1
|
Wang R, Fang T, Zhang Y, Cheng Y, Wang C, Chen Y, Fan Q, Zhao X, Ming D. The overgrowth of structure-function coupling in premature brain during infancy. Dev Cogn Neurosci 2025; 72:101535. [PMID: 40020404 DOI: 10.1016/j.dcn.2025.101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/15/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
Although the rapid growth of brain structure and function during infancy has been well documented, relatively little is known about how these two developmental processes couple-an aspect that exhibits distinct patterns in adult brain. In this study, the multimodal MRI data from the dHCP database were used to investigate the coupling between brain structure and function in infants, with a particular focus on how prematurity influences this relationship. A similar pattern of the coupling distribution between preterm and full-term infants was identified with coupling index varying across unimodal cortices such as visual and sensorimotor regions and transmodal cortices including default mode network. Notably, a widespread overgrowth of structure-function coupling and a slow developmental trajectory towards full-term infants in preterm infants at term-equivalent age were found. Collectively, the study quantified the development of structure-function relationships in preterm infants, offering new insights into the information transmission processes and developmental patterns of the early-life brain.
Collapse
Affiliation(s)
- Rong Wang
- Medical School,Faculty of Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Tianyu Fang
- Medical School,Faculty of Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Yue Zhang
- Medical School,Faculty of Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Yue Cheng
- Department of Radiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Chunfang Wang
- Tianjin Rehabilitation Institute, Tianjin 300121, China
| | - Yuanyuan Chen
- Medical School,Faculty of Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China.
| | - Qiuyun Fan
- Medical School,Faculty of Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Xin Zhao
- Medical School,Faculty of Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China.
| | - Dong Ming
- Medical School,Faculty of Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| |
Collapse
|
2
|
Kovacs-Balint Z, Sanchez MM, Wang A, Feczko E, Earl E, Styner M, Fair D, Bachevalier J. The Development of Socially Directed Attention: A Functional Magnetic Resonance Imaging Study in Infant Monkeys. J Cogn Neurosci 2024; 36:2742-2760. [PMID: 38739568 PMCID: PMC11844751 DOI: 10.1162/jocn_a_02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Socially guided visual attention, such as gaze following and joint attention, represents the building block of higher-level social cognition in primates, although their neurodevelopmental processes are still poorly understood. Atypical development of these social skills has served as early marker of autism spectrum disorder and Williams syndrome. In this study, we trace the developmental trajectories of four neural networks underlying visual and attentional social engagement in the translational rhesus monkey model. Resting-state fMRI (rs-fMRI) data and gaze following skills were collected in infant rhesus macaques from birth through 6 months of age. Developmental trajectories from subjects with both resting-state fMRI and eye-tracking data were used to explore brain-behavior relationships. Our findings indicate robust increases in functional connectivity (FC) between primary visual areas (primary visual cortex [V1] - extrastriate area 3 [V3] and V3 - middle temporal area [MT], MT and anterior superior temporal sulcus area [AST], as well as between anterior temporal area [TE]) and amygdala (AMY) as infants mature. Significant FC decreases were found in more rostral areas of the pathways, such as between temporal area occipital part - TE in the ventral object pathway, V3 - lateral intraparietal (LIP) of the dorsal visual attention pathway and V3 - temporo-parietal area of the ventral attention pathway. No changes in FC were found between cortical areas LIP-FEF and temporo-parietal area - Area 12 of the dorsal and ventral attention pathways or between Anterior Superior Temporal sulcus area (AST)-AMY and AMY-insula. Developmental trajectory of gaze following revealed a period of dynamic changes with gradual increases from 1 to 2 months, followed by slight decreases from 3 to 6 months. Exploratory association findings across the 6-month period showed that infants with higher gaze following had lower FC between primary visual areas V1-V3, but higher FC in the dorsal attention areas V3-LIP, both in the right hemisphere. Together, the first 6 months of life in rhesus macaques represent a critical period for the emergence of gaze following skills associated with maturational changes in FC of socially guided attention pathways.
Collapse
|
3
|
Chang B, Park JJ, Buch VP. Applying normative atlases in deep brain stimulation: a comprehensive review. Int J Surg 2024; 110:8037-8044. [PMID: 39806746 PMCID: PMC11634178 DOI: 10.1097/js9.0000000000002120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/07/2024] [Indexed: 01/16/2025]
Abstract
Deep brain stimulation (DBS) has emerged as a crucial therapeutic strategy for various neurological and psychiatric disorders. Precise target localization is essential for optimizing therapeutic outcomes, necessitating advanced neuroimaging techniques. Normative atlases provide standardized references for accurate electrode placement, enhancing treatment customization and efficacy. This comprehensive review explores the application of normative atlases in DBS, emphasizing their role in target identification, patient-specific electrode placement, and predicting stimulation outcomes. Challenges, such as variability across atlases and technical complexities, are addressed alongside future directions and innovations, including advancements in neuroimaging technologies and the integration of machine learning (ML) and artificial intelligence (AI). Normative atlases play a pivotal role in enhancing DBS precision and patient outcomes, promising a future of personalized and effective therapies in neurology and psychiatry.
Collapse
Affiliation(s)
- Bowen Chang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, People’s Republic of China
- Department of Neurosurgery, Stanford University, Stanford, Palo Alto, California, USA
| | - Jay J. Park
- Department of Neurosurgery, Stanford University, Stanford, Palo Alto, California, USA
| | - Vivek P. Buch
- Department of Neurosurgery, Stanford University, Stanford, Palo Alto, California, USA
| |
Collapse
|
4
|
Zhong T, Wu X, Liang S, Ning Z, Wang L, Niu Y, Yang S, Kang Z, Feng Q, Li G, Zhang Y. nBEST: Deep-learning-based non-human primates Brain Extraction and Segmentation Toolbox across ages, sites and species. Neuroimage 2024; 295:120652. [PMID: 38797384 DOI: 10.1016/j.neuroimage.2024.120652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Accurate processing and analysis of non-human primate (NHP) brain magnetic resonance imaging (MRI) serves an indispensable role in understanding brain evolution, development, aging, and diseases. Despite the accumulation of diverse NHP brain MRI datasets at various developmental stages and from various imaging sites/scanners, existing computational tools designed for human MRI typically perform poor on NHP data, due to huge differences in brain sizes, morphologies, and imaging appearances across species, sites, and ages, highlighting the imperative for NHP-specialized MRI processing tools. To address this issue, in this paper, we present a robust, generic, and fully automated computational pipeline, called non-human primates Brain Extraction and Segmentation Toolbox (nBEST), whose main functionality includes brain extraction, non-cerebrum removal, and tissue segmentation. Building on cutting-edge deep learning techniques by employing lifelong learning to flexibly integrate data from diverse NHP populations and innovatively constructing 3D U-NeXt architecture, nBEST can well handle structural NHP brain MR images from multi-species, multi-site, and multi-developmental-stage (from neonates to the elderly). We extensively validated nBEST based on, to our knowledge, the largest assemblage dataset in NHP brain studies, encompassing 1,469 scans with 11 species (e.g., rhesus macaques, cynomolgus macaques, chimpanzees, marmosets, squirrel monkeys, etc.) from 23 independent datasets. Compared to alternative tools, nBEST outperforms in precision, applicability, robustness, comprehensiveness, and generalizability, greatly benefiting downstream longitudinal, cross-sectional, and cross-species quantitative analyses. We have made nBEST an open-source toolbox (https://github.com/TaoZhong11/nBEST) and we are committed to its continual refinement through lifelong learning with incoming data to greatly contribute to the research field.
Collapse
Affiliation(s)
- Tao Zhong
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Xueyang Wu
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Shujun Liang
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Zhenyuan Ning
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Yuyu Niu
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Shihua Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhuang Kang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianjin Feng
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| | - Yu Zhang
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Wakeford AGP, Nye JA, Morin EL, Mun J, Meyer JS, Goodman M, Howell LL, Sanchez MM. Alterations in adolescent brain serotonin (5HT) 1A, 5HT 2A, and dopamine (D) 2 receptor systems in a nonhuman primate model of early life adversity. Neuropsychopharmacology 2024; 49:1227-1235. [PMID: 38671147 PMCID: PMC11224234 DOI: 10.1038/s41386-023-01784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 04/28/2024]
Abstract
Stress affects brain serotonin (5HT) and dopamine (DA) function, and the effectiveness of 5HT and DA to regulate stress and emotional responses. However, our understanding of the long-term impact of early life adversity (ELA) on primate brain monoaminergic systems during adolescence is scarce and inconsistent. Filling this gap in the literature is critical, given that the emergence of psychopathology during adolescence has been related to deficits in these systems. Here, we use a translational nonhuman primate (NHP) model of ELA (infant maltreatment by the mother) to examine the long-term impact of ELA on adolescent 5HT1A, 5HT2A and D2 receptor systems. These receptor systems were chosen based on their involvement in stress/emotional control, as well as reward and reinforcement. Rates of maternal abuse, rejection, and infant's vocalizations were obtained during the first three postnatal months, and hair cortisol concentrations obtained at 6 months postnatal were examined as early predictors of binding potential (BP) values obtained during adolescence using positron emission tomography (PET) imaging. Maltreated animals demonstrated significantly lower 5HT1A receptor BP in prefrontal cortical areas as well as the amygdala and hippocampus, and lower 5HT2A receptor BP in striatal and prefrontal cortical areas. Maltreated animals also demonstrated significantly lower D2 BP in the amygdala. None of the behavioral and neuroendocrine measurements obtained early in life predicted any changes in BP data. Our findings suggest that early caregiving experiences regulate the development of brain 5HT and DA systems in primates, resulting in long-term effects evident during adolescence.
Collapse
Affiliation(s)
- Alison G P Wakeford
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Elyse L Morin
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA
- Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA
| | - Jiyoung Mun
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Jerrold S Meyer
- Department of Psychological & Brain Sciences, University of Massachusetts, 441 Tobin Hall, Amherst, MA, 01003, USA
| | - Mark Goodman
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Leonard L Howell
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA
| | - Mar M Sanchez
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA.
- Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
6
|
Wakeford A, Nye JA, Grieb ZA, Voisin DA, Mun J, Huhman KL, Albers E, Michopoulos V. Sex influences the effects of social status on socioemotional behavior and serotonin neurochemistry in rhesus monkeys. Biol Sex Differ 2023; 14:75. [PMID: 37898775 PMCID: PMC10613371 DOI: 10.1186/s13293-023-00562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Despite observed sex differences in the prevalence of stress-related psychiatric conditions, most preclinical and translational studies have only included male subjects. Therefore, it has not been possible to effectively assess how sex interacts with other psychosocial risk factors to impact the etiology and maintenance of stress-related psychopathology. One psychosocial factor that interacts with sex to impact risk for stress-related behavioral and physiological deficits is social dominance. The current study was designed to assess sex differences in the effects of social status on socioemotional behavior and serotonin neurochemistry in socially housed rhesus monkeys. We hypothesized that sex and social status interact to influence socioemotional behaviors as well as serotonin 1A receptor binding potential (5HT1AR-BP) in regions of interest (ROIs) implicated in socioemotional behavior. METHODS Behavioral observations were conducted in gonadally intact adult female (n = 14) and male (n = 13) rhesus monkeys. 5HT1AR-BP was assessed via positron emission tomography using 4-(2'-Methoxyphenyl)-1-[2'-(N-2"-pyridinyl)-p[18F]fluorobenzamido]ethylpiperazine ([18F]MPPF). RESULTS Aggression emitted was greater in dominant compared to subordinate animals, regardless of sex. Submission emitted was significantly greater in subordinate versus dominant animals and greater in females than males. Affiliative behaviors emitted were not impacted by sex, status, or their interaction. Anxiety-like behavior emitted was significantly greater in females than in males regardless of social status. Hypothalamic 5HT1AR-BP was significantly greater in females than in males, regardless of social status. 5HT1AR-BP in the dentate gyrus of the hippocampus was significantly impacted by a sex by status interaction whereby 5HT1AR-BP in the dentate gyrus was greater in dominant compared to subordinate females but was not different between dominant and subordinate males. There were no effects of sex, status, or their interaction on 5HT1AR-BP in the DRN and in the regions of the PFC studied. CONCLUSIONS These data have important implications for the treatment of stress-related behavioral health outcomes, as they suggest that sex and social status are important factors to consider in the context of serotonergic drug efficacy.
Collapse
Affiliation(s)
- Alison Wakeford
- Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Jonathon A Nye
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Zachary A Grieb
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Dené A Voisin
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Jiyoung Mun
- Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Vasiliki Michopoulos
- Emory National Primate Research Center, Atlanta, GA, 30322, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
Lesh TA, Iosif AM, Tanase C, Vlasova RM, Ryan AM, Bennett J, Hogrefe CE, Maddock RJ, Geschwind DH, Van de Water J, McAllister AK, Styner MA, Bauman MD, Carter CS. Extracellular free water elevations are associated with brain volume and maternal cytokine response in a longitudinal nonhuman primate maternal immune activation model. Mol Psychiatry 2023; 28:4185-4194. [PMID: 37582858 PMCID: PMC10867284 DOI: 10.1038/s41380-023-02213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Maternal infection has emerged as an important environmental risk factor for neurodevelopmental disorders, including schizophrenia and autism spectrum disorders. Animal model systems of maternal immune activation (MIA) suggest that the maternal immune response plays a significant role in the offspring's neurodevelopment and behavioral outcomes. Extracellular free water is a measure of freely diffusing water in the brain that may be associated with neuroinflammation and impacted by MIA. The present study evaluates the brain diffusion characteristics of male rhesus monkeys (Macaca mulatta) born to MIA-exposed dams (n = 14) treated with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the end of the first trimester (n = 10) or were untreated (n = 4). Offspring underwent diffusion MRI scans at 6, 12, 24, 36, and 45 months. Offspring born to MIA-exposed dams showed significantly increased extracellular free water in cingulate cortex gray matter starting as early as 6 months of age and persisting through 45 months. In addition, offspring gray matter free water in this region was significantly correlated with the magnitude of the maternal IL-6 response in the MIA-exposed dams. Significant correlations between brain volume and extracellular free water in the MIA-exposed offspring also indicate converging, multimodal evidence of the impact of MIA on brain development. These findings provide strong evidence for the construct validity of the nonhuman primate MIA model as a system of relevance for investigating the pathophysiology of human neurodevelopmental psychiatric disorders. Elevated free water in individuals exposed to immune activation in utero could represent an early marker of a perturbed or vulnerable neurodevelopmental trajectory.
Collapse
Affiliation(s)
- Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Ana-Maria Iosif
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Costin Tanase
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Amy M Ryan
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| | - Jeffrey Bennett
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | | | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Judy Van de Water
- MIND Institute, University of California, Davis, CA, USA
- Rheumatology/Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - A Kimberley McAllister
- MIND Institute, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
8
|
Zhong T, Wei J, Wu K, Chen L, Zhao F, Pei Y, Wang Y, Zhang H, Wu Z, Huang Y, Li T, Wang L, Chen Y, Ji W, Zhang Y, Li G, Niu Y. Longitudinal brain atlases of early developing cynomolgus macaques from birth to 48 months of age. Neuroimage 2021; 247:118799. [PMID: 34896583 DOI: 10.1016/j.neuroimage.2021.118799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/05/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022] Open
Abstract
Longitudinal brain imaging atlases with densely sampled time-points and ancillary anatomical information are of fundamental importance in studying early developmental characteristics of human and non-human primate brains during infancy, which feature extremely dynamic imaging appearance, brain shape and size. However, for non-human primates, which are highly valuable animal models for understanding human brains, the existing brain atlases are mainly developed based on adults or adolescents, denoting a notable lack of temporally densely-sampled atlases covering the dynamic early brain development. To fill this critical gap, in this paper, we construct a comprehensive set of longitudinal brain atlases and associated tissue probability maps (gray matter, white matter, and cerebrospinal fluid) with totally 12 time-points from birth to 4 years of age (i.e., 1, 2, 3, 4, 5, 6, 9, 12, 18, 24, 36, and 48 months of age) based on 175 longitudinal structural MRI scans from 39 typically-developing cynomolgus macaques, by leveraging state-of-the-art computational techniques tailored for early developing brains. Furthermore, to facilitate region-based analysis using our atlases, we also provide two popular hierarchy parcellations, i.e., cortical hierarchy maps (6 levels) and subcortical hierarchy maps (6 levels), on our longitudinal macaque brain atlases. These early developing atlases, which have the densest time-points during infancy (to the best of our knowledge), will greatly facilitate the studies of macaque brain development.
Collapse
Affiliation(s)
- Tao Zhong
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA; Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Jingkuan Wei
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Kunhua Wu
- Department of MRI, the First People's Hospital of Yunnan Province, Kunming, China
| | - Liangjun Chen
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Fenqiang Zhao
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Yuchen Pei
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Ya Wang
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Hongjiang Zhang
- Department of MRI, the First People's Hospital of Yunnan Province, Kunming, China
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Ying Huang
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Tengfei Li
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA.
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China.
| |
Collapse
|
9
|
Vlasova RM, Iosif AM, Ryan AM, Funk LH, Murai T, Chen S, Lesh TA, Rowland DJ, Bennett J, Hogrefe CE, Maddock RJ, Gandal MJ, Geschwind DH, Schumann CM, Van de Water J, McAllister AK, Carter CS, Styner MA, Amaral DG, Bauman MD. Maternal Immune Activation during Pregnancy Alters Postnatal Brain Growth and Cognitive Development in Nonhuman Primate Offspring. J Neurosci 2021; 41:9971-9987. [PMID: 34607967 PMCID: PMC8638691 DOI: 10.1523/jneurosci.0378-21.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Human epidemiological studies implicate exposure to infection during gestation in the etiology of neurodevelopmental disorders. Animal models of maternal immune activation (MIA) have identified the maternal immune response as the critical link between maternal infection and aberrant offspring brain and behavior development. Here we evaluate neurodevelopment of male rhesus monkeys (Macaca mulatta) born to MIA-treated dams (n = 14) injected with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the same gestational time points (n = 10) or were untreated (n = 4). MIA-treated dams exhibited a strong immune response as indexed by transient increases in sickness behavior, temperature, and inflammatory cytokines. Although offspring born to control or MIA-treated dams did not differ on measures of physical growth and early developmental milestones, the MIA-treated animals exhibited subtle changes in cognitive development and deviated from species-typical brain growth trajectories. Longitudinal MRI revealed significant gray matter volume reductions in the prefrontal and frontal cortices of MIA-treated offspring at 6 months that persisted through the final time point at 45 months along with smaller frontal white matter volumes in MIA-treated animals at 36 and 45 months. These findings provide the first evidence of early postnatal changes in brain development in MIA-exposed nonhuman primates and establish a translationally relevant model system to explore the neurodevelopmental trajectory of risk associated with prenatal immune challenge from birth through late adolescence.SIGNIFICANCE STATEMENT Women exposed to infection during pregnancy have an increased risk of giving birth to a child who will later be diagnosed with a neurodevelopmental disorder. Preclinical maternal immune activation (MIA) models have demonstrated that the effects of maternal infection on fetal brain development are mediated by maternal immune response. Since the majority of MIA models are conducted in rodents, the nonhuman primate provides a unique system to evaluate the MIA hypothesis in a species closely related to humans. Here we report the first longitudinal study conducted in a nonhuman primate MIA model. MIA-exposed offspring demonstrate subtle changes in cognitive development paired with marked reductions in frontal gray and white matter, further supporting the association between prenatal immune challenge and alterations in offspring neurodevelopment.
Collapse
Affiliation(s)
- Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, 27514
| | - Ana-Maria Iosif
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Amy M Ryan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- California National Primate Research Center, University of California, Davis, California, 95616
| | - Lucy H Funk
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Takeshi Murai
- California National Primate Research Center, University of California, Davis, California, 95616
| | - Shuai Chen
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Douglas J Rowland
- Center for Genomic and Molecular Imaging, University of California, Davis, California, 95616
| | - Jeffrey Bennett
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Casey E Hogrefe
- California National Primate Research Center, University of California, Davis, California, 95616
| | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Michael J Gandal
- Neurogenetics Program, Department of Neurology, University of California, Los Angeles, California, 90095
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, University of California, Los Angeles, California, 90095
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Judy Van de Water
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - A Kimberley McAllister
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- Center for Neuroscience, University of California, Davis, California, 95618
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, 27514
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- California National Primate Research Center, University of California, Davis, California, 95616
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- California National Primate Research Center, University of California, Davis, California, 95616
| |
Collapse
|
10
|
NRM 2021 Abstract Booklet. J Cereb Blood Flow Metab 2021; 41:11-309. [PMID: 34905986 PMCID: PMC8851538 DOI: 10.1177/0271678x211061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Song X, García-Saldivar P, Kindred N, Wang Y, Merchant H, Meguerditchian A, Yang Y, Stein EA, Bradberry CW, Ben Hamed S, Jedema HP, Poirier C. Strengths and challenges of longitudinal non-human primate neuroimaging. Neuroimage 2021; 236:118009. [PMID: 33794361 PMCID: PMC8270888 DOI: 10.1016/j.neuroimage.2021.118009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 01/20/2023] Open
Abstract
Longitudinal non-human primate neuroimaging has the potential to greatly enhance our understanding of primate brain structure and function. Here we describe its specific strengths, compared to both cross-sectional non-human primate neuroimaging and longitudinal human neuroimaging, but also its associated challenges. We elaborate on factors guiding the use of different analytical tools, subject-specific versus age-specific templates for analyses, and issues related to statistical power.
Collapse
Affiliation(s)
- Xiaowei Song
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Pamela García-Saldivar
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230, México
| | - Nathan Kindred
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, United Kingdom
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230, México
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, UMR7290, Université Aix-Marseille/CNRS, Institut Language, Communication and the Brain 13331 Marseille, France
| | - Yihong Yang
- Neuroimaging Research Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Elliot A Stein
- Neuroimaging Research Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Charles W Bradberry
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Université de Lyon - CNRS, France
| | - Hank P Jedema
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA.
| | - Colline Poirier
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle University, United Kingdom.
| |
Collapse
|
12
|
Rendina DN, Lubach GR, Lyte M, Phillips GJ, Gosain A, Pierre JF, Vlasova RM, Styner MA, Coe CL. Proteobacteria abundance during nursing predicts physical growth and brain volume at one year of age in young rhesus monkeys. FASEB J 2021; 35:e21682. [PMID: 34042210 DOI: 10.1096/fj.202002162r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 01/01/2023]
Abstract
Over the last decade, multiple studies have highlighted the essential role of gut microbiota in normal infant development. However, the sensitive periods during which gut bacteria are established and become associated with physical growth and maturation of the brain are still poorly defined. This study tracked the assembly of the intestinal microbiota during the initial nursing period, and changes in community structure after transitioning to solid food in infant rhesus monkeys (Macaca mulatta). Anthropometric measures and rectal swabs were obtained at 2-month intervals across the first year of life and bacterial taxa identified by 16S rRNA gene sequencing. At 12 months of age, total brain and cortical regions volumes were quantified through structural magnetic resonance imaging. The bacterial community structure was dynamic and characterized by discrete maturational phases, reflecting an early influence of breast milk and the later transition to solid foods. Commensal microbial taxa varied with diet similar to findings in other animals and human infants; however, monkeys differ in the relative abundances of Lactobacilli and Bifidobacteria, two taxa predominant in breastfed human infants. Higher abundances of taxa in the phylum Proteobacteria during nursing were predictive of slower growth trajectories and smaller brain volumes at one year of age. Our findings define discrete phases of microbial succession in infant monkeys and suggest there may be a critical period during nursing when endogenous differences in certain taxa can shift the community structure and influence the pace of physical growth and the maturational trajectory of the brain.
Collapse
Affiliation(s)
- Danielle N Rendina
- Harlow Center, University of Wisconsin, Madison, WI, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | | | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Gregory J Phillips
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Ankush Gosain
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Joseph F Pierre
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.,Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.,Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
13
|
Kovacs-Balint ZA, Payne C, Steele J, Li L, Styner M, Bachevalier J, Sanchez MM. Structural development of cortical lobes during the first 6 months of life in infant macaques. Dev Cogn Neurosci 2021; 48:100906. [PMID: 33465553 PMCID: PMC7815644 DOI: 10.1016/j.dcn.2020.100906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
This study mapped the developmental trajectories of cortical regions in comparison to overall brain growth in typically developing, socially-housed infant macaques. Volumetric changes of cortical brain regions were examined longitudinally between 2-24 weeks of age (equivalent to the first 2 years in humans) in 21 male rhesus macaques. Growth of the prefrontal, frontal, parietal, occipital, and temporal cortices (visual and auditory) was examined using MRI and age-specific infant macaque brain atlases developed by our group. Results indicate that cortical volumetric development follows a cubic growth curve, but maturational timelines and growth rates are region-specific. Total intracranial volume (ICV) increased significantly during the first 5 months of life, leveling off thereafter. Prefrontal and temporal visual cortices showed fast volume increases during the first 16 weeks, followed by a plateau, and significant growth again between 20-24 weeks. Volume of the frontal and temporal auditory cortices increased substantially between 2-24 weeks. The parietal cortex showed a significant volume increase during the first 4 months, whereas the volume of the occipital lobe increased between 2-12 weeks and plateaued thereafter. These developmental trajectories show similarities to cortical growth in human infants, providing foundational information necessary to build nonhuman primate (NHP) models of human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Z A Kovacs-Balint
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, United States
| | - C Payne
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, United States; Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA, 30329, United States
| | - J Steele
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, United States
| | - L Li
- Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA, 30329, United States; Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, United States
| | - M Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, 27514, United States
| | - J Bachevalier
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, United States; Department of Psychology, Emory University, Atlanta, GA, 30322, United States
| | - M M Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, United States; Department of Psychiatry & Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, 30322, United States.
| |
Collapse
|
14
|
Knickmeyer RC, Nguyen CT, Young JT, Haunton A, Kosorok MR, Gilmore JH, Styner M, Rothmond DA, Noble PL, Lenroot R, Weickert CS. Impact of gonadectomy on maturational changes in brain volume in adolescent macaques. Psychoneuroendocrinology 2021; 124:105068. [PMID: 33260081 PMCID: PMC8121100 DOI: 10.1016/j.psyneuen.2020.105068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/29/2020] [Accepted: 11/12/2020] [Indexed: 10/23/2022]
Abstract
Adolescence is a transitional period between childhood and adulthood characterized by significant changes in global and regional brain tissue volumes. It is also a period of increasing vulnerability to psychiatric illness. The relationship between these patterns and increased levels of circulating sex steroids during adolescence remains unclear. The objective of the current study was to determine whether gonadectomy, prior to puberty, alters adolescent brain development in male rhesus macaques. Ninety-six structural MRI scans were acquired from 12 male rhesus macaques (8 time points per animal over a two-year period). Six animals underwent gonadectomy and 6 animals underwent a sham operation at 29 months of age. Mixed-effects models were used to determine whether gonadectomy altered developmental trajectories of global and regional brain tissue volumes. We observed a significant effect of gonadectomy on the developmental trajectory of prefrontal gray matter (GM), with intact males showing peak volumes around 3.5 years of age with a subsequent decline. In contrast, prefrontal GM volumes continued to increase in gonadectomized males until the end of the study. We did not observe a significant effect of gonadectomy on prefrontal white matter or on any other global or regional brain tissue volumes, though we cannot rule out that effects might be detected in a larger sample. Results suggest that the prefrontal cortex is more vulnerable to gonadectomy than other brain regions.
Collapse
Affiliation(s)
- Rebecca C. Knickmeyer
- Michigan State University, Institute for Quantitative Health Science and Engineering, Room 2114, Bio Engineering Facility, 775 Woodlot Dr., East Lansing, MI, 48824 USA,University of North Carolina at Chapel Hill, Department of Psychiatry, Campus Box #7160, Chapel Hill, NC 27599-7160, USA
| | - Crystal T. Nguyen
- University of North Carolina at Chapel Hill, Department of Biostatistics, Campus Box #7420, Chapel Hill, NC 27599-7420, USA
| | - Jeffrey T. Young
- University of North Carolina at Chapel Hill, Department of Psychiatry, Campus Box #7160, Chapel Hill, NC 27599-7160, USA
| | - Anne Haunton
- North Carolina School of Science and Mathematics, 1219 Broad St, Durham, NC 27705, USA.
| | - Michael R. Kosorok
- University of North Carolina at Chapel Hill, Department of Biostatistics, Campus Box #7420, Chapel Hill, NC 27599-7420, USA
| | - John H. Gilmore
- University of North Carolina at Chapel Hill, Department of Psychiatry, Campus Box #7160, Chapel Hill, NC 27599-7160, USA
| | - Martin Styner
- University of North Carolina at Chapel Hill, Department of Psychiatry, Campus Box #7160, Chapel Hill, NC 27599-7160, USA; University of North Carolina at Chapel Hill, Department of Computer Science, Campus Box #3175, Chapel Hill, NC 27599-3175, USA.
| | - Debora A. Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick NSW 2031, Australia
| | - Pamela L. Noble
- Laboratory of Neuropsychology, National Institute for Mental Health, National Institutes of Health, Bethesda, MD 20892-9663
| | - Rhoshel Lenroot
- University of New Mexico, Department of Psychiatry and Behavioral Sciences, Albuquerque, NM 87131, USA.
| | - Cynthia Shannon Weickert
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
15
|
Lv Q, Yan M, Shen X, Wu J, Yu W, Yan S, Yang F, Zeljic K, Shi Y, Zhou Z, Lv L, Hu X, Menon R, Wang Z. Normative Analysis of Individual Brain Differences Based on a Population MRI-Based Atlas of Cynomolgus Macaques. Cereb Cortex 2021; 31:341-355. [PMID: 32844170 PMCID: PMC7727342 DOI: 10.1093/cercor/bhaa229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/05/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023] Open
Abstract
The developmental trajectory of the primate brain varies substantially with aging across subjects. However, this ubiquitous variability between individuals in brain structure is difficult to quantify and has thus essentially been ignored. Based on a large-scale structural magnetic resonance imaging dataset acquired from 162 cynomolgus macaques, we create a species-specific 3D template atlas of the macaque brain, and deploy normative modeling to characterize individual variations of cortical thickness (CT) and regional gray matter volume (GMV). We observed an overall decrease in total GMV and mean CT, and an increase in white matter volume from juvenile to early adult. Specifically, CT and regional GMV were greater in prefrontal and temporal cortices relative to early unimodal areas. Age-dependent trajectories of thickness and volume for each cortical region revealed an increase in the medial temporal lobe, and decreases in all other regions. A low percentage of highly individualized deviations of CT and GMV were identified (0.0021%, 0.0043%, respectively, P < 0.05, false discovery rate [FDR]-corrected). Our approach provides a natural framework to parse individual neuroanatomical differences for use as a reference standard in macaque brain research, potentially enabling inferences regarding the degree to which behavioral or symptomatic variables map onto brain structure in future disease studies.
Collapse
Affiliation(s)
- Qiming Lv
- National Resource Center for Non-human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Mingchao Yan
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Xiangyu Shen
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wu
- National Resource Center for Non-human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wenwen Yu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Shengyao Yan
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Feng Yang
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Kristina Zeljic
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Yuequan Shi
- Department of Radiology, Fujian Provincial Maternity and Children’s Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zuofu Zhou
- Department of Radiology, Fujian Provincial Maternity and Children’s Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Longbao Lv
- National Resource Center for Non-human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xintian Hu
- National Resource Center for Non-human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ravi Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Zheng Wang
- National Resource Center for Non-human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
16
|
Morin EL, Howell BR, Feczko E, Earl E, Pincus M, Reding K, Kovacs-Balint ZA, Meyer JS, Styner M, Fair D, Sanchez MM. Developmental outcomes of early adverse care on amygdala functional connectivity in nonhuman primates. Dev Psychopathol 2020; 32:1579-1596. [PMID: 33427167 PMCID: PMC11500993 DOI: 10.1017/s0954579420001133] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Despite the strong link between childhood maltreatment and psychopathology, the underlying neurodevelopmental mechanisms are poorly understood and difficult to disentangle from heritable and prenatal factors. This study used a translational macaque model of infant maltreatment in which the adverse experience occurs in the first months of life, during intense maturation of amygdala circuits important for stress and emotional regulation. Thus, we examined the developmental impact of maltreatment on amygdala functional connectivity (FC) longitudinally, from infancy through the juvenile period. Using resting state functional magnetic resonance imaging (MRI) we performed amygdala-prefrontal cortex (PFC) region-of-interest and exploratory whole-brain amygdala FC analyses. The latter showed (a) developmental increases in amygdala FC with many regions, likely supporting increased processing of socioemotional-relevant stimuli with age; and (b) maltreatment effects on amygdala coupling with arousal and stress brain regions (locus coeruleus, laterodorsal tegmental area) that emerged with age. Maltreated juveniles showed weaker FC than controls, which was negatively associated with infant hair cortisol concentrations. Findings from the region-of-interest analysis also showed weaker amygdala FC with PFC regions in maltreated animals than controls since infancy, whereas bilateral amygdala FC was stronger in maltreated animals. These effects on amygdala FC development may underlie the poor behavioral outcomes associated with this adverse experience.
Collapse
Affiliation(s)
- Elyse L Morin
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Brittany R Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Eric Feczko
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Eric Earl
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Melanie Pincus
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Katherine Reding
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Jerrold S Meyer
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Martin Styner
- Departments of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Damien Fair
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Mar M Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| |
Collapse
|
17
|
Weiss AR, Liu Z, Wang X, Liguore WA, Kroenke CD, McBride JL. The macaque brain ONPRC18 template with combined gray and white matter labelmap for multimodal neuroimaging studies of Nonhuman Primates. Neuroimage 2020; 225:117517. [PMID: 33137475 PMCID: PMC7833476 DOI: 10.1016/j.neuroimage.2020.117517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 10/24/2020] [Indexed: 11/30/2022] Open
Abstract
Macaques are the most common nonhuman primate (NHP) species used in neuroscience research. With the advancement of many neuroimaging techniques, new studies are beginning to apply multiple types of in vivo mag netic resonance imaging (MRI), such as structural imaging (sMRI) with T1 and T2 weighted contrasts alongside diffusion weighed (DW) imaging. In studies involving rhesus macaques, this approach can be used to better under stand micro-structural changes that occur during development, in various disease states or with normative aging. However, many of the available rhesus brain atlases have been designed for only one imaging modality, making it difficult to consistently define the same brain regions across multiple imaging modalities in the same subject. To address this, we created a brain atlas from 18 adult rhesus macaques that includes co-registered templates constructed from images frequently used to characterize macroscopic brain structure (T2/SPACE and T1/MP-RAGE), and a diffusion tensor imaging (DTI) template. The DTI template was up-sampled from 1 mm isotropic resolution to resolution match to the T1 and T2-weighted images (0.5 mm isotropic), and the parameter maps were derived for FA, AD, RD and MD. The labelmap volumes delineate 57 gray matter regions of interest (ROIs; 36 cortical regions and 21 subcortical structures), as well as 74 white matter tracts. Importantly, the labelmap overlays both the structural and diffusion templates, enabling the same regions to be consistently identified across imaging modalities. A specialized condensed version of the labelmap ROIs are also included to further extend the usefulness of this tool for imaging data with lower spatial resolution, such as functional MRI (fMRI) or positron emission tomography (PET).
Collapse
Affiliation(s)
- Alison R Weiss
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006
| | - Zheng Liu
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006; Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA, 97239
| | - Xiaojie Wang
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006; Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA, 97239
| | - William A Liguore
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006; Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA, 97239; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR, USA, 97239
| | - Jodi L McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR, USA, 97239; Department of Behavioral Neurology, Oregon Health and Science University, Portland OR, USA, 97239.
| |
Collapse
|
18
|
Quantitative definition of neurobehavior, vision, hearing and brain volumes in macaques congenitally exposed to Zika virus. PLoS One 2020; 15:e0235877. [PMID: 33091010 PMCID: PMC7580995 DOI: 10.1371/journal.pone.0235877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Congenital Zika virus (ZIKV) exposure results in a spectrum of disease ranging from severe birth defects to delayed onset neurodevelopmental deficits. ZIKV-related neuropathogenesis, predictors of birth defects, and neurodevelopmental deficits are not well defined in people. Here we assess the methodological and statistical feasibility of a congenital ZIKV exposure macaque model for identifying infant neurobehavior and brain abnormalities that may underlie neurodevelopmental deficits. We inoculated five pregnant macaques with ZIKV and mock-inoculated one macaque in the first trimester. Following birth, growth, ocular structure/function, brain structure, hearing, histopathology, and neurobehavior were quantitatively assessed during the first week of life. We identified the typical pregnancy outcomes of congenital ZIKV infection, with fetal demise and placental abnormalities. We estimated sample sizes needed to define differences between groups and demonstrated that future studies quantifying brain region volumes, retinal structure, hearing, and visual pathway function require a sample size of 14 animals per group (14 ZIKV, 14 control) to detect statistically significant differences in at least half of the infant exam parameters. Establishing the parameters for future studies of neurodevelopmental outcomes following congenital ZIKV exposure in macaques is essential for robust and rigorous experimental design.
Collapse
|
19
|
Castañeda-Martinez L, Noguchi KK, Ikonomidou C, Zagzebski JA, Hall TJ, Rosado-Mendez IM. Optimization of Ultrasound Backscatter Spectroscopy to Assess Neurotoxic Effects of Anesthesia in the Newborn Non-human Primate Brain. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2044-2056. [PMID: 32475715 PMCID: PMC8142938 DOI: 10.1016/j.ultrasmedbio.2020.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Studies in animal models have revealed that long exposures to anesthetics can induce apoptosis in the newborn and young developing brain. These effects have not been confirmed in humans because of the lack of a non-invasive, practical in vivo imaging tool with the ability to detect these changes. Following the successful use of ultrasound backscatter spectroscopy (UBS) to monitor in vivo cell death in breast tumors, we aimed to use UBS to assess the neurotoxicity of the anesthetic sevoflurane (SEVO) in a non-human primate (NHP) model. Sixteen 2- to 7-day-old rhesus macaques were exposed for 5 h to SEVO. Ultrasound scanning was done with a phased array transducer on a clinical ultrasound scanner operated at 10 MHz. Data consisting of 10-15 frames of radiofrequency (RF) echo signals from coronal views of the thalamus were obtained 0.5 and 6.0 h after initiating exposure. The UBS parameter "effective scatterer size" (ESS) was estimated by fitting a scattering form factor (FF) model to the FF measured from RF echo signals. The approach involved analyzing the frequency dependence of the measured FF to characterize scattering sources and selecting the FF model based on a χ2 goodness-of-fit criterion. To assess data quality, a rigorous acceptance criterion based on the analysis of prevalence of diffuse scattering (an assumption in the estimation of ESS) was established. ESS changes after exposure to SEVO were compared with changes in a control group of five primates for which ultrasound data were acquired at 0 and 10 min (no apoptosis expected). Over the entire data set, the average measured FF at 0.5 and 6.0 h monotonically decreased with frequency, justifying fitting a single FF over the analysis bandwidth. χ2 values of a (inhomogeneous continuum) Gaussian FF model were one-fifth those of the discrete fluid sphere model, suggesting that a continuum scatterer model better represents ultrasound scattering in the young rhesus brain. After application of the data quality criterion, only 5 of 16 subjects from the apoptotic group and 5 of 5 subjects from the control group fulfilled the acceptance criteria. All subjects in the apoptotic group that passed the acceptance criterion exhibited a significant ESS reduction at 6.0 h. These changes (-6.4%, 95% Interquartile Range: -14.3% to -3.3%) were larger than those in the control group (-0.8%, 95% Interquartile Range: -2.0% to 1.5%]). Data with a low prevalence of diffuse scattering corresponded to possibly biased results. Thus, ESS has the potential to detect changes in brain microstructure related to anesthesia-induced apoptosis.
Collapse
Affiliation(s)
| | - Kevin K Noguchi
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, Missouri, USA
| | | | - James A Zagzebski
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Hall
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ivan M Rosado-Mendez
- Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
20
|
Raper J, Kovacs-Balint Z, Mavigner M, Gumber S, Burke MW, Habib J, Mattingly C, Fair D, Earl E, Feczko E, Styner M, Jean SM, Cohen JK, Suthar MS, Sanchez MM, Alvarado MC, Chahroudi A. Long-term alterations in brain and behavior after postnatal Zika virus infection in infant macaques. Nat Commun 2020; 11:2534. [PMID: 32439858 PMCID: PMC7242369 DOI: 10.1038/s41467-020-16320-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV) infection has a profound impact on the fetal nervous system. The postnatal period is also a time of rapid brain growth, and it is important to understand the potential neurobehavioral consequences of ZIKV infection during infancy. Here we show that postnatal ZIKV infection in a rhesus macaque model resulted in long-term behavioral, motor, and cognitive changes, including increased emotional reactivity, decreased social contact, loss of balance, and deficits in visual recognition memory at one year of age. Structural and functional MRI showed that ZIKV-infected infant rhesus macaques had persistent enlargement of lateral ventricles, smaller volumes and altered functional connectivity between brain areas important for socioemotional behavior, cognitive, and motor function (e.g. amygdala, hippocampus, cerebellum). Neuropathological changes corresponded with neuroimaging results and were consistent with the behavioral and memory deficits. Overall, this study demonstrates that postnatal ZIKV infection in this model may have long-lasting neurodevelopmental consequences.
Collapse
Affiliation(s)
- Jessica Raper
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Sanjeev Gumber
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Mark W Burke
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| | - Jakob Habib
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Cameron Mattingly
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Damien Fair
- Oregon Health and Science University, Portland, OR, USA
| | - Eric Earl
- Oregon Health and Science University, Portland, OR, USA
| | - Eric Feczko
- Oregon Health and Science University, Portland, OR, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Sherrie M Jean
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Joyce K Cohen
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehul S Suthar
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Mar M Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Maria C Alvarado
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Ann Chahroudi
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA.
| |
Collapse
|
21
|
Zhang S, Jiang X, Zhang W, Zhang T, Chen H, Zhao Y, Lv J, Guo L, Howell BR, Sanchez MM, Hu X, Liu T. Joint representation of connectome-scale structural and functional profiles for identification of consistent cortical landmarks in macaque brain. Brain Imaging Behav 2019; 13:1427-1443. [PMID: 30178424 PMCID: PMC6399084 DOI: 10.1007/s11682-018-9944-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Discovery and representation of common structural and functional cortical architectures has been a significant yet challenging problem for years. Due to the remarkable variability of structural and functional cortical architectures in human brain, it is challenging to jointly represent a common cortical architecture which can comprehensively encode both structure and function characteristics. In order to better understand this challenge and considering that macaque monkey brain has much less variability in structure and function compared with human brain, in this paper, we propose a novel computational framework to apply our DICCCOL (Dense Individualized and Common Connectivity-based Cortical Landmarks) and HAFNI (Holistic Atlases of Functional Networks and Interactions) frameworks on macaque brains, in order to jointly represent structural and functional connectome-scale profiles for identification of a set of consistent and common cortical landmarks across different macaque brains based on multimodal DTI and resting state fMRI (rsfMRI) data. Experimental results demonstrate that 100 consistent and common cortical landmarks are successfully identified via the proposed framework, each of which has reasonably accurate anatomical, structural fiber connection pattern, and functional correspondences across different macaque brains. This set of 100 landmarks offer novel insights into the structural and functional cortical architectures in macaque brains.
Collapse
Affiliation(s)
- Shu Zhang
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Boyd GSRC 420, Athens, GA, 30602, USA
| | - Xi Jiang
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Boyd GSRC 420, Athens, GA, 30602, USA
| | - Wei Zhang
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Boyd GSRC 420, Athens, GA, 30602, USA
| | - Tuo Zhang
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Boyd GSRC 420, Athens, GA, 30602, USA
- School of Automation, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Hanbo Chen
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Boyd GSRC 420, Athens, GA, 30602, USA
| | - Yu Zhao
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Boyd GSRC 420, Athens, GA, 30602, USA
| | - Jinglei Lv
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Boyd GSRC 420, Athens, GA, 30602, USA
- School of Automation, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Brittany R Howell
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Mar M Sanchez
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Xiaoping Hu
- Department of Bioengineering, UC Riverside, Riverside, CA, USA.
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Boyd GSRC 420, Athens, GA, 30602, USA.
| |
Collapse
|
22
|
Abstract
To aid in the analysis of rhesus macaque brain images, we aligned digitized anatomical regions from the widely used atlas of Paxinos et al. to a published magnetic resonance imaging (MRI) template based on a large number of subjects. Digitally labelled atlas images were aligned to the template in 2D and then in 3D. The resulting grey matter regions appear qualitatively to be well registered to the template. To quantitatively validate the procedure, MR brain images of 20 rhesus macaques were aligned to the template along with regions drawn by hand in striatal and cortical areas in each subject's MRI. There was good geometric overlap between the hand drawn regions and the template regions. Positron emission tomography (PET) images of the same subjects showing uptake of a dopamine D2 receptor ligand were aligned to the template space, and good agreement was found between tracer binding measures calculated using the hand drawn and template regions. In conclusion, an anatomically defined set of rhesus macaque brain regions has been aligned to an MRI template and has been validated for analysis of PET imaging in a subset of striatal and cortical areas. The entire set of over 200 regions is publicly available at https://www.nitrc.org/ . Graphical Abstract ᅟ.
Collapse
|
23
|
Howell BR, Ahn M, Shi Y, Godfrey JR, Hu X, Zhu H, Styner M, Sanchez MM. Disentangling the effects of early caregiving experience and heritable factors on brain white matter development in rhesus monkeys. Neuroimage 2019; 197:625-642. [PMID: 30978495 PMCID: PMC7179761 DOI: 10.1016/j.neuroimage.2019.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/30/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022] Open
Abstract
Early social experiences, particularly maternal care, shape behavioral and physiological development in primates. Thus, it is not surprising that adverse caregiving, such as child maltreatment leads to a vast array of poor developmental outcomes, including increased risk for psychopathology across the lifespan. Studies of the underlying neurobiology of this risk have identified structural and functional alterations in cortico-limbic brain circuits that seem particularly sensitive to these early adverse experiences and are associated with anxiety and affective disorders. However, it is not understood how these neurobiological alterations unfold during development as it is very difficult to study these early phases in humans, where the effects of maltreatment experience cannot be disentangled from heritable traits. The current study examined the specific effects of experience ("nurture") versus heritable factors ("nature") on the development of brain white matter (WM) tracts with putative roles in socioemotional behavior in primates from birth through the juvenile period. For this we used a randomized crossfostering experimental design in a naturalistic rhesus monkey model of infant maltreatment, where infant monkeys were randomly assigned at birth to either a mother with a history of maltreating her infants, or a competent mother. Using a longitudinal diffusion tensor imaging (DTI) atlas-based tract-profile approach we identified widespread, but also specific, maturational changes on major brain tracts, as well as alterations in a measure of WM integrity (fractional anisotropy, FA) in the middle longitudinal fasciculus (MdLF) and the inferior longitudinal fasciculus (ILF), of maltreated animals, suggesting decreased structural integrity in these tracts due to early adverse experience. Exploratory voxelwise analyses confirmed the tract-based approach, finding additional effects of early adversity, biological mother, social dominance rank, and sex in other WM tracts. These results suggest tract-specific effects of postnatal maternal care experience versus heritable or biological factors on primate WM microstructural development. Further studies are needed to determine the specific behavioral outcomes and biological mechanisms associated with these alterations in WM integrity.
Collapse
Affiliation(s)
- Brittany R Howell
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.
| | - Mihye Ahn
- Department of Mathematics and Statistics, University of Nevada, Reno, NV, USA; Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Yundi Shi
- Department. of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Jodi R Godfrey
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Xiaoping Hu
- Biomedical Imaging Technology Center, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Hongtu Zhu
- Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Martin Styner
- Department. of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Mar M Sanchez
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
24
|
Kovacs-Balint Z, Feczko E, Pincus M, Earl E, Miranda-Dominguez O, Howell B, Morin E, Maltbie E, LI L, Steele J, Styner M, Bachevalier J, Fair D, Sanchez M. Early Developmental Trajectories of Functional Connectivity Along the Visual Pathways in Rhesus Monkeys. Cereb Cortex 2019; 29:3514-3526. [PMID: 30272135 PMCID: PMC6644858 DOI: 10.1093/cercor/bhy222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 07/23/2018] [Accepted: 08/19/2018] [Indexed: 12/30/2022] Open
Abstract
Early social interactions shape the development of social behavior, although the critical periods or the underlying neurodevelopmental processes are not completely understood. Here, we studied the developmental changes in neural pathways underlying visual social engagement in the translational rhesus monkey model. Changes in functional connectivity (FC) along the ventral object and motion pathways and the dorsal attention/visuo-spatial pathways were studied longitudinally using resting-state functional MRI in infant rhesus monkeys, from birth through early weaning (3 months), given the socioemotional changes experienced during this period. Our results revealed that (1) maturation along the visual pathways proceeds in a caudo-rostral progression with primary visual areas (V1-V3) showing strong FC as early as 2 weeks of age, whereas higher-order visual and attentional areas (e.g., MT-AST, LIP-FEF) show weak FC; (2) functional changes were pathway-specific (e.g., robust FC increases detected in the most anterior aspect of the object pathway (TE-AMY), but FC remained weak in the other pathways (e.g., AST-AMY)); (3) FC matures similarly in both right and left hemispheres. Our findings suggest that visual pathways in infant macaques undergo selective remodeling during the first 3 months of life, likely regulated by early social interactions and supporting the transition to independence from the mother.
Collapse
Affiliation(s)
- Z Kovacs-Balint
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - E Feczko
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Science, Emory University, Atlanta, GA, USA
- Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland OR, USA
| | - M Pincus
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - E Earl
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - O Miranda-Dominguez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - B Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Science, Emory University, Atlanta, GA, USA
| | - E Morin
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Science, Emory University, Atlanta, GA, USA
| | - E Maltbie
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - L LI
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - J Steele
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - M Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - J Bachevalier
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - D Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - M Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Science, Emory University, Atlanta, GA, USA
| |
Collapse
|
25
|
Mavigner M, Raper J, Kovacs-Balint Z, Gumber S, O'Neal JT, Bhaumik SK, Zhang X, Habib J, Mattingly C, McDonald CE, Avanzato V, Burke MW, Magnani DM, Bailey VK, Watkins DI, Vanderford TH, Fair D, Earl E, Feczko E, Styner M, Jean SM, Cohen JK, Silvestri G, Johnson RP, O'Connor DH, Wrammert J, Suthar MS, Sanchez MM, Alvarado MC, Chahroudi A. Postnatal Zika virus infection is associated with persistent abnormalities in brain structure, function, and behavior in infant macaques. Sci Transl Med 2018; 10:eaao6975. [PMID: 29618564 PMCID: PMC6186170 DOI: 10.1126/scitranslmed.aao6975] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/07/2018] [Indexed: 12/22/2022]
Abstract
The Zika virus (ZIKV) epidemic is associated with fetal brain lesions and other serious birth defects classified as congenital ZIKV syndrome. Postnatal ZIKV infection in infants and children has been reported; however, data on brain anatomy, function, and behavioral outcomes following infection are absent. We show that postnatal ZIKV infection of infant rhesus macaques (RMs) results in persistent structural and functional alterations of the central nervous system compared to age-matched controls. We demonstrate ZIKV lymphoid tropism and neurotropism in infant RMs and histopathologic abnormalities in the peripheral and central nervous systems including inflammatory infiltrates, astrogliosis, and Wallerian degeneration. Structural and resting-state functional magnetic resonance imaging (MRI/rs-fMRI) show persistent enlargement of lateral ventricles, maturational changes in specific brain regions, and altered functional connectivity (FC) between brain areas involved in emotional behavior and arousal functions, including weakened amygdala-hippocampal connectivity in two of two ZIKV-infected infant RMs several months after clearance of ZIKV RNA from peripheral blood. ZIKV infection also results in distinct alterations in the species-typical emotional reactivity to acute stress, which were predicted by the weak amygdala-hippocampal FC. We demonstrate that postnatal ZIKV infection of infants in this model affects neurodevelopment, suggesting that long-term clinical monitoring of pediatric cases is warranted.
Collapse
Affiliation(s)
- Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jessica Raper
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Zsofia Kovacs-Balint
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Sanjeev Gumber
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | - Siddhartha K Bhaumik
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaodong Zhang
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jakob Habib
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cameron Mattingly
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Victoria Avanzato
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark W Burke
- Department of Physiology and Biophysics, Howard University, Washington, DC 20060, USA
| | - Diogo M Magnani
- Department of Pathology, University of Miami, Miami, FL 33146, USA
| | - Varian K Bailey
- Department of Pathology, University of Miami, Miami, FL 33146, USA
| | - David I Watkins
- Department of Pathology, University of Miami, Miami, FL 33146, USA
| | - Thomas H Vanderford
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Damien Fair
- Oregon Health and Science University, Portland, OR 97239, USA
| | - Eric Earl
- Oregon Health and Science University, Portland, OR 97239, USA
| | - Eric Feczko
- Oregon Health and Science University, Portland, OR 97239, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sherrie M Jean
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Joyce K Cohen
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - R Paul Johnson
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jens Wrammert
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Vaccine Center, Atlanta, GA 30329, USA
| | - Mar M Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maria C Alvarado
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Zhang W, Jiang X, Zhang S, Howell BR, Zhao Y, Zhang T, Guo L, Sanchez MM, Hu X, Liu T. Connectome-scale functional intrinsic connectivity networks in macaques. Neuroscience 2017; 364:1-14. [PMID: 28842187 DOI: 10.1016/j.neuroscience.2017.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 01/06/2023]
Abstract
There have been extensive studies of intrinsic connectivity networks (ICNs) in the human brains using resting-state functional magnetic resonance imaging (fMRI) in the literature. However, the functional organization of ICNs in macaque brains has been less explored so far, despite growing interests in the field. In this work, we propose a computational framework to identify connectome-scale group-wise consistent ICNs in macaques via sparse representation of whole-brain resting-state fMRI data. Experimental results demonstrate that 70 group-wise consistent ICNs are successfully identified in macaque brains via the proposed framework. These 70 ICNs are interpreted based on two publicly available parcellation maps of macaque brains and our work significantly expand currently known macaque ICNs already reported in the literature. In general, this set of connectome-scale group-wise consistent ICNs can potentially benefit a variety of studies in the neuroscience and brain-mapping fields, and they provide a foundation to better understand brain evolution in the future.
Collapse
Affiliation(s)
- Wei Zhang
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Xi Jiang
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Shu Zhang
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Brittany R Howell
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Yu Zhao
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, PR China; Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an, PR China
| | - Mar M Sanchez
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Xiaoping Hu
- Department of Bioengineering, UC Riverside, CA, USA
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
27
|
Feng L, Jeon T, Yu Q, Ouyang M, Peng Q, Mishra V, Pletikos M, Sestan N, Miller MI, Mori S, Hsiao S, Liu S, Huang H. Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space. Brain Struct Funct 2017. [PMID: 28634624 DOI: 10.1007/s00429-017-1463-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Animal models of the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate, have been irreplaceable in neurobiological studies. However, a population-averaged macaque brain diffusion tensor imaging (DTI) atlas, including comprehensive gray and white matter labeling as well as bony and facial landmarks guiding invasive experimental procedures, is not available. The macaque white matter tract pathways and microstructures have been rarely recorded. Here, we established a population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space incorporating bony and facial landmarks, and delineated microstructures and three-dimensional pathways of major white matter tracts in vivo MRI/DTI and ex vivo (postmortem) DTI of ten rhesus macaque brains were acquired. Single-subject macaque brain DTI template was obtained by transforming the postmortem high-resolution DTI data into in vivo space. Ex vivo DTI of ten macaque brains was then averaged in the in vivo single-subject template space to generate population-averaged macaque brain DTI atlas. The white matter tracts were traced with DTI-based tractography. One hundred and eighteen neural structures including all cortical gyri, white matter tracts and subcortical nuclei, were labeled manually on population-averaged DTI-derived maps. The in vivo microstructural metrics of fractional anisotropy, axial, radial and mean diffusivity of the traced white matter tracts were measured. Population-averaged digital atlas integrated into in vivo space can be used to label the experimental macaque brain automatically. Bony and facial landmarks will be available for guiding invasive procedures. The DTI metric measurements offer unique insights into heterogeneous microstructural profiles of different white matter tracts.
Collapse
Affiliation(s)
- Lei Feng
- Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan, China.,Radiology Research, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Tina Jeon
- Radiology Research, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiaowen Yu
- Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan, China.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Minhui Ouyang
- Radiology Research, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qinmu Peng
- Radiology Research, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Virendra Mishra
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mihovil Pletikos
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA
| | - Susumu Mori
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Steven Hsiao
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Shuwei Liu
- Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan, China
| | - Hao Huang
- Radiology Research, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA. .,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|