1
|
Gao J, Gunasekar S, Xia ZJ, Shalin K, Jiang C, Chen H, Lee D, Lee S, Pisal ND, Luo JN, Griciuc A, Karp JM, Tanzi R, Joshi N. Gene therapy for CNS disorders: modalities, delivery and translational challenges. Nat Rev Neurosci 2024; 25:553-572. [PMID: 38898231 DOI: 10.1038/s41583-024-00829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Swetharajan Gunasekar
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziting Judy Xia
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kiruba Shalin
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Christopher Jiang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| | - Dongtak Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sohyung Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nishkal D Pisal
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - James N Luo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Ana Griciuc
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Jeffrey M Karp
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Rudolph Tanzi
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Liu Y, Li X, Cao C, Ding H, Shi X, Zhang J, Li H. Critical role of Slc22a8 in maintaining blood-brain barrier integrity after experimental cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2024:271678X241264401. [PMID: 39068534 PMCID: PMC11572098 DOI: 10.1177/0271678x241264401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024]
Abstract
Blood-brain barrier (BBB) damage significantly affects the prognosis of ischemic stroke patients. This project employed multi-omics analysis to identify key factors regulating BBB disruption during cerebral ischemia-reperfusion. An integrated analysis of three transcriptome sequencing datasets from mouse middle cerebral artery occlusion/reperfusion (MCAO/R) models identified eight downregulated genes in endothelial cells. Additionally, transcriptome analysis of BBB (cortex) and non-BBB (lung) endothelium of E13.5 mice revealed 2,102 upregulated genes potentially associated with BBB integrity. The eight downregulated genes were intersected with the 2,102 BBB-related genes and mapped using single-cell RNA sequencing data, revealing that solute carrier family 22 member 8 (Slc22a8) is specifically expressed in endothelial cells and pericytes and significantly decreases after MCAO/R. This finding was validated in the mouse MCAO/R model at both protein and mRNA levels in this study. External overexpression of Slc22a8 using a lentivirus carrying Tie2 improved Slc22a8 and tight junction protein levels and reduced BBB leakage after MCAO/R, accompanied by Wnt/β-catenin signaling activation. In conclusion, this study suggested that MCAO/R-induced downregulation of Slc22a8 expression may be a crucial mechanism underlying BBB disruption. Interventions that promote Slc22a8 expression or enhance its function hold promise for improving the prognosis of patients with cerebral ischemia.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Chang Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haojie Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Xuan Shi
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Malong L, Napoli I, Casal G, White IJ, Stierli S, Vaughan A, Cattin AL, Burden JJ, Hng KI, Bossio A, Flanagan A, Zhao HT, Lloyd AC. Characterization of the structure and control of the blood-nerve barrier identifies avenues for therapeutic delivery. Dev Cell 2023; 58:174-191.e8. [PMID: 36706755 DOI: 10.1016/j.devcel.2023.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/26/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
The blood barriers of the nervous system protect neural environments but can hinder therapeutic accessibility. The blood-brain barrier (BBB) is well characterized, consisting of endothelial cells with specialized tight junctions and low levels of transcytosis, properties conferred by contacting pericytes and astrocytes. In contrast, the blood-nerve barrier (BNB) of the peripheral nervous system is poorly defined. Here, we characterize the structure of the mammalian BNB, identify the processes that confer barrier function, and demonstrate how the barrier can be opened in response to injury. The homeostatic BNB is leakier than the BBB, which we show is due to higher levels of transcytosis. However, the barrier is reinforced by macrophages that specifically engulf leaked materials, identifying a role for resident macrophages as an important component of the BNB. Finally, we demonstrate the exploitation of these processes to effectively deliver RNA-targeting therapeutics to peripheral nerves, indicating new treatment approaches for nervous system pathologies.
Collapse
Affiliation(s)
- Liza Malong
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ilaria Napoli
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Giulia Casal
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ian J White
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Salome Stierli
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Andrew Vaughan
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Anne-Laure Cattin
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jemima J Burden
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Keng I Hng
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alessandro Bossio
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adrienne Flanagan
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Hien T Zhao
- IONIS, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Alison C Lloyd
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
4
|
Liu S, Song G, Li F, Li R, Chen X, Guo Y, Zhou F, Wang Q, Yang L, Zhou B. Bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate showed poor penetrability but increased the permeability of blood brain barrier: Evidences from in vitro and in vivo studies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127386. [PMID: 34879576 DOI: 10.1016/j.jhazmat.2021.127386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Bis(2ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), a replacement for restricted flame retardants, has become ubiquitous in the environment. To reveal the neurotoxicity and underlying mechanism of TBPH, we first evaluated its penetrability through the blood-brain barrier (BBB) using hCMEC/D3 cells as in vitro model, and found TBPH had poor penetrability through BBB with a maximum Papp of 14.8 × 10-6 cms-1. Further study using transgenetic zebrafish (Tg flk1: EGFP) as in vivo model confirmed that TBPH could affect the BBB permeability, probably via affecting the transcription of genes encoding tight junction proteins. Finally, wild type zebrafish embryos/larvae were exposed to TBPH to evaluate the neurotoxicity. The neurodevelopment, neurotransmitters and locomotor activity of zebrafish larvae did not changed, which may be because TBPH can hardly cross the BBB to pose direct exposure to the central nervous system. However, the transcription of opsins genes and visual response to light stimulation in zebrafish larvae were inhibited, pointing to additional mechanism that may cause visual impairment indirectly. Above all, these results can help further understand the neurotoxicity and underlying mechanism by TBPH, and also pointed out potential risk of this chemical to aquatic organisms.
Collapse
Affiliation(s)
- Sitian Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Fan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ruiwen Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment, Wuhan 430014, PR China
| | - Xiangping Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Fang Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|
5
|
Sharma NS, Karan A, Lee D, Yan Z, Xie J. Advances in Modeling Alzheimer's Disease In Vitro. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Navatha Shree Sharma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Anik Karan
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Donghee Lee
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Zheng Yan
- Department of Mechanical & Aerospace Engineering and Department of Biomedical Biological and Chemical Engineering University of Missouri Columbia MO 65211 USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
- Department of Mechanical and Materials Engineering College of Engineering University of Nebraska Lincoln Lincoln NE 68588 USA
| |
Collapse
|
6
|
Proteome of the Luminal Surface of the Blood-Brain Barrier. Proteomes 2021; 9:proteomes9040045. [PMID: 34842825 PMCID: PMC8629012 DOI: 10.3390/proteomes9040045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Interrogation of the molecular makeup of the blood–brain barrier (BBB) using proteomic techniques has contributed to the cataloguing and functional understanding of the proteins uniquely organized at this specialized interface. The majority of proteomic studies have focused on cellular components of the BBB, including cultured brain endothelial cells (BEC). Detailed proteome mapping of polarized BEC membranes and their intracellular endosomal compartments has led to an improved understanding of the processes leading to internalization and transport of various classes of molecules across the BBB. Quantitative proteomic methods have further enabled absolute and comparative quantification of key BBB transporters and receptors in isolated BEC and microvessels from various species. However, translational studies further require in vivo/in situ analyses of the proteins exposed on the luminal surface of BEC in vessels under various disease and treatment conditions. In vivo proteomics approaches, both profiling and quantitative, usually rely on ‘capturing’ luminally-exposed proteins after perfusion with chemical labeling reagents, followed by analysis with various mass spectrometry-based approaches. This manuscript reviews recent advances in proteomic analyses of luminal membranes of BEC in vitro and in vivo and their applications in translational studies focused on developing novel delivery methods across the BBB.
Collapse
|
7
|
Kugler E, Snodgrass R, Bowley G, Plant K, Serbanovic-Canic J, Hamilton N, Evans PC, Chico T, Armitage P. The effect of absent blood flow on the zebrafish cerebral and trunk vasculature. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2021; 3:1-16. [PMID: 34522840 PMCID: PMC8428019 DOI: 10.1530/vb-21-0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022]
Abstract
The role of blood flow in vascular development is complex and context-dependent. In this study, we quantify the effect of the lack of blood flow on embryonic vascular development on two vascular beds, namely the cerebral and trunk vasculature in zebrafish. We perform this by analysing vascular topology, endothelial cell (EC) number, EC distribution, apoptosis, and inflammatory response in animals with normal blood flow or absent blood flow. We find that absent blood flow reduced vascular area and EC number significantly in both examined vascular beds, but the effect is more severe in the cerebral vasculature, and severity increases over time. Absent blood flow leads to an increase in non-EC-specific apoptosis without increasing tissue inflammation, as quantified by cerebral immune cell numbers and nitric oxide. Similarly, while stereotypic vascular patterning in the trunk is maintained, intra-cerebral vessels show altered patterning, which is likely to be due to vessels failing to initiate effective fusion and anastomosis rather than sprouting or path-seeking. In conclusion, blood flow is essential for cellular survival in both the trunk and cerebral vasculature, but particularly intra-cerebral vessels are affected by the lack of blood flow, suggesting that responses to blood flow differ between these two vascular beds.
Collapse
Affiliation(s)
- Elisabeth Kugler
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
- Insigneo Institute for in silico Medicine, Sheffield, UK
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, UK
| | - Ryan Snodgrass
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
| | - George Bowley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
| | - Karen Plant
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
| | - Noémie Hamilton
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
- Insigneo Institute for in silico Medicine, Sheffield, UK
| | - Timothy Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
| | - Paul Armitage
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- Insigneo Institute for in silico Medicine, Sheffield, UK
| |
Collapse
|
8
|
Chico TJA, Kugler EC. Cerebrovascular development: mechanisms and experimental approaches. Cell Mol Life Sci 2021; 78:4377-4398. [PMID: 33688979 PMCID: PMC8164590 DOI: 10.1007/s00018-021-03790-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
The cerebral vasculature plays a central role in human health and disease and possesses several unique anatomic, functional and molecular characteristics. Despite their importance, the mechanisms that determine cerebrovascular development are less well studied than other vascular territories. This is in part due to limitations of existing models and techniques for visualisation and manipulation of the cerebral vasculature. In this review we summarise the experimental approaches used to study the cerebral vessels and the mechanisms that contribute to their development.
Collapse
Affiliation(s)
- Timothy J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| | - Elisabeth C Kugler
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| |
Collapse
|
9
|
Tso MK, Turgeon P, Bosche B, Lee CK, Nie T, D'Abbondanza J, Ai J, Marsden PA, Macdonald RL. Gene expression profiling of brain endothelial cells after experimental subarachnoid haemorrhage. Sci Rep 2021; 11:7818. [PMID: 33837224 PMCID: PMC8035152 DOI: 10.1038/s41598-021-87301-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Subarachnoid haemorrhage (SAH) is a type of hemorrhagic stroke that is associated with high morbidity and mortality. New effective treatments are needed to improve outcomes. The pathophysiology of SAH is complex and includes early brain injury and delayed cerebral ischemia, both of which are characterized by blood–brain barrier (BBB) impairment. We isolated brain endothelial cells (BECs) from mice subjected to SAH by injection of blood into the prechiasmatic cistern. We used gene expression profiling to identify 707 unique genes (2.8% of transcripts, 403 upregulated, 304 downregulated, 24,865 interrogated probe sets) that were significantly differentially expressed in mouse BECs after SAH. The pathway involving prostaglandin synthesis and regulation was significantly upregulated after SAH, including increased expression of the Ptgs2 gene and its corresponding COX-2 protein. Celecoxib, a selective COX-2 inhibitor, limited upregulation of Ptgs2 in BECs. In this study, we have defined the gene expression profiling of BECs after experimental SAH and provide further insight into BBB pathophysiology, which may be relevant to other neurological diseases such as traumatic brain injury, brain tumours, ischaemic stroke, multiple sclerosis, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Michael K Tso
- Division of Neurosurgery, University of Calgary, Calgary, AB, Canada.,Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Department of Neurological Surgery, UCSF Fresno Campus, Fresno, USA
| | - Paul Turgeon
- Division of Nephrology, University of Toronto, Toronto, ON, Canada
| | - Bert Bosche
- Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Clinic Reichshof, Reichshof-Eckenhagen, Germany.,Institute of Neurophysiology, University of Cologne, Cologne, Germany.,Department of Neurology, University of Duisburg-Essen, Essen, Germany.,Department of Neurological Surgery, UCSF Fresno Campus, Fresno, USA
| | - Charles K Lee
- Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Department of Neurological Surgery, UCSF Fresno Campus, Fresno, USA
| | - Tian Nie
- Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Department of Neurological Surgery, UCSF Fresno Campus, Fresno, USA
| | - Josephine D'Abbondanza
- Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Department of Neurological Surgery, UCSF Fresno Campus, Fresno, USA
| | - Jinglu Ai
- Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Department of Neurological Surgery, UCSF Fresno Campus, Fresno, USA
| | - Philip A Marsden
- Division of Nephrology, University of Toronto, Toronto, ON, Canada
| | - R Loch Macdonald
- Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada. .,Department of Neurological Surgery, UCSF Fresno Campus, Fresno, USA.
| |
Collapse
|
10
|
Contribution of brain pericytes in blood-brain barrier formation and maintenance: a transcriptomic study of cocultured human endothelial cells derived from hematopoietic stem cells. Fluids Barriers CNS 2020; 17:48. [PMID: 32723387 PMCID: PMC7385894 DOI: 10.1186/s12987-020-00208-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
Formation, maintenance, and repair of the blood–brain barrier (BBB) are critical for central nervous system homeostasis. The interaction of endothelial cells (ECs) with brain pericytes is known to induce BBB characteristics in brain ECs during embryogenesis and can be used to differentiate human ECs from stem cell source in in vitro BBB models. However, the molecular events involved in BBB maturation are not fully understood. To this end, human ECs derived from hematopoietic stem cells were cultivated with either primary bovine or cell line-derived human brain pericytes to induce BBB formation. Subsequently, the transcriptomic profiles of solocultured vs. cocultured ECs were analysed over time by Massive Analysis of cDNA Ends (MACE) technology. This RNA sequencing method is a 3′-end targeted, tag-based, reduced representation transcriptome profiling technique, that can reliably quantify all polyadenylated transcripts including those with low expression. By analysing the generated transcriptomic profiles, we can explore the molecular processes responsible for the functional changes observed in ECs in coculture with brain pericytes (e.g. barrier tightening, changes in the expression of transporters and receptors). Our results identified several up- and downregulated genes and signaling pathways that provide a valuable data source to further delineate complex molecular processes that are involved in BBB formation and BBB maintenance. In addition, this data provides a source to identify novel targets for central nervous system drug delivery strategies.
Collapse
|
11
|
Zhang W, Liu QY, Haqqani AS, Leclerc S, Liu Z, Fauteux F, Baumann E, Delaney CE, Ly D, Star AT, Brunette E, Sodja C, Hewitt M, Sandhu JK, Stanimirovic DB. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS 2020; 17:47. [PMID: 32698806 PMCID: PMC7376922 DOI: 10.1186/s12987-020-00209-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/13/2020] [Indexed: 12/04/2022] Open
Abstract
Receptor-mediated transcytosis (RMT) is a principal pathway for transport of macromolecules essential for brain function across the blood–brain barrier (BBB). Antibodies or peptide ligands which bind RMT receptors are often co-opted for brain delivery of biotherapeutics. Constitutively recycling transferrin receptor (TfR) is a prototype receptor utilized to shuttle therapeutic cargos across the BBB. Several other BBB-expressed receptors have been shown to mediate transcytosis of antibodies or protein ligands including insulin receptor (INSR) and insulin-like growth factor-1 receptor (IGF1R), lipid transporters LRP1, LDLR, LRP8 and TMEM30A, solute carrier family transporter SLC3A2/CD98hc and leptin receptor (LEPR). In this study, we analyzed expression patterns of genes encoding RMT receptors in isolated brain microvessels, brain parenchyma and peripheral organs of the mouse and the human using RNA-seq approach. IGF1R, INSR and LRP8 were highly enriched in mouse brain microvessels compared to peripheral tissues. In human brain microvessels only INSR was enriched compared to either the brain or the lung. The expression levels of SLC2A1, LRP1, IGF1R, LRP8 and TFRC were significantly higher in the mouse compared to human brain microvessels. The protein expression of these receptors analyzed by Western blot and immunofluorescent staining of the brain microvessels correlated with their transcript abundance. This study provides a molecular transcriptomics map of key RMT receptors in mouse and human brain microvessels and peripheral tissues, important to translational studies of biodistribution, efficacy and safety of antibodies developed against these receptors.
Collapse
Affiliation(s)
- Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada.
| | - Qing Yan Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Sonia Leclerc
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Ziying Liu
- Scientific Data Mining/Digital Technology Research Centre, National Research Council of Canada, Ottawa, Canada
| | - François Fauteux
- Scientific Data Mining/Digital Technology Research Centre, National Research Council of Canada, Ottawa, Canada
| | - Ewa Baumann
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Christie E Delaney
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Dao Ly
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Alexandra T Star
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Eric Brunette
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Caroline Sodja
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Melissa Hewitt
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada.
| |
Collapse
|
12
|
Klotz R, Yu M. Insights into brain metastasis: Recent advances in circulating tumor cell research. Cancer Rep (Hoboken) 2020; 5:e1239. [PMID: 33372393 PMCID: PMC9124503 DOI: 10.1002/cnr2.1239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background How tumor cells disseminate to brain and establish brain metastasis remains partly an unsolved problem. This devastating complication of many cancers is initiated by a rare subset of the circulating tumor cells (CTCs) shed into the blood stream. Thus, the profiling of the molecular properties in these brain metastasis‐initiating CTCs is essential to uncover the mechanisms underlying brain metastasis. Recent Findings Important efforts to improve the enrichment and detection of CTCs enabled the detailed molecular and functional analysis of CTCs that drive brain metastasis. In this review, we highlight key findings on existing preclinical studies that provide insights toward a comprehensive picture of brain metastasis‐precursors in CTCs and the potential clinical implications. Conclusion A deeper understanding of the brain metastasis precursors should help to stratify high‐risk patients and improve preventive therapeutic strategies. Although all these preclinical evidences have yet to be translated into patients, they provide considerable hope to benefit patients with brain metastases in the future.
Collapse
Affiliation(s)
- Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
13
|
Abstract
Knowledge about the transport of active compounds across the blood-brain barrier is of essential importance for drug development. Systemically applied drugs for the central nervous system (CNS) must be able to cross the blood-brain barrier in order to reach their target sites, whereas drugs that are supposed to act in the periphery should not permeate the blood-brain barrier so that they do not trigger any adverse central adverse effects. A number of approaches have been pursued, and manifold in silico, in vitro, and in vivo animal models were developed in order to be able to make a better prediction for humans about the possible penetration of active substances into the CNS. In this particular case, however, in vitro models play a special role, since the data basis for in silico models is usually in need of improvement, and the predictive power of in vivo animal models has to be checked for possible species differences. The blood-brain barrier is a dynamic, highly selective barrier formed by brain capillary endothelial cells. One of its main tasks is the maintenance of homeostasis in the CNS. The function of the barrier is regulated by cells of the microenvironment and the shear stress mediated by the blood flow, which makes the model development most complex. In general, one could follow the credo "as easy as possible, as complex as necessary" for the usage of in vitro BBB models for drug development. In addition to the description of the classical cell culture models (transwell, hollow fiber) and guidance how to apply them, the latest developments (spheroids, microfluidic models) will be introduced in this chapter, as it is attempted to get more in vivo-like and to be applicable for high-throughput usage with these models. Moreover, details about the development of models based on stem cells derived from different sources with a special focus on human induced pluripotent stem cells are presented.
Collapse
Affiliation(s)
- Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT - Austrian Institute of Technology GmbH, Vienna, Austria.
| |
Collapse
|
14
|
Kakaroubas N, Brennan S, Keon M, Saksena NK. Pathomechanisms of Blood-Brain Barrier Disruption in ALS. NEUROSCIENCE JOURNAL 2019; 2019:2537698. [PMID: 31380411 PMCID: PMC6652091 DOI: 10.1155/2019/2537698] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) and the blood-spinal cord barrier (BSCB) are responsible for controlling the microenvironment within neural tissues in humans. These barriers are fundamental to all neurological processes as they provide the extreme nutritional demands of neural tissue, remove wastes, and maintain immune privileged status. Being a semipermeable membrane, both the BBB and BSCB allow the diffusion of certain molecules, whilst restricting others. In amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases, these barriers become hyperpermeable, allowing a wider variety of molecules to pass through leading to more severe and more rapidly progressing disease. The intention of this review is to discuss evidence that BBB hyperpermeability is potentially a disease driving feature in ALS and other neurodegenerative diseases. The various biochemical, physiological, and genomic factors that can influence BBB permeability in ALS and other neurodegenerative diseases are also discussed, in addition to novel therapeutic strategies centred upon the BBB.
Collapse
Affiliation(s)
- Nicholas Kakaroubas
- Neurodegenerative Disease Section, Iggy Get Out, 19A Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (University of NSW), Chancellery Walk, Kensington NSW 2033, Sydney, Australia
| | - Samuel Brennan
- Neurodegenerative Disease Section, Iggy Get Out, 19A Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| | - Matthew Keon
- Neurodegenerative Disease Section, Iggy Get Out, 19A Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| | - Nitin K. Saksena
- Neurodegenerative Disease Section, Iggy Get Out, 19A Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| |
Collapse
|
15
|
Dubey SK, Ram MS, Krishna KV, Saha RN, Singhvi G, Agrawal M, Ajazuddin, Saraf S, Saraf S, Alexander A. Recent Expansions on Cellular Models to Uncover the Scientific Barriers Towards Drug Development for Alzheimer's Disease. Cell Mol Neurobiol 2019; 39:181-209. [PMID: 30671696 DOI: 10.1007/s10571-019-00653-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/12/2019] [Indexed: 12/17/2022]
Abstract
Globally, the central nervous system (CNS) disorders appear as the most critical pathological threat with no proper cure. Alzheimer's disease (AD) is one such condition frequently observed with the aged population and sometimes in youth too. Most of the research utilizes different animal models for in vivo study of AD pathophysiology and to investigate the potency of the newly developed therapy. These in vivo models undoubtably provide a powerful investigation tool to study human brain. Although, it sometime fails to mimic the exact environment and responses as the human brain owing to the distinctive genetic and anatomical features of human and rodent brain. In such condition, the in vitro cell model derived from patient specific cell or human cell lines can recapitulate the human brain environment. In addition, the frequent use of animals in research increases the cost of study and creates various ethical issues. Instead, the use of in vitro cellular models along with animal models can enhance the translational values of in vivo models and represent a better and effective mean to investigate the potency of therapeutics. This strategy also limits the excessive use of laboratory animal during the drug development process. Generally, the in vitro cell lines are cultured from AD rat brain endothelial cells, the rodent models, human astrocytes, human brain capillary endothelial cells, patient derived iPSCs (induced pluripotent stem cells) and also from the non-neuronal cells. During the literature review process, we observed that there are very few reviews available which describe the significance and characteristics of in vitro cell lines, for AD investigation. Thus, in the present review article, we have compiled the various in vitro cell lines used in AD investigation including HBMEC, BCECs, SHSY-5Y, hCMEC/D3, PC-2 cell line, bEND3 cells, HEK293, hNPCs, RBE4 cells, SK-N-MC, BMVECs, CALU-3, 7W CHO, iPSCs and cerebral organoids cell lines and different types of culture media such as SCM, EMEM, DMEM/F12, RPMI, EBM and 3D-cell culture.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| | - Munnangi Siva Ram
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ranendra Narayan Saha
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai, United Arab Emirates
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
- Hemchand Yadav University, Durg, Chhattisgarh, 491 001, India
| | - Amit Alexander
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India.
| |
Collapse
|
16
|
Swartzlander DB, Propson NE, Roy ER, Saito T, Saido T, Wang B, Zheng H. Concurrent cell type-specific isolation and profiling of mouse brains in inflammation and Alzheimer's disease. JCI Insight 2018; 3:121109. [PMID: 29997299 PMCID: PMC6124528 DOI: 10.1172/jci.insight.121109] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Nonneuronal cell types in the CNS are increasingly implicated as critical players in brain health and disease. While gene expression profiling of bulk brain tissue is routinely used to examine alterations in the brain under various conditions, it does not capture changes that occur within single cell types or allow interrogation of crosstalk among cell types. To this end, we have developed a concurrent brain cell type acquisition (CoBrA) methodology, enabling the isolation and profiling of microglia, astrocytes, endothelia, and oligodendrocytes from a single adult mouse forebrain. By identifying and validating anti-ACSA-2 and anti-CD49a antibodies as cell surface markers for astrocytes and vascular endothelial cells, respectively, and using established antibodies to isolate microglia and oligodendrocytes, we document that these 4 major cell types are isolated with high purity and RNA quality. We validated our procedure by performing acute peripheral LPS challenge, while highlighting the underappreciated changes occurring in astrocytes and vascular endothelia in addition to microglia. Furthermore, we assessed cell type-specific gene expression changes in response to amyloid pathology in a mouse model of Alzheimer's disease. Our CoBrA methodology can be readily implemented to interrogate multiple CNS cell types in any mouse model at any age.
Collapse
Affiliation(s)
| | | | - Ethan R. Roy
- Huffington Center on Aging
- Interdepartmental Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Baiping Wang
- Huffington Center on Aging
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Hui Zheng
- Huffington Center on Aging
- Department of Molecular and Cellular Biology, and
- Interdepartmental Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
17
|
Endothelial Cell Dysfunction and Injury in Subarachnoid Hemorrhage. Mol Neurobiol 2018; 56:1992-2006. [DOI: 10.1007/s12035-018-1213-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/27/2018] [Indexed: 01/15/2023]
|
18
|
Lim RG, Quan C, Reyes-Ortiz AM, Lutz SE, Kedaigle AJ, Gipson TA, Wu J, Vatine GD, Stocksdale J, Casale MS, Svendsen CN, Fraenkel E, Housman DE, Agalliu D, Thompson LM. Huntington's Disease iPSC-Derived Brain Microvascular Endothelial Cells Reveal WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits. Cell Rep 2018; 19:1365-1377. [PMID: 28514657 PMCID: PMC5646270 DOI: 10.1016/j.celrep.2017.04.021] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 03/08/2017] [Accepted: 04/06/2017] [Indexed: 12/16/2022] Open
Abstract
Brain microvascular endothelial cells (BMECs) are an essential component of the blood-brain barrier (BBB) that shields the brain against toxins and immune cells. While BBB dysfunction exists in neurological disorders, including Huntington’s disease (HD), it is not known if BMECs themselves are functionally compromised to promote BBB dysfunction. Further, the underlying mechanisms of BBB dysfunction remain elusive given limitations with mouse models and post-mortem tissue to identify primary deficits. We undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived BMECs (iBMEC) from HD patients or unaffected controls. We demonstrate that HD iBMECs have intrinsic abnormalities in angiogenesis and barrier properties, as well as in signaling pathways governing these processes. Thus, our findings provide an iPSC-derived BBB model for a neurodegenerative disease and demonstrate autonomous neurovascular deficits that may underlie HD pathology with implications for therapeutics and drug delivery.
Collapse
Affiliation(s)
- Ryan G Lim
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; UCI MIND, University of California, Irvine, Irvine, CA 92697, USA
| | - Chris Quan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Andrea M Reyes-Ortiz
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Sarah E Lutz
- Departments of Neurology, Pathology, and Cell Biology and Pharmacology, Columbia University Medical Center, New York, NY 10032, USA
| | - Amanda J Kedaigle
- Computational and Systems Biology Graduate Program, MIT, Cambridge, MA 02139, USA
| | - Theresa A Gipson
- Center for Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Gad D Vatine
- Department of Biomedical Sciences, The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Malcolm S Casale
- Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Clive N Svendsen
- Department of Biomedical Sciences, The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - David E Housman
- Center for Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Dritan Agalliu
- Departments of Neurology, Pathology, and Cell Biology and Pharmacology, Columbia University Medical Center, New York, NY 10032, USA; Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY 10032, USA.
| | - Leslie M Thompson
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; UCI MIND, University of California, Irvine, Irvine, CA 92697, USA; Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
19
|
Qian T, Maguire SE, Canfield SG, Bao X, Olson WR, Shusta EV, Palecek SP. Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells. SCIENCE ADVANCES 2017; 3:e1701679. [PMID: 29134197 PMCID: PMC5677350 DOI: 10.1126/sciadv.1701679] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/11/2017] [Indexed: 05/18/2023]
Abstract
The blood-brain barrier (BBB) is composed of specialized endothelial cells that are critical to neurological health. A key tool for understanding human BBB development and its role in neurological disease is a reliable and scalable source of functional brain microvascular endothelial cells (BMECs). Human pluripotent stem cells (hPSCs) can theoretically generate unlimited quantities of any cell lineage in vitro, including BMECs, for disease modeling, drug screening, and cell-based therapies. We demonstrate a facile, chemically defined method to differentiate hPSCs to BMECs in a developmentally relevant progression via small-molecule activation of key signaling pathways. hPSCs are first induced to mesoderm commitment by activating canonical Wnt signaling. Next, these mesoderm precursors progress to endothelial progenitors, and treatment with retinoic acid leads to acquisition of BBB-specific markers and phenotypes. hPSC-derived BMECs generated via this protocol exhibit endothelial properties, including tube formation and low-density lipoprotein uptake, as well as efflux transporter activities characteristic of BMECs. Notably, these cells exhibit high transendothelial electrical resistance above 3000 ohm·cm2. These hPSC-derived BMECs serve as a robust human in vitro BBB model that can be used to study brain disease and inform therapeutic development.
Collapse
Affiliation(s)
- Tongcheng Qian
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shaenah E. Maguire
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Scott G. Canfield
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiaoping Bao
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William R. Olson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eric V. Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
20
|
de Lange ECM, van den Brink W, Yamamoto Y, de Witte WEA, Wong YC. Novel CNS drug discovery and development approach: model-based integration to predict neuro-pharmacokinetics and pharmacodynamics. Expert Opin Drug Discov 2017; 12:1207-1218. [PMID: 28933618 DOI: 10.1080/17460441.2017.1380623] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION CNS drug development has been hampered by inadequate consideration of CNS pharmacokinetic (PK), pharmacodynamics (PD) and disease complexity (reductionist approach). Improvement is required via integrative model-based approaches. Areas covered: The authors summarize factors that have played a role in the high attrition rate of CNS compounds. Recent advances in CNS research and drug discovery are presented, especially with regard to assessment of relevant neuro-PK parameters. Suggestions for further improvements are also discussed. Expert opinion: Understanding time- and condition dependent interrelationships between neuro-PK and neuro-PD processes is key to predictions in different conditions. As a first screen, it is suggested to use in silico/in vitro derived molecular properties of candidate compounds and predict concentration-time profiles of compounds in multiple compartments of the human CNS, using time-course based physiology-based (PB) PK models. Then, for selected compounds, one can include in vitro drug-target binding kinetics to predict target occupancy (TO)-time profiles in humans. This will improve neuro-PD prediction. Furthermore, a pharmaco-omics approach is suggested, providing multilevel and paralleled data on systems processes from individuals in a systems-wide manner. Thus, clinical trials will be better informed, using fewer animals, while also, needing fewer individuals and samples per individual for proof of concept in humans.
Collapse
Affiliation(s)
- Elizabeth C M de Lange
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Willem van den Brink
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Yumi Yamamoto
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Wilhelmus E A de Witte
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Yin Cheong Wong
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| |
Collapse
|
21
|
Ma Q, Dasgupta C, Li Y, Huang L, Zhang L. MicroRNA-210 Suppresses Junction Proteins and Disrupts Blood-Brain Barrier Integrity in Neonatal Rat Hypoxic-Ischemic Brain Injury. Int J Mol Sci 2017; 18:ijms18071356. [PMID: 28672801 PMCID: PMC5535849 DOI: 10.3390/ijms18071356] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022] Open
Abstract
Cerebral edema, primarily caused by disruption of the blood-brain barrier (BBB), is one of the serious complications associated with brain injury in neonatal hypoxic-ischemic encephalopathy (HIE). Our recent study demonstrated that the hypoxic-ischemic (HI) treatment significantly increased microRNA-210 (miR-210) in the neonatal rat brain and inhibition of miR-210 provided neuroprotection in neonatal HI brain injury. The present study aims to determine the role of miR-210 in the regulation of BBB integrity in the developing brain. miR-210 mimic was administered via intracerebroventricular injection (i.c.v.) into the brain of rat pups. Forty-eight hours after the injection, a modified Rice-Vannucci model was conducted to produce HI brain injury. Post-assays included cerebral edema analysis, western blotting, and immunofluorescence staining for serum immunoglobulin G (IgG) leakage. The results showed that miR-210 mimic exacerbated cerebral edema and IgG leakage into the brain parenchyma. In contrast, inhibition of miR-210 with its complementary locked nucleic acid oligonucleotides (miR-210-LNA) significantly reduced cerebral edema and IgG leakage. These findings suggest that miR-210 negatively regulates BBB integrity i n the neonatal brain. Mechanistically, the seed sequences of miR-210 were identified complementary to the 3' untranslated region (3' UTR) of the mRNA transcripts of tight junction protein occludin and adherens junction protein β-catenin, indicating downstream targets of miR-210. This was further validated by in vivo data showing that miR-210 mimic significantly reduced the expression of these junction proteins in rat pup brains. Of importance, miR-210-LNA preserved the expression of junction proteins occludin and β-catenin from neonatal HI insult. Altogether, the present study reveals a novel mechanism of miR-210 in impairing BBB integrity that contributes to cerebral edema formation after neonatal HI insult, and provides new insights in miR-210-LNA mediated neuroprotection in neonatal HI brain injury.
Collapse
Affiliation(s)
- Qingyi Ma
- Center for Neonatal Biology, Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Chiranjib Dasgupta
- Center for Neonatal Biology, Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Yong Li
- Center for Neonatal Biology, Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Lei Huang
- Center for Neonatal Biology, Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Lubo Zhang
- Center for Neonatal Biology, Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
22
|
A Three-Dimensional Cell Culture System To Model RNA Virus Infections at the Blood-Brain Barrier. mSphere 2017; 2:mSphere00206-17. [PMID: 28656176 PMCID: PMC5480033 DOI: 10.1128/msphere.00206-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/01/2017] [Indexed: 01/05/2023] Open
Abstract
Neurotropic viral infections are significant sources of global morbidity and mortality. The blood-brain barrier (BBB) is composed in part of a layer of microvascular endothelial cells and functions to restrict viral access to the brain. In vitro models that recapitulate many of the properties of the human BBB endothelium are lacking, particularly with respect to the unique cellular and immunological mechanisms by which these cells restrict viral infections of the brain. Here, we developed a three-dimensional cell culture model that recapitulates many of the morphological and functional properties of the BBB microvasculature and apply this model to the study of RNA virus infections. The model we describe can therefore be used to study a variety of aspects of BBB physiology, including the mechanisms by which viruses might access the CNS, and could be used for the development and screening of antiviral therapeutics to limit this important step in viral pathogenesis. The blood-brain barrier (BBB) comprises the foremost protective barrier in the brain and is composed in part of a layer of microvascular endothelial cells that line the capillaries surrounding the brain. Here, we describe a human three-dimensional (3-D) cell-based model of the BBB microvascular endothelium that recapitulates properties of these cells in vivo, including physiologically relevant transcriptional profiles, the capacity to induce potent antimicrobial innate immune signaling, and the ability to resist infection by diverse RNA viruses, including members of the enterovirus (coxsackievirus B, echovirus 11, enterovirus 71, poliovirus) and flavivirus (dengue virus, Zika virus [ZIKV]) families. We show that disruption of apical tight junctions by proinflammatory cytokine tumor necrosis factor alpha (TNF-α) sensitizes 3-D-cultured BBB cells to ZIKV infection and that 3-D derived BBB cells can be used to model the transmigration of ZIKV-infected monocytes across the endothelial barrier to access underlying astrocytes. Taken together, our findings show that human BBB microvascular endothelial cells cultured in 3-D can be used to model the mechanisms by which RNA viruses access the central nervous system (CNS), which could be used for the development and screening of therapeutics to limit this event. IMPORTANCE Neurotropic viral infections are significant sources of global morbidity and mortality. The blood-brain barrier (BBB) is composed in part of a layer of microvascular endothelial cells and functions to restrict viral access to the brain. In vitro models that recapitulate many of the properties of the human BBB endothelium are lacking, particularly with respect to the unique cellular and immunological mechanisms by which these cells restrict viral infections of the brain. Here, we developed a three-dimensional cell culture model that recapitulates many of the morphological and functional properties of the BBB microvasculature and apply this model to the study of RNA virus infections. The model we describe can therefore be used to study a variety of aspects of BBB physiology, including the mechanisms by which viruses might access the CNS, and could be used for the development and screening of antiviral therapeutics to limit this important step in viral pathogenesis.
Collapse
|
23
|
Vatine GD, Al-Ahmad A, Barriga BK, Svendsen S, Salim A, Garcia L, Garcia VJ, Ho R, Yucer N, Qian T, Lim RG, Wu J, Thompson LM, Spivia WR, Chen Z, Van Eyk J, Palecek SP, Refetoff S, Shusta EV, Svendsen CN. Modeling Psychomotor Retardation using iPSCs from MCT8-Deficient Patients Indicates a Prominent Role for the Blood-Brain Barrier. Cell Stem Cell 2017; 20:831-843.e5. [PMID: 28526555 PMCID: PMC6659720 DOI: 10.1016/j.stem.2017.04.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/29/2016] [Accepted: 04/07/2017] [Indexed: 12/27/2022]
Abstract
Inactivating mutations in the thyroid hormone (TH) transporter Monocarboxylate transporter 8 (MCT8) cause severe psychomotor retardation in children. Animal models do not reflect the biology of the human disease. Using patient-specific induced pluripotent stem cells (iPSCs), we generated MCT8-deficient neural cells that showed normal TH-dependent neuronal properties and maturation. However, the blood-brain barrier (BBB) controls TH entry into the brain, and reduced TH availability to neural cells could instead underlie the diseased phenotype. To test potential BBB involvement, we generated an iPSC-based BBB model of MCT8 deficiency, and we found that MCT8 was necessary for polarized influx of the active form of TH across the BBB. We also found that a candidate drug did not appreciably cross the mutant BBB. Our results therefore clarify the underlying physiological basis of this disorder, and they suggest that circumventing the diseased BBB to deliver active TH to the brain could be a viable therapeutic strategy.
Collapse
Affiliation(s)
- Gad D Vatine
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Abraham Al-Ahmad
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Bianca K Barriga
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Soshana Svendsen
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ariel Salim
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leslie Garcia
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Veronica J Garcia
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ritchie Ho
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nur Yucer
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tongcheng Qian
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ryan G Lim
- Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Leslie M Thompson
- Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI), Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA 92697, USA; Department of Psychiatry and Human Behavior, University of California, Irvine (UCI), Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Weston R Spivia
- Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhaohui Chen
- Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jennifer Van Eyk
- Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel Refetoff
- Department of Medicine, Pediatrics and Committee on Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Clive N Svendsen
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
24
|
Negi SK, Guda C. Global gene expression profiling of healthy human brain and its application in studying neurological disorders. Sci Rep 2017; 7:897. [PMID: 28420888 PMCID: PMC5429860 DOI: 10.1038/s41598-017-00952-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/20/2017] [Indexed: 12/31/2022] Open
Abstract
Brain function is governed by precise regulation of gene expression across its anatomically distinct structures; however, the expression patterns of genes across hundreds of brain structures are not clearly understood. Here, we describe a gene expression model, which is representative of the healthy human brain transcriptome by using data from the Allen Brain Atlas. Our in-depth gene expression profiling revealed that 84% of genes are expressed in at least one of the 190 brain structures studied. Hierarchical clustering based on gene expression profiles delineated brain regions into structurally tiered spatial groups and we observed striking enrichment for region-specific processes. Further, weighted co-expression network analysis identified 19 robust modules of highly correlated genes enriched with functional associations for neurogenesis, dopamine signaling, immune regulation and behavior. Also, structural distribution maps of major neurotransmission systems in the brain were generated. Finally, we developed a supervised classification model, which achieved 84% and 81% accuracies for predicting autism- and Parkinson’s-implicated genes, respectively, using our expression model as a baseline. This study represents the first use of global gene expression profiling from healthy human brain to develop a disease gene prediction model and this generic methodology can be applied to study any neurological disorder.
Collapse
Affiliation(s)
- Simarjeet K Negi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
25
|
The blood brain barrier and neuropsychiatric lupus: new perspectives in light of advances in understanding the neuroimmune interface. Autoimmun Rev 2017; 16:612-619. [PMID: 28428121 DOI: 10.1016/j.autrev.2017.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
Experts have previously postulated a linkage between lupus associated vascular pathology and abnormal brain barriers in the immunopathogenesis of neuropsychiatric lupus. Nevertheless, there are some discrepancies between the experimental evidence, or its interpretation, and the working hypotheses prevalent in this field; specifically, that a primary contributor to neuropsychiatric disease in lupus is permeabilization of the blood brain barrier. In this commonly held view, any contribution of the other known brain barriers, including the blood-cerebrospinal fluid and meningeal barriers, is mostly excluded from the discussion. In this review we will shed light on some of the blood brain barrier hypotheses and try to trace their roots. In addition, we will suggest new research directions to allow for confirmation of alternative interpretations of the experimental evidence linking the pathology of intra-cerebral vasculature to the pathogenesis of neuropsychiatric lupus.
Collapse
|
26
|
Acute effects of focused ultrasound-induced increases in blood-brain barrier permeability on rat microvascular transcriptome. Sci Rep 2017; 7:45657. [PMID: 28374753 PMCID: PMC5379491 DOI: 10.1038/srep45657] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
Therapeutic treatment options for central nervous system diseases are greatly limited by the blood-brain barrier (BBB). Focused ultrasound (FUS), in conjunction with circulating microbubbles, can be used to induce a targeted and transient increase in BBB permeability, providing a unique approach for the delivery of drugs from the systemic circulation into the brain. While preclinical research has demonstrated the utility of FUS, there remains a large gap in our knowledge regarding the impact of sonication on BBB gene expression. This work is focused on investigating the transcriptional changes in dorsal hippocampal rat microvessels in the acute stages following sonication. Microarray analysis of microvessels was performed at 6 and 24 hrs post-FUS. Expression changes in individual genes and bioinformatic analysis suggests that FUS may induce a transient inflammatory response in microvessels. Increased transcription of proinflammatory cytokine genes appears to be short-lived, largely returning to baseline by 24 hrs. This observation may help to explain some previously observed bioeffects of FUS and may also be a driving force for the angiogenic processes and reduced drug efflux suggested by this work. While further studies are necessary, these results open up intriguing possibilities for novel FUS applications and suggest possible routes for pharmacologically modifying the technique.
Collapse
|
27
|
Chow BW, Gu C. The molecular constituents of the blood-brain barrier. Trends Neurosci 2016; 38:598-608. [PMID: 26442694 DOI: 10.1016/j.tins.2015.08.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) maintains the optimal microenvironment in the central nervous system (CNS) for proper brain function. The BBB comprises specialized CNS endothelial cells with fundamental molecular properties essential for the function and integrity of the BBB. The restrictive nature of the BBB hinders the delivery of therapeutics for many neurological disorders. In addition, recent evidence shows that BBB dysfunction can precede or hasten the progression of several neurological diseases. Despite the physiological significance of the BBB in health and disease, major discoveries of the molecular regulators of BBB formation and function have occurred only recently. This review highlights recent findings describing the molecular determinants and core cellular pathways that confer BBB properties on CNS endothelial cells.
Collapse
Affiliation(s)
- Brian Wai Chow
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MN 02115, USA
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MN 02115, USA.
| |
Collapse
|
28
|
Srinivasan K, Friedman BA, Larson JL, Lauffer BE, Goldstein LD, Appling LL, Borneo J, Poon C, Ho T, Cai F, Steiner P, van der Brug MP, Modrusan Z, Kaminker JS, Hansen DV. Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses. Nat Commun 2016; 7:11295. [PMID: 27097852 PMCID: PMC4844685 DOI: 10.1038/ncomms11295] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 03/10/2016] [Indexed: 12/31/2022] Open
Abstract
A common approach to understanding neurodegenerative disease is comparing gene expression in diseased versus healthy tissues. We illustrate that expression profiles derived from whole tissue RNA highly reflect the degenerating tissues' altered cellular composition, not necessarily transcriptional regulation. To accurately understand transcriptional changes that accompany neuropathology, we acutely purify neurons, astrocytes and microglia from single adult mouse brains and analyse their transcriptomes by RNA sequencing. Using peripheral endotoxemia to establish the method, we reveal highly specific transcriptional responses and altered RNA processing in each cell type, with Tnfr1 required for the astrocytic response. Extending the method to an Alzheimer's disease model, we confirm that transcriptomic changes observed in whole tissue are driven primarily by cell type composition, not transcriptional regulation, and identify hundreds of cell type-specific changes undetected in whole tissue RNA. Applying similar methods to additional models and patient tissues will transform our understanding of aberrant gene expression in neurological disease. Whole tissue RNA profiling can help identify altered molecular pathways underlying neurodegenerative disease, but often masks cell type-specific transcriptional changes. Here, the authors compare transcriptomes of neurons, astrocytes, and microglia from Alzheimer's disease model brains and identify hundreds of cell-type specific changes.
Collapse
Affiliation(s)
- Karpagam Srinivasan
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Brad A Friedman
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Jessica L Larson
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Benjamin E Lauffer
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Leonard D Goldstein
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.,Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Laurie L Appling
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Jovencio Borneo
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Chungkee Poon
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Terence Ho
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Fang Cai
- Department of Diagnostics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Pascal Steiner
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Marcel P van der Brug
- Department of Diagnostics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Joshua S Kaminker
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - David V Hansen
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| |
Collapse
|
29
|
Mfsd2a-based pharmacological strategies for drug delivery across the blood–brain barrier. Pharmacol Res 2016; 104:124-31. [DOI: 10.1016/j.phrs.2015.12.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/20/2015] [Accepted: 12/20/2015] [Indexed: 12/20/2022]
|
30
|
Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. ACTA ACUST UNITED AC 2015; 209:493-506. [PMID: 26008742 PMCID: PMC4442813 DOI: 10.1083/jcb.201412147] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Unique intercellular junctional complexes between the central nervous system (CNS) microvascular endothelial cells and the choroid plexus epithelial cells form the endothelial blood–brain barrier (BBB) and the epithelial blood–cerebrospinal fluid barrier (BCSFB), respectively. These barriers inhibit paracellular diffusion, thereby protecting the CNS from fluctuations in the blood. Studies of brain barrier integrity during development, normal physiology, and disease have focused on BBB and BCSFB tight junctions but not the corresponding endothelial and epithelial adherens junctions. The crosstalk between adherens junctions and tight junctions in maintaining barrier integrity is an understudied area that may represent a promising target for influencing brain barrier function.
Collapse
Affiliation(s)
- Silvia Tietz
- Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|