1
|
Fathima A, Bagang N, Kumar N, Dastidar SG, Shenoy S. Role of SIRT1 in Potentially Toxic Trace Elements (Lead, Fluoride, Aluminum and Cadmium) Associated Neurodevelopmental Toxicity. Biol Trace Elem Res 2024; 202:5395-5412. [PMID: 38416341 PMCID: PMC11502598 DOI: 10.1007/s12011-024-04116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The formation of the central nervous system is a meticulously planned and intricate process. Any modification to this process has the potential to disrupt the structure and operation of the brain, which could result in deficiencies in neurological growth. When neurotoxic substances are present during the early stages of development, they can be exceptionally dangerous. Prenatally, the immature brain is extremely vulnerable and is therefore at high risk in pregnant women associated with occupational exposures. Lead, fluoride, aluminum, and cadmium are examples of possibly toxic trace elements that have been identified as an environmental concern in the aetiology of a number of neurological and neurodegenerative illnesses. SIRT1, a member of the sirtuin family has received most attention for its potential neuroprotective properties. SIRT1 is an intriguing therapeutic target since it demonstrates important functions to increase neurogenesis and cellular lifespan by modulating multiple pathways. It promotes axonal extension, neurite growth, and dendritic branching during the development of neurons. Additionally, it contributes to neurogenesis, synaptic plasticity, memory development, and neuroprotection. This review summarizes the possible role of SIRT1 signalling pathway in potentially toxic trace elements -induced neurodevelopmental toxicity, highlighting some molecular pathways such as mitochondrial biogenesis, CREB/BDNF and PGC-1α/NRF1/TFAM.
Collapse
Affiliation(s)
- Aqsa Fathima
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Newly Bagang
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial area Hajipur, Vaishali, Bihar, 844102, India
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Banks WA, Rhea EM, Reed MJ, Erickson MA. The penetration of therapeutics across the blood-brain barrier: Classic case studies and clinical implications. Cell Rep Med 2024; 5:101760. [PMID: 39383873 PMCID: PMC11604479 DOI: 10.1016/j.xcrm.2024.101760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/20/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
The blood-brain barrier (BBB) plays central roles in the maintenance and health of the brain. Its mechanisms to safeguard the brain against xenobiotics and endogenous toxins also make the BBB the primary obstacle to the development of drugs for the central nervous system (CNS). Here, we review classic examples of the intersection of clinical medicine, drug delivery, and the BBB. We highlight the role of lipid solubility (heroin), saturable brain-to-blood (efflux: opiates) and blood-to-brain (influx: nutrients, vitamins, and minerals) transport systems, and adsorptive transcytosis (viruses and incretin receptor agonists). We examine how the disruption of the BBB that occurs in certain diseases (tumors) can also be modulated (osmotic agents and microbubbles) and used to deliver treatments, and the role of extracellular pathways in gaining access to the CNS (albumin and antibodies). In summary, this review provides a historical perspective of the key role of the BBB in delivery of drugs to the brain in health and disease.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA.
| | - Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - May J Reed
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Michelle A Erickson
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
3
|
Acharya P, Shrestha S, Joshi P, Choi NY, Lekkala VKR, Kang SY, Ni G, Lee MY. Dynamic culture of cerebral organoids using a pillar/perfusion plate for the assessment of developmental neurotoxicity. Biofabrication 2024; 17:10.1088/1758-5090/ad867e. [PMID: 39444222 PMCID: PMC11542746 DOI: 10.1088/1758-5090/ad867e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Despite the potential toxicity of commercial chemicals to the development of the nervous system (known as developmental neurotoxicity or DNT), conventionalin vitrocell models have primarily been employed for the assessment of acute neuronal toxicity. On the other hand, animal models used for the assessment of DNT are not physiologically relevant due to the heterogenic difference between humans and animals. In addition, animal models are low-throughput, time-consuming, expensive, and ethically questionable. Recently, human brain organoids have emerged as a promising alternative to assess the detrimental effects of chemicals on the developing brain. However, conventional organoid culture systems have several technical limitations including low throughput, lack of reproducibility, insufficient maturity of organoids, and the formation of the necrotic core due to limited diffusion of nutrients and oxygen. To address these issues and establish predictive DNT models, cerebral organoids were differentiated in a dynamic condition in a unique pillar/perfusion plate, which were exposed to test compounds to evaluate DNT potential. The pillar/perfusion plate facilitated uniform, dynamic culture of cerebral organoids with improved proliferation and maturity by rapid, bidirectional flow generated on a digital rocker. Day 9 cerebral organoids in the pillar/perfusion plate were exposed to ascorbic acid (DNT negative) and methylmercury (DNT positive) in a dynamic condition for 1 and 3 weeks, and changes in organoid morphology and neural gene expression were measured to determine DNT potential. As expected, ascorbic acid did not induce any changes in organoid morphology and neural gene expression. However, exposure of day 9 cerebral organoids to methylmercury resulted in significant changes in organoid morphology and neural gene expression. Interestingly, methylmercury did not induce adverse changes in cerebral organoids in a static condition, thus highlighting the importance of dynamic organoid culture in DNT assessment.
Collapse
Affiliation(s)
- Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | | | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | | | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Gabriel Ni
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
- Bioprinting Laboratories Inc., Dallas, Texas
| |
Collapse
|
4
|
Ichikawa Y, Sato B, Hirano SI, Takefuji Y, Satoh F. Realizing brain therapy with "smart medicine": mechanism and case report of molecular hydrogen inhalation for Parkinson's disease. Med Gas Res 2024; 14:89-95. [PMID: 39073335 DOI: 10.4103/2045-9912.385949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/23/2023] [Indexed: 07/30/2024] Open
Abstract
The Michael J. Fox Foundation has been funding research on Parkinson's disease for 35 years, but has yet to find a cure. This is due to a problem with the philosophy behind the development of modern medical treatments. In this paper, we will introduce "smart medicine" with a substance that can solve all the problems of central nervous system drugs. The substance is the smallest diatomic molecule, the hydrogen molecule. Due to their size, hydrogen molecules can easily penetrate the cell membrane and enter the brain. In the midbrain of Parkinson's disease patients, hydroxyl radicals generated by the Fenton reaction cause a chain reaction of oxidation of dopamine, but hydrogen entering the midbrain can convert the hydroxyl radicals into water molecules and inhibit the oxidation of dopamine. In this paper, we focus on the etiology of neurological diseases, especially Parkinson's disease, and present a case in which hydrogen inhalation improves the symptoms of Parkinson's disease, such as body bending and hand tremor. And we confidently state that if Michael J. Fox encountered "smart medicine" that could be realized with molecular hydrogen, he would not be a "lucky man" but a "super-lucky man."
Collapse
Affiliation(s)
- Yusuke Ichikawa
- Research and Development Department, MiZ Company Limited, Kanagawa, Japan
- MiZ Inc., Newark, CA, USA
| | - Bunpei Sato
- Research and Development Department, MiZ Company Limited, Kanagawa, Japan
- MiZ Inc., Newark, CA, USA
| | - Shin-Ichi Hirano
- Research and Development Department, MiZ Company Limited, Kanagawa, Japan
| | - Yoshiyasu Takefuji
- Faculty of Data Science, Musashino University, Tokyo, Japan
- Keio University, Tokyo, Japan
| | - Fumitake Satoh
- Research and Development Department, MiZ Company Limited, Kanagawa, Japan
- MiZ Inc., Newark, CA, USA
| |
Collapse
|
5
|
Wälchli T, Ghobrial M, Schwab M, Takada S, Zhong H, Suntharalingham S, Vetiska S, Gonzalez DR, Wu R, Rehrauer H, Dinesh A, Yu K, Chen ELY, Bisschop J, Farnhammer F, Mansur A, Kalucka J, Tirosh I, Regli L, Schaller K, Frei K, Ketela T, Bernstein M, Kongkham P, Carmeliet P, Valiante T, Dirks PB, Suva ML, Zadeh G, Tabar V, Schlapbach R, Jackson HW, De Bock K, Fish JE, Monnier PP, Bader GD, Radovanovic I. Single-cell atlas of the human brain vasculature across development, adulthood and disease. Nature 2024; 632:603-613. [PMID: 38987604 PMCID: PMC11324530 DOI: 10.1038/s41586-024-07493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/30/2024] [Indexed: 07/12/2024]
Abstract
A broad range of brain pathologies critically relies on the vasculature, and cerebrovascular disease is a leading cause of death worldwide. However, the cellular and molecular architecture of the human brain vasculature remains incompletely understood1. Here we performed single-cell RNA sequencing analysis of 606,380 freshly isolated endothelial cells, perivascular cells and other tissue-derived cells from 117 samples, from 68 human fetuses and adult patients to construct a molecular atlas of the developing fetal, adult control and diseased human brain vasculature. We identify extensive molecular heterogeneity of the vasculature of healthy fetal and adult human brains and across five vascular-dependent central nervous system (CNS) pathologies, including brain tumours and brain vascular malformations. We identify alteration of arteriovenous differentiation and reactivated fetal as well as conserved dysregulated genes and pathways in the diseased vasculature. Pathological endothelial cells display a loss of CNS-specific properties and reveal an upregulation of MHC class II molecules, indicating atypical features of CNS endothelial cells. Cell-cell interaction analyses predict substantial endothelial-to-perivascular cell ligand-receptor cross-talk, including immune-related and angiogenic pathways, thereby revealing a central role for the endothelium within brain neurovascular unit signalling networks. Our single-cell brain atlas provides insights into the molecular architecture and heterogeneity of the developing, adult/control and diseased human brain vasculature and serves as a powerful reference for future studies.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
| | - Moheb Ghobrial
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Marc Schwab
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Shigeki Takada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hang Zhong
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Samuel Suntharalingham
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Vetiska
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Ruilin Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Anuroopa Dinesh
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
| | - Kai Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Edward L Y Chen
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeroen Bisschop
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fiona Farnhammer
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ann Mansur
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Luca Regli
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Karl Schaller
- Department of Neurosurgery, University of Geneva Medical Center & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl Frei
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Troy Ketela
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Paul Kongkham
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters-Hamilton Centre for Neuro-Oncology Research, University Health Network, Toronto, Ontario, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Taufik Valiante
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Division of Clinical and Computational Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering and Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter B Dirks
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Departments of Surgery and Molecular Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Hartland W Jackson
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gary D Bader
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Ivan Radovanovic
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Alshammari MA, Alshehri AO, Alqahtani F, Khan MR, Bakhrebah MA, Alasmari F, Alshammari TK, Alsharari SD. Increased Permeability of the Blood-Brain Barrier in a Diabetic Mouse Model ( Leprdb/db Mice). Int J Mol Sci 2024; 25:7768. [PMID: 39063010 PMCID: PMC11276738 DOI: 10.3390/ijms25147768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is linked to multiple complications, including cognitive impairment, and the prevalence of memory-related neurodegenerative diseases is higher in T2DM patients. One possible theory is the alteration of the microvascular and macrovascular environment of the blood-brain barrier (BBB). In this study, we employed different approaches, including RT-PCR, functional pharmacokinetic studies using sodium fluorescein (NaFL), and confocal microscopy, to characterize the functional and molecular integrity of the BBB in a T2DM animal model, leptin receptor-deficient mutant mice (Leprdb/db mice). As a result, VCAM-1, ICAM-1, MMP-9, and S100b (BBB-related markers) dysregulation was observed in the Leprdb/db animal model compared to littermate wild-type mice. The brain concentration of sodium fluorescein (NaFL) increased significantly in Leprdb/db untreated mice compared to insulin-treated mice. Therefore, the permeability of NaFL was higher in Leprdb/db control mice than in all remaining groups. Identifying the factors that increase the BBB in Leprdb/db mice will provide a better understanding of the BBB microvasculature and present previously undescribed findings of T2DM-related brain illnesses, filling knowledge gaps in this emerging field of research.
Collapse
Affiliation(s)
- Musaad A. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| | - Abdulaziz O. Alshehri
- Department of Pharmacology and Toxicology (Graduate Student), Pharmacy College, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| | - Mohammad R. Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| | - Muhammed A. Bakhrebah
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia;
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| | - Tahani K. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| | - Shakir D. Alsharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| |
Collapse
|
7
|
Hamblin MH, Boese AC, Murad R, Lee JP. MMP-3 Knockout Induces Global Transcriptional Changes and Reduces Cerebral Infarction in Both Male and Female Models of Ischemic Stroke. Int J Mol Sci 2024; 25:7383. [PMID: 39000490 PMCID: PMC11242542 DOI: 10.3390/ijms25137383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Ischemic stroke followed by reperfusion (IR) leads to extensive cerebrovascular injury characterized by neuroinflammation and brain cell death. Inhibition of matrix metalloproteinase-3 (MMP-3) emerges as a promising therapeutic approach to mitigate IR-induced stroke injury. We employed middle cerebral artery occlusion with subsequent reperfusion (MCAO/R) to model ischemic stroke in adult mice. Specifically, we investigated the impact of MMP-3 knockout (KO) on stroke pathophysiology using RNA sequencing (RNA-seq) of stroke brains harvested 48 h post-MCAO. MMP-3 KO significantly reduced brain infarct size following stroke. Notably, RNA-seq analysis showed that MMP-3 KO altered expression of 333 genes (252 downregulated) in male stroke brains and 3768 genes (889 downregulated) in female stroke brains. Functional pathway analysis revealed that inflammation, integrin cell surface signaling, endothelial- and epithelial-mesenchymal transition (EndMT/EMT), and apoptosis gene signatures were decreased in MMP-3 KO stroke brains. Intriguingly, MMP-3 KO downregulated gene signatures more profoundly in females than in males, as indicated by greater negative enrichment scores. Our study underscores MMP-3 inhibition as a promising therapeutic strategy, impacting multiple cellular pathways following stroke.
Collapse
Affiliation(s)
- Milton H. Hamblin
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
- Health Sciences Center, Tulane University, New Orleans, LA 70112, USA
| | - Austin C. Boese
- School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Rabi Murad
- Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Jean-Pyo Lee
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Sadakata M, Fujii K, Kaneko R, Hosoya E, Sugimoto H, Kawabata-Iwakawa R, Kasamatsu T, Hongo S, Koshidaka Y, Takase A, Iijima T, Takao K, Sadakata T. Maternal immunoglobulin G affects brain development of mouse offspring. J Neuroinflammation 2024; 21:114. [PMID: 38698428 PMCID: PMC11064405 DOI: 10.1186/s12974-024-03100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/14/2024] [Indexed: 05/05/2024] Open
Abstract
Maternal immunoglobulin (Ig)G is present in breast milk and has been shown to contribute to the development of the immune system in infants. In contrast, maternal IgG has no known effect on early childhood brain development. We found maternal IgG immunoreactivity in microglia, which are resident macrophages of the central nervous system of the pup brain, peaking at postnatal one week. Strong IgG immunoreactivity was observed in microglia in the corpus callosum and cerebellar white matter. IgG stimulation of primary cultured microglia activated the type I interferon feedback loop by Syk. Analysis of neonatal Fc receptor knockout (FcRn KO) mice that could not take up IgG from their mothers revealed abnormalities in the proliferation and/or survival of microglia, oligodendrocytes, and some types of interneurons. Moreover, FcRn KO mice also exhibited abnormalities in social behavior and lower locomotor activity in their home cages. Thus, changes in the mother-derived IgG levels affect brain development in offsprings.
Collapse
Affiliation(s)
- Mizuki Sadakata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
| | - Kazuki Fujii
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Ryosuke Kaneko
- Medical Genetics Research Center, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Emi Hosoya
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hisako Sugimoto
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Tetsuhiro Kasamatsu
- Department of Medical Technology and Clinical Engineering, Gunma University of Health and Walfare, Maebashi, Gunma, 371-0823, Japan
| | - Shoko Hongo
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Yumie Koshidaka
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Akinori Takase
- Medical Science College Office, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Takatoshi Iijima
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Tetsushi Sadakata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
9
|
Weatherall M. Hans Krebs and neurology. Lancet Neurol 2024; 23:340. [PMID: 38508833 DOI: 10.1016/s1474-4422(24)00091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
|
10
|
Aburto MR, Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol 2024; 21:222-247. [PMID: 38355758 DOI: 10.1038/s41575-023-00890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Crosstalk between gut and brain has long been appreciated in health and disease, and the gut microbiota is a key player in communication between these two distant organs. Yet, the mechanisms through which the microbiota influences development and function of the gut-brain axis remain largely unknown. Barriers present in the gut and brain are specialized cellular interfaces that maintain strict homeostasis of different compartments across this axis. These barriers include the gut epithelial barrier, the blood-brain barrier and the blood-cerebrospinal fluid barrier. Barriers are ideally positioned to receive and communicate gut microbial signals constituting a gateway for gut-microbiota-brain communication. In this Review, we focus on how modulation of these barriers by the gut microbiota can constitute an important channel of communication across the gut-brain axis. Moreover, barrier malfunction upon alterations in gut microbial composition could form the basis of various conditions, including often comorbid neurological and gastrointestinal disorders. Thus, we should focus on unravelling the molecular and cellular basis of this communication and move from simplistic framing as 'leaky gut'. A mechanistic understanding of gut microbiota modulation of barriers, especially during critical windows of development, could be key to understanding the aetiology of gastrointestinal and neurological disorders.
Collapse
Affiliation(s)
- María R Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Ryckman AE, Deschenes NM, Quinville BM, Osmon KJ, Mitchell M, Chen Z, Gray SJ, Walia JS. Intrathecal delivery of a bicistronic AAV9 vector expressing β-hexosaminidase A corrects Sandhoff disease in a murine model: A dosage study. Mol Ther Methods Clin Dev 2024; 32:101168. [PMID: 38205442 PMCID: PMC10777117 DOI: 10.1016/j.omtm.2023.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
The pathological accumulation of GM2 ganglioside associated with Tay-Sachs disease (TSD) and Sandhoff disease (SD) occurs in individuals who possess mutant forms of the heterodimer β-hexosaminidase A (Hex A) because of mutation of the HEXA and HEXB genes, respectively. With a lack of approved therapies, patients experience rapid neurological decline resulting in early death. A novel bicistronic vector carrying both HEXA and HEXB previously demonstrated promising results in mouse models of SD following neonatal intravenous administration, including significant reduction in GM2 accumulation, increased levels of Hex A, and a 2-fold extension of survival. The aim of the present study was to identify an optimal dose of the bicistronic vector in 6-week-old SD mice by an intrathecal route of administration along with transient immunosuppression, to inform possible clinical translation. Three doses of the bicistronic vector were tested: 2.5e11, 1.25e11, and 0.625e11 vector genomes per mouse. The highest dose provided the greatest increase in biochemical and behavioral parameters, such that treated mice lived to a median age of 56 weeks (>3 times the lifespan of the SD controls). These results have direct implications in deciding a human equivalent dose for TSD/SD and have informed the approval of a clinical trial application (NCT04798235).
Collapse
Affiliation(s)
- Alex E. Ryckman
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Natalie M. Deschenes
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Brianna M. Quinville
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Karlaina J.L. Osmon
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Melissa Mitchell
- Medical Genetics/Departments of Pediatrics, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Zhilin Chen
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Steven J. Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jagdeep S. Walia
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
- Medical Genetics/Departments of Pediatrics, Queen’s University, Kingston, ON K7L 2V7, Canada
| |
Collapse
|
12
|
Acharya P, Shrestha S, Joshi P, Choi NY, Lekkala VKR, Kang SY, Ni G, Lee MY. Dynamic culture of cerebral organoids using a pillar/perfusion plate for the assessment of developmental neurotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584506. [PMID: 38559002 PMCID: PMC10979904 DOI: 10.1101/2024.03.11.584506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Despite the potential toxicity of commercial chemicals to the development of the nervous system (known as developmental neurotoxicity or DNT), conventional in vitro cell models have primarily been employed for the assessment of acute neuronal toxicity. On the other hand, animal models used for the assessment of DNT are not physiologically relevant due to the heterogenic difference between humans and animals. In addition, animal models are low-throughput, time-consuming, expensive, and ethically questionable. Recently, human brain organoids have emerged as a promising alternative to assess the detrimental effects of chemicals on the developing brain. However, conventional organoid culture systems have several technical limitations including low throughput, lack of reproducibility, insufficient maturity of organoids, and the formation of the necrotic core due to limited diffusion of nutrients and oxygen. To address these issues and establish predictive DNT models, cerebral organoids were differentiated in a dynamic condition in a unique pillar/perfusion plate, which were exposed to test compounds to evaluate DNT potential. The pillar/perfusion plate facilitated uniform, dynamic culture of cerebral organoids with improved proliferation and maturity by rapid, bidirectional flow generated on a digital rocker. Day 9 cerebral organoids in the pillar/perfusion plate were exposed to ascorbic acid (DNT negative) and methylmercury (DNT positive) in a dynamic condition for 1 and 3 weeks, and changes in organoid morphology and neural gene expression were measured to determine DNT potential. As expected, ascorbic acid didn't induce any changes in organoid morphology and neural gene expression. However, exposure of day 9 cerebral organoids to methylmercury resulted in significant changes in organoid morphology and neural gene expression. Interestingly, methylmercury did not induce adverse changes in cerebral organoids in a static condition, thus highlighting the importance of dynamic organoid culture in DNT assessment.
Collapse
Affiliation(s)
- Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | | | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | | | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Gabriel Ni
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
- Bioprinting Laboratories Inc., Dallas, Texas
| |
Collapse
|
13
|
Badaut J, Ghersi-Egea JF, Thorne RG, Konsman JP. Blood-brain borders: a proposal to address limitations of historical blood-brain barrier terminology. Fluids Barriers CNS 2024; 21:3. [PMID: 38183042 PMCID: PMC10770911 DOI: 10.1186/s12987-023-00478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/11/2023] [Indexed: 01/07/2024] Open
Abstract
Many neuroscientists use the term Blood-Brain Barrier (BBB) to emphasize restrictiveness, often equating or reducing the notion of BBB properties to tight junction molecules physically sealing cerebral endothelial cells, rather than pointing out the complexity of this biological interface with respect to its selectivity and variety of exchange between the general blood circulation and the central nervous tissue. Several authors in the field find it unfortunate that the exquisitely dynamic interfaces between blood and brain continue to be viewed primarily as obstructive barriers to transport. Although the term blood-brain interface is an excellent descriptor that does not convey the idea of a barrier, it is important and preferable for the spreading of an idea beyond specialist communities to try to appeal to well-chosen metaphors. Recent evidence reviewed here indicates that blood-brain interfaces are more than selective semi-permeable membranes in that they display many dynamic processes and complex mechanisms for communication. They are thus more like 'geopolitical borders'. Furthermore, some authors working on blood-brain interface-relevant issues have started to use the word border, for example in border-associated macrophages. Therefore, we suggest adopting the term Blood-Brain Border to better communicate the flexibility of and movement across blood-brain interfaces.
Collapse
Affiliation(s)
- Jerome Badaut
- Brain Molecular Imaging Lab, UMR 5536, CNRS, RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
- Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Jean-François Ghersi-Egea
- FLUID Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR 5292, Lyon-1 University, Bron, France.
| | - Robert G Thorne
- Denali Therapeutics, Inc, 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
- Department of Pharmaceutics, University of Minnesota, 9-177 Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, MN, 55455, USA.
| | - Jan Pieter Konsman
- UMR 5164, CNRS, ImmunoConcEpT, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
| |
Collapse
|
14
|
Lund TC, Braunlin E, Polgreen LE, Gupta AO, Orchard PJ, Eisengart JB. Hurler Syndrome Glycosaminoglycans Decrease in Cerebrospinal Fluid without Brain-Targeted Therapy. Ann Neurol 2023; 94:1182-1186. [PMID: 37679306 PMCID: PMC11318530 DOI: 10.1002/ana.26786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Novel therapies for Hurler syndrome aim to cross the blood-brain barrier (BBB) to target neurodegeneration by degrading glycosaminoglycans (GAG). BBB penetration has been assumed with decreased cerebrospinal fluid (CSF) GAG, yet little is known about CSF GAG without brain-targeting therapies. We compared pre-transplant CSF GAG in patients who were treatment naïve (n = 19) versus receiving standard non-BBB penetrating enzyme replacement therapy (ERT, n = 12). In the ERT versus treatment naïve groups, CSF GAG was significantly lower across all content assayed, raising questions about using CSF GAG decrements to show BBB penetration. Future studies should compare GAG reduction in standard versus novel therapies. ANN NEUROL 2023;94:1182-1186.
Collapse
Affiliation(s)
- Troy C. Lund
- Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular TherapyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Elizabeth Braunlin
- Department of Pediatrics, Division of Pediatric CardiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lynda E. Polgreen
- The Lundquist Institute at Harbor‐UCLA Medical CenterTorranceCaliforniaUSA
| | - Ashish O. Gupta
- Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular TherapyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Paul J. Orchard
- Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular TherapyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Julie B. Eisengart
- Department of Pediatrics, Division of Clinical Behavioral NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
15
|
Tybirk L, Hviid CVB, Knudsen CS, Parkner T. Serum GFAP - pediatric reference interval in a cohort of Danish children. Clin Chem Lab Med 2023; 61:2041-2045. [PMID: 37195150 DOI: 10.1515/cclm-2023-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVES Glial fibrillary acidic protein (GFAP) in blood is an emerging biomarker of brain injury and neurological disease. Its clinical use in children is limited by the lack of a reference interval (RI). Thus, the aim of the present study was to establish an age-dependent continuous RI for serum GFAP in children. METHODS Excess serum from routine allergy testing of 391 children, 0.4-17.9 years of age, was measured by a single-molecule array (Simoa) assay. A continuous RI was modelled using non-parametric quantile regression and presented both graphically and tabulated as discrete one-year RIs based on point estimates from the model. RESULTS Serum GFAP showed a strong age-dependency with declining levels and variability from infants to adolescents. The estimated median level decreased 66 % from four months to five years of age and another 65 % from five years to 17.9 years of age. No gender difference was observed. CONCLUSIONS The study establishes an age-dependent RI for serum GFAP in children showing high levels and variability in the first years of life.
Collapse
Affiliation(s)
- Lea Tybirk
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Vinter Bødker Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Kim YC, Ahn JH, Jin H, Yang MJ, Hong SP, Yoon JH, Kim SH, Gebre TN, Lee HJ, Kim YM, Koh GY. Immaturity of immune cells around the dural venous sinuses contributes to viral meningoencephalitis in neonates. Sci Immunol 2023; 8:eadg6155. [PMID: 37801517 DOI: 10.1126/sciimmunol.adg6155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/24/2023] [Indexed: 10/08/2023]
Abstract
High neonatal susceptibility to meningitis has been attributed to the anatomical barriers that act to protect the central nervous system (CNS) from infection being immature and not fully developed. However, the mechanisms by which pathogens breach CNS barriers are poorly understood. Using the Armstrong strain of lymphocytic choriomeningitis virus (LCMV) to study virus propagation into the CNS during systemic infection, we demonstrate that mortality in neonatal, but not adult, mice is high after infection. Virus propagated extensively from the perivenous sinus region of the dura mater to the leptomeninges, choroid plexus, and cerebral cortex. Although the structural barrier of CNS border tissues is comparable between neonates and adults, immunofluorescence staining and single-cell RNA sequencing analyses revealed that the neonatal dural immune cells are immature and predominantly composed of CD206hi macrophages, with major histocompatibility complex class II (MHCII)hi macrophages being rare. In adults, however, perivenous sinus immune cells were enriched in MHCIIhi macrophages that are specialized for producing antiviral molecules and chemokines compared with CD206hi macrophages and protected the CNS against systemic virus invasion. Our findings clarify how systemic pathogens enter the CNS through its border tissues and how the immune barrier at the perivenous sinus region of the dura blocks pathogen access to the CNS.
Collapse
Affiliation(s)
- Young-Chan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ji Hoon Ahn
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hokyung Jin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Myung Jin Yang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jin-Hui Yoon
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Sang-Hoon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tirhas Niguse Gebre
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyuek Jong Lee
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - You-Me Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
17
|
Tincu (Iurciuc) CE, Andrițoiu CV, Popa M, Ochiuz L. Recent Advancements and Strategies for Overcoming the Blood-Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma. Polymers (Basel) 2023; 15:3969. [PMID: 37836018 PMCID: PMC10575401 DOI: 10.3390/polym15193969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant tumor, and the most prevalent primary malignant tumor affecting the brain and central nervous system. Recent research indicates that the genetic profile of GBM makes it resistant to drugs and radiation. However, the main obstacle in treating GBM is transporting drugs through the blood-brain barrier (BBB). Albumin is a versatile biomaterial for the synthesis of nanoparticles. The efficiency of albumin-based delivery systems is determined by their ability to improve tumor targeting and accumulation. In this review, we will discuss the prevalence of human glioblastoma and the currently adopted treatment, as well as the structure and some essential functions of the BBB, to transport drugs through this barrier. We will also mention some aspects related to the blood-tumor brain barrier (BTBB) that lead to poor treatment efficacy. The properties and structure of serum albumin were highlighted, such as its role in targeting brain tumors, as well as the progress made until now regarding the techniques for obtaining albumin nanoparticles and their functionalization, in order to overcome the BBB and treat cancer, especially human glioblastoma. The albumin drug delivery nanosystems mentioned in this paper have improved properties and can overcome the BBB to target brain tumors.
Collapse
Affiliation(s)
- Camelia-Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Apitherapy Medical Center, Balanesti, Nr. 336-337, 217036 Gorj, Romania;
- Specialization of Nutrition and Dietetics, Faculty of Pharmacy, Vasile Goldis Western University of Arad, Liviu Rebreanu Street, 86, 310045 Arad, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| |
Collapse
|
18
|
Sánchez-Dengra B, Alfonso M, González-Álvarez I, Bermejo M, González-Álvarez M, Martínez-Máñez R. Intranasal administration of molecular-gated mesoporous nanoparticles to increase ponatinib delivery to the brain. Nanomedicine (Lond) 2023; 18:1799-1813. [PMID: 37990994 DOI: 10.2217/nnm-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Background: Glioblastoma is the most common and lethal brain cancer. New treatments are needed. However, the presence of the blood-brain barrier is limiting the development of new treatments directed toward the brain, as it restricts the access and distribution of drugs to the CNS. Materials & methods: In this work, two different nanoparticles (i.e., mesoporous silica nanoparticles and magnetic mesoporous silica nanoparticles) loaded with ponatinib were prepared. Results & conclusion: Both particles were characterized and tested in vitro and in vivo, proving that they are not toxic for blood-brain barrier cells and they increase the amount of drug reaching the brain when administered intranasally in comparison with the results obtained for the free drug.
Collapse
Affiliation(s)
- Bárbara Sánchez-Dengra
- Engineering: Pharmacokinetics & Pharmaceutical Technology Area, Miguel Hernandez University, San Juan Alicante, 03550, Spain
| | - María Alfonso
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Isabel González-Álvarez
- Engineering: Pharmacokinetics & Pharmaceutical Technology Area, Miguel Hernandez University, San Juan Alicante, 03550, Spain
| | - Marival Bermejo
- Engineering: Pharmacokinetics & Pharmaceutical Technology Area, Miguel Hernandez University, San Juan Alicante, 03550, Spain
| | - Marta González-Álvarez
- Engineering: Pharmacokinetics & Pharmaceutical Technology Area, Miguel Hernandez University, San Juan Alicante, 03550, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, Valencia, 46022, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, València, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, 46012, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, València, 46026, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| |
Collapse
|
19
|
Potokar M, Zorec R, Jorgačevski J. Astrocytes Are a Key Target for Neurotropic Viral Infection. Cells 2023; 12:2307. [PMID: 37759529 PMCID: PMC10528686 DOI: 10.3390/cells12182307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes are increasingly recognized as important viral host cells in the central nervous system. These cells can produce relatively high quantities of new virions. In part, this can be attributed to the characteristics of astrocyte metabolism and its abundant and dynamic cytoskeleton network. Astrocytes are anatomically localized adjacent to interfaces between blood capillaries and brain parenchyma and between blood capillaries and brain ventricles. Moreover, astrocytes exhibit a larger membrane interface with the extracellular space than neurons. These properties, together with the expression of various and numerous viral entry receptors, a relatively high rate of endocytosis, and morphological plasticity of intracellular organelles, render astrocytes important target cells in neurotropic infections. In this review, we describe factors that mediate the high susceptibility of astrocytes to viral infection and replication, including the anatomic localization of astrocytes, morphology, expression of viral entry receptors, and various forms of autophagy.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Yan L, Dwiggins CW, Gupta U, Stroka KM. A Rapid-Patterning 3D Vessel-on-Chip for Imaging and Quantitatively Analyzing Cell-Cell Junction Phenotypes. Bioengineering (Basel) 2023; 10:1080. [PMID: 37760182 PMCID: PMC10525190 DOI: 10.3390/bioengineering10091080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The blood-brain barrier (BBB) is a dynamic interface that regulates the molecular exchanges between the brain and peripheral blood. The permeability of the BBB is primarily regulated by the junction proteins on the brain endothelial cells. In vitro BBB models have shown great potential for the investigation of the mechanisms of physiological function, pathologies, and drug delivery in the brain. However, few studies have demonstrated the ability to monitor and evaluate the barrier integrity by quantitatively analyzing the junction presentation in 3D microvessels. This study aimed to fabricate a simple vessel-on-chip, which allows for a rigorous quantitative investigation of junction presentation in 3D microvessels. To this end, we developed a rapid protocol that creates 3D microvessels with polydimethylsiloxane and microneedles. We established a simple vessel-on-chip model lined with human iPSC-derived brain microvascular endothelial-like cells (iBMEC-like cells). The 3D image of the vessel structure can then be "unwrapped" and converted to 2D images for quantitative analysis of cell-cell junction phenotypes. Our findings revealed that 3D cylindrical structures altered the phenotype of tight junction proteins, along with the morphology of cells. Additionally, the cell-cell junction integrity in our 3D models was disrupted by the tumor necrosis factor α. This work presents a "quick and easy" 3D vessel-on-chip model and analysis pipeline, together allowing for the capability of screening and evaluating the cell-cell junction integrity of endothelial cells under various microenvironment conditions and treatments.
Collapse
Affiliation(s)
- Li Yan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.W.D.); (U.G.)
| | - Cole W. Dwiggins
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.W.D.); (U.G.)
| | - Udit Gupta
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.W.D.); (U.G.)
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.W.D.); (U.G.)
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
21
|
Zhou R, Li J, Wang R, Chen Z, Zhou F. The neurovascular unit in healthy and injured spinal cord. J Cereb Blood Flow Metab 2023; 43:1437-1455. [PMID: 37190756 PMCID: PMC10414016 DOI: 10.1177/0271678x231172008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
The neurovascular unit (NVU) reflects the close temporal and spatial link between neurons and blood vessels. However, the understanding of the NVU in the spinal cord is far from clear and largely based on generalized knowledge obtained from the brain. Herein, we review the present knowledge of the NVU and highlight candidate approaches to investigate the NVU, particularly focusing on the spinal cord. Several unique features maintain the highly regulated microenvironment in the NVU. Autoregulation and neurovascular coupling ensure regional blood flow meets the metabolic demand according to the blood supply or local neural activation. The blood-central nervous system barrier partitions the circulating blood from neural parenchyma and facilitates the selective exchange of substances. Furthermore, we discuss spinal cord injury (SCI) as a common injury from the perspective of NVU dysfunction. Hopefully, this review will help expand the understanding of the NVU in the spinal cord and inspire new insights into SCI.
Collapse
Affiliation(s)
- Rubing Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junzhao Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zhengyang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
22
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
23
|
Martins C, Sarmento B. Multi-ligand functionalized blood-to-tumor sequential targeting strategies in the field of glioblastoma nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1893. [PMID: 37186374 DOI: 10.1002/wnan.1893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 05/17/2023]
Abstract
Glioblastoma (GBM) is an unmet clinical need characterized by a standard of care (SOC) 5-year survival rate of only 5%, and a treatment mostly palliative. Significant hurdles in GBM therapies include an effective penetration of therapeutics through the brain protective barrier, namely the blood-brain barrier (BBB), and a successful therapeutic delivery to brain-invading tumor cells post-BBB crossing. These hurdles, along with the poor prognosis and critical heterogeneity of the disease, have shifted attention to treatment modalities with capacity to precisely and sequentially target (i) BBB cells, inducing blood-to-brain transport, and (ii) GBM cells, leading to a higher therapeutic accumulation at the tumor site. This sequential targeting allows therapeutic molecules to reach the brain parenchyma and compromise molecular processes that support tumor cell invasion. Besides improving formulation and pharmacokinetics constraints of drugs, nanomedicines offer the possibility of being surface functionalized with multiple possibilities of targeting ligands, while delivering the desired therapeutic cargos to the biological sites of interest. Targeting ligands exploit the site-specific expression or overexpression of specific molecules on BBB and GBM cells, triggering brain plus tumor transport. Since the efficacy of single-ligand functionalized nanomedicines is limited due to the GBM anatomical site (brain) and disease complexity, this review presents an overview of multi-ligand functionalized, BBB and GBM sequentially- and dual-targeted nanomedicines reported in literature over the last 10 years. The role of the BBB in GBM progression, treatment options, and the multiple possibilities of currently available targeting ligands will be summarized. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Cláudia Martins
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- IUCS-CESPU, Gandra, Portugal
| |
Collapse
|
24
|
Ortenlöf N, Vallius S, Karlsson H, Ekström C, Kristiansson A, Holmqvist B, Göransson O, Vaváková M, Rydén M, Carey G, Barton N, Ley D, Gram M. Characterization of choroid plexus in the preterm rabbit pup following subcutaneous administration of recombinant human IGF-1/IGFBP-3. Fluids Barriers CNS 2023; 20:59. [PMID: 37582792 PMCID: PMC10426218 DOI: 10.1186/s12987-023-00460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is essential for normal brain development and regulates essential processes of vascular maturation and stabilization. Importantly, preterm birth is associated with reduced serum levels of IGF-1 as compared to in utero levels. Using a preterm rabbit pup model, we investigated the uptake of systemic recombinant human (rh) IGF-1 in complex with its main binding protein IGF-binding protein 3 (BP-3) to the brain parenchyma via the choroid plexus. Five hours after subcutaneous administration, labeled rhIGF-1/rhIGFBP-3 displayed a widespread presence in the choroid plexus of the lateral and third ventricle, however, to a less degree in the fourth, as well as in the perivascular and subarachnoid space. We found a time-dependent uptake of IGF-1 in cerebrospinal fluid, decreasing with postnatal age, and a translocation of IGF-1 through the choroid plexus. The impact of systemic rhIGF-1/rhIGFBP-3 on IGF-1 receptor activation in the choroid plexus decreased with postnatal age, correlating with IGF-1 uptake in cerebrospinal fluid. In addition, choroid plexus gene expression was observed to increase with postnatal age. Moreover, using choroid plexus in vitro cell cultures, gene expression and protein synthesis were further investigated upon rhIGF-1/rhIGFBP-3 stimulation as compared to rhIGF-1 alone, and found not to be differently altered. Here, we characterize the uptake of systemic rhIGF-1/rhIGFBP-3 to the preterm brain, and show that the interaction between systemic rhIGF-1/rhIGFBP-3 and choroid plexus varies over time.
Collapse
Affiliation(s)
- Niklas Ortenlöf
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Suvi Vallius
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Helena Karlsson
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Claes Ekström
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Amanda Kristiansson
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | | | - Olga Göransson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Magdaléna Vaváková
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin Rydén
- Orthopaedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Norman Barton
- Oak Hill Bio, Scientific Advisory Board, Boston, MA, USA
| | - David Ley
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Magnus Gram
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
25
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Pradhan P, Mishra R, Panda SK, Panigrahi R, Senapati U, Sarangi R, Panigrahi K. Role of neonatal cerebrospinal fluid cytology in correlation to C-reactive protein, blood culture, risk factors and clinical outcomes in neonatal intensive care. J Family Med Prim Care 2023; 12:932-939. [PMID: 37448924 PMCID: PMC10336944 DOI: 10.4103/jfmpc.jfmpc_980_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 07/18/2023] Open
Abstract
Introduction The number of neonatal cerebrospinal fluid (CSF) samples sent from the neonatal intensive care unit (NICU) for cytologic examination is rising, warranting accurate analysis and interpretation of the same. This study was taken up to assess the usefulness of CSF cell count and cytology in NICU settings, as it can be used even in a resource-limited setting. Aim and Objective 1) To study the prevalence of cell count and cytologic changes in CSF from NICU and assess their usefulness in correlation to C-reactive protein, CSF neutrophil percentage, blood, CSF culture, and other biochemical parameters. 2) To correlate cell counts and cytology with age, period of gestation, presence, and absence of sepsis, seizures, intracranial hemorrhage, and their clinical follow-up. Materials and Methods A retrospective study was done on neonatal CSF samples submitted for cytology over one year (January-December 2016) in the Department of Pathology. CSF cell counts were retrieved, and cytosmears were reviewed for cellularity, cell type, proportion, and background and correlated with the biochemical, microbiological, and clinicoradiological findings. Results A total of 213 samples were included with 140 males and 73 females with an age range of 0-28 (mean: 7.3) days. The mean CSF cell count was 5.48/cu.mm (0-90 cells/cu.mm). The most frequent cytologic finding was occasional lymphocytes or acellular CSF (63.9%). The CSF leucocyte count and protein levels showed a significant correlation with s C-reactive protein. The CSF cytology showed a significant correlation between the age of the neonate and blood neutrophil percentage (P = 0.0158). History of intracranial hemorrhage showed a significantly higher frequency of the presence of red blood cells (P = 0.0147). Conclusion Accurate cell counts, cytology of neonatal CSF, and biochemical and microbiological workup can help diagnose and manage neonates in intensive care.
Collapse
Affiliation(s)
- Prita Pradhan
- Department of Pathology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, India
| | - Reshmi Mishra
- Department of Pediatrics, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, India
| | - Santosh Kumar Panda
- Department of Pediatrics, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, India
| | - Ranjita Panigrahi
- Department of Pathology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, India
| | - Urmila Senapati
- Department of Pathology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, India
| | - Rajlaxmi Sarangi
- Department of Biochemistry, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, India
| | - Kumudini Panigrahi
- Department of Microbiology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
27
|
Verkhratsky A, Pivoriūnas A. Astroglia support, regulate and reinforce brain barriers. Neurobiol Dis 2023; 179:106054. [PMID: 36842485 DOI: 10.1016/j.nbd.2023.106054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023] Open
Abstract
Nervous system is segregated from the body by the complex system of barriers. The CNS is protected by (i) the blood-brain and blood-spinal cord barrier between the intracerebral and intraspinal blood vessels and the brain parenchyma; (ii) the arachnoid blood-cerebrospinal fluid barrier; (iii) the blood-cerebrospinal barrier of circumventricular organs made by tanycytes and (iv) the choroid plexus blood-CSF barrier formed by choroid ependymocytes. In the peripheral nervous system the nerve-blood barrier is secured by tight junctions between specialised glial cells known as perineural cells. In the CNS astroglia contribute to all barriers through the glia limitans, which represent the parenchymal portion of the barrier system. Astroglia through secretion of various paracrine factors regulate the permeability of endothelial vascular barrier; in pathology damage or asthenia of astrocytes may compromise brain barriers integrity.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| |
Collapse
|
28
|
Adam R, Hüntelmann AC. Edwin Ellen Goldmann (1862-1913). J Neurol 2023; 270:2812-2814. [PMID: 36976327 PMCID: PMC10129987 DOI: 10.1007/s00415-023-11668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Affiliation(s)
- Rüdiger Adam
- University Children's Hospital, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Axel C Hüntelmann
- Institute for the History and Ethics of Medicine, Charité-University Medicine Berlin, Berlin, Germany
| |
Collapse
|
29
|
Wälchli T, Bisschop J, Carmeliet P, Zadeh G, Monnier PP, De Bock K, Radovanovic I. Shaping the brain vasculature in development and disease in the single-cell era. Nat Rev Neurosci 2023; 24:271-298. [PMID: 36941369 PMCID: PMC10026800 DOI: 10.1038/s41583-023-00684-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis - the formation of new blood vessels - is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the 'neurovascular link' defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada.
| | - Jeroen Bisschop
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
30
|
Löscher W. Is the antiparasitic drug ivermectin a suitable candidate for the treatment of epilepsy? Epilepsia 2023; 64:553-566. [PMID: 36645121 DOI: 10.1111/epi.17511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023]
Abstract
There are only a few drugs that can seriously lay claim to the title of "wonder drug," and ivermectin, the world's first endectocide and forerunner of a completely new class of antiparasitic agents, is among them. Ivermectin, a mixture of two macrolytic lactone derivatives (avermectin B1a and B1b in a ratio of 80:20), exerts its highly potent antiparasitic effect by activating the glutamate-gated chloride channel, which is absent in vertebrate species. However, in mammals, ivermectin activates several other Cys-loop receptors, including the inhibitory γ-aminobutyric acid type A and glycine receptors and the excitatory nicotinic acetylcholine receptor of brain neurons. Based on these effects on vertebrate receptors, ivermectin has recently been proposed to constitute a multifaceted wonder drug for various novel neurological indications, including alcohol use disorders, motor neuron diseases, and epilepsy. This review critically discusses the preclinical and clinical evidence of antiseizure effects of ivermectin and provides several arguments supporting that ivermectin is not a suitable candidate drug for the treatment of epilepsy. First, ivermectin penetrates the mammalian brain poorly, so it does not exert any pharmacological effects via mammalian ligand-gated ion channels in the brain unless it is used at high, potentially toxic doses or the blood-brain barrier is functionally impaired. Second, ivermectin is not selective but activates numerous inhibitory and excitatory receptors. Third, the preclinical evidence for antiseizure effects of ivermectin is equivocal, and at least in part, median effective doses in seizure models are in the range of the median lethal dose. Fourth, the only robust clinical evidence of antiseizure effects stems from the treatment of patients with onchocerciasis, in which the reduction of seizures is due to a reduction in microfilaria densities but not a direct antiseizure effect of ivermectin. We hope that this critical analysis of available data will avert the unjustified hype associated with the recent use of ivermectin to control COVID-19 from recurring in neurological diseases such as epilepsy.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
31
|
Yao D, Zhang R, Xie M, Ding F, Wang M, Wang W. Updated Understanding of the Glial-Vascular Unit in Central Nervous System Disorders. Neurosci Bull 2023; 39:503-518. [PMID: 36374471 PMCID: PMC10043098 DOI: 10.1007/s12264-022-00977-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
The concept of the glial-vascular unit (GVU) was raised recently to emphasize the close associations between brain cells and cerebral vessels, and their coordinated reactions to diverse neurological insults from a "glio-centric" view. GVU is a multicellular structure composed of glial cells, perivascular cells, and perivascular space. Each component is closely linked, collectively forming the GVU. The central roles of glial and perivascular cells and their multi-level interconnections in the GVU under normal conditions and in central nervous system (CNS) disorders have not been elucidated in detail. Here, we comprehensively review the intensive interactions between glial cells and perivascular cells in the niche of perivascular space, which take part in the modulation of cerebral blood flow and angiogenesis, formation of the blood-brain barrier, and clearance of neurotoxic wastes. Next, we discuss dysfunctions of the GVU in various neurological diseases, including ischemic stroke, spinal cord injury, Alzheimer's disease, and major depression disorder. In addition, we highlight the possible therapies targeting the GVU, which may have potential clinical applications.
Collapse
Affiliation(s)
- Di Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruoying Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengfei Ding
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
32
|
Hanael E, Baruch S, Chai O, Lishitsky L, Blum T, Rapoport K, Ruggeri M, Aizenberg Z, Peery D, Meyerhoff N, Volk HA, De Decker S, Tipold A, Baumgaertner W, Friedman A, Shamir M. Quantitative analysis of magnetic resonance images for characterization of blood-brain barrier dysfunction in dogs with brain tumors. J Vet Intern Med 2023; 37:606-617. [PMID: 36847997 DOI: 10.1111/jvim.16654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) permeability can be assessed quantitatively using advanced imaging analysis. HYPOTHESIS/OBJECTIVES Quantification and characterization of blood-brain barrier dysfunction (BBBD) patterns in dogs with brain tumors can provide useful information about tumor biology and assist in distinguishing between gliomas and meningiomas. ANIMALS Seventy-eight hospitalized dogs with brain tumors and 12 control dogs without brain tumors. METHODS In a 2-arm study, images from a prospective dynamic contrast-enhanced (DCE; n = 15) and a retrospective archived magnetic resonance imaging study (n = 63) were analyzed by DCE and subtraction enhancement analysis (SEA) to quantify BBB permeability in affected dogs relative to control dogs (n = 6 in each arm). For the SEA method, 2 ranges of postcontrast intensity differences, that is, high (HR) and low (LR), were evaluated as possible representations of 2 classes of BBB leakage. BBB score was calculated for each dog and was associated with clinical characteristics and tumor location and class. Permeability maps were generated, using the slope values (DCE) or intensity difference (SEA) of each voxel, and analyzed. RESULTS Distinctive patterns and distributions of BBBD were identified for intra- and extra-axial tumors. At a cutoff of 0.1, LR/HR BBB score ratio yielded a sensitivity of 80% and specificity of 100% in differentiating gliomas from meningiomas. CONCLUSIONS AND CLINICAL IMPORTANCE Blood-brain barrier dysfunction quantification using advanced imaging analyses has the potential to be used for assessment of brain tumor characteristics and behavior and, particularly, to help differentiating gliomas from meningiomas.
Collapse
Affiliation(s)
- Erez Hanael
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Shelly Baruch
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Orit Chai
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Liron Lishitsky
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Tal Blum
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Kira Rapoport
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Marco Ruggeri
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Zahi Aizenberg
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Dana Peery
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Nina Meyerhoff
- School of Veterinary Medicine Hannover, Small Animal Medicine and Surgery, Hannover, Germany
| | - Holger Andreas Volk
- School of Veterinary Medicine Hannover, Small Animal Medicine and Surgery, Hannover, Germany
| | - Steven De Decker
- Department of Clinical Sciences, Royal Veterinary College, University of London, Hertfordshire, UK
| | - Andrea Tipold
- School of Veterinary Medicine Hannover, Small Animal Medicine and Surgery, Hannover, Germany
| | - Wolfgang Baumgaertner
- School of Veterinary Medicine Hannover, Small Animal Medicine and Surgery, Hannover, Germany
| | - Alon Friedman
- Faculty of Medicine, Department of Medical Neuroscience Halifax, Dalhousie University, Nova Scotia, Canada.,Departments of Physiology and Cell Biology, Brain, and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Merav Shamir
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| |
Collapse
|
33
|
Gao K, Li J, Song H, Han H, Wang Y, Yin B, Farmer DL, Murthy N, Wang A. In utero delivery of mRNA to the heart, diaphragm and muscle with lipid nanoparticles. Bioact Mater 2023; 25:387-398. [PMID: 36844366 PMCID: PMC9950423 DOI: 10.1016/j.bioactmat.2023.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/26/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
Nanoparticle-based drug delivery systems have the potential to revolutionize medicine, but their low vascular permeability and rapid clearance by phagocytic cells have limited their medical impact. Nanoparticles delivered at the in utero stage can overcome these key limitations due to the high rate of angiogenesis and cell division in fetal tissue and the under-developed immune system. However, very little is known about nanoparticle drug delivery at the fetal stage of development. In this report, using Ai9 CRE reporter mice, we demonstrate that lipid nanoparticle (LNP) mRNA complexes can deliver mRNA in utero, and can access and transfect major organs, such as the heart, the liver, kidneys, lungs and the gastrointestinal tract with remarkable efficiency and low toxicity. In addition, at 4 weeks after birth, we demonstrate that 50.99 ± 5.05%, 36.62 ± 3.42% and 23.7 ± 3.21% of myofiber in the diaphragm, heart and skeletal muscle, respectively, were transfected. Finally, we show here that Cas9 mRNA and sgRNA complexed to LNPs were able to edit the fetal organs in utero. These experiments demonstrate the possibility of non-viral delivery of mRNA to organs outside of the liver in utero, which provides a promising strategy for treating a wide variety of devastating diseases before birth.
Collapse
Affiliation(s)
- Kewa Gao
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, 95817, United States,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Jie Li
- Department of Bioengineering, University of California, Berkeley, CA, 94704, United States
| | - Hengyue Song
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, 95817, United States,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States,Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Hunan, 410013, China
| | - Hesong Han
- Department of Bioengineering, University of California, Berkeley, CA, 94704, United States
| | - Yongheng Wang
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, 95817, United States,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States,Department of Biomedical Engineering, University of California, Davis, CA, 95616, United States
| | - Boyan Yin
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, 95817, United States,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, 95817, United States,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, CA, 94704, United States,Corresponding author. Department of Bioengineering, University of California, Berkeley, CA, 94704, United States.
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, 95817, United States,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States,Department of Biomedical Engineering, University of California, Davis, CA, 95616, United States,Corresponding author. Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, 95817, United States.
| |
Collapse
|
34
|
OmpA is involved in the invasion of duck brain microvascular endothelial cells by Riemerella anatipestifer. Vet Microbiol 2023; 280:109692. [PMID: 36863175 DOI: 10.1016/j.vetmic.2023.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 11/25/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Bacterial meningitis is a major cause of morbidity and mortality. Despite advances in antimicrobial chemotherapy, the disease remains detrimental to humans, livestock, and poultry. Riemerella anatipestifer is a gram-negative bacterium causing duckling serositis and meningitis. However, the virulence factors contributing to its binding and invasion of duck brain microvascular endothelial cells (DBMECs) and penetration of the blood-brain barrier (BBB) have never been reported. In this study, immortalized DBMECs were successfully generated and used as an in vitro-model of duck BBB. Furthermore, ompA gene deletion mutant of the pathogen and multiple complemented strains carrying the complete ompA gene and its truncated forms were constructed. Bacterial growth, invasion, and adhesion assays and animal experiments were performed. The results show that the OmpA protein of R. anatipestifer had no effect on bacterial growth and adhesion ability to DBMECs. The role of OmpA in the invasion of R. anatipestifer into DBMECs and duckling BBB was confirmed. The amino acids 230-242 of OmpA represents a key domain involved in R. anatipestifer invasion. In addition, another OmpA1164 protein constituted by the amino acids 102-488 within OmpA could function as a complete OmpA. The signal peptide sequence from amino acids 1-21 had no significant effect on OmpA functions. In conclusion, this study illustrated that OmpA is an important virulence factor mediating R. anatipestifer invasion of DBMECs and penetration of the duckling BBB.
Collapse
|
35
|
Bhasiin K, Heintz O, Colodner KJ. Optimization and Technical Considerations for the Dye-Exclusion Protocol Used to Assess Blood-Brain Barrier Integrity in Adult Drosophila melanogaster. Int J Mol Sci 2023; 24:ijms24031886. [PMID: 36768206 PMCID: PMC9916281 DOI: 10.3390/ijms24031886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
The blood-brain barrier (BBB) is a multicellular construct that regulates the diffusion and transport of metabolites, ions, toxins, and inflammatory mediators into and out of the central nervous system (CNS). Its integrity is essential for proper brain physiology, and its breakdown has been shown to contribute to neurological dysfunction. The BBB in vertebrates exists primarily through the coordination between endothelial cells, pericytes, and astrocytes, while invertebrates, which lack a vascularized circulatory system, typically have a barrier composed of glial cells that separate the CNS from humoral fluids. Notably, the invertebrate barrier is molecularly and functionally analogous to the vertebrate BBB, and the fruit fly, Drosophila melanogaster, is increasingly recognized as a useful model system in which to investigate barrier function. The most widely used technique to assess barrier function in the fly is the dye-exclusion assay, which involves monitoring the infiltration of a fluorescent-coupled dextran into the brain. In this study, we explore analytical and technical considerations of this procedure that yield a more reliable assessment of barrier function, and we validate our findings using a traumatic injury model. Together, we have identified parameters that optimize the dye-exclusion assay and provide an alternative framework for future studies examining barrier function in Drosophila.
Collapse
|
36
|
Grimm HP, Schumacher V, Schäfer M, Imhof-Jung S, Freskgård PO, Brady K, Hofmann C, Rüger P, Schlothauer T, Göpfert U, Hartl M, Rottach S, Zwick A, Seger S, Neff R, Niewoehner J, Janssen N. Delivery of the Brainshuttle™ amyloid-beta antibody fusion trontinemab to non-human primate brain and projected efficacious dose regimens in humans. MAbs 2023; 15:2261509. [PMID: 37823690 PMCID: PMC10572082 DOI: 10.1080/19420862.2023.2261509] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
There are few treatments that slow neurodegeneration in Alzheimer's disease (AD), and while therapeutic antibodies are being investigated in clinical trials for AD treatment, their access to the central nervous system is restricted by the blood-brain barrier. This study investigates a bispecific modular fusion protein composed of gantenerumab, a fully human monoclonal anti- amyloid-beta (Aβ) antibody under investigation for AD treatment, with a human transferrin receptor 1-directed Brainshuttle™ module (trontinemab; RG6102, INN trontinemab). In vitro, trontinemab showed a similar binding affinity to fibrillar Aβ40 and Aβ plaques in human AD brain sections to gantenerumab. A single intravenous administration of trontinemab (10 mg/kg) or gantenerumab (20 mg/kg) to non-human primates (NHPs, Macaca fascicularis), was well tolerated in both groups. Immunohistochemistry indicated increased trontinemab uptake into the brain endothelial cell layer and parenchyma, and more homogeneous distribution, compared with gantenerumab. Brain and plasma pharmacokinetic (PK) parameters for trontinemab were estimated by nonlinear mixed-effects modeling with correction for tissue residual blood, indicating a 4-18-fold increase in brain exposure. A previously developed clinical PK/pharmacodynamic model of gantenerumab was adapted to include a brain compartment as a driver of plaque removal and linked to the allometrically scaled above model from NHP. The new brain exposure-based model was used to predict trontinemab dosing regimens for effective amyloid reduction. Simulations from these models were used to inform dosing of trontinemab in the first-in-human clinical trial.
Collapse
Affiliation(s)
- Hans Peter Grimm
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Vanessa Schumacher
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Martin Schäfer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Sabine Imhof-Jung
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Per-Ola Freskgård
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Kevin Brady
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Carsten Hofmann
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Petra Rüger
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Tilman Schlothauer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Ulrich Göpfert
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Maximilian Hartl
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Sylvia Rottach
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Adrian Zwick
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Shanon Seger
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Rachel Neff
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Jens Niewoehner
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Niels Janssen
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
37
|
Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA. The choroid plexus: a missing link in our understanding of brain development and function. Physiol Rev 2023; 103:919-956. [PMID: 36173801 PMCID: PMC9678431 DOI: 10.1152/physrev.00060.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Studies of the choroid plexus lag behind those of the more widely known blood-brain barrier, despite a much longer history. This review has two overall aims. The first is to outline long-standing areas of research where there are unanswered questions, such as control of cerebrospinal fluid (CSF) secretion and blood flow. The second aim is to review research over the past 10 years where the focus has shifted to the idea that there are choroid plexuses located in each of the brain's ventricles that make specific contributions to brain development and function through molecules they generate for delivery via the CSF. These factors appear to be particularly important for aspects of normal brain growth. Most research carried out during the twentieth century dealt with the choroid plexus, a brain barrier interface making critical contributions to the composition and stability of the brain's internal environment throughout life. More recent research in the twenty-first century has shown the importance of choroid plexus-generated CSF in neurogenesis, influence of sex and other hormones on choroid plexus function, and choroid plexus involvement in circadian rhythms and sleep. The advancement of technologies to facilitate delivery of brain-specific therapies via the CSF to treat neurological disorders is a rapidly growing area of research. Conversely, understanding the basic mechanisms and implications of how maternal drug exposure during pregnancy impacts the developing brain represents another key area of research.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Neuroscience, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | | | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
38
|
Cai Y, Fan K, Lin J, Ma L, Li F. Advances in BBB on Chip and Application for Studying Reversible Opening of Blood-Brain Barrier by Sonoporation. MICROMACHINES 2022; 14:112. [PMID: 36677173 PMCID: PMC9861620 DOI: 10.3390/mi14010112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The complex structure of the blood-brain barrier (BBB), which blocks nearly all large biomolecules, hinders drug delivery to the brain and drug assessment, thus decelerating drug development. Conventional in vitro models of BBB cannot mimic some crucial features of BBB in vivo including a shear stress environment and the interaction between different types of cells. There is a great demand for a new in vitro platform of BBB that can be used for drug delivery studies. Compared with in vivo models, an in vitro platform has the merits of low cost, shorter test period, and simplicity of operation. Microfluidic technology and microfabrication are good tools in rebuilding the BBB in vitro. During the past decade, great efforts have been made to improve BBB penetration for drug delivery using biochemical or physical stimuli. In particular, compared with other drug delivery strategies, sonoporation is more attractive due to its minimized systemic exposure, high efficiency, controllability, and reversible manner. BBB on chips (BOC) holds great promise when combined with sonoporation. More details and mechanisms such as trans-endothelial electrical resistance (TEER) measurements and dynamic opening of tight junctions can be figured out when using sonoporation stimulating BOC, which will be of great benefit for drug development. Herein, we discuss the recent advances in BOC and sonoporation for BBB disruption with this in vitro platform.
Collapse
Affiliation(s)
- Yicong Cai
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518107, China
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Kexin Fan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiawei Lin
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518107, China
| | - Lin Ma
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fenfang Li
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518107, China
| |
Collapse
|
39
|
El Atat O, Naser R, Abdelkhalek M, Habib RA, El Sibai M. Molecular targeted therapy: A new avenue in glioblastoma treatment. Oncol Lett 2022; 25:46. [PMID: 36644133 PMCID: PMC9811647 DOI: 10.3892/ol.2022.13632] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma, also referred to as glioblastoma multiforme (GBM), is grade IV astrocytoma characterized by being fast-growing and the most aggressive brain tumor. In adults, it is the most prevalent type of malignant brain tumor. Despite the advancements in both diagnosis tools and therapeutic treatments, GBM is still associated with poor survival rate without any statistically significant improvement in the past three decades. Patient's genome signature is one of the key factors causing the development of this tumor, in addition to previous radiation exposure and other environmental factors. Researchers have identified genomic and subsequent molecular alterations affecting core pathways that trigger the malignant phenotype of this tumor. Targeting intrinsically altered molecules and pathways is seen as a novel avenue in GBM treatment. The present review shed light on signaling pathways and intrinsically altered molecules implicated in GBM development. It discussed the main challenges impeding successful GBM treatment, such as the blood brain barrier and tumor microenvironment (TME), the plasticity and heterogeneity of both GBM and TME and the glioblastoma stem cells. The present review also presented current advancements in GBM molecular targeted therapy in clinical trials. Profound and comprehensive understanding of molecular participants opens doors for innovative, more targeted and personalized GBM therapeutic modalities.
Collapse
Affiliation(s)
- Oula El Atat
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Rayan Naser
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Maya Abdelkhalek
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Ralph Abi Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon,Correspondence to: Professor Mirvat El Sibai, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Koraytem Street, Beirut 1102 2801, Lebanon, E-mail:
| |
Collapse
|
40
|
Qiu F, Huang Y, Saunders NR, Habgood MD, Dziegielewska KM. Age dependent contribution of entry via the CSF to the overall brain entry of small and large hydrophilic markers. Fluids Barriers CNS 2022; 19:90. [PMCID: PMC9661750 DOI: 10.1186/s12987-022-00387-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Apparent permeability of the blood brain barrier to hydrophilic markers has been shown to be higher in the developing brain. Apart from synthesis in situ, any substance detected in the brain parenchyma can originate from two sources: directly through blood vessels of brain vasculature and/or indirectly by entry from the cerebrospinal fluid (CSF) after transfer across the choroid plexuses. The relative quantitative contribution of these two routes to the overall brain entry remains unclear.
Methods
In rats at embryonic day 16, 19 and postnatal day 4 and young adults, a small (sucrose, mw. 342 Da) or a large (dextran, mw. 70 kDa) radiolabelled hydrophilic marker was injected intravenously for very short periods of time (30 s to 5 min) before collection of plasma, cerebrospinal fluid (CSF) and brain samples. Results are presented as concentration ratios between radioactivity measured in CSF or brain and that in plasma (%).
Results
The dextran brain/plasma ratio five minutes post injection was similar (2–4%) from E16 to adulthood whereas the sucrose brain/plasma ratio was significantly higher in fetal brains, but was comparable to dextran values in the adult. Sucrose CSF/plasma ratios were also significantly higher in fetal animals and decreased with age. In very short experiments involving fetal animals, entry of sucrose into the CSF after only 30 s was similar to that of dextran and both markers showed similar brain/plasma ratios.
Conclusions
In the developing brain the apparent higher brain entry of a small hydrophilic marker such as sucrose can be attributed to its higher entry into the CSF and subsequent diffusion into the brain. By contrast, movement of a larger marker like 70 kDa dextran is restricted firstly by choroid plexus epithelial tight junctions and secondly by specialised junctions in the neuroependymal interface between the CSF and brain. Brain/plasma ratios of 70 kDa dextran were similar in fetal and adult rats. Therefore 70 kDa dextran should be considered an appropriate marker if brain residual vascular space is to be measured, especially in younger animals.
Collapse
|
41
|
Ineichen BV, Okar SV, Proulx ST, Engelhardt B, Lassmann H, Reich DS. Perivascular spaces and their role in neuroinflammation. Neuron 2022; 110:3566-3581. [PMID: 36327898 PMCID: PMC9905791 DOI: 10.1016/j.neuron.2022.10.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/17/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
Abstract
It is uncontested that perivascular spaces play critical roles in maintaining homeostasis and priming neuroinflammation. However, despite more than a century of intense research on perivascular spaces, many open questions remain about the anatomical compartment surrounding blood vessels within the CNS. The goal of this comprehensive review is to summarize the literature on perivascular spaces in human neuroinflammation and associated animal disease models. We describe the cell types taking part in the morphological and functional aspects of perivascular spaces and how those spaces can be visualized. Based on this, we propose a model of the cascade of events occurring during neuroinflammatory pathology. We also discuss current knowledge gaps and limitations of the available evidence. An improved understanding of perivascular spaces could advance our comprehension of the pathophysiology of neuroinflammation and open a new therapeutic window for neuroinflammatory diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Benjamin V Ineichen
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Center for Reproducible Science, University of Zurich, Zurich, Switzerland.
| | - Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Bell KS, O’Shaughnessy KL. The development and function of the brain barriers - an overlooked consideration for chemical toxicity. FRONTIERS IN TOXICOLOGY 2022; 4:1000212. [PMID: 36329715 PMCID: PMC9622783 DOI: 10.3389/ftox.2022.1000212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
It is well known that the adult brain is protected from some infections and toxic molecules by the blood-brain and the blood-cerebrospinal fluid barriers. Contrary to the immense data collected in other fields, it is deeply entrenched in environmental toxicology that xenobiotics easily permeate the developing brain because these barriers are either absent or non-functional in the fetus and newborn. Here we review the cellular and physiological makeup of the brain barrier systems in multiple species, and discuss decades of experiments that show they possess functionality during embryogenesis. We next present case studies of two chemical classes, perfluoroalkyl substances (PFAS) and bisphenols, and discuss their potential to bypass the brain barriers. While there is evidence to suggest these pollutants may enter the developing and/or adult brain parenchyma, many studies suffer from confounding technical variables which complicates data interpretation. In the future, a more formal consideration of brain barrier biology could not only improve understanding of chemical toxicokinetics but could assist in prioritizing environmental xenobiotics for their neurotoxicity risk.
Collapse
Affiliation(s)
- Kiersten S. Bell
- US Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States,Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Katherine L. O’Shaughnessy
- US Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States,*Correspondence: Katherine L. O’Shaughnessy,
| |
Collapse
|
43
|
Pearce JMS. The blood brain barrier and Lina Solomonovna Stern (Shtern). ADVANCES IN CLINICAL NEUROSCIENCE & REHABILITATION 2022. [DOI: 10.47795/evrj6805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The blood–brain barrier (BBB) regulates the transport of molecules between the central nervous system (CNS) and blood. It consists of two components: the vascular endothelial cells forming so–called tight junctions, and the blood–cerebrospinal fluid barrier. It plays an important role in the pathogenesis and in recovery from many cerebrospinal disorders. Paul Ehrlich was the first to observe in mice that intravenously injected acidic dyes stained the tissues of the body but not the brain. He deduced there was a barrier between systemic blood and nervous tissues. His pupil Lewandowsky visualised a capillary wall that blocked the entrance of certain molecules. And, Edwin Goldman injected trypan blue into the CSF and observed that the brain but no peripheral organs was stained — indicating the dye could not cross from CSF to the systemic bloodstream, but could leave the blood vessels of the choroid plexuses within the ventricles to enter the brain tissues. Experiments of the heroic Russian Lina Solomonova Stern (Shtern), persecuted by Stalin, formulated the rule that every substance contained in the blood must penetrate the cerebrospinal fluid before it can exercise its effects on the nerve elements; she named the blood–brain barrier: barrière hémato–encéphalique.
Collapse
|
44
|
Plá V, Bork P, Harnpramukkul A, Olveda G, Ladrón-de-Guevara A, Giannetto MJ, Hussain R, Wang W, Kelley DH, Hablitz LM, Nedergaard M. A real-time in vivo clearance assay for quantification of glymphatic efflux. Cell Rep 2022; 40:111320. [PMID: 36103828 DOI: 10.1016/j.celrep.2022.111320] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/05/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022] Open
Abstract
Glymphatic fluid transport eliminates metabolic waste from the brain including amyloid-β, yet the methodology for studying efflux remains rudimentary. Here, we develop a method to evaluate glymphatic real-time clearance. Efflux of Direct Blue 53 (DB53, also T-1824 or Evans Blue) injected into the striatum is quantified by imaging the DB53 signal in the vascular compartment, where it is retained due to its high affinity to albumin. The DB53 signal is detectable as early as 15 min after injection and the efflux kinetics are sharply reduced in mice lacking the water channel aquaporin 4 (AQP4). Pharmacokinetic modeling reveal that DB53 efflux is consistent with the existence of two efflux paths, one with fast kinetics (T1/2 = 50 min) and another with slow kinetics (T1/2 = 240 min), in wild-type mice. This in vivo methodology will aid in defining the physiological variables that drive efflux, as well as the impact of brain states or disorders on clearance kinetics.
Collapse
Affiliation(s)
- Virginia Plá
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Peter Bork
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Aurakoch Harnpramukkul
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Genaro Olveda
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Antonio Ladrón-de-Guevara
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael J Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wei Wang
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Douglas H Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
45
|
González-Martín-Moro J. Trypan blue: A tale of a die. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2022; 97:481-482. [PMID: 35792041 DOI: 10.1016/j.oftale.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Affiliation(s)
- J González-Martín-Moro
- Servicio de Oftalmología, Hospital Universitario del Henares, Madrid, Spain; Facultad de Medicina, Universidad Francisco de Vitoria, Madrid, Spain.
| |
Collapse
|
46
|
Modeling Blood–Brain Barrier Permeability to Solutes and Drugs In Vivo. Pharmaceutics 2022; 14:pharmaceutics14081696. [PMID: 36015323 PMCID: PMC9414534 DOI: 10.3390/pharmaceutics14081696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Our understanding of the pharmacokinetic principles governing the uptake of endogenous substances, xenobiotics, and biologicals across the blood–brain barrier (BBB) has advanced significantly over the past few decades. There is now a spectrum of experimental techniques available in experimental animals and humans which, together with pharmacokinetic models of low to high complexity, can be applied to describe the transport processes at the BBB of low molecular weight agents and macromolecules. This review provides an overview of the models in current use, from initial rate uptake studies over compartmental models to physiologically based models and points out the advantages and shortcomings associated with the different methods. A comprehensive pharmacokinetic profile of a compound with respect to brain exposure requires the knowledge of BBB uptake clearance, intra-brain distribution, and extent of equilibration across the BBB. The application of proper pharmacokinetic analysis and suitable models is a requirement not only in the drug development process, but in all of the studies where the brain uptake of drugs or markers is used to make statements about the function or integrity of the BBB.
Collapse
|
47
|
Sato Y, Minami K, Hirato T, Tanizawa K, Sonoda H, Schmidt M. Drug delivery for neuronopathic lysosomal storage diseases: evolving roles of the blood brain barrier and cerebrospinal fluid. Metab Brain Dis 2022; 37:1745-1756. [PMID: 35088290 PMCID: PMC9283362 DOI: 10.1007/s11011-021-00893-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022]
Abstract
Whereas significant strides have been made in the treatment of lysosomal storage diseases (LSDs), the neuronopathy associated with these diseases remains impervious mainly because of the blood-brain barrier (BBB), which prevents delivery of large molecules to the brain. However, 100 years of research on the BBB since its conceptualization have clarified many of its functional and structural characteristics, spurring recent endeavors to deliver therapeutics across it to treat central nervous system (CNS) disorders, including neuronopathic LSDs. Along with the BBB, the cerebrospinal fluid (CSF) also functions to protect the microenvironment of the CNS, and it is therefore deeply involved in CNS disorders at large. Recent research aimed at developing therapeutics for neuronopathic LSDs has uncovered a number of critical roles played by the CSF that require further clarification. This review summarizes the most up-to-date understanding of the BBB and the CSF acquired during the development of therapeutics for neuronopathic LSDs, and highlights some of the associated challenges that require further research.
Collapse
Affiliation(s)
- Yuji Sato
- Research and Development, JCR Pharmaceuticals, Ashiya, Hyogo, Japan.
| | - Kohtaro Minami
- Research and Development, JCR Pharmaceuticals, Ashiya, Hyogo, Japan
| | - Toru Hirato
- Research and Development, JCR Pharmaceuticals, Ashiya, Hyogo, Japan
| | | | - Hiroyuki Sonoda
- Research and Development, JCR Pharmaceuticals, Ashiya, Hyogo, Japan
| | - Mathias Schmidt
- Research and Development, JCR Pharmaceuticals, Ashiya, Hyogo, Japan
| |
Collapse
|
48
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
49
|
Blondel S, Strazielle N, Amara A, Guy R, Bain C, Rose A, Guibaud L, Tiribelli C, Gazzin S, Ghersi-Egea JF. Vascular network expansion, integrity of blood-brain interfaces, and cerebrospinal fluid cytokine concentration during postnatal development in the normal and jaundiced rat. Fluids Barriers CNS 2022; 19:47. [PMID: 35672829 PMCID: PMC9172137 DOI: 10.1186/s12987-022-00332-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Severe neonatal jaundice resulting from elevated levels of unconjugated bilirubin in the blood induces dramatic neurological impairment. Central oxidative stress and an inflammatory response have been associated with the pathophysiological mechanism. Cells forming the blood-brain barrier and the choroidal blood-CSF barrier are the first CNS cells exposed to increased plasma levels of unconjugated bilirubin. These barriers are key regulators of brain homeostasis and require active oxidative metabolism to fulfill their protective functions. The choroid plexus-CSF system is involved in neuroinflammatory processes. In this paper, we address the impact of neonatal hyperbilirubinemia on some aspects of brain barriers. We describe physiological changes in the neurovascular network, blood-brain/CSF barriers integrities, and CSF cytokine levels during the postnatal period in normobilirubinemic animals, and analyze these parameters in parallel in Gunn rats that are deficient in bilirubin catabolism and develop postnatal hyperbilirubinemia. METHODS Gunn rats bearing a mutation in UGT1a genes were used. The neurovascular network was analyzed by immunofluorescence stereomicroscopy. The integrity of the barriers was evaluated by [14C]-sucrose permeability measurement. CSF cytokine levels were measured by multiplex immunoassay. The choroid plexus-CSF system response to an inflammatory challenge was assessed by enumerating CSF leukocytes. RESULTS In normobilirubinemic animals, the neurovascular network expands postnatally and displays stage-specific regional variations in its complexity. Network expansion is not affected by hyperbilirubinemia. Permeability of the blood-brain and blood-CSF barriers to sucrose decreases between one- and 9-day-old animals, and does not differ between normobilirubinemic and hyperbilirubinemic rats. Cytokine profiles differ between CSF and plasma in all 1-, 9-, and 18-day-old animals. The CSF cytokine profile in 1-day-old animals is markedly different from that established in older animals. Hyperbilirubinemia perturbs these cytokine profiles only to a very limited extent, and reduces CSF immune cell infiltration triggered by systemic exposure to a bacterial lipopeptide. CONCLUSION The data highlight developmental specificities of the blood-brain barrier organization and of CSF cytokine content. They also indicate that a direct effect of bilirubin on the vascular system organization, brain barriers morphological integrity, and inflammatory response of the choroid plexus-CSF system is not involved in the alteration of brain functions induced by severe neonatal jaundice.
Collapse
Affiliation(s)
| | - Nathalie Strazielle
- Brain-i, Lyon, France
- Fluid Team Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
| | - Amel Amara
- Fluid Team Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
| | - Rainui Guy
- BIP Facility, Lyon Neurosciences Research Center, Bron, France
| | | | | | - Laurent Guibaud
- Fluid Team Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
| | - Claudio Tiribelli
- Fondazione Italiana Fegato-Onlus, AREA Science Park, Basovizza, Trieste, Italy
| | - Silvia Gazzin
- Fondazione Italiana Fegato-Onlus, AREA Science Park, Basovizza, Trieste, Italy
| | - Jean-François Ghersi-Egea
- BIP Facility, Lyon Neurosciences Research Center, Bron, France.
- Fluid Team Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France.
| |
Collapse
|
50
|
Sun J, Ou W, Han D, Paganini-Hill A, Fisher MJ, Sumbria RK. Comparative studies between the murine immortalized brain endothelial cell line (bEnd.3) and induced pluripotent stem cell-derived human brain endothelial cells for paracellular transport. PLoS One 2022; 17:e0268860. [PMID: 35613139 PMCID: PMC9132315 DOI: 10.1371/journal.pone.0268860] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/09/2022] [Indexed: 01/11/2023] Open
Abstract
Brain microvascular endothelial cells, forming the anatomical site of the blood-brain barrier (BBB), are widely used as in vitro complements to in vivo BBB studies. Among the immortalized cells used as in vitro BBB models, the murine-derived bEnd.3 cells offer culturing consistency and low cost and are well characterized for functional and transport assays, but result in low transendothelial electrical resistance (TEER). Human-induced pluripotent stem cells differentiated into brain microvascular endothelial cells (ihBMECs) have superior barrier properties, but the process of differentiation is time-consuming and can result in mixed endothelial-epithelial gene expression. Here we performed a side-by-side comparison of the ihBMECs and bEnd.3 cells for key paracellular diffusional transport characteristics. The TEER across the ihBMECs was 45- to 68-fold higher than the bEnd.3 monolayer. The ihBMECs had significantly lower tracer permeability than the bEnd.3 cells. Both, however, could discriminate between the paracellular permeabilities of two tracers: sodium fluorescein (MW: 376 Da) and fluorescein isothiocyanate (FITC)-dextran (MW: 70 kDa). FITC-dextran permeability was a strong inverse-correlate of TEER in the bEnd.3 cells, whereas sodium fluorescein permeability was a strong inverse-correlate of TEER in the ihBMECs. Both bEnd.3 cells and ihBMECs showed the typical cobblestone morphology with robust uptake of acetylated LDL and strong immuno-positivity for vWF. Both models showed strong claudin-5 expression, albeit with differences in expression location. We further confirmed the vascular endothelial- (CD31 and tube-like formation) and erythrophagocytic-phenotypes and the response to inflammatory stimuli of ihBMECs. Overall, both bEnd.3 cells and ihBMECs express key brain endothelial phenotypic markers, and despite differential TEER measurements, these in vitro models can discriminate between the passage of different molecular weight tracers. Our results highlight the need to corroborate TEER measurements with different molecular weight tracers and that the bEnd.3 cells may be suitable for large molecule transport studies despite their low TEER.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States of America
| | - Weijun Ou
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States of America
| | - Derick Han
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, United States of America
| | - Annlia Paganini-Hill
- Department of Neurology, University of California, Irvine, Irvine, CA, United States of America
| | - Mark J. Fisher
- Department of Neurology, University of California, Irvine, Irvine, CA, United States of America
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA, United States of America
| | - Rachita K. Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States of America
- Department of Neurology, University of California, Irvine, Irvine, CA, United States of America
- * E-mail:
| |
Collapse
|