1
|
Xue H, Ding Z, Chen X, Yang X, Jia Y, Zhao P, Wu Z. Dexmedetomidine Improves Long-term Neurological Outcomes by Promoting Oligodendrocyte Genesis and Myelination in Neonatal Rats Following Hypoxic-ischemic Brain Injury. Mol Neurobiol 2024:10.1007/s12035-024-04564-z. [PMID: 39496877 DOI: 10.1007/s12035-024-04564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024]
Abstract
Neonatal hypoxic-ischemic brain injury (HIBI) can lead to white matter damage, which significantly contributes to cognitive dysfunction, emotional disorders, and sensorimotor impairments. Although dexmedetomidine enhances neurobehavioral outcomes, its impact on oligodendrocyte genesis and myelination following hypoxic-ischemic events, as well as the underlying mechanisms, remain poorly understood. Dexmedetomidine was administered 15 min post-HIBI. We assessed neurobehavioral deficits using various tests: surface righting, negative geotaxis, forelimb grip strength, cliff avoidance, sensory reflexes, novel object recognition, T-maze, and three-chamber social interaction. We also investigated the relationship between myelination and neurobehavioral outcomes. Measurements included oligodendrocyte precursor cell (OPC) proliferation and survival 24 h post-injury, early myelination, and oligodendrocyte differentiation by postnatal day 14. Furthermore, we evaluated microglial activation towards the M2 phenotype and the extent of neuroinflammation during the acute phase. Dexmedetomidine significantly ameliorated long-term neurological deficits caused by HIBI. Pearson linear regression analysis revealed a strong correlation between long-term neurological outcomes and myelin maturity. The treatment notably mitigated the long-term deterioration of myelin formation and maturation following HIBI. This protective effect was primarily due to enhanced OPC proliferation and survival post-HIBI during the acute phase and, to a lesser extent, to the modulation of microglial activity towards the M2 phenotype and a reduction in neuroinflammation. Dexmedetomidine offers substantial protection against long-term neurobehavioral disabilities induced by HIBI, primarily by revitalizing the impaired survival and maturation of oligodendrocyte progenitor cells and promoting myelination.
Collapse
Affiliation(s)
- Hang Xue
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zixuan Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaoyan Chen
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xu Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yufei Jia
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
2
|
Bolado-García VE, Corona-Morales AA, Núñez-Murrieta MA, Martínez AJ, Gheno-Heredia YA, Sánchez-Medina A, Santiago-Roque I. Bocconia frutescens L. induces neurological defects in rat offspring. J Dev Orig Health Dis 2024; 15:e8. [PMID: 38682547 DOI: 10.1017/s2040174424000138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Nearly 80% of the world's population trusts traditional medicine and plant-based drug compounds to improve health, and more than 50% of women who participated in a study have used herbal remedies during pregnancy. Bocconia frutescens L. is a plant native to tropical America, where infusion of its leaves has been widely used for the treatment of several gastrointestinal disorders. We have already shown that orogastric consumption of B. frutescens L. during the organogenesis period at concentrations equivalent to human consumption produces teratogenic effects in rats, but effects on progeny development have not yet been studied. In this study, we aimed to investigate the possible association between the consumption of B. frutescens L. at a dose equivalent to that consumed by humans and the neurological development of rat progeny. Pregnant Wistar rats were administered lyophilized B. frutescens L. extract at 300 mg/kg/day or vehicle via the orogastric route during the organogenesis period (gestation days 7-13). The physical development and sensory and motor maturation of their offspring during lactation were analyzed with a battery of reflex and physical tests. B. frutescens L. produced a significant delay in physical development and sensorimotor maturation, compared to the control group. Proton nuclear magnetic resonance spectroscopy analysis showed signals for both flavonoids and alkaloids in the B. frutescens L. extract. We conclude that the delay in physical and neurological development could be interpreted as alterations in the maturation of some neuronal circuitries induced by B. frutescens L.
Collapse
Affiliation(s)
- V E Bolado-García
- Laboratorio de Investigación Genómica y Fisiológica, Facultad de Nutrición, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - A A Corona-Morales
- Laboratorio de Investigación Genómica y Fisiológica, Facultad de Nutrición, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - M A Núñez-Murrieta
- Laboratorio de Investigación Genómica y Fisiológica, Facultad de Nutrición, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - A J Martínez
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Y A Gheno-Heredia
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Córdoba Veracruz, Mexico
| | - A Sánchez-Medina
- Instituto de Química Aplicada, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - I Santiago-Roque
- Laboratorio de Neurotoxicología, Facultad de Bioanálisis, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
3
|
Lima OJF, Ribeiro JDS, Vasconcelos JDC, Ferraz MFI, Silva CEDMTDRE, Barros WMA, Vieira GR, David MCMM, Matos RJB. Environmental enrichment changes the effects of prenatal and postnatal undernutrition on memory, anxiety traits, Bdnf and TrkB expression in the hippocampus of male adult rats. Behav Brain Res 2024; 460:114817. [PMID: 38122904 DOI: 10.1016/j.bbr.2023.114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Environmental factors such as undernutrition and environmental enrichment can promote changes in the molecular and behavioural mechanisms related to cognition. Herein, we investigated the effect of enriched environment stimulation in rats that were malnourished in the pre- and postnatal periods on changes in the gene expression of brain-derived neurotrophic factor and its receptor in the hippocampus, as well as on anxiety traits and memory. Early undernutrition promoted weight reduction, increased the risk analysis, reduced permanence in the open arm of the elevated plus-maze and induced a reduction in the gene expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B. However, exposure to an enriched environment from 30 to 90 days' old maintained the malnourished phenotype, leading to weight reduction in the control group. In addition, the enriched environment did not alter the risk assessment in the undernourished group, but it did increase the frequency of labyrinth entries. Sixty-day exposure to the enriched environment resulted in a reversal in the gene expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus of malnourished rats and favoured of long-term memory in the object recognition test in the open-field. These results suggest that an enriched environment may have a protective effect in adult life by inducing changes in long-term memory and anxiety traits in animals that were undernourished in early life. Furthermore, reversing these effects of undernutrition involves mechanisms linked to the molecular signalling of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus.
Collapse
Affiliation(s)
- Odair José Farias Lima
- Physical Education and Sports Science Nucleus, Academic Center of Vitória, Federal University of Pernambuco, Brazil
| | | | | | | | | | - Waleska Maria Almeida Barros
- Multicenter Postgraduate Program in Physiological Sciences, Academic Center of Vitória, Federal University of Pernambuco, Brazil
| | - Gilberto Ramos Vieira
- Postgraduate Program in Physical Education, Health Sciences Center, Federal University of Pernambuco, Brazil
| | | | | |
Collapse
|
4
|
Mujtaba S, Patro IK, Patro N. Multiple Early Life Stressors as Risk Factors for Neurodevelopmental Abnormalities in the F1 Wistar Rats. Brain Sci 2023; 13:1360. [PMID: 37891729 PMCID: PMC10605318 DOI: 10.3390/brainsci13101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Cumulative exposure to multiple early life stressors is expected to affect behavioral development, causing increased susceptibility to neuropsychiatric disorders. The present study was designed to mimic such conditions in a rat model to study behavioral impairments during adolescence and adulthood. Female Wistar rats (n = 32; 140-150 gm) were switched to a low protein (LP; 8% protein) or control (20% protein) diet 15 days prior to conception, and then the diet regime was maintained throughout the experimental period. Pups born to control and LP dams were intraperitoneally injected with deltamethrin (DLT-pyrethroid insecticide; 0.7 mg/kg body weight; PND 1 to 7), lipopolysaccharide (LPS-bacterial endotoxin; 0.3 mg/kg body weight; PND 3 and 5), or DLT+LPS, on designated days forming eight experimental groups (Control, LP, Control+LPS, LP+LPS, Control+DLT, LP+DLT, Control+DLT+LPS and LP+DLT+LPS). Neurobehavioral assessments were performed in F1 rats (1, 3, 6 months) by open field, elevated plus maze, light and dark box, and rotarod tests. LP rats were found to be highly susceptible to either singular or cumulative exposure as compared to their age-matched control counterparts, showing significantly severe behavioral abnormalities, such as hyperactivity, attention deficits and low anxiety, the hallmark symptoms of neuropsychiatric disorders like schizophrenia and ADHD, suggesting thereby that early life multi-hit exposure may predispose individuals to developmental disorders.
Collapse
Affiliation(s)
- Syed Mujtaba
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India; (S.M.); (I.K.P.)
- School of Studies in Zoology, Jiwaji University, Gwalior 474011, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India; (S.M.); (I.K.P.)
- School of Studies in Zoology, Jiwaji University, Gwalior 474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India; (S.M.); (I.K.P.)
| |
Collapse
|
5
|
John U, Patro N, Patro IK. Astrogliosis and associated CSPG upregulation adversely affect dendritogenesis, spinogenesis and synaptic activity in the cerebellum of a double-hit rat model of protein malnutrition (PMN) and lipopolysaccharide (LPS) induced bacterial infection. J Chem Neuroanat 2023; 131:102286. [PMID: 37169039 DOI: 10.1016/j.jchemneu.2023.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The extracellular matrix (ECM) plays a vital role in growth, guidance and survival of neurons in the central nervous system (CNS). The chondroitin sulphate proteoglycans (CSPGs) are a type of ECM proteins that are crucial for CNS homeostasis. The major goal of this study was to uncover the effects of astroglial activation and associated intensified expression of CSPGs on dendritogenesis, spinogenesis as well as on synaptic activity in cerebellum following protein malnutrition (PMN) and lipopolysaccharide (LPS) induced bacterial infection. Female Wistar albino rats (3 months old) were switched to control (20% protein) or low protein (LP, 8% protein) diet for 15 days followed by breeding. A set of pups born to control/LP mothers and maintained on respective diets throughout the experimental period constituted the control and LP groups, while a separate set of both control and LP group pups exposed to bacterial infection by a single intraperitoneal injection of LPS (0.3 mg/ kg body weight) on postnatal day-9 (P-9) constituted control+LPS and LP+LPS groups respectively. The consequences of astrogliosis induced CSPG upregulation on cerebellar cytoarchitecture and synaptic activity were studied using standard immunohistochemical and histological tools on P-21 and 6 months of age. The results revealed reactive astrogliosis and associated CSPG upregulation in a double-hit model of PMN and LPS induced bacterial infection resulted in disrupted dendritogenesis, reduced postsynaptic density protein (PSD-95) levels and a deleterious impact on normal spine growth. Such alterations frequently have the potential to cause synaptic dysregulation and inhibition of plasticity both during development as well as adulthood. At the light of our results, we can envision that upregulation of CSPGs in PMN and LPS co-challenged individuals might emerge as an important modulator of brain circuitry and a major causative factor for many neurological disorders.
Collapse
Affiliation(s)
- Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India.
| |
Collapse
|
6
|
Dhuriya YK, Naik AA. CRISPR: a tool with potential for genomic reprogramming in neurological disorders. Mol Biol Rep 2023; 50:1845-1856. [PMID: 36507966 DOI: 10.1007/s11033-022-08136-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
The intricate neural circuitry of the brain necessitates precise and synchronized transcriptional programs. Any disturbance during embryonic or adult development, whether caused by genetic or environmental factors, may result in refractory and recurrent neurological disorders. Inadequate knowledge of the pathogenic mechanisms underlying neurological disorders is the primary obstacle to the development of effective treatments, necessitating the development of alternative therapeutic approaches to identify rational molecular targets. Recently, with the evolution of CRISPR-Cas9 technology, an engineered RNA system provides precise and highly effective correction or silencing of disease-causing mutations by modulating expression and thereby avoiding the limitations of the RNA interference strategy. This article discusses the CRISPR-Cas9 technology, its mechanisms, and the limitations of the new technology. We provide a glimpse of how the far-reaching implications of CRISPR can open new avenues for the development of tools to combat neurological disorders, as well as a review of recent attempts by neuroscientists to launch therapeutic correction.
Collapse
Affiliation(s)
| | - Aijaz A Naik
- National Institute of Mental Health (NIMH), Bethesda, USA.
| |
Collapse
|
7
|
Wan Y, Wu Z, Li X, Zhao P. Maternal sevoflurane exposure induces neurotoxicity in offspring rats via the CB1R/CDK5/p-tau pathway. Front Pharmacol 2023; 13:1066713. [PMID: 36703741 PMCID: PMC9871255 DOI: 10.3389/fphar.2022.1066713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Sevoflurane is widely used for maternal anesthesia during pregnancy. Sevoflurane exposure of rats at mid-gestation can cause abnormal development of the central nervous system in their offspring. Sevoflurane is known to increase the expression of cannabinoid 1 receptor (CB1R) in the hippocampus. However, the effect of cannabinoid 1 receptor on fetal and offspring rats after maternal anesthesia is still unclear. At gestational day 14, pregnant rats were subjected to 2-h exposure to 3.5% sevoflurane or air. Rats underwent intraperitoneal injection with saline or rimonabant (1 mg/kg) 30 min prior to sevoflurane or air exposure. cannabinoid 1 receptor, cyclin-dependent kinase 5 (CDK5), p35, p25, tau, and p-tau expression in fetal brains was measured at 6, 12, and 24 h post-sevoflurane/air exposure. Neurobehavioral and Morris water maze tests were performed postnatal days 3-33. The expression of cannabinoid 1 receptor/cyclin-dependent kinase 5/p-tau and histopathological staining of brain tissues in offspring rats was observed. We found that a single exposure to sevoflurane upregulated the activity of cyclin-dependent kinase 5 and the level of p-tau via cannabinoid 1 receptor. This was accompanied by the diminished number of neurons and dendritic spines in hippocampal CA1 regions. Finally, these effects induced lower scores and platform crossing times in behavioral tests. The present study suggests that a single exposure to 3.5% sevoflurane of rats at mid-gestation impairs neurobehavioral abilities and cognitive memory in offspring. cannabinoid 1 receptor is a possible target for the amelioration of postnatal neurobehavioral ability and cognitive memory impairments induced by maternal anesthesia.
Collapse
|
8
|
Wang D, Liu Y, Zhao D, Jin M, Li L, Ni H. Plppr5 gene inactivation causes a more severe neurological phenotype and abnormal mitochondrial homeostasis in a mouse model of juvenile seizure. Epilepsy Res 2022; 183:106944. [DOI: 10.1016/j.eplepsyres.2022.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
|
9
|
Sarkar T, Patro N, Patro IK. Perinatal exposure to synergistic multiple stressors lead to cellular and behavioral deficits mimicking Schizophrenia like pathology. Biol Open 2022; 11:274201. [PMID: 35107124 PMCID: PMC8918990 DOI: 10.1242/bio.058870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Protein malnourishment and immune stress are potent perinatal stressors, encountered by children born under poor socioeconomic conditions. Thus, it is necessary to investigate how such stressors synergistically contribute towards developing neurological disorders in affected individuals. Pups from Wistar females, maintained on normal (high-protein, HP:20%) and low-protein (LP:8%) diets were used. Single and combined exposures of Poly I:C (viral mimetic: 5 mg/kg body weight) and Lipopolysaccharide (LPS; bacterial endotoxin: 0.3 mg/kg body weight) were injected to both HP and LP pups at postnatal days (PND) 3 and 9 respectively, creating eight groups: HP (control); HP+Poly I:C; HP+LPS; HP+Poly I:C+LPS; LP; LP+Poly I:C; LP+LPS; LP+Poly I:C+LPS (multi-hit). The effects of stressors on hippocampal cytoarchitecture and behavioral abilities were studied at PND 180. LP animals were found to be more vulnerable to immune stressors than HP animals and symptoms like neuronal damage, spine loss, downregulation of Egr 1 and Arc proteins, gliosis and behavioral deficits were maximum in the multi-hit group. Thus, from these findings it is outlined that cellular and behavioral changes that occur following multi-hit exposure may predispose individuals to developing Schizophrenia-like pathologies during adulthood. Summary: This study reports that exposure to perinatal multi-hit stress (protein malnourishment and immune stress) causes changes in the hippocampal cells alongside behavioral deficits which are also observed in Schizophrenic condition.
Collapse
Affiliation(s)
- Tiyasha Sarkar
- School of Studies in Neuroscience, Jiwaji University, Gwalior-474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior-474011, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior-474011, India
| |
Collapse
|
10
|
ietary curcumin supplementation ameliorates placental inflammation in rats with intra-uterine growth retardation by inhibiting the NF-κB signaling pathway. J Nutr Biochem 2022; 104:108973. [DOI: 10.1016/j.jnutbio.2022.108973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022]
|
11
|
Monteiro S, Nejad YS, Aucoin M. Perinatal diet and offspring anxiety: A scoping review. Transl Neurosci 2022; 13:275-290. [PMID: 36128579 PMCID: PMC9449687 DOI: 10.1515/tnsci-2022-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Health behaviors during pregnancy have an impact on the developing offspring. Dietary factors play a role in the development of mental illness: however, less is known about the impact of diet factors during pre-conception, gestation, and lactation on anxiety levels in offspring. This scoping review sought to systematically map the available research involving human and animal subjects to identify nutritional interventions which may have a harmful or protective effect, as well as identify gaps. Studies investigating an association between any perinatal diet pattern or diet constituent and offspring anxiety were included. The number of studies reporting an association with increased or decreased levels of anxiety were counted and presented in figures. A total of 55,914 results were identified as part of a larger scoping review, and 120 articles met the criteria for inclusion. A greater intake of phytochemicals and vitamins were associated with decreased offspring anxiety whereas maternal caloric restriction, protein restriction, reduced omega-3 consumption, and exposure to a high fat diet were associated with higher levels of offspring anxiety. Results were limited by a very large proportion of animal studies. High quality intervention studies involving human subjects are warranted to elucidate the precise dietary factors or constituents that modulate the risk of anxiety in offspring.
Collapse
Affiliation(s)
- Sasha Monteiro
- Department of Research and Clinical Epidemiology, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON, M2K 1E2, Canada
| | - Yousef Sadat Nejad
- Department of Research and Clinical Epidemiology, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON, M2K 1E2, Canada
| | - Monique Aucoin
- Department of Research and Clinical Epidemiology, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON, M2K 1E2, Canada
| |
Collapse
|
12
|
Abstract
All nutrients are essential for brain development, but pre-clinical and clinical studies have revealed sensitive periods of brain development during which key nutrients are critical. An understanding of these nutrient-specific sensitive periods and the accompanying brain regions or processes that are developing can guide effective nutrition interventions as well as the choice of meaningful circuit-specific neurobehavioral tests to best determine outcome. For several nutrients including protein, iron, iodine, and choline, pre-clinical and clinical studies align to identify the same sensitive periods, while for other nutrients, such as long-chain polyunsaturated fatty acids, zinc, and vitamin D, pre-clinical models demonstrate benefit which is not consistently shown in clinical studies. This discordance of pre-clinical and clinical results is potentially due to key differences in the timing, dose, and/or duration of the nutritional intervention as well as the pre-existing nutritional status of the target population. In general, however, the optimal window of success for nutritional intervention to best support brain development is in late fetal and early postnatal life. Lack of essential nutrients during these times can lead to long-lasting dysfunction and significant loss of developmental potential.
Collapse
Affiliation(s)
- Sarah E Cusick
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN, USA.
| | - Amanda Barks
- University of Minnesota Medical School, Minneapolis, MN, USA
| | | |
Collapse
|
13
|
Lyu H, Sun DM, Ng CP, Chen JF, He YZ, Lam SY, Zheng ZY, Askarifirouzjaei H, Wang CC, Young W, Poon WS. A new Hypoxic Ischemic Encephalopathy model in neonatal rats. Heliyon 2021; 7:e08646. [PMID: 35024484 PMCID: PMC8723992 DOI: 10.1016/j.heliyon.2021.e08646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/29/2021] [Accepted: 12/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hypoxic-Ischemic Encephalopathy (HIE) occurs when an infant's brain does not receive adequate blood and oxygen supply, resulting in ischemic and hypoxic brain damage during delivery. Currently, supportive care and hypothermia have been the standard treatment for HIE. However, there are still a 20% mortality and most of the survivors are associated with significant neurodevelopmental disability. HIE animal model was first established by Vannucci et al., in 1981, and has been used extensively to explore the mechanisms of brain damage and its potential treatment. The Vannucci model involves the unilateral common carotid artery occlusion followed by 90 min hypoxia (8% oxygen). The purpose of this study is to define and validate a modified HIE model which mimics closely that of the human neonatal HIE. METHOD The classic Vannucci HIE model occludes one common carotid artery followed by 90 min hypoxia. In the new model, common carotid arteries were occluded bilaterally followed by breathing 8% oxygen in a hypoxic chamber for 90, 60 and 30 min, followed by the release of the common carotid artery ligatures, mimicking a reperfusion. RESULT We studied 110 neonatal rats in detail, following the modified in comparison with the classical Vannucci models. The classical Vannucci model has a consistent surgical mortality of 18% and the new modified models have a 20%-46%. While mortality depended on the duration of hypoxia, fifty-two animals survived for behavioral assessments and standard histology. The modified HIE model with 60 min of transient carotid occlusion is associated with a moderate brain damage, and has a 30% surgical mortality. This modified experimental model is regarded closer to the human situation than the classical Vannucci model.
Collapse
Affiliation(s)
- Hao Lyu
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Dong Ming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| | - Chi Ping Ng
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Fan Chen
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Zhong He
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sin Yu Lam
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhi Yuan Zheng
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hadi Askarifirouzjaei
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Behavioral consequences of postnatal undernutrition and enriched environment during later life. Physiol Behav 2021; 241:113566. [PMID: 34474061 DOI: 10.1016/j.physbeh.2021.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022]
Abstract
In rat models, large litter groups during suckling are used in the study of undernutrition. Large litter sizes are known to promote alterations in memory processes and anxiety-like behavior. Nevertheless, the effect of large litter size on sexual behavior and the reproductive system is still unknown. Environmental enrichment has been reported to (EE) enhance behavior and to correct some of the alterations produced by postnatal undernutrition. We used the Elevated Plus Maze (EPN), Morris Water Maze (MWM), Object Recognition test (OR) and several parameters of sexual behavior to determine the effect of large litter size on rats exposed to enriched and non-enriched environments. Newborn Wistar rats of both sexes were assigned to be suckled under lactation conditions, in litters of 8 pups or 16 pups. The large litter size (16 pups) caused a reduction in weight gain during the lactation period. On PND 45, four experimental groups were established for both sexes: Well-nourished Non-enriched (WN); Well-nourished Enriched (WE); undernourished Non-enriched (UN); Undernourished Enriched (UE). On PND 90, the UN males spent more time in the open arms on EPM. On PND 100, the UE females increased the latency to find the platform in training days (D1-4) in MWM. On probe day (D5) the UE males spent more time in the target quadrants in MWM. On PND 110, irrespective of EE the large litter size had increased the exploration time in both groups (UN) and (UE) in OR test. On PND 120, the performance of sexual behavior was more evident by effect of EE irrespective of the litter size. In conclusion, the large litter size showed no effects on sexual behavior, in contrast, EE has a sharp influence on sexual behavior. Conversely, memory processes and anxiety-like behavior are altered by large litter size.
Collapse
|
15
|
Early life exposure to poly I:C impairs striatal DA-D2 receptor binding, myelination and associated behavioural abilities in rats. J Chem Neuroanat 2021; 118:102035. [PMID: 34597812 DOI: 10.1016/j.jchemneu.2021.102035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022]
Abstract
Early-life viral infections critically influence the brain development and have been variously reported to cause neuropsychiatric diseases such as Schizophrenia, Parkinson's diseases, demyelinating diseases, etc. To investigate the alterations in the dopaminergic system, myelination and associated behavioral impairments following neonatal viral infection, the viral immune activation model was created by an intraperitoneal injection of Poly I:C (5 mg/kg bw/ip) to neonatal rat pups on PND-7. The DA-D2 receptor binding was assessed in corpus striatum by using 3H-Spiperone at 3, 6 and 12 weeks of age. MOG immunolabelling was performed to check myelination stature and myelin integrity, while corpus callosum calibre was assessed by Luxol fast blue staining. Relative behavioral tasks i.e., motor activity, motor coordination and neuromuscular strength were assessed by open field, rotarod and grip strength meter respectively at 3, 6 and 12 weeks of age. Following Poly I:C exposure, a significant decrease in DA-D2 receptor binding, reduction in corpus callosum calibre and MOG immunolabelling indicating demyelination and a significant decrease in locomotor activity, neuromuscular strength and motor coordination signify motor deficits and hypokinetic influence of early life viral infection. Thus, the findings suggest that early life poly I:C exposure may cause demyelination and motor deficits by decreasing DA-D2 receptor binding affinity.
Collapse
|
16
|
Torres PJ, Luque EM, Di Giorgio NP, Ramírez ND, Ponzio MF, Cantarelli V, Carlini VP, Lux-Lantos V, Martini AC. Fetal Programming Effects of a Mild Food Restriction During Pregnancy in Mice: How Does It Compare to Intragestational Ghrelin Administration? Reprod Sci 2021; 28:3547-3561. [PMID: 33856666 DOI: 10.1007/s43032-021-00574-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
To explore in mice if a 15% food restriction protocol during pregnancy programs the offspring postnatal development, with emphasis on reproductive function, and to assess if ghrelin (Ghrl) administration to mouse dams exerts effects that mimic those obtained under mild caloric restriction. Mice were 15% food-restricted, injected with 4 nmol/animal/day of Ghrl, or injected with the vehicle (control) thorough pregnancy. After birth, the pups did not receive further treatment. Pups born from food-restricted dams (FR pups) were lighter than Ghrl pups at birth, but reached normal weight at adulthood. Ghrl pups were heavier at birth and gained more weight than control pups (C pups). This effect was not associated with plasma IGF-1. FR pups showed a delay in pinna detachment and eye opening, while an advance was observed in Ghrl pups. FR pups showed also impairment in the surface-righting reflex. In both female FR and Ghrl pups, there was an advance in vaginal opening and, in adulthood, FR pups showed a significant decrease in their own litter size and plasma progesterone, and an increase in embryo loss. A delay in testicular descent was evident in male Ghrl pups. Changes in puberty onset were not associated with differences in the expression of Kiss1 in hypothalamic nuclei. Finally, in adulthood, FR pups showed a significant decrease in sperm quality. In conclusion, a mild food restriction thorough gestation exerted programming effects on the offspring, affecting also their reproductive function in adulthood. These effects were not similar to those of intragestational Ghrl administration.
Collapse
Affiliation(s)
- Pedro Javier Torres
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, e Instituto de Investigaciones en Ciencias de la Salud (INICSA; CONICET-UNC), Santa Rosa 1085, X5000ESU, Córdoba, Argentina
| | - Eugenia Mercedes Luque
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, e Instituto de Investigaciones en Ciencias de la Salud (INICSA; CONICET-UNC), Santa Rosa 1085, X5000ESU, Córdoba, Argentina
| | - Noelia Paula Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, (IBYME; CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Nicolás David Ramírez
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, e Instituto de Investigaciones en Ciencias de la Salud (INICSA; CONICET-UNC), Santa Rosa 1085, X5000ESU, Córdoba, Argentina
| | - Marina Flavia Ponzio
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, e Instituto de Investigaciones en Ciencias de la Salud (INICSA; CONICET-UNC), Santa Rosa 1085, X5000ESU, Córdoba, Argentina
| | - Verónica Cantarelli
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, e Instituto de Investigaciones en Ciencias de la Salud (INICSA; CONICET-UNC), Santa Rosa 1085, X5000ESU, Córdoba, Argentina
| | - Valeria Paola Carlini
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, e Instituto de Investigaciones en Ciencias de la Salud (INICSA; CONICET-UNC), Santa Rosa 1085, X5000ESU, Córdoba, Argentina
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, (IBYME; CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Ana Carolina Martini
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, e Instituto de Investigaciones en Ciencias de la Salud (INICSA; CONICET-UNC), Santa Rosa 1085, X5000ESU, Córdoba, Argentina.
| |
Collapse
|
17
|
Parameshwaran D, Sathishkumar S, Thiagarajan TC. The impact of socioeconomic and stimulus inequality on human brain physiology. Sci Rep 2021; 11:7439. [PMID: 33811239 PMCID: PMC8018967 DOI: 10.1038/s41598-021-85236-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/19/2021] [Indexed: 02/01/2023] Open
Abstract
The brain undergoes profound structural and dynamical alteration in response to its stimulus environment. In animal studies, enriched stimulus environments result in numerous structural and dynamical changes along with cognitive enhancements. In human society factors such as education, travel, cell phones and motorized transport dramatically expand the rate and complexity of stimulus experience but diverge in access based on income. Correspondingly, poverty is associated with significant structural and dynamical differences in the brain, but it is unknown how this relates to disparity in stimulus access. Here we studied consumption of major stimulus factors along with measurement of brain signals using EEG in 402 people in India across an income range of $0.82 to $410/day. We show that the complexity of the EEG signal scaled logarithmically with overall stimulus consumption and income and linearly with education and travel. In contrast phone use jumped up at a threshold of $30/day corresponding to a similar jump in key spectral parameters that reflect the signal energy. Our results suggest that key aspects of brain physiology increase in lockstep with stimulus consumption and that we have not fully appreciated the profound way that stimulus expanding aspects of modern life are changing our brain physiology.
Collapse
Affiliation(s)
| | - S. Sathishkumar
- Sapien Labs, 1201 Wilson Drive 27th Floor, Arlington, VA 22209 USA
| | | |
Collapse
|
18
|
Sun Y, Ma L, Jin M, Zheng Y, Wang D, Ni H. Effects of Melatonin on Neurobehavior and Cognition in a Cerebral Palsy Model of plppr5-/- Mice. Front Endocrinol (Lausanne) 2021; 12:598788. [PMID: 33692754 PMCID: PMC7937640 DOI: 10.3389/fendo.2021.598788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cerebral palsy (CP), a group of clinical syndromes caused by non-progressive brain damage in the developing fetus or infant, is one of the most common causes of lifelong physical disability in children in most countries. At present, many researchers believe that perinatal cerebral hypoxic ischemic injury or inflammatory injury are the main causes of cerebral palsy. Previous studies including our works confirmed that melatonin has a protective effect against convulsive brain damage during development and that it affects the expression of various molecules involved in processes such as metabolism, plasticity and signaling in the brain. Integral membrane protein plppr5 is a new member of the plasticity-related protein family, which is specifically expressed in brain and spinal cord, and induces filopodia formation as well as neurite growth. It is highly expressed in the brain, especially in areas of high plasticity, such as the hippocampus. The signals are slightly lower in the cortex, the cerebellum, and in striatum. Noteworthy, during development plppr5 mRNA is expressed in the spinal cord, i.e., in neuron rich regions such as in medial motor nuclei, suggesting that plppr5 plays an important role in the regulation of neurons. However, the existing literature only states that plppr5 is involved in the occurrence and stability of dendritic spines, and research on its possible involvement in neonatal ischemic hypoxic encephalopathy has not been previously reported. We used plppr5 knockout (plppr5-/-) mice and their wild-type littermates to establish a model of hypoxicischemic brain injury (HI) to further explore the effects of melatonin on brain injury and the role of plppr5 in this treatment in an HI model, which mainly focuses on cognition, exercise, learning, and memory. All the tests were performed at 3-4 weeks after HI. As for melatonin treatment, which was performed 5 min after HI injury and followed by every 24h. In these experiments, we found that there was a significant interaction between genotype and treatment in novel object recognition tests, surface righting reflex tests and forelimb suspension reflex tests, which represent learning and memory, motor function and coordination, and the forelimb grip of the mice, respectively. However, a significant main effect of genotype and treatment on performance in all behavioral tests were observed. Specifically, wild-type mice with HI injury performed better than plppr5-/- mice, regardless of treatment with melatonin or vehicle. Moreover, treatment with melatonin could improve behavior in the tests for wild-type mice with HI injury, but not for plppr5-/- mice. This study showed that plppr5 knockout aggravated HI damage and partially weakened the neuroprotection of melatonin in some aspects (such as novel object recognition test and partial nerve reflexes), which deserves further study.
Collapse
|
19
|
Zubareva OE, Postnikova TY, Grifluk AV, Schwarz AP, Smolensky IV, Karepanov AA, Vasilev DS, Veniaminova EA, Rotov AY, Kalemenev SV, Zaitsev AV. Exposure to bacterial lipopolysaccharidein early life affects the expression of ionotropic glutamate receptor genes and is accompanied by disturbances in long-term potentiation and cognitive functions in young rats. Brain Behav Immun 2020; 90:3-15. [PMID: 32726683 DOI: 10.1016/j.bbi.2020.07.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/20/2023] Open
Abstract
Infections in childhood play an essential role in the pathogenesis of cognitive and psycho-emotional disorders. One of the possible mechanisms of these impairments is changes in the functional properties of NMDA and AMPA glutamate receptors in the brain. We suggest that bacterial infections during the early life period, which is critical for excitatory synapse maturation, can affect the subunit composition of NMDA and AMPA receptors. In the present study, we investigated the effect of repetitive lipopolysaccharide (LPS) intraperitoneal (i.p.) administration (25 μg/kg/day on P14, 16, and 18), mimicking an infectious disease, on the expression of subunits of NMDA and AMPA receptors in young rats. We revealed a substantial decrease of GluN2B subunit expression in the hippocampus at P23 using Western blot analysis and real-time polymerase chain reaction assay. Moderate changes were also found in GluN1, GluN2A, and GluA1 mRNA expression. The LPS-treated rats exhibited decreased exploratory and locomotor activity in the open field test and the impairment of spatial learning in the Morris water maze. Behavioral impairments were accompanied by a significant reduction in long-term hippocampal synaptic potentiation. Our data indicate that LPS-treatment in the critical period for excitatory synapse maturation alters ionotropic glutamate receptor gene expression, disturbs synaptic plasticity, and alters behavior.
Collapse
Affiliation(s)
- Olga E Zubareva
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; Laboratory of Neurobiology of the Brain Integrative Functions, Pavlov Department of Physiology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Tatyana Y Postnikova
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexandra V Grifluk
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander P Schwarz
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ilya V Smolensky
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anton A Karepanov
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Dmitry S Vasilev
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina A Veniaminova
- Laboratory of Neurobiology of the Brain Integrative Functions, Pavlov Department of Physiology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Alexander Y Rotov
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergey V Kalemenev
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
20
|
Sarkar T, Patro N, Patro IK. Neuronal changes and cognitive deficits in a multi-hit rat model following cumulative impact of early life stressors. Biol Open 2020; 9:bio054130. [PMID: 32878878 PMCID: PMC7522020 DOI: 10.1242/bio.054130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
Perinatal protein malnourishment (LP) is a leading cause for mental and physical retardation in children from poor socioeconomic conditions. Such malnourished children are vulnerable to additional stressors that may synergistically act to cause neurological disorders in adulthood. In this study, the above mentioned condition was mimicked via a multi-hit rat model in which pups born to LP mothers were co-injected with polyinosinic:polycytidylic acid (Poly I:C; viral mimetic) at postnatal day (PND) 3 and lipopolysaccharide (LPS; bacterial mimetic) at PND 9. Individual exposure of Poly I:C and LPS was also given to LP pups to correlate chronicity of stress. Similar treatments were also given to control pups. Hippocampal cellular apoptosis, β III tubulin catastrophe, altered neuronal profiling and spatial memory impairments were assessed at PND 180, using specific immunohistochemical markers (active caspase 3, β III tubulin, doublecortin), golgi studies and cognitive mazes (Morris water maze and T maze). Increase in cellular apoptosis, loss of dendritic arborization and spatial memory impairments were higher in the multi-hit group, than the single-hit groups. Such impairments observed due to multi-hit stress mimicked conditions similar to many neurological disorders and hence, it is hypothesized that later life neurological disorders might be an outcome of multiple early life hits.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tiyasha Sarkar
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| |
Collapse
|
21
|
Yakovleva O, Bogatova K, Mukhtarova R, Yakovlev A, Shakhmatova V, Gerasimova E, Ziyatdinova G, Hermann A, Sitdikova G. Hydrogen Sulfide Alleviates Anxiety, Motor, and Cognitive Dysfunctions in Rats with Maternal Hyperhomocysteinemia via Mitigation of Oxidative Stress. Biomolecules 2020; 10:biom10070995. [PMID: 32630731 PMCID: PMC7408246 DOI: 10.3390/biom10070995] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Hydrogen sulfide (H2S) is endogenously produced from sulfur containing amino acids, including homocysteine and exerts neuroprotective effects. An increase of homocysteine during pregnancy impairs fetal growth and development of the offspring due to severe oxidative stress. We analyzed the effects of the H2S donor—sodium hydrosulfide (NaHS) administered to female rats with hyperhomocysteinemia (hHcy) on behavioral impairments and levels of oxidative stress of their offspring. Rats born from females fed with control or high methionine diet, with or without H2S donor injections were investigated. Rats with maternal hHcy exhibit increased levels of total locomotor activity and anxiety, decreased muscle endurance and motor coordination, abnormalities of fine motor control, as well as reduced spatial memory and learning. Oxidative stress in brain tissues measured by activity of glutathione peroxidases and the level of malondialdehyde was higher in rats with maternal hHcy. Concentrations of H2S and the activity and expression of the H2S generating enzyme—cystathionine-beta synthase—were lower compared to the control group. Administration of the H2S donor to females with hHcy during pregnancy prevented behavioral alterations and oxidative stress of their offspring. The acquisition of behavioral together with biochemical studies will add to our knowledge about homocysteine neurotoxicity and proposes H2S as a potential agent for therapy of hHcy associated disorders.
Collapse
Affiliation(s)
- Olga Yakovleva
- Department of Human and Animal physiology, Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russia; (O.Y.); (K.B.); (R.M.); (A.Y.); (V.S.); (E.G.)
| | - Ksenia Bogatova
- Department of Human and Animal physiology, Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russia; (O.Y.); (K.B.); (R.M.); (A.Y.); (V.S.); (E.G.)
| | - Renata Mukhtarova
- Department of Human and Animal physiology, Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russia; (O.Y.); (K.B.); (R.M.); (A.Y.); (V.S.); (E.G.)
| | - Aleksey Yakovlev
- Department of Human and Animal physiology, Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russia; (O.Y.); (K.B.); (R.M.); (A.Y.); (V.S.); (E.G.)
| | - Viktoria Shakhmatova
- Department of Human and Animal physiology, Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russia; (O.Y.); (K.B.); (R.M.); (A.Y.); (V.S.); (E.G.)
| | - Elena Gerasimova
- Department of Human and Animal physiology, Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russia; (O.Y.); (K.B.); (R.M.); (A.Y.); (V.S.); (E.G.)
| | - Guzel Ziyatdinova
- Department of analytical chemistry, Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russia;
| | - Anton Hermann
- Department of Biosciences, University of Salzburg, Salzburg 5020, Austria;
| | - Guzel Sitdikova
- Department of Human and Animal physiology, Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russia; (O.Y.); (K.B.); (R.M.); (A.Y.); (V.S.); (E.G.)
- Correspondence: ; Tel.: +7-903-306-1092
| |
Collapse
|
22
|
The role of neuroglia in autism spectrum disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:301-330. [PMID: 32711814 DOI: 10.1016/bs.pmbts.2020.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuroglia are a large class of neural cells of ectodermal (astroglia, oligodendroglia, and peripheral glial cells) and mesodermal (microglia) origin. Neuroglial cells provide homeostatic support, protection, and defense to the nervous tissue. Pathological potential of neuroglia has been acknowledged since their discovery. Research of the recent decade has shown the key role of all classes of glial cells in autism spectrum disorders (ASD), although molecular mechanisms defining glial contribution to ASD are yet to be fully characterized. This narrative conceptualizes recent findings of the broader roles of glial cells, including their active participation in the control of cerebral environment and regulation of synaptic development and scaling, highlighting their putative involvement in the etiopathogenesis of ASD.
Collapse
|
23
|
Sinha S, Patro N, Patro IK. Amelioration of neurobehavioral and cognitive abilities of F1 progeny following dietary supplementation with Spirulina to protein malnourished mothers. Brain Behav Immun 2020; 85:69-87. [PMID: 31425827 DOI: 10.1016/j.bbi.2019.08.181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023] Open
Abstract
Early life adversities (stress, infection and mal/undernutrition) can affect neurocognitive, hippocampal and immunological functioning of the brain throughout life. Substantial evidence suggests that maternal protein malnutrition contributes to the progression of neurocognitive abnormalities and psychopathologies in adolescence and adulthood in offspring. Maternal malnutrition is prevalent in low and middle resource populations. The present study was therefore undertaken to evaluate the effects of dietary Spirulina supplementation of protein malnourished mothers during pregnancy and lactation on their offspring's reflex, neurobehavioral and cognitive development. Spirulina is a Cyanobacterium and a major source of protein and is being used extensively as a dynamic nutraceutical against aging and neurodegeneration. Sprague Dawley rats were switched to low protein (8% protein) or normal protein (20% protein) diet for 15 days before conception. Spirulina was orally administered (400 mg/kg/b.wt.) to subgroups of pregnant females from the day of conception throughout the lactational period. We examined several parameters including reproductive performance of dams, physical development, postnatal reflex ontogeny, locomotor behavior, neuromuscular strength, anxiety, anhedonic behavior, cognitive abilities and microglia populations in the F1 progeny. The study showed improved reproductive performance of Spirulina supplemented protein malnourished dams, accelerated acquisition of neurological reflexes, better physical appearance, enhanced neuromuscular strength, improved spatial learning and memory and partly normalized PMN induced hyperactivity, anxiolytic and anhedonic behavior in offspring. These beneficial effects of Spirulina consumption were also accompanied by reduced microglial activation which might assist in restoring the behavioral and cognitive skills in protein malnourished F1 rats. Maternal Spirulina supplementation is therefore proposed as an economical nutraceutical/supplement to combat malnutrition associated behavioral and cognitive deficits.
Collapse
Affiliation(s)
- Shrstha Sinha
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India.
| |
Collapse
|
24
|
Zhou F, Yin G, Gao Y, Liu D, Xie J, Ouyang L, Fan Y, Yu H, Zha Z, Wang K, Shao L, Feng C, Fan G. Toxicity assessment due to prenatal and lactational exposure to lead, cadmium and mercury mixtures. ENVIRONMENT INTERNATIONAL 2019; 133:105192. [PMID: 31639605 DOI: 10.1016/j.envint.2019.105192] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/25/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
The heavy metals lead (Pb), cadmium (Cd) and mercury (Hg) are common environmental pollutants that can be detected simultaneously in blood, serum, and urine samples from the general human population. However, there is limited information regarding toxicity of low-level exposure to Pb, Cd, and Hg mixtures. Our previous research showed the interaction of these three elements at low concentrations in vitro. In this study, we further evaluate early effects of low dose exposure to Pb, Cd, and Hg mixtures on the brain, heart, liver, kidney, and testicle in rats. Pregnant rats were exposed to various concentrations of heavy metal mixtures (MM) in drinking water, during gestation and lactation, and the impacts on offspring were measured at postnatal day 23. Our results showed that the concentrations of Pb, Cd, and Hg in the blood of rat pups were similar to those in the blood of the general human population. Additionally, the MM concentrations in their blood and brain significantly increased in a dose-dependent manner. MM exposure caused histopathological changes in the brain, liver, kidney and testicle. Statistically significant increases in liver CYP450 and PON1, kidney KIM1, and decrease in testicle SDH were observed. In the brain, significant increases were detected in oxidative stress, intracellular free calcium, and cell apoptosis. Further neurobehavioral testing revealed that MM exposure caused dose-dependent impairments in learning and memory as well as sensory perception. MM exposure also disrupted synapse remodeling, which may be associated with pathways involved in dendritic spine growth, maintenance, and elimination. These results suggested that exposure to Pb, Cd, and Hg mixtures, at human environmental exposure related levels, caused damage to multiple organs as well as impairments in neurobehavioral functions of rats. Our findings emphasize the need to control and regulate potential sources of heavy metal contamination.
Collapse
Affiliation(s)
- Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guangming Yin
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Yanyan Gao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Dong Liu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Ying Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Han Yu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Zhipeng Zha
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Kai Wang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
25
|
Abey NO, Ebuehi OAT, Imaga NOA. Neurodevelopment and Cognitive Impairment in Parents and Progeny of Perinatal Dietary Protein Deficiency Models. Front Neurosci 2019; 13:826. [PMID: 31551668 PMCID: PMC6736561 DOI: 10.3389/fnins.2019.00826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022] Open
Abstract
There is an absolute dependence of the concept of development on supply of adequately balanced nutrients especially during the perinatal age which is critical to development. Therefore, an upgraded nutrition is specially required during gestation and lactation, as this is the critical period of neurodevelopment. This study sought to investigate the effect of protein deficiency during gestation (F0) and lactation through to adolescence on neurological functions of subsequent (F1 and F2) generations, establishing the possible consequential mechanistic association. Rats in four groups were fed different rations of protein diets (PD) as formulated: 21% PD, 10% PD, 5% PD and control diet (standard rat chow, containing 16-18% protein), from adolescent through to gestation and lactation, next generations were weaned to the maternal diet group. Neurobehavioral studies (which include; Surface righting reflex, Negative geotaxis, Learning and Memory tests), brain oxidative stress and quantification of serotonin and dopamine levels in the brain were conducted. Result shows significantly altered neurobehavior, reflected in the reduction of reflex response and postural reaction score at P ≤ 0.05. There was also a transgenerational cognitive impairment of brain function in the F-generations, following perinatal protein malnutrition as shown in the Y-maze result, measuring spatial memory and Morris water maze result (cognition), providing a background for the observed sensorimotor response. The significant increase in dopamine level, decrease in the antioxidant capacity of the protein deficient brain groups are consistent with significantly altered serotonin system, critical to neurodevelopment and functional activities of learning and memory. Therefore, persistent early life protein deficiency mediates dysfunction in neurodevelopment and this involves life-long changes in key neurotransmitters and the brain redox status underlying the neurobehavioral display.
Collapse
Affiliation(s)
- Nosarieme O. Abey
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | | | | |
Collapse
|
26
|
Huang S, Dong W, Jiao Z, Liu J, Li K, Wang H, Xu D. Prenatal Dexamethasone Exposure Induced Alterations in Neurobehavior and Hippocampal Glutamatergic System Balance in Female Rat Offspring. Toxicol Sci 2019; 171:369-384. [PMID: 31518422 DOI: 10.1093/toxsci/kfz163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epidemiological investigations have suggested that periodic use of dexamethasone during pregnancy is a risk factor for abnormal behavior in offspring, but the potential mechanism remains unclear. In this study, we investigated the changes in the glutamatergic system and neurobehavior in female offspring with prenatal dexamethasone exposure (PDE) to explore intrauterine programing mechanisms. Compared with the control group, rat offspring with PDE exhibited spatial memory deficits and anxiety-like behavior. The expression of hippocampal glucocorticoid receptors (GR) and histone deacetylase 2 (HDAC2) increased, whereas histone H3 lysine 14 acetylation (H3K14ac) of brain-derived neurotrophic factor (BDNF) exon IV (BDNF IV) and expression of BDNF decreased. The glutamatergic system also changed. We further observed that changes in the fetal hippocampus were consistent with those in adult offspring. In vitro, the administration of 0.5 μM dexamethasone to the H19-7 fetal hippocampal neuron cells directly led to a cascade of changes in the GR/HDAC2/BDNF pathway, whereas the GR antagonist RU486 and the HDAC2 inhibitor romidepsin (Rom) reversed changes caused by dexamethasone to the H3K14ac level of BDNF IV and to the expression of BDNF. The increase in HDAC2 can be reversed by RU486, and the changes in the glutamatergic system can be partially reversed after supplementation with BDNF. It is suggested that PDE increases the expression of HDAC2 by activating GR, reducing the H3K14ac level of BDNF IV, inducing alterations in neurobehavior and hippocampal glutamatergic system balance. The findings suggest that BDNF supplementation and glutamatergic system improvement are potential therapeutic targets for the fetal origins of abnormal neurobehavior.
Collapse
Affiliation(s)
- Songqiang Huang
- *Department of Pharmacology, School of Basic Medical Sciences
| | - Wanting Dong
- *Department of Pharmacology, School of Basic Medical Sciences
| | - Zhexiao Jiao
- *Department of Pharmacology, School of Basic Medical Sciences
| | - Jie Liu
- *Department of Pharmacology, School of Basic Medical Sciences
| | - Ke Li
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, China
| | - Hui Wang
- *Department of Pharmacology, School of Basic Medical Sciences
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University
| | - Dan Xu
- *Department of Pharmacology, School of Basic Medical Sciences
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University
| |
Collapse
|
27
|
Sarkar T, Patro N, Patro IK. Cumulative multiple early life hits- a potent threat leading to neurological disorders. Brain Res Bull 2019; 147:58-68. [DOI: 10.1016/j.brainresbull.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
|
28
|
Sinha S, Patro N, Patro IK. Maternal Protein Malnutrition: Current and Future Perspectives of Spirulina Supplementation in Neuroprotection. Front Neurosci 2018; 12:966. [PMID: 30618587 PMCID: PMC6305321 DOI: 10.3389/fnins.2018.00966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/03/2018] [Indexed: 12/30/2022] Open
Abstract
Malnutrition has been widely recognized as a grave burden restricting the progress of underdeveloped and developing countries. Maternal, neonatal and postnatal nutritional immunity provides an effective approach to decrease the risk of malnutrition associated stress in adulthood. Particularly, maternal nutritional status is a critical contributor for determining the long-term health aspects of an offspring. Maternal malnutrition leads to increased risk of life, poor immune system, delayed motor development and cognitive dysfunction in the children. An effective immunomodulatory intervention using nutraceutical could be used to enhance immunity against infections. The immune system in early life possesses enormous dynamic capacity to manage both genetic and environment driven processes and can adapt to rapidly changing environmental exposures. These immunomodulatory stimuli or potent nutraceutical strategy can make use of early life plasticity to target pathways of immune ontogeny, which in turn could increase the immunity against infectious diseases arising from malnutrition. This review provides appreciable human and animal data showing enduring effects of protein deprivation on CNS development, oxidative stress and inflammation and associated behavioral and cognitive impairments. Relevant studies on nutritional supplementation and rehabilitation using Spirulina as a potent protein source and neuroprotectant against protein malnutrition (PMN) induced deleterious changes have also been discussed. However, there are many futuristic issues that need to be resolved for proper modulation of these therapeutic interventions to prevent malnutrition.
Collapse
Affiliation(s)
- Shrstha Sinha
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India.,School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India.,School of Studies in Zoology, Jiwaji University, Gwalior, India
| |
Collapse
|
29
|
Moukarzel S, Dyer RA, Garcia C, Wiedeman AM, Boyce G, Weinberg J, Keller BO, Elango R, Innis SM. Milk Fat Globule Membrane Supplementation in Formula-fed Rat Pups Improves Reflex Development and May Alter Brain Lipid Composition. Sci Rep 2018; 8:15277. [PMID: 30323309 PMCID: PMC6189118 DOI: 10.1038/s41598-018-33603-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/01/2018] [Indexed: 01/23/2023] Open
Abstract
Human milk contains nutritional, immunoprotective and developmental components that support optimal infant growth and development. The milk fat globule membrane (MFGM) is one unique component, comprised of a tri-layer of polar lipids, glycolipids, and proteins, that may be important for brain development. MFGM is not present in most infant formulas. We tested the effects of bovine MFGM supplementation on reflex development and on brain lipid and metabolite composition in rats using the “pup in a cup” model. From postnatal d5 to d18, rats received either formula supplemented with MFGM or a standard formula without MFGM; a group of mother-reared animals was used as reference/control condition. Body and brain weights did not differ between groups. MFGM supplementation reduced the gap in maturation age between mother-reared and standard formula-fed groups for the ear and eyelid twitch, negative geotaxis and cliff avoidance reflexes. Statistically significant differences in brain phospholipid and metabolite composition were found at d13 and/or d18 between mother-reared and standard formula-fed groups, including a higher phosphatidylcholine:phosphatidylethanolamine ratio, and higher phosphatidylserine, glycerol-3 phosphate, and glutamine in mother-reared compared to formula-fed pups. Adding MFGM to formula narrowed these differences. Our study demonstrates that addition of bovine MFGM to formula promotes reflex development and alters brain phospholipid and metabolite composition. Changes in brain lipid metabolism and their potential functional implications for neurodevelopment need to be further investigated in future studies.
Collapse
Affiliation(s)
- Sara Moukarzel
- Department of Pediatrics and the Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA, 92093, USA
| | - Roger A Dyer
- Analytical Core for Metabolomics and Nutrition (ACMaN), BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
| | - Cyrielle Garcia
- Department of Pediatrics, University of British Columbia, Vancouver, BC, V5Z 3V4, Canada
| | - Alejandra M Wiedeman
- Department of Pediatrics, University of British Columbia, Vancouver, BC, V5Z 3V4, Canada
| | - Guilaine Boyce
- Department of Pediatrics, University of British Columbia, Vancouver, BC, V5Z 3V4, Canada
| | - Joanne Weinberg
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Bernd O Keller
- Department of Pediatrics, University of British Columbia, Vancouver, BC, V5Z 3V4, Canada
| | - Rajavel Elango
- Department of Pediatrics, University of British Columbia, Vancouver, BC, V5Z 3V4, Canada. .,School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Sheila M Innis
- Department of Pediatrics, University of British Columbia, Vancouver, BC, V5Z 3V4, Canada
| |
Collapse
|
30
|
Georgieff MK, Tran PV, Carlson ES. Atypical fetal development: Fetal alcohol syndrome, nutritional deprivation, teratogens, and risk for neurodevelopmental disorders and psychopathology. Dev Psychopathol 2018; 30:1063-1086. [PMID: 30068419 PMCID: PMC6074054 DOI: 10.1017/s0954579418000500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that the fetal environment plays an important role in brain development and sets the brain on a trajectory across the life span. An abnormal fetal environment results when factors that should be present during a critical period of development are absent or when factors that should not be in the developing brain are present. While these factors may acutely disrupt brain function, the real cost to society resides in the long-term effects, which include important mental health issues. We review the effects of three factors, fetal alcohol exposure, teratogen exposure, and nutrient deficiencies, on the developing brain and the consequent risk for developmental psychopathology. Each is reviewed with respect to the evidence found in epidemiological and clinical studies in humans as well as preclinical molecular and cellular studies that explicate mechanisms of action.
Collapse
Affiliation(s)
| | - Phu V Tran
- University of Minnesota School of Medicine
| | | |
Collapse
|
31
|
Developmental Changes in Oligodendrocyte Genesis, Myelination, and Associated Behavioral Dysfunction in a Rat Model of Intra-generational Protein Malnutrition. Mol Neurobiol 2018; 56:595-610. [PMID: 29752656 DOI: 10.1007/s12035-018-1065-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/05/2018] [Indexed: 10/16/2022]
Abstract
Impairments in oligodendrocyte development and resultant myelination deficits appear as a common denominator to all neurological diseases. An optimal in utero environment is obligatory for normal fetal brain development and later life brain functioning. Late embryonic and early postnatal brains from F1 rat born to protein malnourished mothers were studied through a combination of immunocytochemical and quantitative PCR assay for analyzing the relative expression of platelet-derived growth factor receptor-α (PDGFRα), myelin-associated glycoprotein (MAG), proteolipid protein (PLP), and myelin oligodendrocyte glycoprotein (MOG) to determine oligodendrocyte genesis, differentiation, maturation, and myelination. Myelin integrity and corpus callosum caliber was assessed by Luxol fast blue (LFB) staining, whereas grip strength test and open field activity monitoring for behavioral evaluation in F1 rats. We demonstrate that intra-generational protein deprivation results in drastically low PDGFRα+ oligodendrocyte precursor (OPC) population and significantly reduced expression of myelin protein genes resulting in poor pre-myelinating and mature myelinating oligodendrocyte number, hypo-myelination, and misaligned myelinated fibers. LFB staining and MOG immunolabeling precisely revealed long-term changes in corpus callosum (CC) caliber and demyelination lesions in LP brain supporting the behavioral and cognitive changes at early adolescence and adulthood following maternal protein malnutrition (PMN). Thus, intra-generational PMN negatively affects the oligodendrocyte development and maturation resulting in myelination impairments and associated with behavioral deficits typically mimicking clinical hallmarks of neuropsychiatric disorders. Our results further strengthen and augment the hypothesis "Impaired gliogenesis is a big hit for neuropsychiatric phenotype."
Collapse
|
32
|
Li W, Li Z, Li S, Wang X, Wilson JX, Huang G. Periconceptional Folic Acid Supplementation Benefit to Development of Early Sensory-Motor Function through Increase DNA Methylation in Rat Offspring. Nutrients 2018; 10:nu10030292. [PMID: 29494536 PMCID: PMC5872710 DOI: 10.3390/nu10030292] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 01/21/2023] Open
Abstract
Periconceptional maternal folate levels may alter DNA methylation patterns and health outcomes in offspring. We hypothesized that maternal folic acid supplementation alters fetal neural development through DNA methylation in the fetal brain. Twenty-eight rats were randomly assigned to four groups: three groups of the female rats were fed folate-normal, folate-deficient or folate-supplemented diets from seven days before mating to delivery. In another group, folic acid supplementation diet short-period group was fed a folate-normal diet, except for 10 days (begin mating) when this group was fed a folate-supplemented diet. After delivery, the diets were changed to folate-normal diet for all four groups. The cliff avoidance and forelimb grip tests were used to assess sensory motor function of rat offspring. The results indicate that maternal folic acid supplementation improved the early development of sensory-motor function in offspring. Maternal folic acid supplementation increased the methylation potential, global DNA methylation (5-mC) and DNA methyltransferase expression and activity in the brains of the offspring. In conclusion, maternal folic acid supplementation increases DNA methylation pattern in offspring brain and improves the early development of sensory-motor function.
Collapse
Affiliation(s)
- Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Shou Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Xinyan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - John X Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214-8028, USA.
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| |
Collapse
|
33
|
Perinatal inflammation and adult psychopathology: From preclinical models to humans. Semin Cell Dev Biol 2017; 77:104-114. [PMID: 28890420 DOI: 10.1016/j.semcdb.2017.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Perinatal environment plays a crucial role in brain development and determines its function through life. Epidemiological studies and clinical reports link perinatal exposure to infection and/or immune activation to various psychiatric disorders. In addition, accumulating evidence from animal models shows that perinatal inflammation can affect various behaviors relevant to psychiatric disorders such as schizophrenia, autism, anxiety and depression. Remarkably, the effects on behavior and brain function do not always depend on the type of inflammatory stimulus or the perinatal age targeted, so diverse inflammatory events can have similar consequences on the brain. Moreover, other perinatal environmental factors that affect behavior (e.g. diet and stress) also elicit inflammatory responses. Understanding the interplay between perinatal environment and inflammation on brain development is required to identify the mechanisms through which perinatal inflammation affect brain function in the adult animal. Evidence for the role of the peripheral immune system and glia on perinatal programming of behavior is discussed in this review, along with recent evidence for the role of epigenetic mechanisms affecting gene expression in the brain.
Collapse
|
34
|
Singh K, Patro N, Pradeepa M, Patro I. Neonatal Lipopolysaccharide Infection Causes Demyelination and Behavioral Deficits in Adult and Senile Rat Brain. Ann Neurosci 2017; 24:146-154. [PMID: 28867896 DOI: 10.1159/000477152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/25/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Neonatal bacterial infections have been reported to cause white matter loss, although studies concerning the influence of infection on the expression of myelin and aging are still in their emerging state. PURPOSE The present study aimed to investigate the effects of perinatal lipopolysaccharide (LPS) exposure on the myelination at different age points using histochemical and immunocytochemical techniques and the relative motor coordination. METHODS A rat bacterial infection model was established by exposing the neonatal rats with LPS (0.3 mg/kg body weight, i.p., on postnatal day (PND) 3 followed by a booster at PND 5) and its impact was studied on the myelination and motor coordination in young, adult, and senile rats. RESULTS The results obtained suggest that the administration of LPS induces demyelination, predominantly in cortex and corpus callosum. Low expression level of myelin oligodendrocyte glycoprotein (MOG) was observed at all time points, with prominence at 12, 18, and 24 months of age. In addition, reduced staining with luxol fast blue stain was also recorded in the experimentals. With the increasing demyelination and declining motor ability, LPS exposure also seemed to accelerate normal aging symptoms. CONCLUSION There is a direct correlation of myelin damage and poor motor coordination with age. This would provide a better incite to understand inflammation-associated demyelinating changes in age-associated neurodegenerative disorders. Since, no long-term studies on behavioral impairments caused by LPS-induced demyelination in the central nervous system has been reported so far, this work would help in the better understanding of the long-term pathological effects of bacterial-induced demyelination.
Collapse
Affiliation(s)
- Kavita Singh
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - M Pradeepa
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - Ishan Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India.,School of Studies in Zoology, Jiwaji University, Gwalior, India
| |
Collapse
|
35
|
Naik AA, Patro N, Seth P, Patro IK. Intra-generational protein malnutrition impairs temporal astrogenesis in rat brain. Biol Open 2017; 6:931-942. [PMID: 28546341 PMCID: PMC5550907 DOI: 10.1242/bio.023432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The lack of information on astrogenesis following stressor effect, notwithstanding the imperative roles of astroglia in normal physiology and pathophysiology, incited us to assess temporal astrogenesis and astrocyte density in an intra-generational protein malnutrition (PMN) rat model. Standard immunohistochemical procedures for glial lineage markers and their intensity measurements, and qRT-PCR studies, were performed to reveal the spatio-temporal origin and density of astrocytes. Reduced A2B5+ glia restricted precursor population in ventricles and caused poor dissemination to cortex at embryonic days (E)11-14, and low BLBP+ secondary radial glia in the subventricular zone (SVZ) of E16 low protein (LP) brains reflect compromised progenitor pooling. Contrary to large-sized BLBP+ gliospheres in high protein (HP) brains at E16, small gliospheres and discrete BLBP+ cells in LP brains evidence loss of colonization and low proliferative potential. Delayed emergence of GFAP expression, precocious astrocyte maturation and significantly reduced astrocyte number suggest impaired temporal and compromised astrogenesis within LP-F1 brains. Our findings of protein deprivation induced impairments in temporal astrogenesis, compromised density and astrocytic dysfunction, strengthen the hypothesis of astrocytes as possible drivers of neurodevelopmental disorders. This study may increase our understanding of stressor-associated brain development, opening up windows for effective therapeutic interventions against debilitating neurodevelopmental disorders. Summary: Maternal protein deprivation results in low progenitor pooling, and delayed and compromised astrogenesis, suggesting astrocyte impairment as a driver of neurological diseases owing to their imperative roles in normal and pathological situations.
Collapse
Affiliation(s)
- Aijaz Ahmad Naik
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India.,School of Studies in Zoology, Jiwaji University, Gwalior 474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| | - Pankaj Seth
- National Brain Research Centre, Manesar, Haryana 122051, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India .,School of Studies in Zoology, Jiwaji University, Gwalior 474011, India
| |
Collapse
|
36
|
Marwarha G, Claycombe-Larson K, Schommer J, Ghribi O. Maternal low-protein diet decreases brain-derived neurotrophic factor expression in the brains of the neonatal rat offspring. J Nutr Biochem 2017; 45:54-66. [PMID: 28432877 PMCID: PMC5466833 DOI: 10.1016/j.jnutbio.2017.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/08/2017] [Accepted: 03/16/2017] [Indexed: 01/15/2023]
Abstract
Prenatal exposure to a maternal low-protein (LP) diet has been known to cause cognitive impairment, learning and memory deficits. However, the underlying mechanisms have not been identified. Herein, we demonstrate that a maternal LP diet causes, in the brains of the neonatal rat offspring, an attenuation in the basal expression of the brain-derived neurotrophic factor (BDNF), a neurotrophin indispensable for learning and memory. Female rats were fed either a 20% normal protein (NP) diet or an 8% LP 3 weeks before breeding and during the gestation period. Maternal LP diet caused a significant reduction in the Bdnf expression in the brains of the neonatal rats. We further found that the maternal LP diet reduced the activation of the cAMP/protein kinase A/cAMP response element binding protein (CREB) signaling pathway. This reduction was associated with a significant decrease in CREB binding to the Bdnf promoters. We also show that prenatal exposure to the maternal LP diet results in an inactive or repressed exon I and exon IV promoter of the Bdnf gene in the brain, as evidenced by fluxes in signatory hallmarks in the enrichment of acetylated and trimethylated histones in the nucleosomes that envelop the exon I and exon IV promoters, causing the Bdnf gene to be refractory to transactivation. Our study is the first to determine the impact of a maternal LP diet on the basal expression of BDNF in the brains of the neonatal rats exposed prenatally to an LP diet.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Kate Claycombe-Larson
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - Jared Schommer
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Othman Ghribi
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
| |
Collapse
|