1
|
Chen T, Jiang J, Xu M, Dai Y, Gao X, Jiang C. Atypical prefrontal neural activity during an emotional interference control task in adolescents with autism spectrum disorder: A functional near-infrared spectroscopy study. Neuroimage 2024; 302:120907. [PMID: 39490560 DOI: 10.1016/j.neuroimage.2024.120907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Autism spectrum disorder (ASD) is typically characterized by impairments in social interaction and communication, which may be associated with a failure to naturally orient to social stimuli, particularly in recognizing and responding to facial emotions. As most previous studies have used nonsocial stimuli to investigate inhibitory control in children and adults with ASD, little is known about the behavioral and neural activation patterns of emotional inhibitory control in adolescent with ASD. Functional neuroimaging studies have underscored the key role of the prefrontal cortex (PFC) in inhibitory control and emotional face processing. Thus, this study aimed to examine whether adolescent with ASD exhibited altered PFC processing during an emotional Flanker task by using non-invasive functional near-infrared spectroscopy (fNIRS). Twenty-one adolescents with high-functioning ASD and 26 typically developing (TD) adolescents aged 13-16 years were recruited. All participants underwent an emotional Flanker task, which required to decide whether the centrally positioned facial emotion is consistent with the laterally positioned facial emotion. TD adolescents exhibited larger RT and mean O2Hb level in the incongruent condition than the congruent condition, evoking cortical activations primarily in right PFC regions in response to the emotional Flanker effect. In contrast, ASD adolescents failed to exhibit the processing advantage for congruent versus incongruent emotional face in terms of RT, but showed cortical activations primarily in left PFC regions in response to the emotional Flanker effect. These findings suggest that adolescents with ASD rely on different neural strategies to mobilize PFC neural resources to address the difficulties they experience when inhibiting the emotional face.
Collapse
Affiliation(s)
- Tingting Chen
- Faculty of Dance Education, Beijing Dance Academy, Beijing, PR China
| | - Jiarui Jiang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, PR China
| | - Mingchao Xu
- Department of Graduate, Capital University of Physical Education and Sports, Beijing, PR China
| | - Yuanfu Dai
- Department of Graduate, Capital University of Physical Education and Sports, Beijing, PR China
| | - Xiaoyan Gao
- Department of Graduate, Capital University of Physical Education and Sports, Beijing, PR China
| | - Changhao Jiang
- Beijing Key Lab of Physical Fitness Evaluation and Tech Analysis, Capital University of Physical Education and Sports, Beijing, PR China.
| |
Collapse
|
2
|
Wang X, Lee HK, Tong SX. Temporal dynamics and neural variabilities underlying the interplay between emotion and inhibition in Chinese autistic children. Brain Res 2024; 1840:149030. [PMID: 38821334 DOI: 10.1016/j.brainres.2024.149030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
This study investigated the neural dynamics underlying the interplay between emotion and inhibition in Chinese autistic children. Electroencephalography (EEG) signals were recorded from 50 autistic and 46 non-autistic children during an emotional Go/Nogo task. Based on single-trial ERP analyses, autistic children, compared to their non-autistic peers, showed a larger Nogo-N170 for angry faces and an increased Nogo-N170 amplitude variation for happy faces during early visual perception. They also displayed a smaller N200 for all faces and a diminished Nogo-N200 amplitude variation for happy and neutral faces during inhibition monitoring and preparation. During the late stage, autistic children showed a larger posterior-Go-P300 for angry faces and an augmented posterior-Nogo-P300 for happy and neutral faces. These findings clarify the differences in neural processing of emotional stimuli and inhibition between Chinese autistic and non-autistic children, highlighting the importance of considering these dynamics when designing intervention to improve emotion regulation in autistic children.
Collapse
Affiliation(s)
- Xin Wang
- Human Communication, Learning, and Development, Faculty of Education, The University of Hong Kong, Hong Kong, China.
| | - Hyun Kyung Lee
- Human Communication, Learning, and Development, Faculty of Education, The University of Hong Kong, Hong Kong, China
| | - Shelley Xiuli Tong
- Human Communication, Learning, and Development, Faculty of Education, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Lee HK, Tong SX. Impaired inhibitory control when processing real but not cartoon emotional faces in autistic children: Evidence from an event-related potential study. Autism Res 2024; 17:1556-1571. [PMID: 38840481 DOI: 10.1002/aur.3176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/25/2024] [Indexed: 06/07/2024]
Abstract
Impaired socioemotional functioning characterizes autistic children, but does weak inhibition control underlie their socioemotional difficulty? This study addressed this question by examining whether and, if so, how inhibition control is affected by face realism and emotional valence in school-age autistic and neurotypical children. Fifty-two autistic and 52 age-matched neurotypical controls aged 10-12 years completed real and cartoon emotional face Go/Nogo tasks while event-related potentials (ERPs) were recorded. The analyses of inhibition-emotion components (i.e., N2, P3, and LPP) and a face-specific N170 revealed that autistic children elicited greater N2 while inhibiting Nogo trials and greater P3/LPP and late LPP for real but not cartoon emotional faces. Moreover, autistic children exhibited a reduced N170 to real face emotions only. Furthermore, correlation results showed that better behavioral inhibition and emotion recognition in autistic children were associated with a reduced N170. These findings suggest that neural mechanisms of inhibitory control in autistic children are less efficient and more disrupted during real face processing, which may affect their age-appropriate socio-emotional development.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Human Communication, Learning, and Development, Faculty of Education, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shelley Xiuli Tong
- Human Communication, Learning, and Development, Faculty of Education, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
4
|
Márquez-García AV, Doesburg SM, Iarocci G, Magnuson JR, Moreno S. A new acquisition protocol for conducting studies with children: The science camp research experience. PLoS One 2023; 18:e0289299. [PMID: 37556483 PMCID: PMC10411783 DOI: 10.1371/journal.pone.0289299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/22/2023] [Indexed: 08/11/2023] Open
Abstract
In the last 50 years, the study of brain development has brought major discoveries to education and medicine, changing the lives of millions of children and families. However, collecting behavioral and neurophysiological data from children has specific challenges, such as high rates of data loss and participant dropout. We have developed a science camp method to collect data from children using the benefits of positive peer interactions and interactive and engaging activities, to allow researchers to better collect data repeatedly and reliably from groups of children. A key advantage of this approach is that by increasing participant engagement, attention is also increased, thereby increasing data quality, reducing data loss, and lowering attrition rates. This protocol describes the step-by-step procedure for facilitation of a science camp, including behavioral, electrophysiological, and participatory engagement activities. As this method is robust but also flexible, we anticipate that it can also be applied to different demographics and research needs.
Collapse
Affiliation(s)
| | - Sam M. Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Grace Iarocci
- Department of Psychology, Simon Fraser University, Burnaby, Canada
| | - Justine R. Magnuson
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
- School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Sylvain Moreno
- Department of School of Interactive Arts & Technology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
5
|
Sakihara K, Kita Y, Suzuki K, Inagaki M. Modulation effects of the intact motor skills on the relationship between social skills and motion perceptions in children with autism spectrum disorder: A pilot study. Brain Dev 2023; 45:39-48. [PMID: 36184381 DOI: 10.1016/j.braindev.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND An individual with autism spectrum disorder (ASD) has social skill, motor skill, and motion perception deficits. However, the relationship among them was not clarified. Therefore, this study aimed to evaluate the effects of motor skills on social skills and motion perception. METHODS Five typically developed children and fourteen children with ASD participated in our study. The N200 component, a brain activity indicating motion perception, was induced in mid-temporal (MT/V5) brain area by watching a random dot kinematograph, and was recorded using a scalp electroencephalogram. Furthermore, the social responsiveness scale (SRS) indicating the social skill deficit, the developmental coordination disorder questionnaire (DCDQ) estimating the developmental coordination disorder (DCD), and the movement assessment battery for children second edition (MABC-2) indicating motor skills were recorded in the children with ASD. A hierarchical multiple regression analysis was conducted to examine the modulation effects of motor skills on the relationship between social skills and motion perception. The dependent variable was the N200 latency, and the independent variables were SRS, MABC-2, and combined MABC-2 and SRS. RESULTS The N200 latency was more delayed in children with ASD relative that in typically developed children. Intact balance ability modulated the relationship between social skills and N200 latency in children with ASD. Within the high balance ability, when the social skills worsened, the N200 latency was shortened. CONCLUSIONS This is the first report that intact motor skills could modulate the relationship between social skills and motion perception.
Collapse
Affiliation(s)
- Kotoe Sakihara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Japan; Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Japan.
| | - Yosuke Kita
- Department of Psychology, Faculty of Letters, Keio University, Tokyo, Japan; Cognitive Brain Research Unit (CBRU), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kota Suzuki
- Faculty of Education, Shitennoji University, Japan
| | - Masumi Inagaki
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Japan; Tottori Prefectural Tottori Rehabilitation Center, Japan
| |
Collapse
|
6
|
Li H, Wang M, Wu Y, Chen X, Xue C, Liu P, Zhang R, Liao Z. Clinical Effect of Electroacupuncture on Acute Sleep Deprivation and Event-Related Potential Affecting the Inhibition Control of the Brain: Study Protocol for a Randomized Controlled Trial. Front Neurol 2022; 13:911668. [PMID: 35873761 PMCID: PMC9305177 DOI: 10.3389/fneur.2022.911668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background Acute sleep deprivation (ASD) can effect mood, attention, memory, alertness and metabolism. Especially, it is often accompanied by cognitive impairment of the brain. Acupuncture is safe and effective for improving cognitive function, but its underlying mechanism is not fully understood. In this study, an event-related potential (ERP) technique will be employed to measure the behavioral, cognitive, and physiological changes produced by electroacupuncture intervention after ASD. Methods We will recruit 60 healthy subjects. The participants will be randomly divided into a treatment group, a control group, a sham electroacupuncture group and a blank group, at a 1:1:1:1 ratio. The primary outcome will be determined by the change from baseline to 36 h in the MoCA score. The secondary results include the amplitude and latency of ERP N2 and P3, Go-hit rates, Go-RTs, No-Go-FA rates, the WCST, the Digit Span Subtest of the WAIS, the ESS score and FS-14. The 15 healthy subjects will not receive acupuncture treatment and ASD, but will receive EEG records and cognition functions test at the beginning and end of the experiment. Electroacupuncture intervention will be performed for 30 min once every 12 h, a total of three times. ERP measurements and other tests will be performed after baseline and ASD, and the statistician and outcome evaluator will be blinded to treatment allocation. Discussion This study is expected to investigate the effectiveness of electroacupuncture in improving cognition for ASD. Trial Registration ChiCTR2200055999.
Collapse
Affiliation(s)
- Haiping Li
- College of Acupuncture, Moxibustion and Tuina, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Mengyu Wang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yiming Wu
- The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinwang Chen
- College of Acupuncture, Moxibustion and Tuina, Henan University of Traditional Chinese Medicine, Zhengzhou, China
- *Correspondence: Xinwang Chen
| | - Cong Xue
- College of Acupuncture, Moxibustion and Tuina, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Peidong Liu
- College of Acupuncture, Moxibustion and Tuina, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Run Zhang
- College of Acupuncture, Moxibustion and Tuina, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ziyun Liao
- College of Acupuncture, Moxibustion and Tuina, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
7
|
Márquez-García AV, Vakorin VA, Kozhemiako N, Magnuson JR, Iarocci G, Ribary U, Moreno S, Doesburg SM. Children with autism spectrum disorder show atypical electroencephalographic response to processing contextual incongruencies. Sci Rep 2022; 12:8948. [PMID: 35624226 PMCID: PMC9142591 DOI: 10.1038/s41598-022-12475-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
Abstract
Children with autism spectrum disorder (ASD) experience difficulties with social communication, making it challenging to interpret contextual information that aids in accurately interpreting language. To investigate how the brain processes the contextual information and how this is different in ASD, we compared event-related potentials (ERPs) in response to processing visual and auditory congruent and incongruent information. Two groups of children participated in the study: 37 typically developing children and 15 children with ASD (age range = 6 to 12). We applied a language task involving auditory sentences describing congruent or incongruent images. We investigated two ERP components associated with language processing: the N400 and P600. Our results showed how children with ASD present significant differences in their neural responses in comparison with the TD group, even when their reaction times and correct trials are not significantly different from the TD group.
Collapse
Affiliation(s)
- Amparo V Márquez-García
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.
| | - Vasily A Vakorin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
- Biomedical Physiology and Kinesiology, Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, Canada
| | - Nataliia Kozhemiako
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Justine R Magnuson
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Grace Iarocci
- Department of Psychology, Simon Fraser University, Burnaby, Canada
| | - Urs Ribary
- Department of Psychology, Simon Fraser University, Burnaby, Canada
| | - Sylvain Moreno
- Department of School of Interactive Arts & Technology, Simon Fraser University, Burnaby, Canada
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
8
|
Bellato A, Arora I, Kochhar P, Hollis C, Groom MJ. Indices of Heart Rate Variability and Performance During a Response-Conflict Task Are Differently Associated With ADHD and Autism. J Atten Disord 2022; 26:434-446. [PMID: 33535874 PMCID: PMC8785294 DOI: 10.1177/1087054720972793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated autonomic arousal, attention and response conflict, in ADHD and autism. Heart rate variability (HRV), and behavioral/electrophysiological indices of performance, were recorded during a task with low and high levels of response conflict in 78 children/adolescents (7-15 years old) with ADHD, autism, comorbid ADHD+autism, or neurotypical. ANOVA models were used to investigate effects of ADHD and autism, while a mediation model was tested to clarify the relationship between ADHD and slower performance. Slower and less accurate performance characterized ADHD and autism; however, atypical electrophysiological indices differently characterized these conditions. The relationship between ADHD and slower task performance was mediated by reduced HRV in response to the cue stimulus. Autonomic hypo-arousal and difficulties in mobilizing energetic resources in response to sensory information (associated with ADHD), and atypical electrophysiological indices of information processing (associated with autism), might negatively affect cognitive performance in those with ADHD+autism.
Collapse
Affiliation(s)
- Alessio Bellato
- Division of Psychiatry and Applied Psychology, Institute of Mental Health, University of Nottingham, Triumph Road, Nottingham NG7 2TU, UK,Alessio Bellato, Division of Psychiatry and Applied Psychology, Institute of Mental Health, University of Nottingham, Triumph Road, Nottingham NG7 2TU, UK.
| | - Iti Arora
- Division of Psychiatry and Applied Psychology, Institute of Mental Health, University of Nottingham, Triumph Road, Nottingham NG7 2TU, UK
| | - Puja Kochhar
- Division of Psychiatry and Applied Psychology, Institute of Mental Health, University of Nottingham, Triumph Road, Nottingham NG7 2TU, UK
| | - Chris Hollis
- Division of Psychiatry and Applied Psychology, Institute of Mental Health, University of Nottingham, Triumph Road, Nottingham NG7 2TU, UK,NIHR MindTech Healthcare Technology Co-operative, Institute of Mental Health, Triumph Road, Nottingham NG7 2TU, UK,NIHR Nottingham Biomedical Research Centre, Institute of Mental Health, Triumph Road, Nottingham NG7 2TU, UK
| | - Madeleine J. Groom
- Division of Psychiatry and Applied Psychology, Institute of Mental Health, University of Nottingham, Triumph Road, Nottingham NG7 2TU, UK,NIHR MindTech Healthcare Technology Co-operative, Institute of Mental Health, Triumph Road, Nottingham NG7 2TU, UK
| |
Collapse
|
9
|
Ahumada-Méndez F, Lucero B, Avenanti A, Saracini C, Muñoz-Quezada MT, Cortés-Rivera C, Canales-Johnson A. Affective modulation of cognitive control: A systematic review of EEG studies. Physiol Behav 2022; 249:113743. [DOI: 10.1016/j.physbeh.2022.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
|
10
|
Shi Z, Langleben DD, O'Brien CP, Childress AR, Wiers CE. Multivariate pattern analysis links drug use severity to distributed cortical hypoactivity during emotional inhibitory control in opioid use disorder. Neuroimage Clin 2021; 32:102806. [PMID: 34525436 PMCID: PMC8436158 DOI: 10.1016/j.nicl.2021.102806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022]
Abstract
Opioid use disorder (OUD) is characterized by emotional and cognitive impairements that are associated with poor treatment outcomes. The present study investigated the neural mechanism underlying emotion evaluation and inhibitory control using an affective go/no-go (AGN) task and its association with drug use severity and craving in patients with OUD. Twenty-six recently detoxified patients with OUD underwent functional magnetic resonance imaging (fMRI) while performing the AGN task that required response to frequently presented appetitive stimuli ("go") and inhibition of response to infrequently presented aversive stimuli ("no-go"). The fMRI session was immediately followed by an injection of extended-release opioid antagonist naltrexone (XR-NTX). Participants' opioid craving was assessed immediately before fMRI and 10 ± 2 days after XR-NTX injection. Multivariate pattern analysis (MVPA) showed that drug use severity was associated with distributed brain hypoactivity in response to aversive no-go stimuli, with particularly large negative contributions from the cognitive control and dorsal attention brain networks. While drug use severity and its associated MVPA brain response pattern were both correlated with opioid craving at baseline, only the brain response pattern predicted craving during XR-NTX treatment. Our findings point to widespread functional hypoactivity in the brain networks underlying emotional inhibitory control in OUD. Such a distributed pattern is consistent with the multifaceted nature of OUD, which affects multiple brain networks. It also highlights the utility of the multivariate approach in uncovering large-scale cortical substrates associated with clinical severity in complex psychiatric disorders and in predicting treatment response.
Collapse
Affiliation(s)
- Zhenhao Shi
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 3535 Market St Ste 500, Philadelphia, PA 19104, USA.
| | - Daniel D Langleben
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Charles P O'Brien
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Anna Rose Childress
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Corinde E Wiers
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Yuk V, Dunkley BT, Anagnostou E, Taylor MJ. Alpha connectivity and inhibitory control in adults with autism spectrum disorder. Mol Autism 2020; 11:95. [PMID: 33287904 PMCID: PMC7722440 DOI: 10.1186/s13229-020-00400-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/18/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Individuals with autism spectrum disorder (ASD) often report difficulties with inhibition in everyday life. During inhibition tasks, adults with ASD show reduced activation of and connectivity between brain areas implicated in inhibition, suggesting impairments in inhibitory control at the neural level. Our study further investigated these differences by using magnetoencephalography (MEG) to examine the frequency band(s) in which functional connectivity underlying response inhibition occurs, as brain functions are frequency specific, and whether connectivity in certain frequency bands differs between adults with and without ASD. METHODS We analysed MEG data from 40 adults with ASD (27 males; 26.94 ± 6.08 years old) and 39 control adults (27 males; 27.29 ± 5.94 years old) who performed a Go/No-go task. The task involved two blocks with different proportions of No-go trials: Inhibition (25% No-go) and Vigilance (75% No-go). We compared whole-brain connectivity in the two groups during correct No-go trials in the Inhibition vs. Vigilance blocks between 0 and 400 ms. RESULTS Despite comparable performance on the Go/No-go task, adults with ASD showed reduced connectivity compared to controls in the alpha band (8-14 Hz) in a network with a main hub in the right inferior frontal gyrus. Decreased connectivity in this network predicted more self-reported difficulties on a measure of inhibition in everyday life. LIMITATIONS Measures of everyday inhibitory control were not available for all participants, so this relationship between reduced network connectivity and inhibitory control abilities may not be necessarily representative of all adults with ASD or the larger ASD population. Further research with independent samples of adults with ASD, including those with a wider range of cognitive abilities, would be valuable. CONCLUSIONS Our findings demonstrate reduced functional brain connectivity during response inhibition in adults with ASD. As alpha-band synchrony has been linked to top-down control mechanisms, we propose that the lack of alpha synchrony observed in our ASD group may reflect difficulties in suppressing task-irrelevant information, interfering with inhibition in real-life situations.
Collapse
Affiliation(s)
- Veronica Yuk
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada. .,Neurosciences and Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Neurosciences and Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Department of Neurology, The Hospital for Sick Children, Toronto, ON, Canada.,Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Neurosciences and Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Nunes AS, Mamashli F, Kozhemiako N, Khan S, McGuiggan NM, Losh A, Joseph RM, Ahveninen J, Doesburg SM, Hämäläinen MS, Kenet T. Classification of evoked responses to inverted faces reveals both spatial and temporal cortical response abnormalities in Autism spectrum disorder. Neuroimage Clin 2020; 29:102501. [PMID: 33310630 PMCID: PMC7734307 DOI: 10.1016/j.nicl.2020.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 11/23/2022]
Abstract
The neurophysiology of face processing has been studied extensively in the context of social impairments associated with autism spectrum disorder (ASD), but the existing studies have concentrated mainly on univariate analyses of responses to upright faces, and, less frequently, inverted faces. The small number of existing studies on neurophysiological responses to inverted face in ASD have used univariate approaches, with divergent results. Here, we used a data-driven, classification-based, multivariate machine learning decoding approach to investigate the temporal and spatial properties of the neurophysiological evoked response for upright and inverted faces, relative to the neurophysiological evoked response for houses, a neutral stimulus. 21 (2 females) ASD and 29 (4 females) TD participants ages 7 to 19 took part in this study. Group level classification accuracies were obtained for each condition, using first the temporal domain of the evoked responses, and then the spatial distribution of the evoked responses on the cortical surface, each separately. We found that classification of responses to inverted neutral faces vs. houses was less accurate in ASD compared to TD, in both the temporal and spatial domains. In contrast, there were no group differences in the classification of evoked responses to upright neutral faces relative to houses. Using the classification in the temporal domain, lower decoding accuracies in ASD were found around 120 ms and 170 ms, corresponding the known components of the evoked responses to faces. Using the classification in the spatial domain, lower decoding accuracies in ASD were found in the right superior marginal gyrus (SMG), intra-parietal sulcus (IPS) and posterior superior temporal sulcus (pSTS), but not in core face processing areas. Importantly, individual classification accuracies from both the temporal and spatial classifiers correlated with ASD severity, confirming the relevance of the results to the ASD phenotype.
Collapse
Affiliation(s)
- Adonay S Nunes
- Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Fahimeh Mamashli
- Department of Radiology, MGH, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, MA, USA
| | - Nataliia Kozhemiako
- Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Sheraz Khan
- Department of Radiology, MGH, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, MA, USA
| | - Nicole M McGuiggan
- Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, MA, USA
| | - Ainsley Losh
- Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA
| | | | - Jyrki Ahveninen
- Department of Radiology, MGH, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, MA, USA
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, British Columbia, Canada; Behavioural and Cognitive Neuroscience Institute, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Matti S Hämäläinen
- Department of Radiology, MGH, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, MA, USA; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Tal Kenet
- Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, MA, USA.
| |
Collapse
|
13
|
Magnuson JR, McNeil CJ. Low-frequency neural activity at rest is correlated with the movement-related cortical potentials elicited during both real and imagined movements. Neurosci Lett 2020; 742:135530. [PMID: 33248162 DOI: 10.1016/j.neulet.2020.135530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 10/22/2022]
Abstract
Ongoing low-frequency activity in the brain has been shown to indicate an inhibitory neural state; however, the effects of this low-frequency activity on event-related neural processes associated with movement preparation, including movement-related cortical potentials (MRCPs) or more specifically, the motor potential (MP), and event-related desynchronization (ERD) have not been assessed. Using data from 48 participants, the current study examined how ongoing mu and beta frequency activity at rest relates to the MP and mu and beta ERD during real or imagined movement of the fingers. Resting state EEG activity was collected for 1 min, prior to the real and imagined finger movement trials. 20 real and 20 imagined movement trials were collected for each hand. Resting beta activity correlated with MP amplitude during movement trials for both the right (r(47) = -0.304, p = 0.035) and left (r(47) = -0.468, p < 0.001) hands, whereas resting mu correlated with MP amplitude during motor imagery trials of both the right (r(47) = -0.289, p = 0.046) and left (r(47) = -0.330, p = 0.020) hands. Ongoing mu and beta activity was not significantly correlated with mu or beta ERD for both the movement and imagery trials. A connection between low-frequency activity and MP could inform biofeedback procedures that promote a reduction of this activity, ultimately allowing for easier identification of the intent to move.
Collapse
Affiliation(s)
- Justine R Magnuson
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada.
| | - Chris J McNeil
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
14
|
Chen X, Zhang L, Yang D, Li C, An G, Wang J, Shao Y, Fan R, Ma Q. Effects of Caffeine on Event-Related Potentials and Neuropsychological Indices After Sleep Deprivation. Front Behav Neurosci 2020; 14:108. [PMID: 32714162 PMCID: PMC7347038 DOI: 10.3389/fnbeh.2020.00108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/28/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: Caffeine is a central nervous system stimulant that can effectively alleviate brain fatigue and low cognitive efficiency induced by total sleep deprivation (TSD). Recent studies have demonstrated that caffeine can improve subjective attention and objective behavioral metrics, such as arousal level, reaction time, and memory efficiency. However, only a few studies have examined the electrophysiological changes caused by the caffeine in humans following sleep disturbance. In this study, an event-related potential (ERP) technique was employed to measure the behavioral, cognitive, and electrophysiological changes produced by caffeine administration after TSD. Methods: Sixteen healthy subjects within-subject design performed a visual Go/No-Go task with simultaneous electroencephalogram recording. Behavioral and ERP data were evaluated after 36 h of TSD, and the effects of ingestion of either 400 mg of caffeine or placebo were compared in a double-blind randomized design. Results: Compared with placebo administration, the Go hit rates were significantly enhanced in the caffeine condition. A simple effect analysis revealed that, compared with baseline, the Go-P2 amplitude was significantly enhanced after TSD in the caffeine consumption condition. A significant main effect of the drug was found on No-Go-P2, No-Go-N2 amplitude, and Go-P2 latency before and after TSD. Conclusion: Our findings indicate that caffeine administration has acute effects on improving the efficiency of individual automatic reactions and early cognitive processes. Caffeine was related to the preservation of an individual’s arousal level and accelerated response-related decisions, while subjects’ higher-level recognition had limited improvement with prolonged awareness.
Collapse
Affiliation(s)
- Xuewei Chen
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Liwei Zhang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Danfeng Yang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chao Li
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Gaihong An
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jing Wang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Rong Fan
- Central Laboratory, Xi Qing Hospital, Tianjin, China
| | - Qiang Ma
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
15
|
Nunes AS, Vakorin VA, Kozhemiako N, Peatfield N, Ribary U, Doesburg SM. Atypical age-related changes in cortical thickness in autism spectrum disorder. Sci Rep 2020; 10:11067. [PMID: 32632150 PMCID: PMC7338512 DOI: 10.1038/s41598-020-67507-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 06/08/2020] [Indexed: 01/17/2023] Open
Abstract
Recent longitudinal neuroimaging and neurophysiological studies have shown that tracking relative age-related changes in neural signals, rather than a static snapshot of a neural measure, could offer higher sensitivity for discriminating typically developing (TD) individuals from those with autism spectrum disorder (ASD). It is not clear, however, which aspects of age-related changes (trajectories) would be optimal for identifying atypical brain development in ASD. Using a large cross-sectional data set (Autism Brain Imaging Data Exchange [ABIDE] repository; releases I and II), we aimed to explore age-related changes in cortical thickness (CT) in TD and ASD populations (age range 6–30 years old). Cortical thickness was estimated from T1-weighted MRI images at three scales of spatial coarseness (three parcellations with different numbers of regions of interest). For each parcellation, three polynomial models of age-related changes in CT were tested. Specifically, to characterize alterations in CT trajectories, we compared the linear slope, curvature, and aberrancy of CT trajectories across experimental groups, which was estimated using linear, quadratic, and cubic polynomial models, respectively. Also, we explored associations between age-related changes with ASD symptomatology quantified as the Autism Diagnostic Observation Schedule (ADOS) scores. While no overall group differences in cortical thickness were observed across the entire age range, ASD and TD populations were different in terms of age-related changes, which were located primarily in frontal and tempo-parietal areas. These atypical age-related changes were also associated with ADOS scores in the ASD group and used to predict ASD from TD development. These results indicate that the curvature is the most reliable feature for localizing brain areas developmentally atypical in ASD with a more pronounced effect with symptomatology and is the most sensitive in predicting ASD development.
Collapse
Affiliation(s)
- Adonay S Nunes
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada.
| | - Vasily A Vakorin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada.,Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, Canada
| | - Nataliia Kozhemiako
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada
| | - Nicholas Peatfield
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada
| | - Urs Ribary
- Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, Canada.,Department Pediatrics and Psychiatry, University of British Columbia, Vancouver, Canada.,B.C. Children's Hospital Research Institute, Vancouver, Canada.,Department Psychology, Simon Fraser University, Burnaby, Canada
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada.,Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
16
|
Magnuson JR, Iarocci G, Doesburg SM, Moreno S. Increased Intra-Subject Variability of Reaction Times and Single-Trial Event-Related Potential Components in Children With Autism Spectrum Disorder. Autism Res 2019; 13:221-229. [PMID: 31566907 DOI: 10.1002/aur.2210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/19/2019] [Accepted: 09/04/2019] [Indexed: 01/30/2023]
Abstract
Autism spectrum disorder (ASD) is an increasingly common neurodevelopmental disorder that affects 1 in 59 children. The cognitive profiles of individuals with ASD are varied, and the neurophysiological underpinnings of these developmental difficulties are unclear. While many studies have focused on overall group differences in the amplitude or latency of event related potential (ERP) responses, recent research suggests that increased intra-subject neural variability may also be a reliable indicator of atypical brain function in ASD. This study aimed to identify behavioral and neural variability responses during an emotional inhibitory control task in children with ASD compared to typically developing (TD) children. Children with ASD showed increased variability in response to both inhibitory and emotional stimuli, evidenced by greater reaction time variability and single-trial ERP variability of N200 and N170 amplitudes and/or latencies compared to TD children. These results suggest that the physiological basis of ASD may be more accurately explained by increased intra-subject variability, in addition to characteristic increases or decreases in the amplitude or latency of neural responses. Autism Res 2020, 13:221-229. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: The cognitive functions including memory, attention, executive functions, and perception, of individuals with ASD are varied, and the physiological underpinnings of these profiles are unclear. In this study, children with ASD showed increased intra-subject neural and behavioral variability in response to an emotional inhibitory control task compared to typically developing children. These results suggest that the physiological basis of ASD may also be explained by increased behavioral and neural variability in people with ASD, rather than simply characteristic increases or decreases in averaged brain responses.
Collapse
Affiliation(s)
- Justine R Magnuson
- Department of Kinesiology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Grace Iarocci
- Department of Psychology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sylvain Moreno
- School of Interactive Arts and Technology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|