1
|
Thorburn CA, Lau E, Feldman NH. Exploring the effectiveness of reward-based learning strategies for second-language speech sounds. Psychon Bull Rev 2025; 32:139-155. [PMID: 39112905 DOI: 10.3758/s13423-024-02541-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 02/20/2025]
Abstract
Adults struggle to learn non-native speech categories in many experimental settings (Goto, Neuropsychologia, 9(3), 317-323 1971), but learn efficiently in a video game paradigm where non-native speech sounds have functional significance (Lim & Holt, Cognitive Science, 35(7), 1390-1405 2011). Behavioral and neural evidence from this and other paradigms point toward the involvement of reinforcement learning mechanisms in speech category learning (Harmon, Idemaru, & Kapatsinski, Cognition, 189, 76-88 2019; Lim, Fiez, & Holt, Proceedings of the National Academy of Sciences, 116, 201811992 2019). We formalize this hypothesis computationally and implement a deep reinforcement learning network to map between environmental input and actions. Comparing to a supervised model of learning, we show that the reinforcement network closely matches aspects of human behavior in two experiments - learning of synthesized auditory noise tokens and improvement in speech sound discrimination. Both models perform comparably and the similarity in the output of each model leads us to believe that there is little inherent computational benefit to a reward-based learning mechanism. We suggest that the specific neural circuitry engaged by the paradigm and links between striatum and superior temporal areas play a critical role in effective learning.
Collapse
Affiliation(s)
- Craig A Thorburn
- Department of Psychology, University of Texas at Austin, Sarah M. & Charles E. Seay Bldg 108 E Dean Keeton St, Austin, TX, 78712, USA.
| | - Ellen Lau
- Department of Linguistics, University of Maryland, College Park, MD, USA
| | - Naomi H Feldman
- Department of Linguistics, University of Maryland, College Park, MD, USA
- Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| |
Collapse
|
2
|
Liu J, Ruzi R, Jian C, Wang Q, Zhao S, Ng ML, Zhao S, Wang L, Yan N. Mapping subcortical brain lesions, behavioral and acoustic analysis for early assessment of subacute stroke patients with dysarthria. Front Neurosci 2025; 18:1455085. [PMID: 39844850 PMCID: PMC11753205 DOI: 10.3389/fnins.2024.1455085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Dysarthria is a motor speech disorder frequently associated with subcortical damage. However, the precise roles of the subcortical nuclei, particularly the basal ganglia and thalamus, in the speech production process remain poorly understood. Methods The present study aimed to better understand their roles by mapping neuroimaging, behavioral, and speech data obtained from subacute stroke patients with subcortical lesions. Multivariate lesion-symptom mapping and voxel-based morphometry methods were employed to correlate lesions in the basal ganglia and thalamus with speech production, with emphases on linguistic processing and articulation. Results The present findings revealed that the left thalamus and putamen are significantly correlated with concept preparation (r = 0.64, p < 0.01) and word retrieval (r = 0.56, p < 0.01). As the difficulty of the behavioral tasks increased, the influence of cognitive factors on early linguistic processing gradually intensified. The globus pallidus and caudate nucleus were found to significantly impact the movements of the larynx (r = 0.63, p < 0.01) and tongue (r = 0.59, p = 0.01). These insights underscore the complex and interconnected roles of the basal ganglia and thalamus in the intricate processes of speech production. The lateralization and hierarchical organization of each nucleus are crucial to their contributions to these speech functions. Discussion The present study provides a nuanced understanding of how lesions in the basal ganglia and thalamus impact various stages of speech production, thereby enhancing our understanding of the subcortical neuromechanisms underlying dysarthria. The findings could also contribute to the identification of multimodal assessment indicators, which could aid in the precise evaluation and personalized treatment of speech impairments.
Collapse
Affiliation(s)
- Juan Liu
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rukiye Ruzi
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chuyao Jian
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Qiuyu Wang
- Department of Radiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shuzhi Zhao
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Manwa L. Ng
- Speech Science Laboratory, Faculty of Education, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shaofeng Zhao
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Lan Wang
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nan Yan
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
3
|
Tomioka R, Shigematsu N, Miyashita T, Takahashi Y, Yamamoto M, Yoshimura Y, Kobayashi K, Yanagawa Y, Tamamaki N, Fukuda T, Song WJ. The External Globus Pallidus as the Hub of the Auditory Cortico-Basal Ganglia Loop. eNeuro 2024; 11:ENEURO.0161-24.2024. [PMID: 39592219 PMCID: PMC11594937 DOI: 10.1523/eneuro.0161-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
The cortico-basal ganglia loop has traditionally been conceptualized as consisting of three distinct information networks: motor, limbic, and associative. However, this three-loop concept is insufficient to comprehensively explain the diverse functions of the cortico-basal ganglia system, as emerging evidence suggests its involvement in sensory processing, including the auditory systems. In the present study, we demonstrate the auditory cortico-basal ganglia loop by using transgenic mice and viral-assisted labelings. The caudal part of the external globus pallidus (GPe) emerged as a major output nucleus of the auditory cortico-basal ganglia loop with the cortico-striato-pallidal projections as its input pathway and pallido-cortical and pallido-thalamo-cortical projections as its output pathway. GABAergic neurons in the caudal GPe dominantly innervated the nonlemniscal auditory pathway. They also projected to various regions, including the substantia nigra pars lateralis, cuneiform nucleus, and periaqueductal gray. Considering the functions associated with these GPe-projecting regions, auditory cortico-basal ganglia circuits may play a pivotal role in eliciting defensive behaviors against acoustic stimuli.
Collapse
Affiliation(s)
- Ryohei Tomioka
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Morphological Neural Science, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Naoki Shigematsu
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Toshio Miyashita
- Department of Anatomy, Teikyo University School of Medicine, Tokyo 173-8605, Japan
- Division of Visual Information Processing, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yukie Takahashi
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Mariko Yamamoto
- Division of Visual Information Processing, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Nobuaki Tamamaki
- Morphological Neural Science, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Wen-Jie Song
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
4
|
Madzime J, Jankiewicz M, Meintjes EM, Torre P, Laughton B, van der Kouwe AJW, Holmes M. Reduced white matter maturation in the central auditory system of children living with HIV. FRONTIERS IN NEUROIMAGING 2024; 3:1341607. [PMID: 38510428 PMCID: PMC10951401 DOI: 10.3389/fnimg.2024.1341607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Introduction School-aged children experience crucial developmental changes in white matter (WM) in adolescence. The human immunodeficiency virus (HIV) affects neurodevelopment. Children living with perinatally acquired HIV (CPHIVs) demonstrate hearing and neurocognitive impairments when compared to their uninfected peers (CHUUs), but investigations into the central auditory system (CAS) WM integrity are lacking. The integration of the CAS and other brain areas is facilitated by WM fibers whose integrity may be affected in the presence of HIV, contributing to neurocognitive impairments. Methods We used diffusion tensor imaging (DTI) tractography to map the microstructural integrity of WM between CAS regions, including the lateral lemniscus and acoustic radiation, as well as between CAS regions and non-auditory regions of 11-year-old CPHIVs. We further employed a DTI-based graph theoretical framework to investigate the nodal strength and efficiency of the CAS and other brain regions in the structural brain network of the same population. Finally, we investigated associations between WM microstructural integrity outcomes and neurocognitive outcomes related to auditory and language processing. We hypothesized that compared to the CHUU group, the CPHIV group would have lower microstructural in the CAS and related regions. Results Our analyses showed higher mean diffusivity (MD), a marker of axonal maturation, in the lateral lemniscus and acoustic radiations, as well as WM between the CAS and non-auditory regions predominantly in frontotemporal areas. Most affected WM connections also showed higher axial and radial diffusivity (AD and RD, respectively). There were no differences in the nodal properties of the CAS regions between groups. The MD of frontotemporal and subcortical WM-connected CAS regions, including the inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, and internal capsule showed negative associations with sequential processing in the CPHIV group but not in the CHUU group. Discussion The current results point to reduced axonal maturation in WM, marked by higher MD, AD, and RD, within and from the CAS. Furthermore, alterations in WM integrity were associated with sequential processing, a neurocognitive marker of auditory working memory. Our results provide insights into the microstructural integrity of the CAS and related WM in the presence of HIV and link these alterations to auditory working memory.
Collapse
Affiliation(s)
- Joanah Madzime
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Marcin Jankiewicz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
| | - Ernesta M. Meintjes
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
| | - Peter Torre
- School of Speech, Language, and Hearing Sciences, College of Health and Human Services, San Diego, CA, United States
| | - Barbara Laughton
- Family Centre for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - Andre J. W. van der Kouwe
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Martha Holmes
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Guglielmi V, Quaranta D, Masone Iacobucci G, Citro S, Scala I, Genovese D, Brunetti V, Marra C, Calabresi P, Della Marca G. Basal ganglia ischaemic infarction after thrombectomy: cognitive impairment at acute stage. Eur J Neurol 2023; 30:3772-3779. [PMID: 37332125 DOI: 10.1111/ene.15933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND AND PURPOSE After successful mechanical thrombectomy for middle cerebral artery occlusion, basal ganglia infarction is commonly detectable. Whilst the functional outcome of these patients is often good, less knowledge is available about the cognitive outcome. The aim of our study was to assess the presence of cognitive impairment within 1 week after thrombectomy. METHODS In all, 43 subjects underwent a general cognitive assessment using the Montreal Cognitive Assessment and an extensive battery of tests. Patients were classified as cognitively impaired (CImp) or not (noCImp) according to a Montreal Cognitive Assessment score below 18. RESULTS Cognitively impaired and noCImp subjects did not differ either in their National Institutes of Health Stroke Scale (NIHSS) and modified Rankin Scale (mRS) at admittance, or in their Fazekas score and Alberta Stroke Program Early Computed Tomography Score. At discharge, CImp subjects showed higher scores than noCImp subjects on NIHSS (p = 0.002) and mRS (p < 0.001). The percentage of pathological performances on each neuropsychological test in the whole sample and in CImp and noCImp patients shows a similar cognitive profile between the groups. CONCLUSIONS Some patients who underwent thrombectomy experienced a detectable cognitive impairment that probably led to worse NIHSS and mRS. The neuropsychological profile of such cognitive impairment at the acute stage consists of wide deficits in numerous cognitive domains, suggesting that basal ganglia damage may lead to complex functional impairments.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Dipartimento Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Davide Quaranta
- Dipartimento Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Psicologia, Università Cattolica del Sacro Cuore, Milan, Italy
- Facoltà di Medicina e Chirurgia, Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanna Masone Iacobucci
- Unità di Psicologia Clinica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Salvatore Citro
- Facoltà di Medicina e Chirurgia, Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Irene Scala
- Facoltà di Medicina e Chirurgia, Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Danilo Genovese
- Dipartimento Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, NYU Langone Health, New York, New York, USA
| | - Valerio Brunetti
- Dipartimento Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Camillo Marra
- Dipartimento Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Facoltà di Medicina e Chirurgia, Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Calabresi
- Dipartimento Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Facoltà di Medicina e Chirurgia, Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giacomo Della Marca
- Dipartimento Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Facoltà di Medicina e Chirurgia, Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
6
|
Vlasova RM, Panikratova YR, Pechenkova EV. Systematic Review and Meta-analysis of Language Symptoms due to Cerebellar Injury. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1274-1286. [PMID: 36205825 DOI: 10.1007/s12311-022-01482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
To date, cerebellar contribution to language is well established via clinical and neuroimaging studies. However, the particular functional role of the cerebellum in language remains to be clarified. In this study, we present the first systematic review of the diverse language symptoms in spoken language after cerebellar lesion that were reported in case studies for the last 30 years (18 clinical cases from 13 papers), and meta-analysis using cluster analysis with bootstrap and symptom co-occurrence analysis. Seven clusters of patients with similar language symptoms after cerebellar lesions were found. Co-occurrence analysis revealed pairs of symptoms that tend to be comorbid. Our results imply that the "linguistic cerebellum" has a multiform contribution to language function. The most possible mechanism of such contribution is the cerebellar reciprocal connectivity with supratentorial brain regions, where the cerebellar level of the language network has a general modulation function and the supratentorial level is more functionally specified. Based on cerebellar connectivity with supratentorial components of the language network, the "linguistic cerebellum" might be further functionally segregated.
Collapse
Affiliation(s)
- Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
| | - Yana R Panikratova
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow, Russia
| | | |
Collapse
|
7
|
Parezanović M, Ilić N, Ostojić S, Stevanović G, Ječmenica J, Maver A, Sarajlija A. Sensorineural Hearing Loss in a Child with Succinic Semialdehyde Dehydrogenase Deficiency. Balkan J Med Genet 2023; 26:63-68. [PMID: 37576789 PMCID: PMC10413887 DOI: 10.2478/bjmg-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Succinic semialdehyde dehydrogenase (SSADH) deficiency is a rare autosomal-recessive disorder of gamma-aminobutyric acid (GABA) metabolism, resulting in accumulation of GABA and gamma-hydroxybutyric acid (GHB) in physiological fluids. Approximately 450 patients have been diagnosed worldwide with this inherited neurotransmitter disorder. We report on a five-year-old male patient, homozygous for the pathogenic variant (NM_170740:c.1265G>A) in ALDH5A1 presenting with an unexpected association of typical SSADH deficiency manifestations with bilateral sensorineural hearing loss (SNHL). Brainstem evoked response audiometry (BERA) testing showed mid-frequency sensorineural hearing damage that suggested a hereditary component to SNHL. Whole exome sequencing (WES) failed to discern other genetic causes of deafness. Several variants of uncertain significance (VUS) detected in genes known for their role in hearing physiology could not be verified as the cause for the SNHL. It is known that central auditory processing depends on a delicate balance between excitatory and inhibitory neurotransmission, and GABA is known to play a significant role in this process. Additionally, excessive concentrations of accumulated GABA and GBH are known to cause a down-regulation of GABA receptors, which could have an adverse influence on hearing function. However, these mechanisms are very speculative in context of SNHL in a patient with inherited disorder of GABA metabolism. Injury of the globi pallidi, one of hallmarks of SSADH deficiency, could also be a contributory factor to SNHL, as was suspected in some other inborn errors in metabolism. We hope that this case will contribute to the understanding of phenotypic complexity of SSADH deficiency.
Collapse
Affiliation(s)
- M Parezanović
- Department of Pediatric Intensive Care, Mother and Child Health Care Institute “Dr Vukan Čupić”, Belgrade, Serbia
| | - N Ilić
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute “Dr Vukan Čupić”, Belgrade, Serbia
| | - S Ostojić
- Department of Neurology, Mother and Child Health Care Institute “Dr Vukan Čupić”, Belgrade, Serbia
- University of Belgrade, Faculty of Medicine
| | - G Stevanović
- Clinic of Neurology and Psychiatry for Children and Youth, University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - J Ječmenica
- Department of Otorhinolaryngology, Mother and Child Health Care Institute “Dr Vukan Čupić”, Belgrade, Serbia
| | - A Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - A Sarajlija
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute “Dr Vukan Čupić”, Belgrade, Serbia
- University of Belgrade, Faculty of Medicine
- University of Eastern Sarajevo, Faculty of Medicine, Foča, Republic of Srpska, Bosnia and Hercegovina
| |
Collapse
|
8
|
Zhang EQ, Shi ER, Barceló-Coblijn L. Categorical perception and language evolution: a comparative and neurological perspective. Front Psychol 2023; 14:1110730. [PMID: 37179894 PMCID: PMC10172646 DOI: 10.3389/fpsyg.2023.1110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Affiliation(s)
- Elizabeth Qing Zhang
- School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou, Jiangsu, China
- Center for Language Evolution Studies, University Centre of Excellence IMSErt, Nicolaus Copernicus University, Toruń, Poland
- *Correspondence: Elizabeth Qing Zhang
| | - Edward Ruoyang Shi
- Department of Translation and Language Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lluís Barceló-Coblijn
- Laboratori d'Investigació en Complexitat i de Lingüística Experimental, Palma de Mallorca, Spain
- Laboratori d'Investigació en Complexitat i de Lingüística Experimental, Universitat de les Illes Balears, Illes Balears, Palma, Spain
| |
Collapse
|
9
|
Zuo L, Dong Y, Hu Y, Xiang X, Liu T, Zhou J, Shi J, Wang Y. Clinical Features, Brain-Structure Changes, and Cognitive Impairment in Basal Ganglia Infarcts: A Pilot Study. Neuropsychiatr Dis Treat 2023; 19:1171-1180. [PMID: 37197329 PMCID: PMC10184853 DOI: 10.2147/ndt.s384726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/22/2023] [Indexed: 05/19/2023] Open
Abstract
Introduction Stroke has been considered to raise the risk of dementia in several studies, but the relationship between brain structural changes and poststroke cognitive impairment (PSCI) is unclear. Methods In this study, 23 PSCI patients with basal ganglia infarcts after 2 weeks and 29 age-matched controls underwent magnetic resonance imaging measuring cortical thickness and volume changes, as well as neuropsychological tests. CI was derived from a performance score <1.5 standard deviations for normally distributed scores. We compared Z scores in different cognitive domains and cortical thickness and volumes in two groups. Multiple linear regressions were used to investigate the relationship between cortical thickness and volumes and neuropsychological tests. Results A majority of PSCI patients were in their 50s (55.19±8.52 years). PSCI patients exhibited significantly decreased Z scores in multiple domains, such as memory, language, visuomotor speed, and attention/executive function. The volumes of the middle posterior corpus callosum, middle anterior corpus callosum, and hippocampus in PSCI patients were markedly lower than controls. The thickness of the right inferior temporal cortex and insula were significantly smaller than controls. It found that the reduced right hippocampus was related to executive dysfunction. Hippocampus dysfunction may be involved in language impairment (p<0.05) in PSCI patients with basal ganglia infarcts. Conclusion These findings demonstrated that brain structure changed after ischemic stroke, and different gray-matter structural changes could lead to specific cognitive decline in PSCI patients with basal ganglia infarcts. Atrophy of the right hippocampus potentially serves as an imaging marker of early executive function of PSCI.
Collapse
Affiliation(s)
- Lijun Zuo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - YanHong Dong
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, 117597Singapore
| | - Yang Hu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xianglong Xiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, People’s Republic of China
| | - Jianxin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jiong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Yongjun Wang, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070, People’s Republic of China, Tel +86-010-59978350, Fax +86-010-59973383, Email
| |
Collapse
|
10
|
Liu X, He Y, Gao Y, Booth JR, Zhang L, Zhang S, Lu C, Liu L. Developmental differences of large-scale functional brain networks for spoken word processing. BRAIN AND LANGUAGE 2022; 231:105149. [PMID: 35777141 DOI: 10.1016/j.bandl.2022.105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
A dual-stream dissociation for separate phonological and semantic processing has been implicated in adults' language processing, but it is unclear how this dissociation emerges with development. By employing a graph-theory based brain network analysis, we compared functional interaction architecture during a rhyming and meaning judgment task of children (aged 8-12) with adults (aged 19-26). We found adults had stronger functional connectivity strength than children between bilateral inferior frontal gyri and left inferior parietal lobule in the rhyming task, between middle frontal gyrus and angular gyrus, and within occipital areas in the meaning task. Meanwhile, adults but not children manifested between-task differences in these properties. In contrast, children had stronger functional connectivity strength or nodal degree in Heschl's gyrus, superior temporal gyrus, and subcortical areas. Our findings indicated spoken word processing development is characterized by increased functional specialization, relying on the dorsal and ventral pathways for phonological and semantic processing respectively.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/ McGovern, Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| | - Yin He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/ McGovern, Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yue Gao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/ McGovern, Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37203, USA
| | - Lihuan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/ McGovern, Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Shudong Zhang
- Faculty of Education, Beijing Normal University, Beijing 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/ McGovern, Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/ McGovern, Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
11
|
Heffner CC, Myers EB, Gracco VL. Impaired perceptual phonetic plasticity in Parkinson's disease. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:511. [PMID: 35931533 PMCID: PMC9299957 DOI: 10.1121/10.0012884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/08/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition primarily associated with its motor consequences. Although much of the focus within the speech domain has focused on PD's consequences for production, people with PD have been shown to differ in the perception of emotional prosody, loudness, and speech rate from age-matched controls. The current study targeted the effect of PD on perceptual phonetic plasticity, defined as the ability to learn and adjust to novel phonetic input, both in second language and native language contexts. People with PD were compared to age-matched controls (and, for three of the studies, a younger control population) in tasks of explicit non-native speech learning and adaptation to variation in native speech (compressed rate, accent, and the use of timing information within a sentence to parse ambiguities). The participants with PD showed significantly worse performance on the task of compressed rate and used the duration of an ambiguous fricative to segment speech to a lesser degree than age-matched controls, indicating impaired speech perceptual abilities. Exploratory comparisons also showed people with PD who were on medication performed significantly worse than their peers off medication on those two tasks and the task of explicit non-native learning.
Collapse
Affiliation(s)
- Christopher C Heffner
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Emily B Myers
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
12
|
Johansson C, Folgerø PO. Is Reduced Visual Processing the Price of Language? Brain Sci 2022; 12:brainsci12060771. [PMID: 35741656 PMCID: PMC9221435 DOI: 10.3390/brainsci12060771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
We suggest a later timeline for full language capabilities in Homo sapiens, placing the emergence of language over 200,000 years after the emergence of our species. The late Paleolithic period saw several significant changes. Homo sapiens became more gracile and gradually lost significant brain volumes. Detailed realistic cave paintings disappeared completely, and iconic/symbolic ones appeared at other sites. This may indicate a shift in perceptual abilities, away from an accurate perception of the present. Language in modern humans interact with vision. One example is the McGurk effect. Studies show that artistic abilities may improve when language-related brain areas are damaged or temporarily knocked out. Language relies on many pre-existing non-linguistic functions. We suggest that an overwhelming flow of perceptual information, vision, in particular, was an obstacle to language, as is sometimes implied in autism with relative language impairment. We systematically review the recent research literature investigating the relationship between language and perception. We see homologues of language-relevant brain functions predating language. Recent findings show brain lateralization for communicative gestures in other primates without language, supporting the idea that a language-ready brain may be overwhelmed by raw perception, thus blocking overt language from evolving. We find support in converging evidence for a change in neural organization away from raw perception, thus pushing the emergence of language closer in time. A recent origin of language makes it possible to investigate the genetic origins of language.
Collapse
|
13
|
Salles A, Marino Lee S, Moss CF. Sound evoked fos-like immunoreactivity in the big brown bat. IBRO Neurosci Rep 2022; 12:197-202. [PMID: 35746972 PMCID: PMC9210485 DOI: 10.1016/j.ibneur.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Most bat species have highly developed audio-vocal systems, which allow them to adjust the features of echolocation calls that are optimized for different sonar tasks, such as detecting, localizing, discriminating and tracking targets. Furthermore, bats can also produce a wide array of social calls to communicate with conspecifics. The acoustic properties of some social calls differ only subtly from echolocation calls, yet bats have the ability to distinguish them and reliably produce appropriate behavioral responses. Little is known about the underlying neural processes that enable the correct classification of bat social communication sounds. One approach to this question is to identify the brain regions that are involved in the processing of sounds that carry behavioral relevance. Here, we present preliminary data on neuronal activation, as measured by c-fos expression, in big brown bats (Eptesicus fuscus) exposed to either social calls, echolocation calls or kept in silence. We focused our investigation on five relevant brain areas; three within the canonical auditory pathway (auditory cortex, inferior colliculus and medial geniculate body) and two that are involved in the processing of emotive stimulus content (amygdala and nucleus accumbens). In this manuscript we report c-fos staining of the areas of interest after exposure to conspecific calls. We discuss future work designed to overcome experimental limitations and explore whether c-fos staining reveals anatomical segregation of neurons activated by echolocation and social call categories.
Collapse
|
14
|
Rødland E, Melleby KM, Specht K. Evaluation of a Simple Clinical Language Paradigm With Respect to Sensory Independency, Functional Asymmetry, and Effective Connectivity. Front Behav Neurosci 2022; 16:806520. [PMID: 35309683 PMCID: PMC8928437 DOI: 10.3389/fnbeh.2022.806520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/10/2022] [Indexed: 01/18/2023] Open
Abstract
The present study replicates a known visual language paradigm, and extends it to a paradigm that is independent from the sensory modality of the stimuli and, hence, could be administered either visually or aurally, such that both patients with limited sight or hearing could be examined. The stimuli were simple sentences, but required the subject not only to understand the content of the sentence but also to formulate a response that had a semantic relation to the content of the presented sentence. Thereby, this paradigm does not only test perception of the stimuli, but also to some extend sentence and semantic processing, and covert speech production within one task. When the sensory base-line condition was subtracted, both the auditory and visual version of the paradigm demonstrated a broadly overlapping and asymmetric network, comprising distinct areas of the left posterior temporal lobe, left inferior frontal areas, left precentral gyrus, and supplementary motor area. The consistency of activations and their asymmetry was evaluated with a conjunction analysis, probability maps, and intraclass correlation coefficients (ICC). This underlying network was further analyzed with dynamic causal modeling (DCM) to explore whether not only the same brain areas were involved, but also the network structure and information flow were the same between the sensory modalities. In conclusion, the paradigm reliably activated the most central parts of the speech and language network with a great consistency across subjects, and independently of whether the stimuli were administered aurally or visually. However, there was individual variability in the degree of functional asymmetry between the two sensory conditions.
Collapse
Affiliation(s)
- Erik Rødland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Division of Psychiatry, Department of Child and Adolescent, Haukeland University Hospital, Bergen, Norway
| | - Kathrine Midgaard Melleby
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Adult Habilitation Section, Telemark Hospital Skien, Skien, Norway
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
- Department of Education, UiT The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Karsten Specht,
| |
Collapse
|
15
|
Non-sensory Influences on Auditory Learning and Plasticity. J Assoc Res Otolaryngol 2022; 23:151-166. [PMID: 35235100 PMCID: PMC8964851 DOI: 10.1007/s10162-022-00837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022] Open
Abstract
Distinguishing between regular and irregular heartbeats, conversing with speakers of different accents, and tuning a guitar-all rely on some form of auditory learning. What drives these experience-dependent changes? A growing body of evidence suggests an important role for non-sensory influences, including reward, task engagement, and social or linguistic context. This review is a collection of contributions that highlight how these non-sensory factors shape auditory plasticity and learning at the molecular, physiological, and behavioral level. We begin by presenting evidence that reward signals from the dopaminergic midbrain act on cortico-subcortical networks to shape sound-evoked responses of auditory cortical neurons, facilitate auditory category learning, and modulate the long-term storage of new words and their meanings. We then discuss the role of task engagement in auditory perceptual learning and suggest that plasticity in top-down cortical networks mediates learning-related improvements in auditory cortical and perceptual sensitivity. Finally, we present data that illustrates how social experience impacts sound-evoked activity in the auditory midbrain and forebrain and how the linguistic environment rapidly shapes speech perception. These findings, which are derived from both human and animal models, suggest that non-sensory influences are important regulators of auditory learning and plasticity and are often implemented by shared neural substrates. Application of these principles could improve clinical training strategies and inform the development of treatments that enhance auditory learning in individuals with communication disorders.
Collapse
|
16
|
Abstract
OBJECTIVES According to the Procedural Deficit Hypothesis, abnormalities in corticostriatal pathways could account for the language-related deficits observed in developmental dyslexia. The same neural network has also been implicated in the ability to learn contingencies based on trial and error (i.e., reinforcement learning [RL]). On this basis, the present study tested the assumption that dyslexic individuals would be impaired in RL compared with neurotypicals in two different tasks. METHODS In a probabilistic selection task, participants were required to learn reinforcement contingencies based on probabilistic feedback. In an implicit transitive inference task, participants were also required to base their decisions on reinforcement histories, but feedback was deterministic and stimulus pairs were partially overlapping, such that participants were required to learn hierarchical relations. RESULTS Across tasks, results revealed that although the ability to learn from positive/negative feedback did not differ between the two groups, the learning of reinforcement contingencies was poorer in the dyslexia group compared with the neurotypicals group. Furthermore, in novel test pairs where previously learned information was presented in new combinations, dyslexic individuals performed similarly to neurotypicals. CONCLUSIONS Taken together, these results suggest that learning of reinforcement contingencies occurs less robustly in individuals with developmental dyslexia. Inferences for the neuro-cognitive mechanisms of developmental dyslexia are discussed.
Collapse
|
17
|
Learning nonnative speech sounds changes local encoding in the adult human cortex. Proc Natl Acad Sci U S A 2021; 118:2101777118. [PMID: 34475209 DOI: 10.1073/pnas.2101777118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Adults can learn to identify nonnative speech sounds with training, albeit with substantial variability in learning behavior. Increases in behavioral accuracy are associated with increased separability for sound representations in cortical speech areas. However, it remains unclear whether individual auditory neural populations all show the same types of changes with learning, or whether there are heterogeneous encoding patterns. Here, we used high-resolution direct neural recordings to examine local population response patterns, while native English listeners learned to recognize unfamiliar vocal pitch patterns in Mandarin Chinese tones. We found a distributed set of neural populations in bilateral superior temporal gyrus and ventrolateral frontal cortex, where the encoding of Mandarin tones changed throughout training as a function of trial-by-trial accuracy ("learning effect"), including both increases and decreases in the separability of tones. These populations were distinct from populations that showed changes as a function of exposure to the stimuli regardless of trial-by-trial accuracy. These learning effects were driven in part by more variable neural responses to repeated presentations of acoustically identical stimuli. Finally, learning effects could be predicted from speech-evoked activity even before training, suggesting that intrinsic properties of these populations make them amenable to behavior-related changes. Together, these results demonstrate that nonnative speech sound learning involves a wide array of changes in neural representations across a distributed set of brain regions.
Collapse
|
18
|
Durfee AZ, Sheppard SM, Blake ML, Hillis AE. Lesion loci of impaired affective prosody: A systematic review of evidence from stroke. Brain Cogn 2021; 152:105759. [PMID: 34118500 PMCID: PMC8324538 DOI: 10.1016/j.bandc.2021.105759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
Affective prosody, or the changes in rate, rhythm, pitch, and loudness that convey emotion, has long been implicated as a function of the right hemisphere (RH), yet there is a dearth of literature identifying the specific neural regions associated with its processing. The current systematic review aimed to evaluate the evidence on affective prosody localization in the RH. One hundred and ninety articles from 1970 to February 2020 investigating affective prosody comprehension and production in patients with focal brain damage were identified via database searches. Eleven articles met inclusion criteria, passed quality reviews, and were analyzed for affective prosody localization. Acute, subacute, and chronic lesions demonstrated similar profile characteristics. Localized right antero-superior (i.e., dorsal stream) regions contributed to affective prosody production impairments, whereas damage to more postero-lateral (i.e., ventral stream) regions resulted in affective prosody comprehension deficits. This review provides support that distinct RH regions are vital for affective prosody comprehension and production, aligning with literature reporting RH activation for affective prosody processing in healthy adults as well. The impact of study design on resulting interpretations is discussed.
Collapse
Affiliation(s)
- Alexandra Zezinka Durfee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| | - Shannon M Sheppard
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Communication Sciences and Disorders, Chapman University Crean College of Health and Behavioral Sciences, Irvine, CA 92618, United States
| | - Margaret L Blake
- Department of Communication Sciences and Disorders, University of Houston College of Liberal Arts and Social Sciences, Houston, TX 77204, United States
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, United States
| |
Collapse
|
19
|
Moorman S, Ahn JR, Kao MH. Plasticity of stereotyped birdsong driven by chronic manipulation of cortical-basal ganglia activity. Curr Biol 2021; 31:2619-2632.e4. [PMID: 33974850 PMCID: PMC8222193 DOI: 10.1016/j.cub.2021.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/05/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Cortical-basal ganglia (CBG) circuits are critical for motor learning and performance, and are a major site of pathology. In songbirds, a CBG circuit regulates moment-by-moment variability in song and also enables song plasticity. Studies have shown that variable burst firing in LMAN, the output nucleus of this CBG circuit, actively drives acute song variability, but whether and how LMAN drives long-lasting changes in song remains unclear. Here, we ask whether chronic pharmacological augmentation of LMAN bursting is sufficient to drive plasticity in birds singing stereotyped songs. We show that altered LMAN activity drives cumulative changes in acoustic structure, timing, and sequencing over multiple days, and induces repetitions and silent pauses reminiscent of human stuttering. Changes persisted when LMAN was subsequently inactivated, indicating plasticity in song motor regions. Following cessation of pharmacological treatment, acoustic features and song sequence gradually recovered to their baseline values over a period of days to weeks. Together, our findings show that augmented bursting in CBG circuitry drives plasticity in well-learned motor skills, and may inform treatments for basal ganglia movement disorders.
Collapse
Affiliation(s)
- Sanne Moorman
- Psychology Department, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands; Biology Department, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA.
| | - Jae-Rong Ahn
- Biology Department, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Mimi H Kao
- Biology Department, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA; Neuroscience Graduate Program, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
20
|
Durfee AZ, Sheppard SM, Meier EL, Bunker L, Cui E, Crainiceanu C, Hillis AE. Explicit Training to Improve Affective Prosody Recognition in Adults with Acute Right Hemisphere Stroke. Brain Sci 2021; 11:brainsci11050667. [PMID: 34065453 PMCID: PMC8161405 DOI: 10.3390/brainsci11050667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Difficulty recognizing affective prosody (receptive aprosodia) can occur following right hemisphere damage (RHD). Not all individuals spontaneously recover their ability to recognize affective prosody, warranting behavioral intervention. However, there is a dearth of evidence-based receptive aprosodia treatment research in this clinical population. The purpose of the current study was to investigate an explicit training protocol targeting affective prosody recognition in adults with RHD and receptive aprosodia. Eighteen adults with receptive aprosodia due to acute RHD completed affective prosody recognition before and after a short training session that targeted proposed underlying perceptual and conceptual processes. Behavioral impairment and lesion characteristics were investigated as possible influences on training effectiveness. Affective prosody recognition improved following training, and recognition accuracy was higher for pseudo- vs. real-word sentences. Perceptual deficits were associated with the most posterior infarcts, conceptual deficits were associated with frontal infarcts, and a combination of perceptual-conceptual deficits were related to temporoparietal and subcortical infarcts. Several right hemisphere ventral stream regions and pathways along with frontal and parietal hypoperfusion predicted training effectiveness. Explicit acoustic-prosodic-emotion training improves affective prosody recognition, but it may not be appropriate for everyone. Factors such as linguistic context and lesion location should be considered when planning prosody training.
Collapse
Affiliation(s)
- Alexandra Zezinka Durfee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (A.Z.D.); (E.L.M.); (L.B.)
| | - Shannon M. Sheppard
- Department of Communication Sciences and Disorders, Chapman University, Irvine, CA 92618, USA;
| | - Erin L. Meier
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (A.Z.D.); (E.L.M.); (L.B.)
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MD 02115, USA
| | - Lisa Bunker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (A.Z.D.); (E.L.M.); (L.B.)
| | - Erjia Cui
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA; (E.C.); (C.C.)
| | - Ciprian Crainiceanu
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA; (E.C.); (C.C.)
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (A.Z.D.); (E.L.M.); (L.B.)
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Correspondence:
| |
Collapse
|
21
|
Morán I, Perez-Orive J, Melchor J, Figueroa T, Lemus L. Auditory decisions in the supplementary motor area. Prog Neurobiol 2021; 202:102053. [PMID: 33957182 DOI: 10.1016/j.pneurobio.2021.102053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
In human speech and communication across various species, recognizing and categorizing sounds is fundamental for the selection of appropriate behaviors. However, how does the brain decide which action to perform based on sounds? We explored whether the supplementary motor area (SMA), responsible for linking sensory information to motor programs, also accounts for auditory-driven decision making. To this end, we trained two rhesus monkeys to discriminate between numerous naturalistic sounds and words learned as target (T) or non-target (nT) categories. We found that the SMA at single and population neuronal levels perform decision-related computations that transition from auditory to movement representations in this task. Moreover, we demonstrated that the neural population is organized orthogonally during the auditory and the movement periods, implying that the SMA performs different computations. In conclusion, our results suggest that the SMA integrates acoustic information in order to form categorical signals that drive behavior.
Collapse
Affiliation(s)
- Isaac Morán
- Department of Cognitive Neuroscience, Institute of Cell Physiology, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Javier Perez-Orive
- Instituto Nacional de Rehabilitacion "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Jonathan Melchor
- Department of Cognitive Neuroscience, Institute of Cell Physiology, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Tonatiuh Figueroa
- Department of Cognitive Neuroscience, Institute of Cell Physiology, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Luis Lemus
- Department of Cognitive Neuroscience, Institute of Cell Physiology, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
| |
Collapse
|
22
|
Hare SM, Adhikari BM, Du X, Garcia L, Bruce H, Kochunov P, Simon JZ, Hong LE. Local versus long-range connectivity patterns of auditory disturbance in schizophrenia. Schizophr Res 2021; 228:262-270. [PMID: 33493774 PMCID: PMC7987759 DOI: 10.1016/j.schres.2020.11.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 01/01/2023]
Abstract
Auditory hallucinations are a debilitating symptom of schizophrenia. Effective treatment is limited because the underlying neural mechanisms remain unknown. Our study investigates how local and long-range functional connectivity is associated with auditory perceptual disturbances (APD) in schizophrenia. APD was assessed using the Auditory Perceptual Trait and State Scale. Resting state fMRI data were collected for N=99 patients with schizophrenia. Local functional connectivity was estimated using regional homogeneity (ReHo) analysis; long-range connectivity was estimated using resting state functional connectivity (rsFC) analysis. Mediation analyses tested whether local (ReHo) connectivity significantly mediated associations between long-distance rsFC and APD. Severity of APD was significantly associated with reduced ReHo in left and right putamen, left temporoparietal junction (TPJ), and right hippocampus-pallidum. Higher APD was also associated with reduced rsFC between the right putamen and the contralateral putamen and auditory cortex. Local and long-distance connectivity measures together explained 40.3% of variance in APD (P < 0.001), with the strongest predictor being the left TPJ ReHo (P < 0.001). Additionally, TPJ ReHo significantly mediated the relationship between right putamen - left putamen rsFC and APD (Sobel test, P = 0.001). Our findings suggest that both local and long-range functional connectivity deficits contribute to APD, emphasizing the role of striatum and auditory cortex. Considering the translational impact of these circuit-based findings within the context of prior clinical trials to treat auditory hallucinations, we propose a model in which correction of both local and long-distance functional connectivity deficits may be necessary to treat auditory hallucinations.
Collapse
Affiliation(s)
- Stephanie M. Hare
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bhim M. Adhikari
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaoming Du
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Laura Garcia
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Heather Bruce
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Jonathan Z. Simon
- Department of Electrical and Computer Engineering, College Park, MD, USA
| | - L. Elliot Hong
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Cannon JJ, Patel AD. How Beat Perception Co-opts Motor Neurophysiology. Trends Cogn Sci 2020; 25:137-150. [PMID: 33353800 DOI: 10.1016/j.tics.2020.11.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023]
Abstract
Beat perception offers cognitive scientists an exciting opportunity to explore how cognition and action are intertwined in the brain even in the absence of movement. Many believe the motor system predicts the timing of beats, yet current models of beat perception do not specify how this is neurally implemented. Drawing on recent insights into the neurocomputational properties of the motor system, we propose that beat anticipation relies on action-like processes consisting of precisely patterned neural time-keeping activity in the supplementary motor area (SMA), orchestrated and sequenced by activity in the dorsal striatum. In addition to synthesizing recent advances in cognitive science and motor neuroscience, our framework provides testable predictions to guide future work.
Collapse
Affiliation(s)
- Jonathan J Cannon
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Aniruddh D Patel
- Department of Psychology, Tufts University, Medford, MA, USA; Program in Brain, Mind, and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, CA.
| |
Collapse
|
24
|
Feng G, Yi HG, Chandrasekaran B. The Role of the Human Auditory Corticostriatal Network in Speech Learning. Cereb Cortex 2020; 29:4077-4089. [PMID: 30535138 DOI: 10.1093/cercor/bhy289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/30/2018] [Indexed: 01/26/2023] Open
Abstract
We establish a mechanistic account of how the mature human brain functionally reorganizes to acquire and represent new speech sounds. Native speakers of English learned to categorize Mandarin lexical tone categories produced by multiple talkers using trial-by-trial feedback. We hypothesized that the corticostriatal system is a key intermediary in mediating temporal lobe plasticity and the acquisition of new speech categories in adulthood. We conducted a functional magnetic resonance imaging experiment in which participants underwent a sound-to-category mapping task. Diffusion tensor imaging data were collected, and probabilistic fiber tracking analysis was employed to assay the auditory corticostriatal pathways. Multivariate pattern analysis showed that talker-invariant novel tone category representations emerged in the left superior temporal gyrus (LSTG) within a few hundred training trials. Univariate analysis showed that the putamen, a subregion of the striatum, was sensitive to positive feedback in correctly categorized trials. With learning, functional coupling between the putamen and LSTG increased during error processing. Furthermore, fiber tractography demonstrated robust structural connectivity between the feedback-sensitive striatal regions and the LSTG regions that represent the newly learned tone categories. Our convergent findings highlight a critical role for the auditory corticostriatal circuitry in mediating the acquisition of new speech categories.
Collapse
Affiliation(s)
- Gangyi Feng
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR, China.,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Han Gyol Yi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bharath Chandrasekaran
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
25
|
O'Connell MN, Barczak A, McGinnis T, Mackin K, Mowery T, Schroeder CE, Lakatos P. The Role of Motor and Environmental Visual Rhythms in Structuring Auditory Cortical Excitability. iScience 2020; 23:101374. [PMID: 32738615 PMCID: PMC7394914 DOI: 10.1016/j.isci.2020.101374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/14/2020] [Accepted: 07/13/2020] [Indexed: 10/26/2022] Open
Abstract
Previous studies indicate that motor sampling patterns modulate neuronal excitability in sensory brain regions by entraining brain rhythms, a process termed motor-initiated entrainment. In addition, rhythms of the external environment are also capable of entraining brain rhythms. Our first goal was to investigate the properties of motor-initiated entrainment in the auditory system using a prominent visual motor sampling pattern in primates, saccades. Second, we wanted to determine whether/how motor-initiated entrainment interacts with visual environmental entrainment. We examined laminar profiles of neuronal ensemble activity in primary auditory cortex and found that whereas motor-initiated entrainment has a suppressive effect, visual environmental entrainment has an enhancive effect. We also found that these processes are temporally coupled, and their temporal relationship ensures that their effect on excitability is complementary rather than interfering. Altogether, our results demonstrate that motor and sensory systems continuously interact in orchestrating the brain's context for the optimal sampling of our multisensory environment.
Collapse
Affiliation(s)
- Monica N O'Connell
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Annamaria Barczak
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Tammy McGinnis
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Kieran Mackin
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Todd Mowery
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Charles E Schroeder
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Departments of Neurological Surgery and Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Peter Lakatos
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
26
|
Li Y, Seger C, Chen Q, Mo L. Left Inferior Frontal Gyrus Integrates Multisensory Information in Category Learning. Cereb Cortex 2020; 30:4410-4423. [DOI: 10.1093/cercor/bhaa029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/31/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Humans are able to categorize things they encounter in the world (e.g., a cat) by integrating multisensory information from the auditory and visual modalities with ease and speed. However, how the brain learns multisensory categories remains elusive. The present study used functional magnetic resonance imaging to investigate, for the first time, the neural mechanisms underpinning multisensory information-integration (II) category learning. A sensory-modality-general network, including the left insula, right inferior frontal gyrus (IFG), supplementary motor area, left precentral gyrus, bilateral parietal cortex, and right caudate and globus pallidus, was recruited for II categorization, regardless of whether the information came from a single modality or from multiple modalities. Putamen activity was higher in correct categorization than incorrect categorization. Critically, the left IFG and left body and tail of the caudate were activated in multisensory II categorization but not in unisensory II categorization, which suggests this network plays a specific role in integrating multisensory information during category learning. The present results extend our understanding of the role of the left IFG in multisensory processing from the linguistic domain to a broader role in audiovisual learning.
Collapse
Affiliation(s)
- You Li
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, Guangdong, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Carol Seger
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, Guangdong, China
- Department of Psychology, Colorado State University, Fort Collins, CO 80521 USA
| | - Qi Chen
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Lei Mo
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, Guangdong, China
| |
Collapse
|
27
|
Luthra S, Fuhrmeister P, Molfese PJ, Guediche S, Blumstein SE, Myers EB. Brain-behavior relationships in incidental learning of non-native phonetic categories. BRAIN AND LANGUAGE 2019; 198:104692. [PMID: 31522094 PMCID: PMC6773471 DOI: 10.1016/j.bandl.2019.104692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/29/2019] [Accepted: 09/01/2019] [Indexed: 06/01/2023]
Abstract
Research has implicated the left inferior frontal gyrus (LIFG) in mapping acoustic-phonetic input to sound category representations, both in native speech perception and non-native phonetic category learning. At issue is whether this sensitivity reflects access to phonetic category information per se or to explicit category labels, the latter often being required by experimental procedures. The current study employed an incidental learning paradigm designed to increase sensitivity to a difficult non-native phonetic contrast without inducing explicit awareness of the categorical nature of the stimuli. Functional MRI scans revealed frontal sensitivity to phonetic category structure both before and after learning. Additionally, individuals who succeeded most on the learning task showed the largest increases in frontal recruitment after learning. Overall, results suggest that processing novel phonetic category information entails a reliance on frontal brain regions, even in the absence of explicit category labels.
Collapse
Affiliation(s)
- Sahil Luthra
- University of Connecticut, Department of Psychological Sciences, United States.
| | - Pamela Fuhrmeister
- University of Connecticut, Department of Speech, Language and Hearing Sciences, United States.
| | | | - Sara Guediche
- Basque Center on Cognition, Brain and Language, Spain.
| | - Sheila E Blumstein
- Brown University, Department of Cognitive, Linguistic and Psychological Sciences, United States.
| | - Emily B Myers
- University of Connecticut, Department of Psychological Sciences, United States; University of Connecticut, Department of Speech, Language and Hearing Sciences, United States; Haskins Laboratories, United States.
| |
Collapse
|
28
|
Harmon Z, Idemaru K, Kapatsinski V. Learning mechanisms in cue reweighting. Cognition 2019; 189:76-88. [PMID: 30928780 DOI: 10.1016/j.cognition.2019.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
Feedback has been shown to be effective in shifting attention across perceptual cues to a phonological contrast in speech perception (Francis, Baldwin & Nusbaum, 2000). However, the learning mechanisms behind this process remain obscure. We compare the predictions of supervised error-driven learning (Rescorla & Wagner, 1972) and reinforcement learning (Sutton & Barto, 1998) using computational simulations. Supervised learning predicts downweighting of an informative cue when the learner receives evidence that it is no longer informative. In contrast, reinforcement learning suggests that a reduction in cue weight requires positive evidence for the informativeness of an alternative cue. Experimental evidence supports the latter prediction, implicating reinforcement learning as the mechanism behind the effect of feedback on cue weighting in speech perception. Native English listeners were exposed to either bimodal or unimodal VOT distributions spanning the unaspirated/aspirated boundary (bear/pear). VOT is the primary cue to initial stop voicing in English. However, lexical feedback in training indicated that VOT was no longer predictive of voicing. Reduction in the weight of VOT was observed only when participants could use an alternative cue, F0, to predict voicing. Frequency distributions had no effect on learning. Overall, the results suggest that attention shifting in learning the phonetic cues to phonological categories is accomplished using simple reinforcement learning principles that also guide the choice of actions in other domains.
Collapse
Affiliation(s)
- Zara Harmon
- Department of Linguistics, University of Oregon, United States.
| | - Kaori Idemaru
- Department of East Asian Languages and Literatures, University of Oregon, United States
| | | |
Collapse
|
29
|
Abstract
Humans are born as “universal listeners.” However, over the first year, infants’ perception is shaped by native speech categories. How do these categories naturally emerge without explicit training or overt feedback? Using fMRI, we examined the neural basis of incidental sound category learning as participants played a videogame in which sound category exemplars had functional utility in guiding videogame success. Even without explicit categorization of the sounds, participants learned functionally relevant sound categories that generalized to novel exemplars when exemplars had an organized distributional structure. Critically, the striatum was engaged and functionally connected to the auditory cortex during game play, and this activity and connectivity predicted the learning outcome. These findings elucidate the neural mechanism by which humans incidentally learn “real-world” categories. Humans are born as “universal listeners” without a bias toward any particular language. However, over the first year of life, infants’ perception is shaped by learning native speech categories. Acoustically different sounds—such as the same word produced by different speakers—come to be treated as functionally equivalent. In natural environments, these categories often emerge incidentally without overt categorization or explicit feedback. However, the neural substrates of category learning have been investigated almost exclusively using overt categorization tasks with explicit feedback about categorization decisions. Here, we examined whether the striatum, previously implicated in category learning, contributes to incidental acquisition of sound categories. In the fMRI scanner, participants played a videogame in which sound category exemplars aligned with game actions and events, allowing sound categories to incidentally support successful game play. An experimental group heard nonspeech sound exemplars drawn from coherent category spaces, whereas a control group heard acoustically similar sounds drawn from a less structured space. Although the groups exhibited similar in-game performance, generalization of sound category learning and activation of the posterior striatum were significantly greater in the experimental than control group. Moreover, the experimental group showed brain–behavior relationships related to the generalization of all categories, while in the control group these relationships were restricted to the categories with structured sound distributions. Together, these results demonstrate that the striatum, through its interactions with the left superior temporal sulcus, contributes to incidental acquisition of sound category representations emerging from naturalistic learning environments.
Collapse
|
30
|
Capacities and neural mechanisms for auditory statistical learning across species. Hear Res 2019; 376:97-110. [PMID: 30797628 DOI: 10.1016/j.heares.2019.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/09/2019] [Accepted: 02/06/2019] [Indexed: 11/22/2022]
Abstract
Statistical learning has been proposed as a possible mechanism by which individuals can become sensitive to the structures of language fundamental for speech perception. Since its description in human infants, statistical learning has been described in human adults and several non-human species as a general process by which animals learn about stimulus-relevant statistics. The neurobiology of statistical learning is beginning to be understood, but many questions remain about the underlying mechanisms. Why is the developing brain particularly sensitive to stimulus and environmental statistics, and what neural processes are engaged in the adult brain to enable learning from statistical regularities in the absence of external reward or instruction? This review will survey the statistical learning abilities of humans and non-human animals with a particular focus on communicative vocalizations. We discuss the neurobiological basis of statistical learning, and specifically what can be learned by exploring this process in both humans and laboratory animals. Finally, we describe advantages of studying vocal communication in rodents as a means to further our understanding of the cortical plasticity mechanisms engaged during statistical learning. We examine the use of rodents in the context of pup retrieval, which is an auditory-based and experience-dependent form of maternal behavior.
Collapse
|
31
|
The Relationship between Cerebral White Matter Integrity and Cognitive Function in Mild Stroke with Basal Ganglia Region Infarcts. Sci Rep 2018; 8:8422. [PMID: 29849078 PMCID: PMC5976674 DOI: 10.1038/s41598-018-26316-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
Mild stroke is a known risk factor for dementia. The relationship between cerebral white matter (WM) integrity and cognitive impairment (CI) in mild stroke patients with basal ganglia region infarcts is unknown. Total of 33 stroke patients and 19 age-matched controls underwent diffusion tensor imaging scans and a formal neuropsychological test battery. CI was defined as having a performance score 1.5 SD below the established norm. We compared the differences in Z-scores and Fraction Anisotropy (FA) values among controls, stroke with no CI (NCI) and stroke with CI groups. Multiple linear regressions were performed between FA values in affected regions and neuropsychological tests in stroke patients. The majority of stroke patients were in their 50s (56.90 ± 9.23 years). CI patients exhibited a significantly decreased Z score in visual delayed memory and remarkably decreased FA values in the right external capsule and right fornix (FWE-corrected) compared with NCI patients and controls. In stroke patients, the FA value in the right fornix was positively correlated with delayed visual memory. Mild stroke with basal ganglia region infarcts may be related to widespread abnormality of WM integrity. The lower WM integrity in the right fornix may be a marker of impaired delayed visual memory.
Collapse
|
32
|
Cassidy CM, Balsam PD, Weinstein JJ, Rosengard RJ, Slifstein M, Daw ND, Abi-Dargham A, Horga G. A Perceptual Inference Mechanism for Hallucinations Linked to Striatal Dopamine. Curr Biol 2018; 28:503-514.e4. [PMID: 29398218 PMCID: PMC5820222 DOI: 10.1016/j.cub.2017.12.059] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/23/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022]
Abstract
Hallucinations, a cardinal feature of psychotic disorders such as schizophrenia, are known to depend on excessive striatal dopamine. However, an underlying cognitive mechanism linking dopamine dysregulation and the experience of hallucinatory percepts remains elusive. Bayesian models explain perception as an optimal combination of prior expectations and new sensory evidence, where perceptual distortions such as illusions and hallucinations may occur if prior expectations are afforded excessive weight. Such excessive weight of prior expectations, in turn, could stem from a gain-control process controlled by neuromodulators such as dopamine. To test for such a dopamine-dependent gain-control mechanism of hallucinations, we studied unmedicated patients with schizophrenia with varying degrees of hallucination severity and healthy individuals using molecular imaging with a pharmacological manipulation of dopamine, structural imaging, and a novel task designed to measure illusory changes in the perceived duration of auditory stimuli under different levels of uncertainty. Hallucinations correlated with a perceptual bias, reflecting disproportional gain on expectations under uncertainty. This bias could be pharmacologically induced by amphetamine, strongly correlated with striatal dopamine release, and related to cortical volume of the dorsal anterior cingulate, a brain region involved in tracking environmental uncertainty. These findings outline a novel dopamine-dependent mechanism for perceptual modulation in physiological conditions and further suggest that this mechanism may confer vulnerability to hallucinations in hyper-dopaminergic states underlying psychosis.
Collapse
Affiliation(s)
- Clifford M Cassidy
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; The Royal's Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Peter D Balsam
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; Department of Psychology, Columbia University, 3009 Broadway, New York, NY 10027, USA
| | - Jodi J Weinstein
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; Department of Psychiatry, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794, USA
| | - Rachel J Rosengard
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - Mark Slifstein
- Department of Psychiatry, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794, USA
| | - Nathaniel D Daw
- Department of Psychology, Princeton University, South Drive, Princeton, NJ 08540, USA
| | - Anissa Abi-Dargham
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; Department of Psychiatry, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794, USA
| | - Guillermo Horga
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, 1051 Riverside Drive, New York, NY 10032, USA.
| |
Collapse
|
33
|
Farias-Virgens M, White SA. A Sing-Song Way of Vocalizing: Generalization and Specificity in Language and Birdsong. Neuron 2017; 96:958-960. [DOI: 10.1016/j.neuron.2017.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Jung J, Kim S, Cho H, Nam K. Structural and functional correlates for language efficiency in auditory word processing. PLoS One 2017; 12:e0184232. [PMID: 28892503 PMCID: PMC5593184 DOI: 10.1371/journal.pone.0184232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/21/2017] [Indexed: 01/19/2023] Open
Abstract
This study aims to provide convergent understanding of the neural basis of auditory word processing efficiency using a multimodal imaging. We investigated the structural and functional correlates of word processing efficiency in healthy individuals. We acquired two structural imaging (T1-weighted imaging and diffusion tensor imaging) and functional magnetic resonance imaging (fMRI) during auditory word processing (phonological and semantic tasks). Our results showed that better phonological performance was predicted by the greater thalamus activity. In contrary, better semantic performance was associated with the less activation in the left posterior middle temporal gyrus (pMTG), supporting the neural efficiency hypothesis that better task performance requires less brain activation. Furthermore, our network analysis revealed the semantic network including the left anterior temporal lobe (ATL), dorsolateral prefrontal cortex (DLPFC) and pMTG was correlated with the semantic efficiency. Especially, this network acted as a neural efficient manner during auditory word processing. Structurally, DLPFC and cingulum contributed to the word processing efficiency. Also, the parietal cortex showed a significate association with the word processing efficiency. Our results demonstrated that two features of word processing efficiency, phonology and semantics, can be supported in different brain regions and, importantly, the way serving it in each region was different according to the feature of word processing. Our findings suggest that word processing efficiency can be achieved by in collaboration of multiple brain regions involved in language and general cognitive function structurally and functionally.
Collapse
Affiliation(s)
- JeYoung Jung
- Neuroscience and Aphasia Research Unit, Division of Neuroscience & Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Sunmi Kim
- Wisdom Science Centre, Korea University, Seoul, South Korea
| | - Hyesuk Cho
- Wisdom Science Centre, Korea University, Seoul, South Korea
| | - Kichun Nam
- Wisdom Science Centre, Korea University, Seoul, South Korea
- Department of Psychology, Korea University, Seoul, South Korea
| |
Collapse
|
35
|
Sameiro-Barbosa CM, Geiser E. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation. Front Neurosci 2016; 10:361. [PMID: 27559306 PMCID: PMC4978719 DOI: 10.3389/fnins.2016.00361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022] Open
Abstract
The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system.
Collapse
Affiliation(s)
- Catia M Sameiro-Barbosa
- Service de Neuropsychologie et de Neuroréhabilitation, Centre Hospitalier Universitaire Vaudois Lausanne, Switzerland
| | - Eveline Geiser
- Service de Neuropsychologie et de Neuroréhabilitation, Centre Hospitalier Universitaire VaudoisLausanne, Switzerland; The Laboratory for Investigative Neurophysiology, Department of Radiology, Centre Hospitalier Universitaire VaudoisLausanne, Switzerland; Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridge, MA, USA
| |
Collapse
|
36
|
An fMRI study investigating effects of conceptually related sentences on the perception of degraded speech. Cortex 2016; 79:57-74. [PMID: 27100909 DOI: 10.1016/j.cortex.2016.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 01/06/2016] [Accepted: 03/15/2016] [Indexed: 11/20/2022]
Abstract
Prior research has shown that the perception of degraded speech is influenced by within sentence meaning and recruits one or more components of a frontal-temporal-parietal network. The goal of the current study is to examine whether the overall conceptual meaning of a sentence, made up of one set of words, influences the perception of a second acoustically degraded sentence, made up of a different set of words. Using functional magnetic resonance imaging (fMRI), we presented an acoustically clear sentence followed by an acoustically degraded sentence and manipulated the semantic relationship between them: Related in meaning (but consisting of different content words), Unrelated in meaning, or Same. Results showed that listeners' word recognition accuracy for the acoustically degraded sentences was significantly higher when the target sentence was preceded by a conceptually related compared to a conceptually unrelated sentence. Sensitivity to conceptual relationships was associated with enhanced activity in middle and inferior frontal, temporal, and parietal areas. In addition, the left middle frontal gyrus (LMFG), left inferior frontal gyrus (LIFG), and left middle temporal gyrus (LMTG) showed activity that correlated with individual performance on the Related condition. The superior temporal gyrus (STG) showed increased activation in the Same condition suggesting that it is sensitive to perceptual similarity rather than the integration of meaning between the sentence pairs. A fronto-temporo-parietal network appears to consolidate information sources across multiple levels of language (acoustic, lexical, syntactic, semantic) to build, and ultimately integrate conceptual information across sentences and facilitate the perception of a degraded speech signal. However, the nature of the sources of information that are available differentially recruit specific regions and modulate their activity within this network. Implications of these findings for the functional architecture of the network are considered.
Collapse
|
37
|
Erickson LC, Thiessen ED. Statistical learning of language: Theory, validity, and predictions of a statistical learning account of language acquisition. DEVELOPMENTAL REVIEW 2015. [DOI: 10.1016/j.dr.2015.05.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Gabay Y, Holt LL. Incidental learning of sound categories is impaired in developmental dyslexia. Cortex 2015; 73:131-43. [PMID: 26409017 DOI: 10.1016/j.cortex.2015.08.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/09/2015] [Accepted: 08/07/2015] [Indexed: 11/29/2022]
Abstract
Developmental dyslexia is commonly thought to arise from specific phonological impairments. However, recent evidence is consistent with the possibility that phonological impairments arise as symptoms of an underlying dysfunction of procedural learning. The nature of the link between impaired procedural learning and phonological dysfunction is unresolved. Motivated by the observation that speech processing involves the acquisition of procedural category knowledge, the present study investigates the possibility that procedural learning impairment may affect phonological processing by interfering with the typical course of phonetic category learning. The present study tests this hypothesis while controlling for linguistic experience and possible speech-specific deficits by comparing auditory category learning across artificial, nonlinguistic sounds among dyslexic adults and matched controls in a specialized first-person shooter videogame that has been shown to engage procedural learning. Nonspeech auditory category learning was assessed online via within-game measures and also with a post-training task involving overt categorization of familiar and novel sound exemplars. Each measure reveals that dyslexic participants do not acquire procedural category knowledge as effectively as age- and cognitive-ability matched controls. This difference cannot be explained by differences in perceptual acuity for the sounds. Moreover, poor nonspeech category learning is associated with slower phonological processing. Whereas phonological processing impairments have been emphasized as the cause of dyslexia, the current results suggest that impaired auditory category learning, general in nature and not specific to speech signals, could contribute to phonological deficits in dyslexia with subsequent negative effects on language acquisition and reading. Implications for the neuro-cognitive mechanisms of developmental dyslexia are discussed.
Collapse
Affiliation(s)
- Yafit Gabay
- Carnegie Mellon University, Department of Psychology, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
| | - Lori L Holt
- Carnegie Mellon University, Department of Psychology, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Abstract
A mutation of the forkhead box protein P2 (FOXP2) gene is associated with severe deficits in human speech and language acquisition. In rodents, the humanized form of FOXP2 promotes faster switching from declarative to procedural learning strategies when the two learning systems compete. Here, we examined a polymorphism of FOXP2 (rs6980093) in humans (214 adults; 111 females) for associations with non-native speech category learning success. Neurocomputational modeling results showed that individuals with the GG genotype shifted faster to procedural learning strategies, which are optimal for the task. These findings support an adaptive role for the FOXP2 gene in modulating the function of neural learning systems that have a direct bearing on human speech category learning.
Collapse
|
40
|
Abstract
Language learning requires that listeners discover acoustically variable functional units like phonetic categories and words from an unfamiliar, continuous acoustic stream. Although many category learning studies have examined how listeners learn to generalize across the acoustic variability inherent in the signals that convey the functional units of language, these studies have tended to focus upon category learning across isolated sound exemplars. However, continuous input presents many additional learning challenges that may impact category learning. Listeners may not know the timescale of the functional unit, its relative position in the continuous input, or its relationship to other evolving input regularities. Moving laboratory-based studies of isolated category exemplars toward more natural input is important to modeling language learning, but very little is known about how listeners discover categories embedded in continuous sound. In 3 experiments, adult participants heard acoustically variable sound category instances embedded in acoustically variable and unfamiliar sound streams within a video game task. This task was inherently rich in multisensory regularities with the to-be-learned categories and likely to engage procedural learning without requiring explicit categorization, segmentation, or even attention to the sounds. After 100 min of game play, participants categorized familiar sound streams in which target words were embedded and generalized this learning to novel streams as well as isolated instances of the target words. The findings demonstrate that even without a priori knowledge, listeners can discover input regularities that have the best predictive control over the environment for both non-native speech and nonspeech signals, emphasizing the generality of the learning.
Collapse
Affiliation(s)
- Sung-Joo Lim
- Department of Psychology, Carnegie Mellon University
| | | | - Lori L Holt
- Department of Psychology, Carnegie Mellon University
| |
Collapse
|
41
|
Gabay Y, Dick FK, Zevin JD, Holt LL. Incidental auditory category learning. J Exp Psychol Hum Percept Perform 2015; 41:1124-38. [PMID: 26010588 DOI: 10.1037/xhp0000073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Very little is known about how auditory categories are learned incidentally, without instructions to search for category-diagnostic dimensions, overt category decisions, or experimenter-provided feedback. This is an important gap because learning in the natural environment does not arise from explicit feedback and there is evidence that the learning systems engaged by traditional tasks are distinct from those recruited by incidental category learning. We examined incidental auditory category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time (SMART) task, in which participants rapidly detect and report the appearance of a visual target in 1 of 4 possible screen locations. Although the overt task is rapid visual detection, a brief sequence of sounds precedes each visual target. These sounds are drawn from 1 of 4 distinct sound categories that predict the location of the upcoming visual target. These many-to-one auditory-to-visuomotor correspondences support incidental auditory category learning. Participants incidentally learn categories of complex acoustic exemplars and generalize this learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar variability is more tightly coupled to the visuomotor associations than when the same stimulus variability is experienced across trials. We relate these findings to phonetic category learning.
Collapse
Affiliation(s)
| | - Frederic K Dick
- Department of Psychological Sciences, Birkbeck College, University of London
| | - Jason D Zevin
- Department of Psychology, University of Southern California
| | | |
Collapse
|