1
|
Ilieva MS. Non-Coding RNAs in Neurological and Neuropsychiatric Disorders: Unraveling the Hidden Players in Disease Pathogenesis. Cells 2024; 13:1063. [PMID: 38920691 PMCID: PMC11201512 DOI: 10.3390/cells13121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Neurological and neuropsychiatric disorders pose substantial challenges to public health, necessitating a comprehensive understanding of the molecular mechanisms underlying their pathogenesis. In recent years, the focus has shifted toward the intricate world of non-coding RNAs (ncRNAs), a class of RNA molecules that do not encode proteins but play pivotal roles in gene regulation and cellular processes. This review explores the emerging significance of ncRNAs in the context of neurological and neuropsychiatric disorders, shedding light on their diverse functions and regulatory mechanisms. The dysregulation of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), has been implicated in the pathophysiology of conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia, and mood disorders. This review delves into the specific roles these ncRNAs play in modulating key cellular processes, including synaptic plasticity, neuroinflammation, and apoptosis, providing a nuanced understanding of their impact on disease progression. Furthermore, it discusses the potential diagnostic and therapeutic implications of targeting ncRNAs in neurological and neuropsychiatric disorders. The identification of specific ncRNA signatures holds promise for the development of novel biomarkers for early disease detection, while the manipulation of ncRNA expression offers innovative therapeutic avenues. Challenges and future directions in the field are also considered, highlighting the need for continued research to unravel the complexities of ncRNA-mediated regulatory networks in the context of neurological and neuropsychiatric disorders. This review aims to provide a comprehensive overview of the current state of knowledge and stimulate further exploration into the fascinating realm of ncRNAs in the brain's intricate landscape.
Collapse
Affiliation(s)
- Mirolyuba Simeonova Ilieva
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Ole Maaløes Vej 5, 3rd Floor, 2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Yang Q, Cao Q, Yu Y, Lai X, Feng J, Li X, Jiang Y, Sun Y, Zhou ZW, Li X. Epigenetic and transcriptional landscapes during cerebral cortex development in a microcephaly mouse model. J Genet Genomics 2024; 51:419-432. [PMID: 37923173 DOI: 10.1016/j.jgg.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
The cerebral cortex is a pivotal structure integral to advanced brain functions within the mammalian central nervous system. DNA methylation and hydroxymethylation play important roles in regulating cerebral cortex development. However, it remains unclear whether abnormal cerebral cortex development, such as microcephaly, could rescale the epigenetic landscape, potentially contributing to dysregulated gene expression during brain development. In this study, we characterize and compare the DNA methylome/hydroxymethylome and transcriptome profiles of the cerebral cortex across several developmental stages in wild-type (WT) mice and Mcph1 knockout (Mcph1-del) mice with severe microcephaly. Intriguingly, we discover a global reduction of 5'-hydroxymethylcytosine (5hmC) level, primarily in TET1-binding regions, in Mcph1-del mice compared to WT mice during juvenile and adult stages. Notably, genes exhibiting diminished 5hmC levels and concurrently decreased expression are essential for neurodevelopment and brain functions. Additionally, genes displaying a delayed accumulation of 5hmC in Mcph1-del mice are significantly associated with the establishment and maintenance of the nervous system during the adult stage. These findings reveal that aberrant cerebral cortex development in the early stages profoundly alters the epigenetic regulation program, which provides unique insights into the molecular mechanisms underpinning diseases related to cerebral cortex development.
Collapse
Affiliation(s)
- Qing Yang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qiang Cao
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yue Yu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianxin Lai
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiahao Feng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xinjie Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yinan Jiang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yazhou Sun
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhong-Wei Zhou
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Xin Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
3
|
Rubinstein MR, Burgueño AL, Quiroga S, Wald MR, Genaro AM. Current Understanding of the Roles of Gut-Brain Axis in the Cognitive Deficits Caused by Perinatal Stress Exposure. Cells 2023; 12:1735. [PMID: 37443769 PMCID: PMC10340286 DOI: 10.3390/cells12131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The term 'perinatal environment' refers to the period surrounding birth, which plays a crucial role in brain development. It has been suggested that dynamic communication between the neuro-immune system and gut microbiota is essential in maintaining adequate brain function. This interaction depends on the mother's status during pregnancy and/or the newborn environment. Here, we show experimental and clinical evidence that indicates that the perinatal period is a critical window in which stress-induced immune activation and altered microbiota compositions produce lasting behavioral consequences, although a clear causative relationship has not yet been established. In addition, we discuss potential early treatments for preventing the deleterious effect of perinatal stress exposure. In this sense, early environmental enrichment exposure (including exercise) and melatonin use in the perinatal period could be valuable in improving the negative consequences of early adversities. The evidence presented in this review encourages the realization of studies investigating the beneficial role of melatonin administration and environmental enrichment exposure in mitigating cognitive alteration in offspring under perinatal stress exposure. On the other hand, direct evidence of microbiota restoration as the main mechanism behind the beneficial effects of this treatment has not been fully demonstrated and should be explored in future studies.
Collapse
Affiliation(s)
- Mara Roxana Rubinstein
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| | | | | | | | - Ana María Genaro
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| |
Collapse
|
4
|
Tian Z, Yu T, Liu J, Wang T, Higuchi A. Introduction to stem cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:3-32. [PMID: 37678976 DOI: 10.1016/bs.pmbts.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Stem cells have self-renewal capability and can proliferate and differentiate into a variety of functionally active cells that can serve in various tissues and organs. This review discusses the history, definition, and classification of stem cells. Human pluripotent stem cells (hPSCs) mainly include embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs). Embryonic stem cells are derived from the inner cell mass of the embryo. Induced pluripotent stem cells are derived from reprogramming somatic cells. Pluripotent stem cells have the ability to differentiate into cells derived from all three germ layers (endoderm, mesoderm, and ectoderm). Adult stem cells can be multipotent or unipotent and can produce tissue-specific terminally differentiated cells. Stem cells can be used in cell therapy to replace and regenerate damaged tissues or organs.
Collapse
Affiliation(s)
- Zeyu Tian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jun Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China.
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Chen C, Xu YJ, Zhang SR, Wang XH, Hu Y, Guo DH, Zhou XJ, Zhu WY, Wen AD, Tan QR, Dong XZ, Liu P. MiR-1281 is involved in depression disorder and the antidepressant effects of Kai-Xin-San by targeting ADCY1 and DVL1. Heliyon 2023; 9:e14265. [PMID: 36938448 PMCID: PMC10020002 DOI: 10.1016/j.heliyon.2023.e14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Kai-Xin-San (KXS) is a Chinese medicine formulation that is commonly used to treat depression caused by dual deficiencies in the heart and spleen. Recent studies indicated that miRNAs were involved in the pathophysiology of depression. However, there have been few studies on the mechanism underlying the miRNAs directly mediating antidepressant at clinical level, especially in nature drugs and TCM compound. In this study, we identified circulating miRNAs defferentially expressed among the depression patients (DPs), DPs who underwent 8weeks of KXS treatment and health controls (HCs). A total of 45 miRNAs (17 were up-regulated and 28 were down-regulated) were significantly differentially expressed among three groups. Subsequently, qRT-PCR was used to verify 10 differentially expressed candidate miRNAs in more serum samples, and the results showed that 6 miRNAs (miR-1281, miR-365a-3p, miR-2861, miR-16-5p, miR-1202 and miR-451a) were consistent with the results of microarray. Among them, miR-1281, was the novel dynamically altered and appeared to be specifically related to depression and antidepressant effects of KXS. MicroRNA-gene-pathway-net analysis showed that miR-1281-regulated genes are mostly key nodes in the classical signaling pathway related to depression. Additionally, our data suggest that ADCY1 and DVL1 were the targets of miR-1281. Thus, based on the discovery of miRNA expression profiles in vivo, our findings suggest a new role for miR-1281 related to depression and demonstrated in vitro that KXS may activate cAMP/PKA/ERK/CREB and Wnt/β-catenin signal transduction pathways by down-regulating miR-1281 that targets ADCY1 and DVL1 to achieve its role in neuronal cell protection.
Collapse
Affiliation(s)
- Chao Chen
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Yuan-jie Xu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Shang-rong Zhang
- Department of Psychiatry, The 984th Hospital of Chinese People's Liberation Army, Beijing 100094, People's Republic of China
| | - Xiao-hui Wang
- Department of Psychiatry, The 984th Hospital of Chinese People's Liberation Army, Beijing 100094, People's Republic of China
| | - Yuan Hu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Dai-hong Guo
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Xiao-jiang Zhou
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Wei-yu Zhu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Ai-Dong Wen
- Department of Pharmacy, Xijing Hospital of Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital of Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100853, People's Republic of China
- Corresponding author. Department of Pharmacy, Xuanwu Hospital of Capital Medical University, 45 Changchun Road, Xicheng District, Beijing 100053, China.
| | - Ping Liu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
- Corresponding author.Department of Pharmacy, the General Hospital of the People's Liberation Army, Beijing 100853, China.
| |
Collapse
|
6
|
Wang J, Roy SK, Richard SA, Xu Y. Genome-wide Association Studies of REST Gene Associated Neurological Diseases/traits with Related Single Nucleotide Polymorphisms. Curr Neurovasc Res 2023; 20:410-422. [PMID: 37518996 PMCID: PMC10556398 DOI: 10.2174/1567202620666230727153306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have been used to explore the connections between genotypes and phenotypes by comparing the genotype frequencies of genetic changes in individuals with similar origins but distinct traits. OBJECTIVES The aim is to employ the GWAS catalog to identify and investigate the various correlations between genotypes and phenotypes of the REST gene. METHODS In this study, we utilized a large dataset of GWAS comprising 62,218,976 individuals in 112 studies and 122 associations with 122 traits (www.ebi.ac.uk/gwas/genes/REST) from European, Asian, Hispanic, African ancestry up to 28 February 2023. Protein-association network evaluation and gene ontology enrichment study was utilized to evaluate the biological function of the discovered gene modules. RESULTS We identified several associations for both neurodevelopmental and neurodegenerative disorders linked to REST, as well as its mapped gene modules and their functional relationship networks. CONCLUSION This work offers fresh insights into identifying risk loci of neurological disorders caused by REST.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, Zhengzhou, 450000, P.R. China
- People’s Hospital of Luanchuan, Henan, 471599, Luoyang, P.R. China
| | - Sagor Kumar Roy
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, Zhengzhou, 450000, P.R. China
| | - Seidu A. Richard
- Institute of Neuroscience, Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, Zhengzhou, 450000, P.R. China
- The Academy of Medical Sciences of Zhengzhou University, Henan, 450000, Zhengzhou, P.R. China
| |
Collapse
|
7
|
Balendran V, Ritter KE, Martin DM. Epigenetic mechanisms of inner ear development. Hear Res 2022; 426:108440. [PMID: 35063312 PMCID: PMC9276839 DOI: 10.1016/j.heares.2022.108440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022]
Abstract
Epigenetic factors are critically important for embryonic and postnatal development. Over the past decade, substantial technological advancements have occurred that now permit the study of epigenetic mechanisms that govern all aspects of inner ear development, from otocyst patterning to maturation and maintenance of hair cell stereocilia. In this review, we highlight how three major classes of epigenetic regulation (DNA methylation, histone modification, and chromatin remodeling) are essential for the development of the inner ear. We highlight open avenues for research and discuss how new tools enable the employment of epigenetic factors in regenerative and therapeutic approaches for hearing and balance disorders.
Collapse
Affiliation(s)
- Vinodh Balendran
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - K Elaine Ritter
- Department of Pediatrics, Medical Center Drive, University of Michigan Medical School, 8220C MSRB III, 1150 W, Ann Arbor, MI 48109-5652, United States
| | - Donna M Martin
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Pediatrics, Medical Center Drive, University of Michigan Medical School, 8220C MSRB III, 1150 W, Ann Arbor, MI 48109-5652, United States; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
8
|
SHANK family on stem cell fate and development. Cell Death Dis 2022; 13:880. [PMID: 36257935 PMCID: PMC9579136 DOI: 10.1038/s41419-022-05325-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022]
Abstract
SH3 and multiple ankyrin repeat domains protein (SHANK) 1, SHANK2, and SHANK3 encode a family of postsynaptic scaffolding proteins present at glutamatergic synapses and play a crucial role in synaptogenesis. In the past years, studies have provided a preliminary appreciation and understanding of the influence of the SHANK family in controlling stem cell fate. Here, we review the modulation of SHANK gene expression and their related signaling pathways, allowing for an in-depth understanding of the role of SHANK in stem cells. Besides, their role in governing stem cell self-renewal, proliferation, differentiation, apoptosis, and metabolism are explored in neural stem cells (NSCs), stem cells from apical papilla (SCAPs), and induced pluripotent stem cells (iPSCs). Moreover, iPSCs and embryonic stem cells (ESCs) have been utilized as model systems for analyzing their functions in terms of neuronal development. SHANK-mediated stem cell fate determination is an intricate and multifactorial process. This study aims to achieve a better understanding of the role of SHANK in these processes and their clinical applications, thereby advancing the field of stem cell therapy. This review unravels the regulatory role of the SHANK family in the fate of stem cells.
Collapse
|
9
|
Xu N, Liu J, Li X. Lupus nephritis: The regulatory interplay between epigenetic and MicroRNAs. Front Physiol 2022; 13:925416. [PMID: 36187762 PMCID: PMC9523357 DOI: 10.3389/fphys.2022.925416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, small, non-coding RNA molecules that act as epigenetic modifiers to regulate the protein levels of target messenger RNAs without altering their genetic sequences. The highly complex role of miRNAs in the epigenetics of lupus nephritis (LN) is increasingly being recognized. DNA methylation and histone modifications are focal points of epigenetic research. miRNAs play a critical role in renal development and physiology, and dysregulation may result in abnormal renal cell proliferation, inflammation, and fibrosis of the kidneys in LN. However, epigenetic and miRNA-mediated regulation are not mutually exclusive. Further research has established a link between miRNA expression and epigenetic regulation in various disorders, including LN. This review summarizes the most recent evidence regarding the interaction between miRNAs and epigenetics in LN and highlights potential therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Ning Xu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jie Liu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Xiangling Li,
| |
Collapse
|
10
|
Adhikary S, Singh V, Choudhari R, Yang B, Adhikari S, Ramos EI, Chaudhuri S, Roy S, Gadad SS, Das C. ZMYND8 suppresses MAPT213 LncRNA transcription to promote neuronal differentiation. Cell Death Dis 2022; 13:766. [PMID: 36064715 PMCID: PMC9445031 DOI: 10.1038/s41419-022-05212-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 01/21/2023]
Abstract
Zinc Finger transcription factors are crucial in modulating various cellular processes, including differentiation. Chromatin reader Zinc Finger MYND (Myeloid, Nervy, and DEAF-1) type containing 8 (ZMYND8), an All-Trans Retinoic Acid (ATRA)-responsive gene, was previously shown to play a crucial role in promoting the expression of neuronal-lineage committed genes. Here, we report that ZMYND8 promotes neuronal differentiation by positively regulating canonical MAPT protein-coding gene isoform, a key player in the axonal development of neurons. Additionally, ZMYND8 modulates gene-isoform switching by epigenetically silencing key regulatory regions within the MAPT gene, thereby suppressing the expression of non-protein-coding isoforms such as MAPT213. Genetic deletion of ZMYND8 led to an increase in the MAPT213 that potentially suppressed the parental MAPT protein-coding transcript expression related to neuronal differentiation programs. In addition, ectopic expression of MAPT213 led to repression of MAPT protein-coding transcript. Similarly, ZMYND8-driven transcription regulation was also observed in other neuronal differentiation-promoting genes. Collectively our results elucidate a novel mechanism of ZMYND8-dependent transcription regulation of different neuronal lineage committing genes, including MAPT, to promote neural differentiation.
Collapse
Affiliation(s)
- Santanu Adhikary
- grid.473481.d0000 0001 0661 8707Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064 India ,grid.417635.20000 0001 2216 5074Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 India
| | - Vipin Singh
- grid.473481.d0000 0001 0661 8707Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064 India ,grid.450257.10000 0004 1775 9822Homi Bhaba National Institute, Mumbai, 400094 India
| | - Ramesh Choudhari
- grid.449768.0Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, 5001 El Paso Drive, El Paso, TX 79905 USA
| | - Barbara Yang
- grid.449768.0Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, 5001 El Paso Drive, El Paso, TX 79905 USA
| | - Swagata Adhikari
- grid.473481.d0000 0001 0661 8707Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064 India ,grid.450257.10000 0004 1775 9822Homi Bhaba National Institute, Mumbai, 400094 India
| | - Enrique I. Ramos
- grid.449768.0Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, 5001 El Paso Drive, El Paso, TX 79905 USA
| | - Soumi Chaudhuri
- grid.473481.d0000 0001 0661 8707Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064 India
| | - Siddhartha Roy
- grid.417635.20000 0001 2216 5074Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 India
| | - Shrikanth S. Gadad
- grid.449768.0Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, 5001 El Paso Drive, El Paso, TX 79905 USA ,grid.267309.90000 0001 0629 5880Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229 USA
| | - Chandrima Das
- grid.473481.d0000 0001 0661 8707Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064 India ,grid.450257.10000 0004 1775 9822Homi Bhaba National Institute, Mumbai, 400094 India
| |
Collapse
|
11
|
Identification of microRNAs related with neural germ layer lineage-specific progenitors during reprogramming. J Mol Histol 2022; 53:623-634. [DOI: 10.1007/s10735-022-10082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
|
12
|
Synaptic plasticity and depression: the role of miRNAs dysregulation. Mol Biol Rep 2022; 49:9759-9765. [PMID: 35441941 DOI: 10.1007/s11033-022-07461-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been recently shown to exert several functional roles in the development and function of neurons. Moreover, numerous miRNAs are present in high abundance in presynaptic and postsynaptic sites regulating synaptic plasticity and activity through different mechanisms. METHODS We searched PubMed and Google Scholar databases with key words "Synaptic plasticity", "miRNA" and "major depressive disorder. RESULTS Synaptic plasticity has an essential role in the ability of the brain to integrate transitory experiences into constant memory traces. Thus, it participates in the development of neuropsychiatric diseases such as major depressive disorder (MDD). Most notably, MDD-related alterations in synaptic function have been found to be closely related with abnormal expression of miRNAs. CONCLUSIONS Several miRNAs such as miR-9-5p, miR-204-5p, miR-128-3, miR-26a-3p, miR-218, miR-22-3p, miR-124-3p, miR-136-3p, miR-154-5p, miR-323a-3p, miR-425-5p, miR-34a, miR-137, miR-204-5p, miR-99a, miR-134, miR-124-3p and miR-3130-5p have been shown to be involved in the regulation of synaptic plasticity in the context of MDD. In the current review, we elaborate the role of miRNAs in regulation of this important neuronal feature in MDD.
Collapse
|
13
|
Wang F, Liu J, Wang D, Yao Y, Jiao X. Knockdown of circ_0007290 alleviates oxygen-glucose deprivation-induced neuronal injury by regulating miR-496/PDCD4 axis. Metab Brain Dis 2022; 37:807-818. [PMID: 35032277 DOI: 10.1007/s11011-021-00900-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022]
Abstract
Circular RNAs (circRNAs) are highly enriched in the brain and involved in many types of central nervous system pathologies. Herein, this study aimed to investigate the role and mechanism of circ_0007290 in ischemic stroke. The oxygen-glucose deprivation (OGD) model was established with the HCN-2 cells in vitro. Levels of genes and proteins was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. In vitro experiments were conducted using cell counting kit-8 (CCK-8) assay, EdU (5-ethynyl-2'-deoxyuridine) assay, flow cytometry and ELISA, respectively. The levels of lactate dehydrogenase (LDH) were measured using the commercial kit. RNA pull-down and dual-luciferase reporter assay were used to identify the target relationship between miR-496 and circ_0007290 or PDCD4 (programmed cell death protein 4). Circ_0007290 expression was elevated in acute ischemic stroke (AIS) patients and OGD-induced cell injury model. OGD stimulation induced neuronal apoptosis, promoted LDH release, and enhanced inflammation in HCN-2 cells, which all were reversed by the knockdown of circ_0007290. Mechanistically, circ_0007290 served as a sponge for miR-496 to relieve the repression of miR-496 on the expression of its target PDCD4. Moreover, miR-496 inhibition or PDCD4 overexpression abolished the inhibitory effects of circ_0007290 knockdown OGD-evoked neuronal injury. Knockdown of circ_0007290 alleviated OGD-induced neuronal injury by regulating miR-496/PDCD4 axis, providing a novel insight into the pathology of ischemic stroke.
Collapse
Affiliation(s)
- Fengjuan Wang
- Department of Anesthesiology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Jie Liu
- Nursing Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Dan Wang
- Operation Room, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Yu Yao
- Department of Anesthesiology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Xuhua Jiao
- Department of Anesthesia and Pain, Gaomi People's Hospital, 77 Zhenfu Street, Gaomi City, Shandong Province , 261500, China.
| |
Collapse
|
14
|
Tsamou M, Carpi D, Pistollato F, Roggen EL. Sporadic Alzheimer's Disease- and Neurotoxicity-Related microRNAs Affecting Key Events of Tau-Driven Adverse Outcome Pathway Toward Memory Loss. J Alzheimers Dis 2022; 86:1427-1457. [PMID: 35213375 DOI: 10.3233/jad-215434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND A complex network of aging-related homeostatic pathways that are sensitive to further deterioration in the presence of genetic, systemic, and environmental risk factors, and lifestyle, is implicated in the pathogenesis of progressive neurodegenerative diseases, such as sporadic (late-onset) Alzheimer's disease (sAD). OBJECTIVE Since sAD pathology and neurotoxicity share microRNAs (miRs) regulating common as well as overlapping pathological processes, environmental neurotoxic compounds are hypothesized to exert a risk for sAD initiation and progression. METHODS Literature search for miRs associated with human sAD and environmental neurotoxic compounds was conducted. Functional miR analysis using PathDip was performed to create miR-target interaction networks. RESULTS The identified miRs were successfully linked to the hypothetical starting point and key events of the earlier proposed tau-driven adverse outcome pathway toward memory loss. Functional miR analysis confirmed most of the findings retrieved from literature and revealed some interesting findings. The analysis identified 40 miRs involved in both sAD and neurotoxicity that dysregulated processes governing the plausible adverse outcome pathway for memory loss. CONCLUSION Creating miR-target interaction networks related to pathological processes involved in sAD initiation and progression, and environmental chemical-induced neurotoxicity, respectively, provided overlapping miR-target interaction networks. This overlap offered an opportunity to create an alternative picture of the mechanisms underlying sAD initiation and early progression. Looking at initiation and progression of sAD from this new angle may open for new biomarkers and novel drug targets for sAD before the appearance of the first clinical symptoms.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Maastricht, The Netherlands
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra VA, Italy
| | | | | |
Collapse
|
15
|
Tasin FR, Ahmed A, Halder D, Mandal C. On-going consequences of in utero exposure of Pb: An epigenetic perspective. J Appl Toxicol 2022; 42:1553-1569. [PMID: 35023172 DOI: 10.1002/jat.4287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 11/08/2022]
Abstract
Epigenetic modifications by toxic heavy metals are one of the intensively investigated fields of modern genomic research. Among a diverse group of heavy metals, lead (Pb) is an extensively distributed toxicant causing an immense number of abnormalities in the developing fetus via a wide variety of epigenetic changes. As a divalent cation, Pb can readily cross the placental membrane and the fetal blood brain barrier leading to far-reaching alterations in DNA methylation patterns, histone protein modifications and micro-RNA expression. Over recent years, several human cohorts and animal model studies have documented hyper- and hypo-methylation of developmental genes along with altered DNA methyl-transferase expression by in utero Pb exposure in a dose-, duration- and sex-dependent manner. Modifications in the expression of specific histone acetyltransferase enzymes along with histone acetylation and methylation levels have been reported in rodent and murine models. Apart from these, down-regulation and up-regulation of certain microRNAs crucial for fetal development have been shown to be associated with in utero Pb exposure in human placenta samples. All these modifications in the developing fetus during the prenatal and perinatal stages reportedly caused severe abnormalities in early or adult age, such as - impaired growth, obesity, autism, diabetes, cardiovascular diseases, risks of cancer development and Alzheimer's disease. In this review, currently available information on Pb-mediated alterations in the fetal epigenome is summarized. Further research on Pb-induced epigenome modification will help to understand the mechanisms in detail and will enable us to formulate safety guidelines for pregnant women and developing children.
Collapse
Affiliation(s)
- Fahim Rejanur Tasin
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Asif Ahmed
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Debasish Halder
- Rare Disease research center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Chanchal Mandal
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
16
|
Sheehy RN, Quintanilla LJ, Song J. Epigenetic regulation in the neurogenic niche of the adult dentate gyrus. Neurosci Lett 2022; 766:136343. [PMID: 34774980 PMCID: PMC8691367 DOI: 10.1016/j.neulet.2021.136343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
The adult dentate gyrus (DG) of the hippocampal formation is a specialized region of the brain that creates new adult-born neurons from a pool of resident adult neural stem and progenitor cells (aNSPCs) throughout life. These aNSPCs undergo epigenetic and epitranscriptomic regulation, including 3D genome interactions, histone modifications, DNA modifications, noncoding RNA mechanisms, and RNA modifications, to precisely control the neurogenic process. Furthermore, the specialized neurogenic niche also uses epigenetic mechanisms in mature neurons and glial cells to communicate signals to direct the behavior of the aNSPCs. Here, we review recent advances of epigenetic regulation in aNSPCs and their surrounding niche cells within the adult DG.
Collapse
Affiliation(s)
- Ryan N. Sheehy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Pharmacology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis J. Quintanilla
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Eyles DW. How do established developmental risk-factors for schizophrenia change the way the brain develops? Transl Psychiatry 2021; 11:158. [PMID: 33686066 PMCID: PMC7940420 DOI: 10.1038/s41398-021-01273-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/08/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022] Open
Abstract
The recognition that schizophrenia is a disorder of neurodevelopment is widely accepted. The original hypothesis was coined more than 30 years ago and the wealth of supportive epidemiologically data continues to grow. A number of proposals have been put forward to suggest how adverse early exposures in utero alter the way the adult brain functions, eventually producing the symptoms of schizophrenia. This of course is extremely difficult to study in developing human brains, so the bulk of what we know comes from animal models of such exposures. In this review, I will summarise the more salient features of how the major epidemiologically validated exposures change the way the brain is formed leading to abnormal function in ways that are informative for schizophrenia symptomology. Surprisingly few studies have examined brain ontogeny from embryo to adult in such models. However, where there is longitudinal data, various convergent mechanisms are beginning to emerge involving stress and immune pathways. There is also a surprisingly consistent alteration in how very early dopamine neurons develop in these models. Understanding how disparate epidemiologically-validated exposures may produce similar developmental brain abnormalities may unlock convergent early disease-related pathways/processes.
Collapse
Affiliation(s)
- Darryl W. Eyles
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, Brisbane, 4072 QLD Australia ,grid.417162.70000 0004 0606 3563Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, 4076 QLD Australia
| |
Collapse
|
18
|
The Role of Histone Acetylation-/Methylation-Mediated Apoptotic Gene Regulation in Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21238894. [PMID: 33255318 PMCID: PMC7727670 DOI: 10.3390/ijms21238894] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetics, an inheritable phenomenon, which influences the expression of gene without altering the DNA sequence, offers a new perspective on the pathogenesis of hepatocellular carcinoma (HCC). Nonalcoholic steatohepatitis (NASH) is projected to account for a significant share of HCC incidence due to the growing prevalence of various metabolic disorders. One of the major molecular mechanisms involved in epigenetic regulation, post-translational histone modification seems to coordinate various aspects of NASH which will further progress to HCC. Mounting evidence suggests that the orchestrated events of cellular and nuclear changes during apoptosis can be regulated by histone modifications. This review focuses on the current advances in the study of acetylation-/methylation-mediated histone modification in apoptosis and the implication of these epigenetic regulations in HCC. The reversibility of epigenetic alterations and the agents that can target these alterations offers novel therapeutic approaches and strategies for drug development. Further molecular mechanistic studies are required to enhance information governing these epigenetic modulators, which will facilitate the design of more effective diagnosis and treatment options.
Collapse
|
19
|
(+)4-Cholesten-3-one promotes differentiation of neural stem cells into dopaminergic neurons through TET1 and FoxA2. Neurosci Lett 2020; 735:135239. [PMID: 32650052 DOI: 10.1016/j.neulet.2020.135239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 01/23/2023]
Abstract
In this paper, we report the results of treating cells with an effective small molecule, (+)4-cholesten-3-one (PubChem CID: 91477), which can promote neural stem cell(NSC) differentiation into dopaminergic neurons. This study used rat neural stem cells stimulated with two different concentrations (7.8 μM and 78 μM) of (+)4-cholesten-3-one. Cell phenotypic analysis showed that (+)4-cholesten-3-one induced NSC differentiation into dopaminergic neurons, and the level of tyrosine hydroxylase(TH), which is specific for dopaminergic cells, was significantly increased compared with that of the drug-free control group. Furthermore, in this study, we found that this effect may be related to the transcription factor fork-head box a2 (FoxA2) and ten-eleven translocation 1 (TET1). The expression of TET1 and FoxA2 was upregulated after treatment with (+)4-cholesten-3-one. To verify the relationship between (+)4-cholesten-3-one and these genes, we found that the binding rate of TET1 and FoxA2 increased after the application of (+)4-cholesten-3-one, as confirmed by a coimmunoprecipitation (Co-IP) assay. With a small interfering RNA (siRNA) experiment, we found that only when Tet1 and Foxa2 were not silenced was the mRNA level of Th increased after (+)4-cholesten-3-one treatment. Taken together, these data show that (+)4-cholesten-3-one can promote the differentiation of NSCs into dopaminergic neurons by upregulating the expression of TET1 and FoxA2 and by increasing their binding. Thus, (+)4-cholesten-3-one may help address the application of neural stem cell replacement therapy in neurodegenerative diseases.
Collapse
|
20
|
Paez-Colasante X, Figueroa-Romero C, Rumora AE, Hur J, Mendelson FE, Hayes JM, Backus C, Taubman GF, Heinicke L, Walter NG, Barmada SJ, Sakowski SA, Feldman EL. Cytoplasmic TDP43 Binds microRNAs: New Disease Targets in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2020; 14:117. [PMID: 32477070 PMCID: PMC7235295 DOI: 10.3389/fncel.2020.00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, and incurable neurodegenerative disease. Recent studies suggest that dysregulation of gene expression by microRNAs (miRNAs) may play an important role in ALS pathogenesis. The reversible nature of this dysregulation makes miRNAs attractive pharmacological targets and a potential therapeutic avenue. Under physiological conditions, miRNA biogenesis, which begins in the nucleus and includes further maturation in the cytoplasm, involves trans-activation response element DNA/RNA-binding protein of 43 kDa (TDP43). However, TDP43 mutations or stress trigger TDP43 mislocalization and inclusion formation, a hallmark of most ALS cases, that may lead to aberrant protein/miRNA interactions in the cytoplasm. Herein, we demonstrated that TDP43 exhibits differential binding affinity for select miRNAs, which prompted us to profile miRNAs that preferentially bind cytoplasmic TDP43. Using cellular models expressing TDP43 variants and miRNA profiling analyses, we identified differential levels of 65 cytoplasmic TDP43-associated miRNAs. Of these, approximately 30% exhibited levels that differed by more than 3-fold in the cytoplasmic TDP43 models relative to our control model. The hits included both novel miRNAs and miRNAs previously associated with ALS that potentially regulate several predicted genes and pathways that may be important for pathogenesis. Accordingly, these findings highlight specific miRNAs that may shed light on relevant disease pathways and could represent potential biomarkers and reversible treatment targets for ALS.
Collapse
Affiliation(s)
| | | | - Amy E. Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Carey Backus
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | | | - Laurie Heinicke
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Sami J. Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
21
|
Hu J, Qin L, Liu Z, Liu P, Wei H, Wang H, Zhao C, Ge Z. miR‐15a regulates oxygen glucose deprivation/reperfusion (OGD/R)‐induced neuronal injury by targeting BDNF. Kaohsiung J Med Sci 2019; 36:27-34. [PMID: 31631531 DOI: 10.1002/kjm2.12136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/15/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jie‐Jie Hu
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Li‐Jun Qin
- Department of cardiologyLanzhou University Second Hospital Lanzhou China
| | - Zhi‐Yan Liu
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Pei Liu
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Hai‐Ping Wei
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Hao‐Yue Wang
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Chong‐Chong Zhao
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Zhao‐Ming Ge
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| |
Collapse
|
22
|
Non-Methylation-Linked Mechanism of REST-Induced Neuroglobin Expression Impacts Mitochondrial Phenotypes in a Mouse Model of Amyotrophic Lateral Sclerosis. Neuroscience 2019; 412:233-247. [DOI: 10.1016/j.neuroscience.2019.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
|
23
|
Kuehner JN, Bruggeman EC, Wen Z, Yao B. Epigenetic Regulations in Neuropsychiatric Disorders. Front Genet 2019; 10:268. [PMID: 31019524 PMCID: PMC6458251 DOI: 10.3389/fgene.2019.00268] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Precise genetic and epigenetic spatiotemporal regulation of gene expression is critical for proper brain development, function and circuitry formation in the mammalian central nervous system. Neuronal differentiation processes are tightly regulated by epigenetic mechanisms including DNA methylation, histone modifications, chromatin remodelers and non-coding RNAs. Dysregulation of any of these pathways is detrimental to normal neuronal development and functions, which can result in devastating neuropsychiatric disorders, such as depression, schizophrenia and autism spectrum disorders. In this review, we focus on the current understanding of epigenetic regulations in brain development and functions, as well as their implications in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Janise N Kuehner
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Emily C Bruggeman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
24
|
Barros L, Eichwald T, Solano AF, Scheffer D, da Silva RA, Gaspar JM, Latini A. Epigenetic modifications induced by exercise: Drug-free intervention to improve cognitive deficits associated with obesity. Physiol Behav 2019; 204:309-323. [PMID: 30876771 DOI: 10.1016/j.physbeh.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Abstract
Obesity and metabolic disorders are increasing worldwide and are associated with brain atrophy and dysfunction, which are risk factors for late-onset dementia and Alzheimer's disease. Epidemiological studies demonstrated that changes in lifestyle, including the frequent practice of physical exercise are able to prevent and treat not only obesity/metabolic disorders, but also to improve cognitive function and dementia. Several biochemical pathways and epigenetic mechanisms have been proposed to understand the beneficial effects of physical exercise on cognition. This manuscript revised central ongoing research on epigenetic mechanisms induced by exercise and the beneficial effects on obesity-associated cognitive decline, highlighting potential mechanistic mediators.
Collapse
Affiliation(s)
- Leonardo Barros
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Tuany Eichwald
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Alexandre Francisco Solano
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Débora Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Rodrigo Augusto da Silva
- Departamento de Química e Bioquímica, Laboratório de Bioensaios e Dinâmica Celular, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Campus Botucatu, Botucatu, Brazil
| | - Joana M Gaspar
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Programa de Pós-Graduação em Bioquímica, UFSC, Florianópolis, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.
| |
Collapse
|
25
|
Sankrityayan H, Kulkarni YA, Gaikwad AB. Diabetic nephropathy: The regulatory interplay between epigenetics and microRNAs. Pharmacol Res 2019; 141:574-585. [PMID: 30695734 DOI: 10.1016/j.phrs.2019.01.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy (DN) is still one of the leading causes of end-stage renal disease despite the emergence of different therapies to counter the metabolic, hemodynamic and fibrotic pathways, implicating a prominent role of genetic and epigenetic factors in its progression. Epigenetics is the study of changes in the expression of genes which may be inheritable and does not involve a change in the genome sequence. Thrust areas of epigenetic research are DNA methylation and histone modifications. Noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs) control the expression of genes via post-transcriptional mechanisms. However, the regulation by epigenetic mechanisms and miRNAs are not completely distinct. A number of emerging reports have revealed the interplay between epigenetic machinery and miRNA expression, particularly in cancer. Further research has proved that a feedback loop exists between miRNA expression and epigenetic regulation in disorders including DN. Studies showed that different miRNAs (miR-200, miR-29 etc.) were found to be regulated by epigenetic mechanisms viz. DNA methylation and histone modifications. Conversely, miRNAs (miR-301, miR-449 etc.) themselves modulated levels of DNA methyltranferases (DNMTs) and Histone deacetylases (HDACs), enzymes vital to epigenetic modifications. With already few FDA approved epigenetic -modulating drugs (Vorinostat, Decitabine) in the market and miRNA therapeutic drugs under clinical trial it becomes imperative to analyze the possible interaction between the two classes of drugs in the modulation of a disease process. The purpose of this review is to articulate the interplay between miRNA expression and epigenetic modifications with a particular focus on its impact on the development and progression of DN.
Collapse
Affiliation(s)
- Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
26
|
Xu J, Cheng S, Jiao Z, Zhao Z, Cai Z, Su N, Liu B, Zhou Z, Li Y. Fire Needle Acupuncture Regulates Wnt/ERK Multiple Pathways to Promote Neural Stem Cells to Differentiate into Neurons in Rats with Spinal Cord Injury. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:245-255. [PMID: 30714534 PMCID: PMC6806613 DOI: 10.2174/1871527318666190204111701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/03/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND & OBJECTIVE NSCs therapy is considered one of the most potential methods for spinal cord injury (SCI). METHODS We build the SCI model rats to investigate the therapeutic effect of fire needle acupuncture in improving the locomotor function of SCI rats and its possible mechanism. BBB scale was used for the motor ability of rats. The expression of Nestin, NSE, Gal-C, and GFAP was detected by immunohistochemistry. Wnt, GSK3β, β-catenin, ERK1/2, CyclinD1, and ngn1 were detected by western blot and PCR. The BBB score of both model group (1.20±0.94, 3.12±0.67, 5.34±1.57, 7.12±1.49) and fire needle group (1.70±0.58, 4.50±1.63, 7.53±2.41, 9.24±0.63) gradually increased after SCI. Furthermore, at d10 and d14, the fire needle group showed a significantly high score compared with that in model group at the same time (P<0.05). Fire needle increased Nestin, NSE, and Gal-C expression inhibited GFAP expression after SCI. Also, fire needle could up-regulate Wnt3a, GSK3β, β-catenin, and ngn1, and down-regulate ERK1/2, cyclinD1 gene and protein expression. CONCLUSION In conclusion, fire needle could improve lower limb locomotor function of SCI rats. Also, fire needles could promote endogenous NSCs proliferation differentiating into neurons, and the mechanism might be mediated by promoting the activation of Wnt/β-catenin and inhibiting the overexpression of ERK.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhen Zhou
- Address correspondence to these authors at the Tianjin Gongan Hospital, No. 78 Nanjing Road, Heping District, Tianjin, China; Phone/Fax: +86-022-23142735; ; The Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, NO. 69 Zengchan Road, Hebei District, Tianjin, China; E-mail:
| | - Yan Li
- Address correspondence to these authors at the Tianjin Gongan Hospital, No. 78 Nanjing Road, Heping District, Tianjin, China; Phone/Fax: +86-022-23142735; ; The Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, NO. 69 Zengchan Road, Hebei District, Tianjin, China; E-mail:
| |
Collapse
|
27
|
Zhao X, Bhattacharyya A. Human Models Are Needed for Studying Human Neurodevelopmental Disorders. Am J Hum Genet 2018; 103:829-857. [PMID: 30526865 DOI: 10.1016/j.ajhg.2018.10.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
The analysis of animal models of neurological disease has been instrumental in furthering our understanding of neurodevelopment and brain diseases. However, animal models are limited in revealing some of the most fundamental aspects of development, genetics, pathology, and disease mechanisms that are unique to humans. These shortcomings are exaggerated in disorders that affect the brain, where the most significant differences between humans and animal models exist, and could underscore failures in targeted therapeutic interventions in affected individuals. Human pluripotent stem cells have emerged as a much-needed model system for investigating human-specific biology and disease mechanisms. However, questions remain regarding whether these cell-culture-based models are sufficient or even necessary. In this review, we summarize human-specific features of neurodevelopment and the most common neurodevelopmental disorders, present discrepancies between animal models and human diseases, demonstrate how human stem cell models can provide meaningful information, and discuss the challenges that exist in our pursuit to understand distinctively human aspects of neurodevelopment and brain disease. This information argues for a more thoughtful approach to disease modeling through consideration of the valuable features and limitations of each model system, be they human or animal, to mimic disease characteristics.
Collapse
Affiliation(s)
- Xinyu Zhao
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| | - Anita Bhattacharyya
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| |
Collapse
|
28
|
Stappert L, Klaus F, Brüstle O. MicroRNAs Engage in Complex Circuits Regulating Adult Neurogenesis. Front Neurosci 2018; 12:707. [PMID: 30455620 PMCID: PMC6230569 DOI: 10.3389/fnins.2018.00707] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022] Open
Abstract
The finding that the adult mammalian brain is still capable of producing neurons has ignited a new field of research aiming to identify the molecular mechanisms regulating adult neurogenesis. An improved understanding of these mechanisms could lead to the development of novel approaches to delay cognitive decline and facilitate neuroregeneration in the adult human brain. Accumulating evidence suggest microRNAs (miRNAs), which represent a class of post-transcriptional gene expression regulators, as crucial part of the gene regulatory networks governing adult neurogenesis. This review attempts to illustrate how miRNAs modulate key processes in the adult neurogenic niche by interacting with each other and with transcriptional regulators. We discuss the function of miRNAs in adult neurogenesis following the life-journey of an adult-born neuron from the adult neural stem cell (NSCs) compartment to its final target site. We first survey how miRNAs control the initial step of adult neurogenesis, that is the transition of quiescent to activated proliferative adult NSCs, and then go on to discuss the role of miRNAs to regulate neuronal differentiation, survival, and functional integration of the newborn neurons. In this context, we highlight miRNAs that converge on functionally related targets or act within cross talking gene regulatory networks. The cooperative manner of miRNA action and the broad target repertoire of each individual miRNA could make the miRNA system a promising tool to gain control on adult NSCs in the context of therapeutic approaches.
Collapse
Affiliation(s)
- Laura Stappert
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| | - Frederike Klaus
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
29
|
Adult Hippocampal Neurogenesis: A Coming-of-Age Story. J Neurosci 2018; 38:10401-10410. [PMID: 30381404 DOI: 10.1523/jneurosci.2144-18.2018] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
What has become standard textbook knowledge over the last decade was a hotly debated matter a decade earlier: the proposition that new neurons are generated in the adult mammalian CNS. The early discovery by Altman and colleagues in the 1960s was vulnerable to criticism due to the lack of technical strategies for unequivocal demonstration, quantification, and physiological analysis of newly generated neurons in adult brain tissue. After several technological advancements had been made in the field, we published a paper in 1996 describing the generation of new neurons in the adult rat brain and the decline of hippocampal neurogenesis during aging. The paper coincided with the publication of several other studies that together established neurogenesis as a cellular mechanism in the adult mammalian brain. In this Progressions article, which is by no means a comprehensive review, we recount our personal view of the initial setting that led to our study and we discuss some of its implications and developments that followed. We also address questions that remain regarding the regulation and function of neurogenesis in the adult mammalian brain, in particular the existence of neurogenesis in the adult human brain.
Collapse
|
30
|
Fan SJ, Sun AB, Liu L. Epigenetic modulation during hippocampal development. Biomed Rep 2018; 9:463-473. [PMID: 30546873 DOI: 10.3892/br.2018.1160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/11/2018] [Indexed: 12/24/2022] Open
Abstract
The hippocampus is located in the limbic system and is vital in learning ability, memory formation and emotion regulation, and is associated with depression, epilepsy and mental retardation in an abnormal developmental situation. Several factors have been found to modulate the development of the hippocampus, and epigenetic modification have a crucial effect in this progress. The present review summarizes the epigenetic modifications, including DNA methylation, histone acetylation, and non-coding RNAs, regulating all stages of hippocampal development, focusing on the growth of Ammons horn and the dentate gyrus in humans and rodents. These modifications may significantly affect hippocampal development and health in addition to cognitive processes.
Collapse
Affiliation(s)
- Si-Jing Fan
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China.,Laboratory of Neuronal and Brain Diseases Modulation, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - An-Bang Sun
- Laboratory of Neuronal and Brain Diseases Modulation, Yangtze University, Jingzhou, Hubei 434023, P.R. China.,Department of Anatomy, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China.,Laboratory of Neuronal and Brain Diseases Modulation, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
31
|
|
32
|
Kovalchuk A, Ilnytskyy Y, Rodriguez-Juarez R, Shpyleva S, Melnyk S, Pogribny I, Katz A, Sidransky D, Kovalchuk O, Kolb B. Chemo brain or tumor brain - that is the question: the presence of extracranial tumors profoundly affects molecular processes in the prefrontal cortex of TumorGraft mice. Aging (Albany NY) 2018; 9:1660-1676. [PMID: 28758896 PMCID: PMC5559168 DOI: 10.18632/aging.101243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/22/2017] [Indexed: 01/17/2023]
Abstract
Cancer chemotherapy causes numerous persistent central nervous system complications. This condition is known as chemo brain. Cognitive impairments occur even before treatment, and hence are referred to as cancer associated cognitive changes, or tumor brain. There is much yet to be learned about the mechanisms of both chemo brain and tumor brain. The frequency and timing of chemo brain and tumor brain occurrence and persistence strongly suggest they may be epigenetic in nature and associated with altered gene expression. Here we used TumorGraftTM models wherein part of a patient's tumor is removed and grafted into immune-deficient mice and conducted global gene expression and DNA methylation analysis. We show that malignant non-central nervous system tumor growth causes profound molecular alterations in the brain. Mice harbouring triple negative or progesterone positive breast cancer TumorGrafts exhibited altered gene expression, decreased levels of DNA methylation, increased levels of DNA hydroxymethylation, and oxidative stress in the prefrontal cortex. Interestingly, chemotherapy did not have any additional synergistic effects on the analyzed processes. The molecular changes observed in this study are known signs of neurodegeneration and brain aging. This study provides an important roadmap for future large-scale analysis of the molecular and cellular mechanisms of tumor brain.
Collapse
Affiliation(s)
- Anna Kovalchuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 6T5, Canada.,Leaders in Medicine Program, Cumming School of Medicine, University of Calgary, Calgary, T2N 1N4, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 6T5, Canada
| | - Rocio Rodriguez-Juarez
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 6T5, Canada
| | - Svitlana Shpyleva
- Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stepan Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Igor Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - Amanda Katz
- Department of Oncology, Champions Oncology, Baltimore, MD 21205, USA
| | - David Sidransky
- Department of Oncology, Champions Oncology, Baltimore, MD 21205, USA
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 6T5, Canada
| | - Bryan Kolb
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 6T5, Canada
| |
Collapse
|
33
|
Lewis EMA, Kroll KL. Development and disease in a dish: the epigenetics of neurodevelopmental disorders. Epigenomics 2018; 10:219-231. [PMID: 29334242 PMCID: PMC5810842 DOI: 10.2217/epi-2017-0113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/18/2017] [Indexed: 12/18/2022] Open
Abstract
Human neurodevelopmental disorders (NDDs) involve mutations in hundreds of individual genes, with over-representation in genes encoding proteins that alter chromatin structure to modulate gene expression. Here, we highlight efforts to model these NDDs through in vitro differentiation of patient-specific induced pluripotent stem cells into neurons. We discuss how epigenetic regulation controls normal cortical development, how mutations in several classes of epigenetic regulators contribute to NDDs, and approaches for modeling cortical development and function using both directed differentiation and formation of cerebral organoids. We explore successful applications of these models to study both syndromic and nonsyndromic NDDs and to define convergent mechanisms, addressing both the potential and challenges of using this approach to define cellular and molecular mechanisms that underlie NDDs.
Collapse
Affiliation(s)
- Emily MA Lewis
- Department of Developmental Biology, Washington University School of Medicine, 660 S Euclid Avenue, Saint Louis, MO 63110, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, 660 S Euclid Avenue, Saint Louis, MO 63110, USA
| |
Collapse
|
34
|
Şekerdağ E, Solaroğlu I, Gürsoy-Özdemir Y. Cell Death Mechanisms in Stroke and Novel Molecular and Cellular Treatment Options. Curr Neuropharmacol 2018; 16:1396-1415. [PMID: 29512465 PMCID: PMC6251049 DOI: 10.2174/1570159x16666180302115544] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/18/2017] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
As a result of ischemia or hemorrhage, blood supply to neurons is disrupted which subsequently promotes a cascade of pathophysiological responses resulting in cell loss. Many mechanisms are involved solely or in combination in this disorder including excitotoxicity, mitochondrial death pathways, and the release of free radicals, protein misfolding, apoptosis, necrosis, autophagy and inflammation. Besides neuronal cell loss, damage to and loss of astrocytes as well as injury to white matter contributes also to cerebral injury. The core problem in stroke is the loss of neuronal cells which makes recovery difficult or even not possible in the late states. Acute treatment options that can be applied for stroke are mainly targeting re-establishment of blood flow and hence, their use is limited due to the effective time window of thrombolytic agents. However, if the acute time window is exceeded, neuronal loss starts due to the activation of cell death pathways. This review will explore the most updated cellular death mechanisms leading to neuronal loss in stroke. Ischemic and hemorrhagic stroke as well as subarachnoid hemorrhage will be debated in the light of cell death mechanisms and possible novel molecular and cellular treatment options will be discussed.
Collapse
Affiliation(s)
- Emine Şekerdağ
- Address correspondence to this author at the Neuroscience Research Lab, Research Center for Translational Medicine, Koç University, Istanbul, Turkey; Tel: +90 850 250 8250; E-mail:
| | | | | |
Collapse
|
35
|
Bielefeld P, Mooney C, Henshall DC, Fitzsimons CP. miRNA-Mediated Regulation of Adult Hippocampal Neurogenesis; Implications for Epilepsy. Brain Plast 2017; 3:43-59. [PMID: 29765859 PMCID: PMC5928558 DOI: 10.3233/bpl-160036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hippocampal neural stem/progenitor cells (NSPCs) proliferate and differentiate to generate new neurons across the life span of most mammals, including humans. This process takes place within a characteristic local microenvironment where NSPCs interact with a variety of other cell types and encounter systemic regulatory factors. Within this microenvironment, cell intrinsic gene expression programs are modulated by cell extrinsic signals through complex interactions, in many cases involving short non-coding RNA molecules, such as miRNAs. Here we review the regulation of gene expression in NSPCs by miRNAs and its possible implications for epilepsy, which has been linked to alterations in adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Pascal Bielefeld
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, The Netherlands
| | - Catherine Mooney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Carlos P. Fitzsimons
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, The Netherlands
| |
Collapse
|
36
|
Encinas JM, Fitzsimons CP. Gene regulation in adult neural stem cells. Current challenges and possible applications. Adv Drug Deliv Rev 2017; 120:118-132. [PMID: 28751200 DOI: 10.1016/j.addr.2017.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Adult neural stem and progenitor cells (NSPCs) offer a unique opportunity for neural regeneration and niche modification in physiopathological conditions, harnessing the capability to modify from neuronal circuits to glial scar. Findings exposing the vast plasticity and potential of NSPCs have accumulated over the past years and we currently know that adult NSPCs can naturally give rise not only to neurons but also to astrocytes and reactive astrocytes, and eventually to oligodendrocytes through genetic manipulation. We can consider NSPCs as endogenous flexible tools to fight against neurodegenerative and neurological disorders and aging. In addition, NSPCs can be considered as active agents contributing to chronic brain alterations and as relevant cell populations to be preserved, so that their main function, neurogenesis, is not lost in damage or disease. Altogether we believe that learning to manipulate NSPC is essential to prevent, ameliorate or restore some of the cognitive deficits associated with brain disease and injury, and therefore should be considered as target for future therapeutic strategies. The first step to accomplish this goal is to target them specifically, by unveiling and understanding their unique markers and signaling pathways.
Collapse
Affiliation(s)
- Juan Manuel Encinas
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 205, 48170 Zamudio, Spain; Ikerbasque, The Basque Science Foundation, María Díaz de Haro 3, 6(th) Floor, 48013 Bilbao, Spain; University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Carlos P Fitzsimons
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Wei CW, Luo T, Zou SS, Wu AS. Research progress on the roles of microRNAs in governing synaptic plasticity, learning and memory. Life Sci 2017; 188:118-122. [PMID: 28866103 DOI: 10.1016/j.lfs.2017.08.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022]
Abstract
The importance of non-coding RNA involved in biological processes has become apparent in recent years and the mechanism of transcriptional regulation has also been identified. MicroRNAs (miRNAs) represent a class of small regulatory non-coding RNAs of 22bp in length that mediate gene silencing by identifying specific sequences in the target messenger RNAs (mRNAs). Many miRNAs are highly expressed in the central nervous system in a spatially and temporally controlled manner in normal physiology, as well as in certain pathological conditions. There is growing evidence that a considerable number of specific miRNAs play important roles in synaptic plasticity, learning and memory function. In addition, the dysfunction of these molecules may also contribute to the etiology of several neurodegenerative diseases. Here we provide an overview of the current literatures, which support non-coding RNA-mediated gene function regulation represents an important but underappreciated, layer of epigenetic control that facilitates learning and memory functions.
Collapse
Affiliation(s)
- Chang-Wei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ting Luo
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Shan-Shan Zou
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - An-Shi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
38
|
|
39
|
Tian Z, Zhao Q, Biswas S, Deng W. Methods of reactivation and reprogramming of neural stem cells for neural repair. Methods 2017; 133:3-20. [PMID: 28864354 DOI: 10.1016/j.ymeth.2017.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/21/2017] [Accepted: 08/24/2017] [Indexed: 12/27/2022] Open
Abstract
Research on the biology of adult neural stem cells (NSCs) and induced NSCs (iNSCs), as well as NSC-based therapies for diseases in central nervous system (CNS) has started to generate the expectation that these cells may be used for treatments in CNS injuries or disorders. Recent technological progresses in both NSCs themselves and their derivatives have brought us closer to therapeutic applications. Adult neurogenesis presents in particular regions in mammal brain, known as neurogenic niches such as the dental gyrus (DG) in hippocampus and the subventricular zone (SVZ), within which adult NSCs usually stay for long periods out of the cell cycle, in G0. The reactivation of quiescent adult NSCs needs orchestrated interactions between the extrinsic stimulis from niches and the intrinsic factors involving transcription factors (TFs), signaling pathway, epigenetics, and metabolism to start an intracellular regulatory program, which promotes the quiescent NSCs exit G0 and reenter cell cycle. Extrinsic and intrinsic mechanisms that regulate adult NSCs are interconnected and feedback on one another. Since endogenous neurogenesis only happens in restricted regions and steadily fails with disease advances, interest has evolved to apply the iNSCs converted from somatic cells to treat CNS disorders, as is also promising and preferable. To overcome the limitation of viral-based reprogramming of iNSCs, bioactive small molecules (SM) have been explored to enhance the efficiency of iNSC reprogramming or even replace TFs, making the iNSCs more amenable to clinical application. Despite intense research efforts to translate the studies of adult and induced NSCs from the bench to bedside, vital troubles remain at several steps in these processes. In this review, we examine the present status, advancement, pitfalls, and potential of the two types of NSC technologies, focusing on each aspects of reactivation of quiescent adult NSC and reprogramming of iNSC from somatic cells, as well as on progresses in cell-based regenerative strategies for neural repair and criteria for successful therapeutic applications.
Collapse
Affiliation(s)
- Zuojun Tian
- Department of Neurology, The Institute of Guangzhou Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Qiuge Zhao
- Department of Neurology, The Institute of Guangzhou Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China
| | - Sangita Biswas
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
40
|
Methyl-CpG-Binding Protein MBD1 Regulates Neuronal Lineage Commitment through Maintaining Adult Neural Stem Cell Identity. J Neurosci 2017; 37:523-536. [PMID: 28100736 DOI: 10.1523/jneurosci.1075-16.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 01/09/2023] Open
Abstract
Methyl-CpG-binding domain 1 (MBD1) belongs to a family of methyl-CpG-binding proteins that are epigenetic "readers" linking DNA methylation to transcriptional regulation. MBD1 is expressed in neural stem cells residing in the dentate gyrus of the adult hippocampus (aNSCs) and MBD1 deficiency leads to reduced neuronal differentiation, impaired neurogenesis, learning deficits, and autism-like behaviors in mice; however, the precise function of MBD1 in aNSCs remains unexplored. Here, we show that MBD1 is important for maintaining the integrity and stemness of NSCs, which is critical for their ability to generate neurons. MBD1 deficiency leads to the accumulation of undifferentiated NSCs and impaired transition into the neuronal lineage. Transcriptome analysis of neural stem and progenitor cells isolated directly from the dentate gyrus of MBD1 mutant (KO) and WT mice showed that gene sets related to cell differentiation, particularly astrocyte lineage genes, were upregulated in KO cells. We further demonstrated that, in NSCs, MBD1 binds and represses directly specific genes associated with differentiation. Our results suggest that MBD1 maintains the multipotency of NSCs by restraining the onset of differentiation genes and that untimely expression of these genes in MBD1-deficient stem cells may interfere with normal cell lineage commitment and cause the accumulation of undifferentiated cells. Our data reveal a novel role for MBD1 in stem cell maintenance and provide insight into how epigenetic regulation contributes to adult neurogenesis and the potential impact of its dysregulation. SIGNIFICANCE STATEMENT Adult neural stem cells (aNSCs) in the hippocampus self-renew and generate neurons throughout life. We show that methyl-CpG-binding domain 1 (MBD1), a DNA methylation "reader," is important for maintaining the integrity of NSCs, which is critical for their neurogenic potency. Our data reveal a novel role for MBD1 in stem cell maintenance and provide insight into how epigenetic regulation preserves the multipotency of stem cells for subsequent differentiation.
Collapse
|
41
|
Bronstein R, Kyle J, Abraham AB, Tsirka SE. Neurogenic to Gliogenic Fate Transition Perturbed by Loss of HMGB2. Front Mol Neurosci 2017; 10:153. [PMID: 28588451 PMCID: PMC5440561 DOI: 10.3389/fnmol.2017.00153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/05/2017] [Indexed: 01/21/2023] Open
Abstract
Mouse cortical development relies heavily on a delicate balance between neurogenesis and gliogenesis. The lateral ventricular zone produces different classes of excitatory pyramidal cells until just before birth, when the production of astroglia begins to prevail. Epigenetic control of this fate shift is of critical importance and chromatin regulatory elements driving neuronal or astroglial development play an vital role. Different classes of chromatin binding proteins orchestrate the transcriptional repression of neuronal-specific genes, while allowing for the activation of astrocyte-specific genes. Through proteomic analysis of embryonic neural progenitor cells (NPCs) our group had previously identified high mobility group B2 (HMGB2), a chromatin protein dynamically expressed throughout embryonic development. In the current study using cultures of perinatal NPCs from HMGB2+/+ and HMGB2-/- mice we discovered that vital elements of the polycomb group (PcG) epigenetic complexes polycomb repressive complexes 1 and 2 (PRC1/2) were downregulated during the differentiation process of HMGB2-null NPCs. These epigenetic changes led to downstream changes in specific histone modification levels, specifically the trimethylation of H3K27, and a subsequent shift in the perinatal neurogenesis to gliogenesis fate transition. Collectively these results demonstrate that chromatin binding proteins, such as HMGB2, can have significant effects on the epigenetic landscape of perinatal neural stem/progenitor cells.
Collapse
Affiliation(s)
- Robert Bronstein
- Program in Neuroscience, Stony Brook University, Stony BrookNY, United States
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, United States
| | - Jackson Kyle
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony BrookNY, United States
| | - Ariel B. Abraham
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony BrookNY, United States
| | - Stella E. Tsirka
- Program in Neuroscience, Stony Brook University, Stony BrookNY, United States
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony BrookNY, United States
| |
Collapse
|
42
|
Jin X, Yu ZF, Chen F, Lu GX, Ding XY, Xie LJ, Sun JT. Neuronal Nitric Oxide Synthase in Neural Stem Cells Induces Neuronal Fate Commitment via the Inhibition of Histone Deacetylase 2. Front Cell Neurosci 2017; 11:66. [PMID: 28326018 PMCID: PMC5339248 DOI: 10.3389/fncel.2017.00066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/24/2017] [Indexed: 11/13/2022] Open
Abstract
Active adult neurogenesis produces new functional neurons, which replace the lost ones and contribute to brain repair. Promoting neurogenesis may offer a therapeutic strategy for human diseases associated with neurodegeneration. Here, we report that endogenous neuronal nitric oxide synthase (nNOS) for neural stem cells (NSCs) or progenitors positively regulates neurogenesis. nNOS repression exhibits significantly decreased neuronal differentiation and nNOS upregulation promotes neurons production from NSCs. Using a quantitative approach, we show that instructive effect, that is instruction of NSCs to adopt a neuronal fate, contributes to the favorable effect of endogenous nNOS on neurogenesis. Furthermore, nNOS-mediated instruction of neuronal fate commitment is predominantly due to the reduction of histone deacetylase 2 (HDAC2) expression and enzymatic activity. Further investigation will be needed to test whether HDAC2 can serve as a new target for therapeutic intervention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xing Jin
- Department of Pharmacy, the Affiliated Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Zhang-Feng Yu
- Department of Critical Care Medicine, the Affiliated Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Fang Chen
- Department of Pharmacy, the Affiliated Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Guang-Xian Lu
- Department of Pharmacy, the Affiliated Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Xin-Yuan Ding
- Department of Pharmacy, the Affiliated Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Lin-Jun Xie
- Department of Pharmacy, the Affiliated Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Jian-Tong Sun
- Department of Pharmacy, the Affiliated Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| |
Collapse
|
43
|
Kassis H, Shehadah A, Chopp M, Zhang ZG. Epigenetics in Stroke Recovery. Genes (Basel) 2017; 8:genes8030089. [PMID: 28264471 PMCID: PMC5368693 DOI: 10.3390/genes8030089] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/02/2017] [Accepted: 02/20/2017] [Indexed: 12/30/2022] Open
Abstract
Abstract: While the death rate from stroke has continually decreased due to interventions in the hyperacute stage of the disease, long-term disability and institutionalization have become common sequelae in the aftermath of stroke. Therefore, identification of new molecular pathways that could be targeted to improve neurological recovery among survivors of stroke is crucial. Epigenetic mechanisms such as post-translational modifications of histone proteins and microRNAs have recently emerged as key regulators of the enhanced plasticity observed during repair processes after stroke. In this review, we highlight the recent advancements in the evolving field of epigenetics in stroke recovery.
Collapse
Affiliation(s)
- Haifa Kassis
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Amjad Shehadah
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
- Department of Physics, Oakland University, Rochester, MI 48309, USA.
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| |
Collapse
|
44
|
Garay PM, Wallner MA, Iwase S. Yin-yang actions of histone methylation regulatory complexes in the brain. Epigenomics 2016; 8:1689-1708. [PMID: 27855486 PMCID: PMC5289040 DOI: 10.2217/epi-2016-0090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of histone methylation has emerged as a major driver of neurodevelopmental disorders including intellectual disabilities and autism spectrum disorders. Histone methyl writer and eraser enzymes generally act within multisubunit complexes rather than in isolation. However, it remains largely elusive how such complexes cooperate to achieve the precise spatiotemporal gene expression in the developing brain. Histone H3K4 methylation (H3K4me) is a chromatin signature associated with active gene-regulatory elements. We review a body of literature that supports a model in which the RAI1-containing H3K4me writer complex counterbalances the LSD1-containing H3K4me eraser complex to ensure normal brain development. This model predicts H3K4me as the nexus of previously unrelated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Patricia Marie Garay
- Neuroscience Graduate Program, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Shigeki Iwase
- Neuroscience Graduate Program, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
45
|
Itokazu Y, Tsai YT, Yu RK. Epigenetic regulation of ganglioside expression in neural stem cells and neuronal cells. Glycoconj J 2016; 34:749-756. [PMID: 27540730 DOI: 10.1007/s10719-016-9719-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/03/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
The structural diversity and localization of cell surface glycosphingolipids (GSLs), including gangliosides, in glycolipid-enriched microdomains (GEMs, also known as lipid rafts) render them ideally suited to play important roles in mediating intercellular recognition, interactions, adhesion, receptor function, and signaling. Gangliosides, sialic acid-containing GSLs, are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and these changes are mainly regulated through stage-specific expression of glycosyltransferase genes. We previously demonstrated for the first time that efficient histone acetylation of the glycosyltransferase genes in mouse brain contributes to the developmental alteration of ganglioside expression. We further demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase; B4galnt1) gene promoter resulted in recruitment of trans-activation factors. In addition, we showed that epigenetic activation of the GalNAcT gene was detected and accompanied by an apparent induction of neuronal differentiation of neural stem cells (NSCs) responding to an exogenous supplement of ganglioside GM1. Most recently, we found that nuclear GM1 binds with acetylated histones on the promoters of the GalNAcT as well as on the NeuroD1 genes in differentiated neurons. Here, we will introduce epigenetic regulation of ganglioside synthase genes in neural development and neuronal differentiation of NSCs.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Yi-Tzang Tsai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| |
Collapse
|
46
|
Lomvardas S, Maniatis T. Histone and DNA Modifications as Regulators of Neuronal Development and Function. Cold Spring Harb Perspect Biol 2016; 8:8/7/a024208. [PMID: 27371659 DOI: 10.1101/cshperspect.a024208] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA and histone modifications, together with constraints imposed by nuclear architecture, contribute to the transcriptional regulatory landscape of the nervous system. Here, we provide select examples showing how these regulatory layers, often referred to as epigenetic, contribute to neuronal differentiation and function. We describe the interplay between DNA methylation and Polycomb-mediated repression during neuronal differentiation, the role of DNA methylation and long-range enhancer-promoter interactions in Protocadherin promoter choice, and the contribution of heterochromatic silencing and nuclear organization in singular olfactory receptor expression. Finally, we explain how the activity-dependent expression of a histone variant determines the longevity of olfactory sensory neurons.
Collapse
Affiliation(s)
- Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
47
|
The Cosmic Zoo: The (Near) Inevitability of the Evolution of Complex, Macroscopic Life. Life (Basel) 2016; 6:life6030025. [PMID: 27376334 PMCID: PMC5041001 DOI: 10.3390/life6030025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/17/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022] Open
Abstract
Life on Earth provides a unique biological record from single-cell microbes to technologically intelligent life forms. Our evolution is marked by several major steps or innovations along a path of increasing complexity from microbes to space-faring humans. Here we identify various major key innovations, and use an analytical toolset consisting of a set of models to analyse how likely each key innovation is to occur. Our conclusion is that once the origin of life is accomplished, most of the key innovations can occur rather readily. The conclusion for other worlds is that if the origin of life can occur rather easily, we should live in a cosmic zoo, as the innovations necessary to lead to complex life will occur with high probability given sufficient time and habitat. On the other hand, if the origin of life is rare, then we might live in a rather empty universe.
Collapse
|
48
|
Briley D, Ghirardi V, Woltjer R, Renck A, Zolochevska O, Taglialatela G, Micci MA. Preserved neurogenesis in non-demented individuals with AD neuropathology. Sci Rep 2016; 6:27812. [PMID: 27298190 PMCID: PMC4906289 DOI: 10.1038/srep27812] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/25/2016] [Indexed: 12/27/2022] Open
Abstract
Rare individuals remain cognitively intact despite the presence of neuropathology usually associated with fully symptomatic Alzheimer’s disease (AD), which we refer to as Non-Demented with Alzheimer’s disease Neuropathology (NDAN). Understanding the involved mechanism(s) of their cognitive resistance may reveal novel strategies to treat AD-related dementia. In the pursuit of this goal, we determined the number of hippocampal neural stem cells (NSCs) and investigated the expression of several miRNAs in NDAN and AD subjects. Laser-capture microdissection of autopsy human hippocampus DG and qRT-PCR miRNA analyses were combined with immunofluorescence in this study. The number of SOX2+ NSCs in the DG was significantly increased in NDAN individuals as compared to AD subjects. Further, the prevalence of SOX2+ NSCs was found to correlate with cognitive capacity. Neurogenesis-regulating miRNAs were decreased in NDAN individuals as compared to AD patients. An increased number of NSCs and new neurons in NDAN individuals is associated with a unique expression of regulating miRNAs and strongly support a role of neurogenesis in mediating, in part, the ability of these individuals to resist the pathological burden of AD.
Collapse
Affiliation(s)
- David Briley
- Mitchell Center for Neurodegenerative diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Valeria Ghirardi
- Mitchell Center for Neurodegenerative diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Randy Woltjer
- Department of Pathology, Oregon Health &Science University, OR, USA
| | - Alicia Renck
- Mitchell Center for Neurodegenerative diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Olga Zolochevska
- Mitchell Center for Neurodegenerative diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maria-Adelaide Micci
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
49
|
Hsieh J, Zhao X. Genetics and Epigenetics in Adult Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018911. [PMID: 27143699 DOI: 10.1101/cshperspect.a018911] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cellular basis of adult neurogenesis is neural stem cells residing in restricted areas of the adult brain. These cells self-renew and are multipotent. The maintenance of "stemness" and commitment to differentiation are tightly controlled by intricate molecular networks. Epigenetic mechanisms, including chromatin remodeling, DNA methylation, and noncoding RNAs (ncRNAs), have profound regulatory roles in mammalian gene expression. Significant advances have been made regarding the dynamic roles of epigenetic modulation and function. It has become evident that epigenetic regulators are key players in neural-stem-cell self-renewal, fate specification, and final maturation of new neurons, therefore, adult neurogenesis. Altered epigenetic regulation can result in a number of neurological and neurodevelopmental disorders. Here, we review recent discoveries that advance our knowledge in epigenetic regulation of mammalian neural stem cells and neurogenesis. Insights from studies of epigenetic gene regulation in neurogenesis may lead to new therapies for the treatment of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jenny Hsieh
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Xinyu Zhao
- Department of Neuroscience and Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
50
|
Bernard C. The Diathesis-Epilepsy Model: How Past Events Impact the Development of Epilepsy and Comorbidities. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a022418. [PMID: 27194167 DOI: 10.1101/cshperspect.a022418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In epilepsy, seizures and comorbidities (e.g., cognitive deficits and depression) occur when specific thresholds are crossed. These thresholds depend on the diathesis (or vulnerability) of a given individual. The diathesis is controlled by multiple genetic and environmental factors. Diathesis changes over multiple timescales: on a daily basis, and as part of the development/aging processes, etc. The diathesis-epilepsy model introduced here provides a conceptual framework to understand how past events (e.g., a very stressful event) can directly influence the occurrence of epilepsy and comorbidities later in life. Experimental evidence supports this model, and the existence of biomarkers predictive of a vulnerability state have led to the development of preventive therapeutic strategies. Epigenetic modifications could be a key determinant of diathesis. Their role is discussed.
Collapse
Affiliation(s)
- Christophe Bernard
- Aix Marseille Université, Inserm, INS UMR S 1106, 13005 Marseille, France
| |
Collapse
|