy subjects. Results Our findings show that the abnormally high STDT values observed in patients with focal dystonia remained unchanged at the 8-year follow-up assessment whereas disease severity worsened. Conclusions Our observation that STDT abnormalities in dystonia remain unmodified during the course of the disease suggests that the altered activity of inhibitory interneurons—either at cortical or at subcortical level—responsible for the increased STDT does not deteriorate as the disease progresses.
Collapse
|
43
|
Conte A, Belvisi D, Tartaglia M, Cortese FN, Baione V, Battista E, Zhu XY, Fabbrini G, Berardelli A. Abnormal Temporal Coupling of Tactile Perception and Motor Action in Parkinson's Disease. Front Neurol 2017. [PMID: 28634466 PMCID: PMC5459880 DOI: 10.3389/fneur.2017.00249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Evidence shows altered somatosensory temporal discrimination threshold (STDT) in Parkinson’s disease in comparison to normal subjects. In healthy subjects, movement execution modulates STDT values through mechanisms of sensory gating. We investigated whether STDT modulation during movement execution in patients with Parkinson’s disease differs from that in healthy subjects. In 24 patients with Parkinson’s disease and 20 healthy subjects, we tested STDT at baseline and during index finger abductions (at movement onset “0”, 100, and 200 ms thereafter). We also recorded kinematic features of index finger abductions. Fifteen out of the 24 patients were also tested ON medication. In healthy subjects, STDT increased significantly at 0, 100, and 200 ms after movement onset, whereas in patients with Parkinson’s disease in OFF therapy, it increased significantly at 0 and 100 ms but returned to baseline values at 200 ms. When patients were tested ON therapy, STDT during index finger abductions increased significantly, with a time course similar to that of healthy subjects. Differently from healthy subjects, in patients with Parkinson’s disease, the mean velocity of the finger abductions decreased according to the time lapse between movement onset and the delivery of the paired electrical stimuli for testing somatosensory temporal discrimination. In conclusion, patients with Parkinson’s disease show abnormalities in the temporal coupling between tactile information and motor outflow. Our study provides first evidence that altered temporal processing of sensory information play a role in the pathophysiology of motor symptoms in Parkinson’s disease.
Collapse
Affiliation(s)
- Antonella Conte
- Department of Neurology and Psychiatry, Sapienza University Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | | | - Matteo Tartaglia
- Department of Neurology and Psychiatry, Sapienza University Rome, Rome, Italy
| | | | - Viola Baione
- Department of Neurology and Psychiatry, Sapienza University Rome, Rome, Italy
| | - Emanuele Battista
- Department of Neurology and Psychiatry, Sapienza University Rome, Rome, Italy
| | - Xiao Y Zhu
- Department of Neurology and Psychiatry, Sapienza University Rome, Rome, Italy.,Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Giovanni Fabbrini
- Department of Neurology and Psychiatry, Sapienza University Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, Sapienza University Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
44
|
Bologna M, Berardelli A. Cerebellum: An explanation for dystonia? CEREBELLUM & ATAXIAS 2017; 4:6. [PMID: 28515949 PMCID: PMC5429509 DOI: 10.1186/s40673-017-0064-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/28/2017] [Indexed: 11/29/2022]
Abstract
Dystonia is a movement disorder that is characterized by involuntary muscle contractions, abnormal movements and postures, as well as by non-motor symptoms, and is due to abnormalities in different brain areas. In this article, we focus on the growing number of experimental studies aimed at explaining the pathophysiological role of the cerebellum in dystonia. Lastly, we highlight gaps in current knowledge and issues that future research studies should focus on as well as some of the potential applications of this research avenue. Clarifying the pathophysiological role of cerebellum in dystonia is an important concern given the increasing availability of invasive and non-invasive stimulation techniques and their potential therapeutic role in this condition.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Neurology and Psychiatry and Neuromed Institute, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.,Neuromed Institute IRCCS, Pozzilli, IS Italy
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry and Neuromed Institute, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.,Neuromed Institute IRCCS, Pozzilli, IS Italy
| |
Collapse
|
45
|
Abboud R, Noronha C, Diwadkar VA. Motor system dysfunction in the schizophrenia diathesis: Neural systems to neurotransmitters. Eur Psychiatry 2017. [PMID: 28641214 DOI: 10.1016/j.eurpsy.2017.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Motor control is a ubiquitous aspect of human function, and from its earliest origins, abnormal motor control has been proposed as being central to schizophrenia. The neurobiological architecture of the motor system is well understood in primates and involves cortical and sub-cortical components including the primary motor cortex, supplementary motor area, dorsal anterior cingulate cortex, the prefrontal cortex, the basal ganglia, and cerebellum. Notably all of these regions are associated in some manner to the pathophysiology of schizophrenia. At the molecular scale, both dopamine and γ-Aminobutyric Acid (GABA) abnormalities have been associated with working memory dysfunction, but particularly relating to the basal ganglia and the prefrontal cortex respectively. As evidence from multiple scales (behavioral, regional and molecular) converges, here we provide a synthesis of the bio-behavioral relevance of motor dysfunction in schizophrenia, and its consistency across scales. We believe that the selective compendium we provide can supplement calls arguing for renewed interest in studying the motor system in schizophrenia. We believe that in addition to being a highly relevant target for the study of schizophrenia related pathways in the brain, such focus provides tractable behavioral probes for in vivo imaging studies in the illness. Our assessment is that the motor system is a highly valuable research domain for the study of schizophrenia.
Collapse
Affiliation(s)
- R Abboud
- College of Osteopathic Medicine, Michigan State University Lansing, MI, USA
| | - C Noronha
- School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - V A Diwadkar
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Suite 5A, Tolan Park Medical Building, 3901 Chrysler Service Drive, 48201 Detroit, MI, USA.
| |
Collapse
|