1
|
Wu B, Zhou D, Mei Z. Targeting the neurovascular unit: Therapeutic potential of traditional Chinese medicine for the treatment of stroke. Heliyon 2024; 10:e38200. [PMID: 39386825 PMCID: PMC11462356 DOI: 10.1016/j.heliyon.2024.e38200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Stroke poses a significant global health challenge due to its elevated disability and mortality rates, particularly affecting developing nations like China. The neurovascular unit (NVU), a new concept encompassing neurons, brain microvascular endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix, has gained prominence in recent years. Traditional Chinese medicine (TCM), deeply rooted in Chinese history, employs a combination of acupuncture and herbal treatments, demonstrating significant efficacy across all stages of stroke, notably during recovery. The holistic approach of TCM aligns with the NVU's comprehensive view of treating stroke by addressing neurons, surrounding cells, and blood vessels collectively. This review examines the role of NVU in stroke and endeavors to elucidate the mechanisms through which traditional Chinese medicine exerts its anti-stroke effects within the NVU framework. The NVU contributes to neuroinflammation, immune infiltration, blood-brain barrier permeability, oxidative stress, and Ca2+ overload during stroke occurs. Additionally, TCM targeting the NVU facilitates nerve repair post-stroke through various pathways and approaches. Specific herbs, including panax notoginseng, ginseng, and borneol, alleviate brain injury by enhancing brain-derived neurotrophic factor expression and targeting astrocytes and microglia to yield anti-inflammatory and antioxidant effects. Acupuncture, another facet of TCM, promotes brain injury repair by augmenting cerebral blood flow and improving circulation. This exploration aims to assess the viability of stroke treatment by directing TCM interventions toward the NVU, thus paving the way for its broader clinical application.
Collapse
Affiliation(s)
- Bingxin Wu
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Dabiao Zhou
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|
2
|
Walker AR, Sloneker JR, Garno JC. Molecular-level studies of extracellular matrix proteins conducted using atomic force microscopy. Biointerphases 2024; 19:050801. [PMID: 39269167 DOI: 10.1116/6.0003789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Extracellular matrix (ECM) proteins provide anchorage and structural strength to cells and tissues in the body and, thus, are fundamental molecular components for processes of cell proliferation, growth, and function. Atomic force microscopy (AFM) has increasingly become a valuable approach for studying biological molecules such as ECM proteins at the level of individual molecules. Operational modes of AFM can be used to acquire the measurements of the physical, electronic, and mechanical properties of samples, as well as for viewing the intricate details of the surface chemistry of samples. Investigations of the morphology and properties of biomolecules at the nanoscale can be useful for understanding the interactions between ECM proteins and biological molecules such as cells, DNA, and other proteins. Methods for preparing protein samples for AFM studies require only basic steps, such as the immersion of a substrate in a dilute solution or protein, or the deposition of liquid droplets of protein suspensions on a flat, clean surface. Protocols of nanolithography have been used to define the arrangement of proteins for AFM studies. Using AFM, mechanical and force measurements with tips that are coated with ECM proteins can be captured in ambient or aqueous environments. In this review, representative examples of AFM studies are described for molecular-level investigations of the structure, surface assembly, protein-cell interactions, and mechanical properties of ECM proteins (collagen, elastin, fibronectin, and laminin). Methods used for sample preparation as well as characterization with modes of AFM will be discussed.
Collapse
Affiliation(s)
- Ashley R Walker
- Chemistry Department, Louisiana State University, 232 Choppin Hall, Baton Rouge, Los Angeles 70803
| | - Jonathan R Sloneker
- Chemistry Department, Louisiana State University, 232 Choppin Hall, Baton Rouge, Los Angeles 70803
| | - Jayne C Garno
- Chemistry Department, Louisiana State University, 232 Choppin Hall, Baton Rouge, Los Angeles 70803
| |
Collapse
|
3
|
Rodríguez‐Meana B, del Valle J, Viana D, Walston ST, Ria N, Masvidal‐Codina E, Garrido JA, Navarro X. Engineered Graphene Material Improves the Performance of Intraneural Peripheral Nerve Electrodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308689. [PMID: 38863325 PMCID: PMC11304253 DOI: 10.1002/advs.202308689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/09/2024] [Indexed: 06/13/2024]
Abstract
Limb neuroprostheses aim to restore motor and sensory functions in amputated or severely nerve-injured patients. These devices use neural interfaces to record and stimulate nerve action potentials, creating a bidirectional connection with the nervous system. Most neural interfaces are based on standard metal microelectrodes. In this work, a new generation of neural interfaces which replaces metals with engineered graphene, called EGNITE, is tested. In vitro and in vivo experiments are conducted to assess EGNITE biocompatibility. In vitro tests show that EGNITE does not impact cell viability. In vivo, no significant functional decrease or harmful effects are observed. Furthermore, the foreign body reaction to the intraneural implant is similar compared to other materials previously used in neural interfaces. Regarding functionality, EGNITE devices are able to stimulate nerve fascicles, during two months of implant, producing selective muscle activation with about three times less current compared to larger microelectrodes of standard materials. CNAP elicited by electrical stimuli and ENG evoked by mechanical stimuli are recorded with high resolution but are more affected by decreased functionality over time. This work constitutes further proof that graphene-derived materials, and specifically EGNITE, is a promising conductive material of neural electrodes for advanced neuroprostheses.
Collapse
Affiliation(s)
- Bruno Rodríguez‐Meana
- Institute of NeurosciencesDepartment of Cell BiologyPhysiology and ImmunologyUniversitat Autònoma de BarcelonaBellaterra08193Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadrid28031Spain
| | - Jaume del Valle
- Institute of NeurosciencesDepartment of Cell BiologyPhysiology and ImmunologyUniversitat Autònoma de BarcelonaBellaterra08193Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadrid28031Spain
- Department de Bioquímica i FisiologiaUniversitat de BarcelonaBarcelona08028Spain
| | - Damià Viana
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
| | - Steven T. Walston
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
| | - Nicola Ria
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
| | - Eduard Masvidal‐Codina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
| | - Jose A. Garrido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
- ICREABarcelona08010Spain
| | - Xavier Navarro
- Institute of NeurosciencesDepartment of Cell BiologyPhysiology and ImmunologyUniversitat Autònoma de BarcelonaBellaterra08193Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadrid28031Spain
- Institut Guttmann of NeurorehabilitationBadalona08916Spain
| |
Collapse
|
4
|
Deleye L, Franchi F, Trevisani M, Loiacono F, Vercellino S, Debellis D, Liessi N, Armirotti A, Vázquez E, Valente P, Castagnola V, Benfenati F. Few-layered graphene increases the response of nociceptive neurons to irritant stimuli. NANOSCALE 2024; 16:2419-2431. [PMID: 38226500 DOI: 10.1039/d3nr03790h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The unique properties of few-layered graphene (FLG) make it interesting for a variety of applications, including biomedical applications, such as tissue engineering and drug delivery. Although different studies focus on applications in the central nervous system, its interaction with the peripheral nervous system has been so far overlooked. Here, we investigated the effects of exposure to colloidal dispersions of FLG on the sensory neurons of the rat dorsal root ganglia (DRG). We found that the FLG flakes were actively internalized by sensory neurons, accumulated in large intracellular vesicles, and possibly degraded over time, without major toxicological concerns, as neuronal viability, morphology, protein content, and basic electrical properties of DRG neurons were preserved. Interestingly, in our electrophysiological investigation under noxious stimuli, we observed an increased functional response upon FLG treatment of the nociceptive subpopulation of DRG neurons in response to irritants specific for chemoreceptors TRPV1 and TRPA1. The observed effects of FLG on DRG neurons may open-up novel opportunities for applications of these materials in specific disease models.
Collapse
Affiliation(s)
- Lieselot Deleye
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
| | - Francesca Franchi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Martina Trevisani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
- Department of Experimental Medicine, Section of Physiology, University of Genova, Genoa, 16132, Italy.
| | - Fabrizio Loiacono
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Silvia Vercellino
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Doriana Debellis
- Electron Microscopy Facility, IIT, Via Morego 30, 16163, Genoa, Italy
| | - Nara Liessi
- Analytical Chemistry Facility, IIT, via Morego, 30, 16163, Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, IIT, via Morego, 30, 16163, Genoa, Italy
| | - Ester Vázquez
- Facultad de Ciencias Químicas, Universidad Castilla La-Mancha, Ciudad Real, 13071 Spain
| | - Pierluigi Valente
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department of Experimental Medicine, Section of Physiology, University of Genova, Genoa, 16132, Italy.
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
5
|
Convertino D, Nencioni M, Russo L, Mishra N, Hiltunen VM, Bertilacchi MS, Marchetti L, Giacomelli C, Trincavelli ML, Coletti C. Interaction of graphene and WS 2 with neutrophils and mesenchymal stem cells: implications for peripheral nerve regeneration. NANOSCALE 2024; 16:1792-1806. [PMID: 38175567 DOI: 10.1039/d3nr04927b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Graphene and bidimensional (2D) materials have been widely used in nerve conduits to boost peripheral nerve regeneration. Nevertheless, the experimental and commercial variability in graphene-based materials generates graphene forms with different structures and properties that can trigger entirely diverse biological responses from all the players involved in nerve repair. Herein, we focus on the graphene and tungsten disulfide (WS2) interaction with non-neuronal cell types involved in nerve tissue regeneration. We synthesize highly crystalline graphene and WS2 with scalable techniques such as thermal decomposition and chemical vapor deposition. The materials were able to trigger the activation of a neutrophil human model promoting Neutrophil Extracellular Traps (NETs) production, particularly under basal conditions, although neutrophils were not able to degrade graphene. Of note is that pristine graphene acts as a repellent for the NET adhesion, a beneficial property for nerve conduit long-term applications. Mesenchymal stem cells (MSCs) have been proposed as a promising strategy for nerve regeneration in combination with a conduit. Thus, the interaction of graphene with MSCs was also investigated, and reduced viability was observed only on specific graphene substrates. Overall, the results confirm the possibility of regulating the cell response by varying graphene properties and selecting the most suitable graphene forms.
Collapse
Affiliation(s)
- Domenica Convertino
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy.
| | - Martina Nencioni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy.
| | - Lara Russo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy.
| | - Neeraj Mishra
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy.
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy
| | - Vesa-Matti Hiltunen
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy.
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy
| | | | - Laura Marchetti
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy.
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy.
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy.
| | | | - Camilla Coletti
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy.
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy
| |
Collapse
|
6
|
Convertino D, Trincavelli ML, Giacomelli C, Marchetti L, Coletti C. Graphene-based nanomaterials for peripheral nerve regeneration. Front Bioeng Biotechnol 2023; 11:1306184. [PMID: 38164403 PMCID: PMC10757979 DOI: 10.3389/fbioe.2023.1306184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Emerging nanotechnologies offer numerous opportunities in the field of regenerative medicine and have been widely explored to design novel scaffolds for the regeneration and stimulation of nerve tissue. In this review, we focus on peripheral nerve regeneration. First, we introduce the biomedical problem and the present status of nerve conduits that can be used to guide, fasten and enhance regeneration. Then, we thoroughly discuss graphene as an emerging candidate in nerve tissue engineering, in light of its chemical, tribological and electrical properties. We introduce the graphene forms commonly used as neural interfaces, briefly review their applications, and discuss their potential toxicity. We then focus on the adoption of graphene in peripheral nervous system applications, a research field that has gained in the last years ever-increasing attention. We discuss the potential integration of graphene in guidance conduits, and critically review graphene interaction not only with peripheral neurons, but also with non-neural cells involved in nerve regeneration; indeed, the latter have recently emerged as central players in modulating the immune and inflammatory response and accelerating the growth of new tissue.
Collapse
Affiliation(s)
- Domenica Convertino
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | | | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Camilla Coletti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| |
Collapse
|
7
|
Ariani A, Khotimah H, Nurdiana N, Rahayu M. Asiatic acid increased locomotor and head width by inducing brain-derived neurotrophic factor in intrauterine hypoxia-exposed zebrafish. Open Vet J 2023; 13:1326-1333. [PMID: 38027402 PMCID: PMC10658027 DOI: 10.5455/ovj.2023.v13.i10.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
Background Hypoxia ischemia leads to abnormal behavior and growth. Prenatal hypoxia also decreases brain adaptive potential, which can cause fatal effects such as cell death. Asiatic acid (AA) in Centella asiatica is a neuroprotector through antioxidant and anti-inflammatory activities. Aim This study aimed to analyze the effect of AA as a neuroprotector against hypoxia during intrauterine development on locomotor activity, head width, and brain-derived neurotrophic factor (BDNF) expression. Methods The true experimental laboratory research used a posttest control-only design. Zebrafish embryos (Danio rerio) aged 0-2 dpf (days postfertilization) were exposed to hypoxia with oxygen levels reaching 1.5 mg/l. Then, AA was administered at successive concentrations, namely, 0.36, 0.72, and 1.45 μg/ml, at 2 hpf (hours postfertilization), 3, 6, and 9 dpf. Head width, velocity activity, and BDNF expression were observed. Results Intrauterine hypoxia significantly decreased head width, velocity rate, and BDNF expression (<0.001). Administration of AA at all concentrations and age 9 dpf to zebrafish larvae with intrauterine hypoxia exposure increased head width ( p < 0.0001), velocity (p < 0.05), and relative mRNA expression of BDNF (p < 0.05). Conclusion AA is potentially neuroprotective to the brain in zebrafish larvae exposed to hypoxia during intrauterine development.
Collapse
Affiliation(s)
- Ariani Ariani
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Department of Pediatrics, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Husnul Khotimah
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Nurdiana Nurdiana
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Masruroh Rahayu
- Department of Neurology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
8
|
Kamel NN, Aly HF, Fouad GI, Abd El-Karim SS, Anwar MM, Syam YM, Elseginy SA, Ahmed KA, Booles HF, Shalaby MB, Khalil WKB, Sandhir R, Deshwal S, Rizk MZ. Anti-Alzheimer activity of new coumarin-based derivatives targeting acetylcholinesterase inhibition. RSC Adv 2023; 13:18496-18510. [PMID: 37346948 PMCID: PMC10280131 DOI: 10.1039/d3ra02344c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023] Open
Abstract
New 2-oxo-chromene-7-oxymethylene acetohydrazide derivatives 4a-d were designed and synthesized with a variety of bioactive chemical fragments. The newly synthesized compounds were evaluated as acetylcholinesterase (AChE) inhibitors and antioxidant agents in comparison to donepezil and ascorbic acid, respectively. Compound 4c exhibited a promising inhibitory impact with an IC50 value of 0.802 μM and DPPH scavenging activity of 57.14 ± 2.77%. Furthermore, biochemical and haematological studies revealed that compound 4c had no effect on the blood profile, hepatic enzyme levels (AST, ALT, and ALP), or total urea in 4c-treated rats compared to the controls. Moreover, the histopathological studies of 4c-treated rats revealed the normal architecture of the hepatic lobules and renal parenchyma, as well as no histopathological damage in the examined hepatic, kidney, heart, and brain tissues. In addition, an in vivo study investigated the amelioration in the cognitive function of AD-rats treated with 4c through the T-maze and beam balance behavioural tests. Also, 4c detectably ameliorated MDA and GSH, reaching 90.64 and 27.17%, respectively, in comparison to the standard drug (90.64% and 35.03% for MDA and GSH, respectively). The molecular docking study exhibited a good fitting of compound 4c in the active site of the AChE enzyme and a promising safety profile. Compound 4c exhibited a promising anti-Alzheimer's disease efficiency compared to the standard drug donepezil.
Collapse
Affiliation(s)
- Nahla N Kamel
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Hanan F Aly
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Ghadha I Fouad
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Somaia S Abd El-Karim
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Yasmin M Syam
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Samia A Elseginy
- Green Chemistry Department, Chemical Industries Research Division, National Research Centre P. O. Box 12622 Egypt
| | - Kawkab A Ahmed
- Pathology Departments, Faculty of Veterinary Medicine, Cairo University Giza 12211 Egypt
| | - Hoda F Booles
- Department of Cell Biology, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Mohamed B Shalaby
- Toxicology Research Department, Research Institute of Medical Entomology (RIME), General Organization of Teaching Hospitals and Institutes (GOTHI), Ministry of Health and Population (MoHP) Dokki, P. O. Box 12311 Cairo Egypt
| | - Wagdy K B Khalil
- Department of Cell Biology, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University Chandigarh India
| | - Sonam Deshwal
- Department of Biochemistry, Panjab University Chandigarh India
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| |
Collapse
|
9
|
Ye T, Yang Y, Bai J, Wu FY, Zhang L, Meng LY, Lan Y. The mechanical, optical, and thermal properties of graphene influencing its pre-clinical use in treating neurological diseases. Front Neurosci 2023; 17:1162493. [PMID: 37360172 PMCID: PMC10288862 DOI: 10.3389/fnins.2023.1162493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Rapid progress in nanotechnology has advanced fundamental neuroscience and innovative treatment using combined diagnostic and therapeutic applications. The atomic scale tunability of nanomaterials, which can interact with biological systems, has attracted interest in emerging multidisciplinary fields. Graphene, a two-dimensional nanocarbon, has gained increasing attention in neuroscience due to its unique honeycomb structure and functional properties. Hydrophobic planar sheets of graphene can be effectively loaded with aromatic molecules to produce a defect-free and stable dispersion. The optical and thermal properties of graphene make it suitable for biosensing and bioimaging applications. In addition, graphene and its derivatives functionalized with tailored bioactive molecules can cross the blood-brain barrier for drug delivery, substantially improving their biological property. Therefore, graphene-based materials have promising potential for possible application in neuroscience. Herein, we aimed to summarize the important properties of graphene materials required for their application in neuroscience, the interaction between graphene-based materials and various cells in the central and peripheral nervous systems, and their potential clinical applications in recording electrodes, drug delivery, treatment, and as nerve scaffolds for neurological diseases. Finally, we offer insights into the prospects and limitations to aid graphene development in neuroscience research and nanotherapeutics that can be used clinically.
Collapse
Affiliation(s)
- Ting Ye
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Interdisciplinary Program of Biological Functional Molecules, College of Intergration Science, Yanbian University, Yanji, Jilin, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Jin Bai
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Feng-Ying Wu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Interdisciplinary Program of Biological Functional Molecules, College of Intergration Science, Yanbian University, Yanji, Jilin, China
| | - Lu Zhang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Long-Yue Meng
- Department of Environmental Science, Department of Chemistry, Yanbian University, Yanji, Jilin, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
10
|
Karriem L, Eixenberger J, Frahs S, Convertino D, Webb T, Pandhi T, McLaughlin K, Enrriques A, Davis P, Subbaraman H, Colletti C, Oxford JT, Estrada D. Structure-Property-Processing Correlations of Graphene Bioscaffolds for Proliferation and Differentiation of C2C12 Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538356. [PMID: 37162906 PMCID: PMC10168354 DOI: 10.1101/2023.04.25.538356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Graphene - an atomically thin layer of carbon atoms arranged in a hexagonal lattice - has gained interest as a bioscaffold for tissue engineering due to its exceptional mechanical, electrical, and thermal properties. Graphene's structure and properties are tightly coupled to synthesis and processing conditions, yet their influence on biomolecular interactions at the graphene-cell interface remains unclear. In this study, C2C12 cells were grown on graphene bioscaffolds with specific structure-property- processing-performance (SP3) correlations. Bioscaffolds were prepared using three different methods - chemical vapor deposition (CVD), sublimation of silicon carbide (SiC), and printing of liquid phase exfoliated graphene. To investigate the biocompatibility of each scaffold, cellular morphology and gene expression patterns were investigated using the bipotential mouse C2C12 cell line. Using a combination of fluorescence microscopy and qRT-PCR, we demonstrate that graphene production methods determine the structural and mechanical properties of the resulting bioscaffold, which in turn determine cell morphology, gene expression patterns, and cell differentiation fate. Therefore, production methods and resultant structure and properties of graphene bioscaffolds must be chosen carefully when considering graphene as a bioscaffold for musculoskeletal tissue engineering.
Collapse
|
11
|
Mann RS, Allman BL, Schmid S. Developmental changes in electrophysiological properties of auditory cortical neurons in the Cntnap2 knockout rat. J Neurophysiol 2023; 129:937-947. [PMID: 36947880 PMCID: PMC10110732 DOI: 10.1152/jn.00029.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023] Open
Abstract
Disruptions in the CNTNAP2 gene are known to cause language impairments and symptoms associated with autism spectrum disorder (ASD). Importantly, knocking out this gene in rodents results in ASD-like symptoms that include auditory processing deficits. This study used in vitro patch-clamp electrophysiology to examine developmental alterations in auditory cortex pyramidal neurons of Cntnap2-/- rats, hypothesizing that CNTNAP2 is essential for maintaining intrinsic neuronal properties and synaptic wiring in the developing auditory cortex. Whole cell patch-clamp recordings were conducted in wildtype and Cntnap2-/- littermates at three postnatal age ranges (P8-12, P18-21, and P70-90). Consistent changes across age were seen in all measures of intrinsic membrane properties and spontaneous synaptic input. Intrinsic cell properties such as action potential half-widths, rheobase, and action-potential firing frequencies were different between wildtype and Cntnap2-/- rats predominantly during the juvenile stage (P18-21), whereas adult Cntnap2-/- rats showed higher frequencies of spontaneous and mini postsynaptic currents (sPSCs; mPSCs), with lower sPSC amplitudes. These results indicate that intrinsic cell properties are altered in Cntnap2-/- rats during the juvenile age, leading to a hyperexcitable phenotype during this stage of synaptic remodeling and refinement. Although intrinsic properties eventually normalize by reaching adulthood, changes in synaptic input, potentially caused by the differences in intrinsic membrane properties, seem to manifest in the adult age and are presumably responsible for the hyperreactive behavioral phenotype. In conjunction with a previous study, the present results also indicate a large influence of breeding scheme, i.e., pre- or postnatal environment, on the impact of Cntnap2 on cellular physiology.NEW & NOTEWORTHY This study shows that neurons in the auditory cortex of Cntnap2 knockout rats are hyperexcitable only during the juvenile age, whereas resulting changes in synaptic input persist in the adult. In conjunction with a previous study, the present results indicate that it is not the genes alone, but also the influence of pre- and postnatal environment, that shape neuronal function, highlighting the importance of early intervention in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rajkamalpreet S Mann
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
12
|
Sajadi E, Sajedianfard J, Hosseinzadeh S, Taherianfard M. Effect of insulin and cinnamon extract on spatial memory and gene expression of GLUT1, 3, and 4 in streptozotocin-induced Alzheimer's model in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:680-687. [PMID: 37275760 PMCID: PMC10237167 DOI: 10.22038/ijbms.2023.68568.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/18/2023] [Indexed: 06/07/2023]
Abstract
Objectives Since diminished hippocampal insulin signaling leads to memory impairment, insulin resistance and hyperinsulinemia are probably associated with Alzheimer's disease (AD). The effect of intracerebroventricular injection of insulin (Ins) and oral cinnamon extract (Cinn) on glucose transporter (GLUT) 1, 3, and 4 gene expressions in the hippocampus and spatial memory in a streptozotocin (STZ)-induced AD rat model was investigated in the present study. Materials and Methods Fifty-six adult male Sprague-Dawley rats (280±20 g) were allocated into eight distinct groups (n=7) of five controls (negative, Ins, Cinn, Ins+Cinn, and STZs) and three treatments (STZ+ Ins, STZ+ Cinn, and STZ+ Ins + Cinn). Single dose STZ 4 mg/kg (icv), Cinn at a dose of 200 mg/ kg (orally for 14 days), and Ins 5 mIU/5 µl (icv for 14 days) were administered in the defined groups. To evaluate the behavioral performance the animals were subjected to the Morris Water Maze (MWM) test. The level of mRNA expression of GLUTs was evaluated by the Real time-PCR method. Results In the STZ+Cinn+Ins group, the performance of animals in the MWM test was improved and the over-expression of GLUTs genes in hippocampal tissue was observed. The results of Ins and Cinn synergist treatment groups revealed improvement in the behavioral tests and gene expression compared with Ins and Cinn treatment groups (P<0.001). Conclusion Administration of Ins and Cinn has a positive effect on the function of the AD rat model. To clarify the effect of Ins and Cinn extract on the GLUTs investigated in this study, it is essential to evaluate their influence on the protein levels.
Collapse
Affiliation(s)
- Elham Sajadi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Javad Sajedianfard
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mahnaz Taherianfard
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
13
|
Javani G, Ghaffari-Nasab A, Farajdokht F, Mohaddes G. Chronic stress-induced apoptosis is mitigated by young mitochondria transplantation in the prefrontal cortex of aged rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:725-730. [PMID: 37275757 PMCID: PMC10237165 DOI: 10.22038/ijbms.2023.69551.15145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/15/2023] [Indexed: 06/07/2023]
Abstract
Objectives Apoptosis is common and often comorbid with aging and stress-related mood disorders. Evidence suggests that fresh mitochondria could reverse age-related dysfunctions in organs, especially in the brain. Therefore, this study investigated the effect of young mitochondria administration on the apoptosis process in the prefrontal cortex (PFC) of aged rats exposed to chronic stress. Materials and Methods Aged (22 months old) male rats were randomly assigned into four groups: aged control (AC), aged rats treated with young mitochondria (A+M), aged rats subjected to chronic stress for four weeks (A+St), and aged rats subjected to chronic stress and treated with young mitochondria (A+St+M). A+M and A+St+M groups received a single ICV injection (10 μl) of fresh mitochondria isolated from the brain of young rats for five minutes (2 µl/min). Finally, the levels of Malondialdehyde (MDA), Cytochrome c (Cyt c), Bax, Bcl-2, and Caspase-3 expression were investigated in the PFC. Results Young mitochondria administration reduced neuronal apoptosis in the PFC, associated with down-regulation of MDA, Bax, and Caspase-3 and up-regulation of Bcl-2. Moreover, fresh mitochondria partially improved the chronic stress-induced mitochondrial dysfunction in aged rats, as indicated by reduced cytochrome c (Cyt c) release from the mitochondria. Conclusion These results suggest mitotherapy could reverse cell viability and mitochondrial dysfunction-induced apoptosis in the PFC tissue of aged rats subjected to stressful stimuli.
Collapse
Affiliation(s)
- Gonja Javani
- Drug Applied Research, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Drug Applied Research, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA
| |
Collapse
|
14
|
Zamani M, Radahmadi M, Reisi P. Therapeutic effects of exercise-accompanied escitalopram on synaptic potency and long-term plasticity in the hippocampal CA1 area in rats under chronic restraint stress. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1460-1467. [PMID: 36544519 PMCID: PMC9742573 DOI: 10.22038/ijbms.2022.66718.14629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
Objectives Administration of antidepressants and exercise are among the therapeutic approaches to chronic stress. Therefore, this study compared the therapeutic effects of different doses of escitalopram, exercise, and exercise-accompanied escitalopram on synaptic potency and long-term plasticity in the hippocampal CA1 area in rats under chronic restraint stress. Materials and Methods The rats were allocated to different groups. The chronic restraint stress (6 hr/day) continued for 14 days. Injection of escitalopram (10 and 20 mg/kg) and treadmill running (1 hr/day) were performed after the stress induction. The input/output (I/O) functions and LTP induction were evaluated in the hippocampal CA1 area. Results The fEPSP slope and amplitude after the LTP induction significantly decreased in the chronically stressed group. However, the serum corticosterone levels had significant enhancement in this group. In addition to serum corticosterone levels, the fEPSP slope and amplitude after the LTP induction were enhanced by exercise, escitalopram 20 mg/kg alone, and exercise-accompanied escitalopram 10 and/or 20 mg/kg in chronically stressed groups. Conclusion Overall, chronic stress impaired synaptic potency and long-term plasticity. These impairments were effectively reversed by exercise, escitalopram 20 mg/kg alone, and exercise-accompanied escitalopram 10 and 20 mg/kg. However, escitalopram 10 mg/kg alone could not alleviate the memory deficits in chronically stressed subjects. Therefore, exercise with both doses of escitalopram seems to have had additive effects on chronic stress conditions.
Collapse
Affiliation(s)
- Mahshid Zamani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author: Maryam Radahmadi. Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. Tel: +98-31-37929176; Fax: +98-31-36688597; ;
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Use of common spatial patterns for early detection of Parkinson's disease. Sci Rep 2022; 12:18793. [PMID: 36335198 PMCID: PMC9637213 DOI: 10.1038/s41598-022-23247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022] Open
Abstract
One of the most common diseases that affects human brain is Parkinson's disease. Detection of Parkinson's disease (PD) poses a serious challenge. Robust methods for feature extraction allowing separation between the electroencephalograms (EEG) of healthy subjects and PD patients are required. We used the EEG records of healthy subjects and PD patients which were subject to auditory tasks. We used the common spatial patterns (CSP) and Laplacian mask as methods to allow robust selection and extraction of features. We used the derived CSP whitening matrix to determine those channels that are the most promising in the terms of differentiating between EEGs of healthy controls and of PD patients. Using the selection of features calculated using the CSP we managed to obtain the classification accuracy of 85% when classifying EEG records belonging to groups of controls or PD patients. Using the features calculated using the Laplacian operator we obtained the classification accuracy of 90%. Diagnosing the PD in early stages using EEG is possible. The CSP proved to be a promising technique to detect informative channels and to separate between the groups. Use of the combination of features calculated using the Laplacian offers good separability between the two groups.
Collapse
|
16
|
Sharma R, Kumar S, Bhawna, Gupta A, Dheer N, Jain P, Singh P, Kumar V. An Insight of Nanomaterials in Tissue Engineering from Fabrication to Applications. Tissue Eng Regen Med 2022; 19:927-960. [PMID: 35661124 DOI: 10.1007/s13770-022-00459-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering is a research domain that deals with the growth of various kinds of tissues with the help of synthetic composites. With the culmination of nanotechnology and bioengineering, tissue engineering has emerged as an exciting domain. Recent literature describes its various applications in biomedical and biological sciences, such as facilitating the growth of tissue and organs, gene delivery, biosensor-based detection, etc. It deals with the development of biomimetics to repair, restore, maintain and amplify or strengthen several biological functions at the level of tissue and organs. Herein, the synthesis of nanocomposites based on polymers, along with their classification as conductive hydrogels and bioscaffolds, is comprehensively discussed. Furthermore, their implementation in numerous tissue engineering and regenerative medicine applications is also described. The limitations of tissue engineering are also discussed here. The present review highlights and summarizes the latest progress in the tissue engineering domain directed at functionalized nanomaterials.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Sanjeev Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Bhawna
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India.
| | - Neelu Dheer
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Campus, Ghaziabad, Uttar Pradesh, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India.
| | - Vinod Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India. .,Special Centre for Nano Science, Jawaharlal Nehru University, Delhi, India.
| |
Collapse
|
17
|
Zanon M, Zanini D, Haase A. All-optical manipulation of the Drosophila olfactory system. Sci Rep 2022; 12:8506. [PMID: 35595846 PMCID: PMC9123005 DOI: 10.1038/s41598-022-12237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Thanks to its well-known neuroanatomy, limited brain size, complex behaviour, and the extensive genetic methods, Drosophila has become an indispensable model in neuroscience. A vast number of studies have focused on its olfactory system and the processing of odour information. Optogenetics is one of the recently developed genetic tools that significantly advance this field of research, allowing to replace odour stimuli by direct neuronal activation with light. This becomes a universal all-optical toolkit when spatially selective optogenetic activation is combined with calcium imaging to read out neuronal responses. Initial experiments showed a successful implementation to study the olfactory system in fish and mice, but the olfactory system of Drosophila has been so far precluded from an application. To fill this gap, we present here optogenetic tools to selectively stimulate functional units in the Drosophila olfactory system, combined with two-photon calcium imaging to read out the activity patterns elicited by these stimuli at different levels of the brain. This method allows to study the spatial and temporal features of the information flow and reveals the functional connectivity in the olfactory network.
Collapse
Affiliation(s)
- Mirko Zanon
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
- Department of Physics, University of Trento, Trento, Italy.
| | - Damiano Zanini
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Albrecht Haase
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
- Department of Physics, University of Trento, Trento, Italy.
| |
Collapse
|
18
|
Del Sol-Fernández S, Martínez-Vicente P, Gomollón-Zueco P, Castro-Hinojosa C, Gutiérrez L, Fratila RM, Moros M. Magnetogenetics: remote activation of cellular functions triggered by magnetic switches. NANOSCALE 2022; 14:2091-2118. [PMID: 35103278 PMCID: PMC8830762 DOI: 10.1039/d1nr06303k] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/13/2021] [Indexed: 05/03/2023]
Abstract
During the last decade, the possibility to remotely control intracellular pathways using physical tools has opened the way to novel and exciting applications, both in basic research and clinical applications. Indeed, the use of physical and non-invasive stimuli such as light, electricity or magnetic fields offers the possibility of manipulating biological processes with spatial and temporal resolution in a remote fashion. The use of magnetic fields is especially appealing for in vivo applications because they can penetrate deep into tissues, as opposed to light. In combination with magnetic actuators they are emerging as a new instrument to precisely manipulate biological functions. This approach, coined as magnetogenetics, provides an exclusive tool to study how cells transform mechanical stimuli into biochemical signalling and offers the possibility of activating intracellular pathways connected to temperature-sensitive proteins. In this review we provide a critical overview of the recent developments in the field of magnetogenetics. We discuss general topics regarding the three main components for magnetic field-based actuation: the magnetic fields, the magnetic actuators and the cellular targets. We first introduce the main approaches in which the magnetic field can be used to manipulate the magnetic actuators, together with the most commonly used magnetic field configurations and the physicochemical parameters that can critically influence the magnetic properties of the actuators. Thereafter, we discuss relevant examples of magneto-mechanical and magneto-thermal stimulation, used to control stem cell fate, to activate neuronal functions, or to stimulate apoptotic pathways, among others. Finally, although magnetogenetics has raised high expectations from the research community, to date there are still many obstacles to be overcome in order for it to become a real alternative to optogenetics for instance. We discuss some controversial aspects related to the insufficient elucidation of the mechanisms of action of some magnetogenetics constructs and approaches, providing our opinion on important challenges in the field and possible directions for the upcoming years.
Collapse
Affiliation(s)
- Susel Del Sol-Fernández
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Pablo Martínez-Vicente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Pilar Gomollón-Zueco
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Christian Castro-Hinojosa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Lucía Gutiérrez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química Analítica, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Raluca M Fratila
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química Orgánica, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - María Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
19
|
Ławkowska K, Pokrywczyńska M, Koper K, Kluth LA, Drewa T, Adamowicz J. Application of Graphene in Tissue Engineering of the Nervous System. Int J Mol Sci 2021; 23:33. [PMID: 35008456 PMCID: PMC8745025 DOI: 10.3390/ijms23010033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Graphene is the thinnest two-dimensional (2D), only one carbon atom thick, but one of the strongest biomaterials. Due to its unique structure, it has many unique properties used in tissue engineering of the nervous system, such as high strength, flexibility, adequate softness, electrical conductivity, antibacterial effect, and the ability to penetrate the blood-brain barrier (BBB). Graphene is also characterized by the possibility of modifications that allow for even wider application and adaptation to cell cultures of specific cells and tissues, both in vitro and in vivo. Moreover, by using the patient's own cells for cell culture, it will be possible to produce tissues and organs that can be re-transplanted without transplant rejection, the negative effects of taking immunosuppressive drugs, and waiting for an appropriate organ donor.
Collapse
Affiliation(s)
- Karolina Ławkowska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| | - Marta Pokrywczyńska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| | - Krzysztof Koper
- Department of Clinical Oncology and Nursing, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| | - Luis Alex Kluth
- Department of Urology, University Medical Center Frankfurt a.M., 60590 Frankfurt am Main, Germany;
| | - Tomasz Drewa
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| | - Jan Adamowicz
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| |
Collapse
|
20
|
Moschetta M, Chiacchiaretta M, Cesca F, Roy I, Athanassiou A, Benfenati F, Papadopoulou EL, Bramini M. Graphene Nanoplatelets Render Poly(3-Hydroxybutyrate) a Suitable Scaffold to Promote Neuronal Network Development. Front Neurosci 2021; 15:731198. [PMID: 34616276 PMCID: PMC8488094 DOI: 10.3389/fnins.2021.731198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022] Open
Abstract
The use of composite biomaterials as innovative bio-friendly neuronal interfaces has been poorly developed so far. Smart strategies to target neuro-pathologies are currently exploiting the mixed and complementary characteristics of composite materials to better design future neural interfaces. Here we present a polymer-based scaffold that has been rendered suitable for primary neurons by embedding graphene nanoplatelets (GnP). In particular, the growth, network formation, and functionality of primary neurons on poly(3-hydroxybutyrate) [P(3HB)] polymer supports functionalized with various concentrations of GnP were explored. After growing primary cortical neurons onto the supports for 14 days, all specimens were found to be biocompatible, revealing physiological growth and maturation of the neuronal network. When network functionality was investigated by whole patch-clamp measurements, pure P(3HB) led to changes in the action potential waveform and reduction in firing frequency, resulting in decreased neuronal excitability. However, the addition of GnP to the polymer matrix restored the electrophysiological parameters to physiological values. Interestingly, a low concentration of graphene was able to promote firing activity at a low level of injected current. The results indicate that the P(3HB)/GnP composites show great potential for electrical interfacing with primary neurons to eventually target central nervous system disorders.
Collapse
Affiliation(s)
- Matteo Moschetta
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Martina Chiacchiaretta
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | | | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,IRCSS, Ospedale Policlinico San Martino, Genova, Italy
| | | | - Mattia Bramini
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| |
Collapse
|
21
|
Llewellyn SH, Faroni A, Iliut M, Bartlam C, Vijayaraghavan A, Reid AJ. Graphene Oxide Substrate Promotes Neurotrophic Factor Secretion and Survival of Human Schwann-Like Adipose Mesenchymal Stromal Cells. Adv Biol (Weinh) 2021; 5:e2000271. [PMID: 33852181 DOI: 10.1002/adbi.202000271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/04/2021] [Indexed: 11/11/2022]
Abstract
Mesenchymal stromal cells from adipose tissue (AD-MSCs) exhibit favorable clinical traits for autologous transplantation and can develop 'Schwann-like' phenotypes (sAD-MSCs) to improve peripheral nerve regeneration, where severe injuries yield insufficient recovery. However, sAD-MSCs regress without biochemical stimulation and detach from conduits under unfavorable transplant conditions, negating their paracrine effects. Graphene-derived materials support AD-MSC attachment, regulating cell adhesion and function through physiochemistry and topography. Graphene oxide (GO) is a suitable substrate for human sAD-MSCs incubation toward severe peripheral nerve injuries by evaluating transcriptome changes, neurotrophic factor expression over a 7-days period, and cell viability in apoptotic conditions is reported. Transcriptome changes from GO incubation across four patients are minor compared to biological variance. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial-derived neurotrophic factor (GDNF) gene expression is unchanged from sAD-MSCs on GO substrates, but NGF and GDNF protein secretion increase at day 3 and 7. Secretome changes do not improve dorsal root ganglia neuron axon regeneration in conditioned media culture models. Fewer sAD-MSCs detach from GO substrates compared to glass following phosphate buffer saline exposure, which simulates apoptotic conditions. Overall, GO substrates are compatible with sAD-MSC primed for peripheral nerve regeneration strategies and protect the cell population in harsh environments.
Collapse
Affiliation(s)
- Steffan H Llewellyn
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK.,Department of Materials and National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - Maria Iliut
- Department of Materials and National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Cian Bartlam
- Department of Materials and National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Institute of Physics, EIT 2, Bundeswehr University Munich, Neubiberg, 85577, Germany
| | - Aravind Vijayaraghavan
- Department of Materials and National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Adam J Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK.,Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M23 9LT, UK
| |
Collapse
|
22
|
Nguyen D, Valet M, Dégardin J, Boucherit L, Illa X, de la Cruz J, Del Corro E, Bousquet J, Garrido JA, Hébert C, Picaud S. Novel Graphene Electrode for Retinal Implants: An in vivo Biocompatibility Study. Front Neurosci 2021; 15:615256. [PMID: 33746697 PMCID: PMC7969870 DOI: 10.3389/fnins.2021.615256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Evaluating biocompatibility is a core essential step to introducing a new material as a candidate for brain-machine interfaces. Foreign body reactions often result in glial scars that can impede the performance of the interface. Having a high conductivity and large electrochemical window, graphene is a candidate material for electrical stimulation with retinal prosthesis. In this study, non-functional devices consisting of chemical vapor deposition (CVD) graphene embedded onto polyimide/SU-8 substrates were fabricated for a biocompatibility study. The devices were implanted beneath the retina of blind P23H rats. Implants were monitored by optical coherence tomography (OCT) and eye fundus which indicated a high stability in vivo up to 3 months before histology studies were done. Microglial reconstruction through confocal imaging illustrates that the presence of graphene on polyimide reduced the number of microglial cells in the retina compared to polyimide alone, thereby indicating a high biocompatibility. This study highlights an interesting approach to assess material biocompatibility in a tissue model of central nervous system, the retina, which is easily accessed optically and surgically.
Collapse
Affiliation(s)
- Diep Nguyen
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Manon Valet
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Julie Dégardin
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Leyna Boucherit
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Xavi Illa
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Jose de la Cruz
- Catalan Institute of Nanoscience and Nanotechnology, Barcelona, Spain
| | - Elena Del Corro
- Catalan Institute of Nanoscience and Nanotechnology, Barcelona, Spain
| | - Jessica Bousquet
- Catalan Institute of Nanoscience and Nanotechnology, Barcelona, Spain
| | - Jose A Garrido
- Catalan Institute of Nanoscience and Nanotechnology, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Clément Hébert
- Catalan Institute of Nanoscience and Nanotechnology, Barcelona, Spain
| | - Serge Picaud
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| |
Collapse
|
23
|
Zeiler K. An analytic framework for conceptualisations of disease: nine structuring questions and how some conceptualisations of Alzheimer's disease can lead to 'diseasisation'. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2020; 23:677-693. [PMID: 32770447 PMCID: PMC7538407 DOI: 10.1007/s11019-020-09963-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
According to the US National Institute on Aging and the Alzheimer's Association (NIA-AA), Alzheimer's disease (AD) should be understood as a biological construct. It can be diagnosed based on AD-characteristic biomarkers only, even if AD biomarkers can be present many years before a person experiences any symptoms of AD. The NIA-AA's conceptualisation of AD radically challenges past AD conceptualisations. This article offers an analytic framework for the clarification and analysis of meanings and effects of conceptualisations of diseases such as that of AD. This framework consists of nine questions that allows us to determine how the conceptualisations of diseases, such as that of AD, link or decouple the following terms to/from each other: screening, diagnosis, pathology, disease (along the lines of what have been labelled as "biological-physiological" or "normative" conceptions of disease in philosophy of medicine), symptoms, and illness. It also includes questions regarding how specific decouplings open up for new categories through which people can understand themselves in new ways, and what spaces of possibilities specific conceptualisations (and their decouplings and linkages) open to. The article shows how specific decouplings/linkages can open up not only for the phenomena of pathologisation but also for a distinct, but related phenomenon here termed as diseasisation.
Collapse
Affiliation(s)
- Kristin Zeiler
- Department of Thematic Studies: Technology and Social Change, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
24
|
Convertino D, Mishra N, Marchetti L, Calvello M, Viegi A, Cattaneo A, Fabbri F, Coletti C. Effect of Chemical Vapor Deposition WS 2 on Viability and Differentiation of SH-SY5Y Cells. Front Neurosci 2020; 14:592502. [PMID: 33192279 PMCID: PMC7662391 DOI: 10.3389/fnins.2020.592502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/07/2020] [Indexed: 01/09/2023] Open
Abstract
In recent years, transition metal dichalcogenides have been attracting an increasing interest in the biomedical field, thus implying the need of a deeper understanding of their impact on cell behavior. In this study we investigate tungsten disulfide (WS2) grown via chemical vapor deposition (CVD) on a transparent substrate (sapphire) as a platform for neural-like cell culture. We culture SH-SY5Y human neuroblastoma cells on WS2, using graphene, sapphire and standard culture well as controls. The quality, thickness and homogeneity of the materials is analyzed using atomic force microscopy and Raman spectroscopy. The cytocompatibility of CVD WS2 is investigated for the first time by cell viability and differentiation assessment on SH-SY5Y cells. We find that cells differentiated on WS2, displaying a viability and neurite length comparable with the controls. These findings shine light on the possibility of using WS2 as a cytocompatible material for interfacing neural cells.
Collapse
Affiliation(s)
- Domenica Convertino
- National Enterprise for nanoScience and nanoTechnology Laboratory, Scuola Normale Superiore, Pisa, Italy
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - Neeraj Mishra
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | - Filippo Fabbri
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- NEST Istituto Nanoscienze—CNR and Scuola Normale Superiore, Pisa, Italy
| | - Camilla Coletti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| |
Collapse
|
25
|
Di Costanzo L, Geremia S. Atomic Details of Carbon-Based Nanomolecules Interacting with Proteins. Molecules 2020; 25:E3555. [PMID: 32759758 PMCID: PMC7435792 DOI: 10.3390/molecules25153555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of fullerene, carbon-based nanomolecules sparked a wealth of research across biological, medical and material sciences. Understanding the interactions of these materials with biological samples at the atomic level is crucial for improving the applications of nanomolecules and address safety aspects concerning their use in medicine. Protein crystallography provides the interface view between proteins and carbon-based nanomolecules. We review forefront structural studies of nanomolecules interacting with proteins and the mechanism underlying these interactions. We provide a systematic analysis of approaches used to select proteins interacting with carbon-based nanomolecules explored from the worldwide Protein Data Bank (wwPDB) and scientific literature. The analysis of van der Waals interactions from available data provides important aspects of interactions between proteins and nanomolecules with implications on functional consequences. Carbon-based nanomolecules modulate protein surface electrostatic and, by forming ordered clusters, could modify protein quaternary structures. Lessons learned from structural studies are exemplary and will guide new projects for bioimaging tools, tuning of intrinsically disordered proteins, and design assembly of precise hybrid materials.
Collapse
Affiliation(s)
- Luigi Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico II, 100, 80055 Portici, Italy
| | - Silvano Geremia
- Centre of Excellence in Biocrystallography, Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
26
|
Convertino D, Fabbri F, Mishra N, Mainardi M, Cappello V, Testa G, Capsoni S, Albertazzi L, Luin S, Marchetti L, Coletti C. Graphene Promotes Axon Elongation through Local Stall of Nerve Growth Factor Signaling Endosomes. NANO LETTERS 2020; 20:3633-3641. [PMID: 32208704 DOI: 10.1021/acs.nanolett.0c00571] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Several works reported increased differentiation of neuronal cells grown on graphene; however, the molecular mechanism driving axon elongation on this material has remained elusive. Here, we study the axonal transport of nerve growth factor (NGF), the neurotrophin supporting development of peripheral neurons, as a key player in the time course of axonal elongation of dorsal root ganglion neurons on graphene. We find that graphene drastically reduces the number of retrogradely transported NGF vesicles in favor of a stalled population in the first 2 days of culture, in which the boost of axon elongation is observed. This correlates with a mutual charge redistribution, observed via Raman spectroscopy and electrophysiological recordings. Furthermore, ultrastructural analysis indicates a reduced microtubule distance and an elongated axonal topology. Thus, both electrophysiological and structural effects can account for graphene action on neuron development. Unraveling the molecular players underneath this interplay may open new avenues for axon regeneration applications.
Collapse
Affiliation(s)
- Domenica Convertino
- NEST, Scuola Normale Superiore, 56127 Pisa, Italy
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Filippo Fabbri
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Neeraj Mishra
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Marco Mainardi
- BIO@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Valentina Cappello
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Giovanna Testa
- BIO@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Simona Capsoni
- BIO@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
- Section of Physiology, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, via Borsari 46, 44121 Ferrara, Italy
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri Reixac 15-21, 08024 Barcelona, Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Stefano Luin
- NEST, Scuola Normale Superiore, 56127 Pisa, Italy
- NEST Istituto Nanoscienze, CNR and Scuola Normale Superiore, 56126 Pisa, Italy
| | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
- Department of Pharmacy, University of Pisa, 56127 Pisa, Italy
| | - Camilla Coletti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| |
Collapse
|
27
|
PC12 Cell Line: Cell Types, Coating of Culture Vessels, Differentiation and Other Culture Conditions. Cells 2020; 9:cells9040958. [PMID: 32295099 PMCID: PMC7227003 DOI: 10.3390/cells9040958] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/27/2022] Open
Abstract
The PC12 cell line is one of the most commonly used in neuroscience research, including studies on neurotoxicity, neuroprotection, neurosecretion, neuroinflammation, and synaptogenesis. Two types of this line are available in the ATCC collection: traditional PC12 cells grown in suspension and well-attached adherent phenotype. PC12 cells grown in suspension tend to aggregate and adhere poorly to non-coated surfaces. Therefore, it is necessary to modify the surface of culture vessels. This paper aims to characterise the use of two distinct variants of PC12 cells as well as describe their differentiation and neuronal outgrowth with diverse NGF concentrations (rat or human origin) on various surfaces. In our study, we evaluated cell morphology, neurite length, density and outgrowth (measured spectrofluorimetrically), and expression of neuronal biomarkers (doublecortin and NeuN). We found that the collagen coating was the most versatile method of surface modification for both cell lines. For adherent cells, the coating was definitely less important, and the poly-d-lysine surface was as good as collagen. We also demonstrated that the concentration of NGF is of great importance for the degree of differentiation of cells. For suspension cells, we achieved the best neuronal characteristics (length and density of neurites) after 14 days of incubation with 100 ng/mL NGF (change every 48 h), while for adherent cells after 3-5 days, after which they began to proliferate. In the PC12 cell line, doublecortin (DCX) expression in the cytoplasm and NeuN in the cell nucleus were found. In turn, in the PC12 Adh line, DCX was not expressed, and NeuN expression was located in the entire cell (both in the nucleus and cytoplasm). Only the traditional PC12 line grown in suspension after differentiation with NGF should be used for neurobiological studies, especially until the role of the NeuN protein, whose expression has also been noted in the cytoplasm of adherent cells, is well understood.
Collapse
|
28
|
Liu M, Huang C, Jia Z, Zhao Z, Xiao X, Wang A, Li P, Guan X, Zhou G, Fan Y. Promotion of Neuronal Guidance Growth by Aminated Graphene Oxide via Netrin-1/Deleted in Colorectal Cancer Signaling. ACS Chem Neurosci 2020; 11:604-614. [PMID: 31977180 DOI: 10.1021/acschemneuro.9b00625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Promotion of neurite outgrowth and synapse formation is a key step for nervous tissue regeneration. It is important for finding a new biomaterial to guide neuron growth to target neurons. Aminated graphene oxide (NH2-GO) displays electrical properties and dispersibility, which may change the surface charge of neurons and further activate neuronal excitement. However, the molecular guidance mechanism of NH2-GO on neurite outgrowth is seldom reported. In this study, we compared the role of NH2-GO on the spinal cord neurons and cortical neurons. Results indicated that the proper concentrations were at 2 and 4 μg/mL as determined by the CCK-8 assay. Notably, NH2-GO (2 and 4 μg/mL) improved the dispersibility and strengthened the effect of the composite material. In addition, it enables biocompatibility and efficient guidance of growth performance, which is not neurotoxic for neuronal outgrowth under these two concentrations. More interestingly, NH2-GO at 2 μg/mL induced both marked neurite elongation and increased branches in cortical neurons, but there is no significant change of neurite length and branches in spinal cord neurons. Further, the fluorescence intensity and mRNA level of Netrin-1 and DCC (Deleted in Colorectal Cancer) were both enhanced by NH2-GO at 2 μg/mL. Moreover, the function of Netrin-1 and DCC were activated more significantly by NH2-GO at 2 μg/mL in cortical neurons than that of spinal cord neurons. When RhoA was inhibited by the C3 exoenzyme, phosphorylated Rac1 and Cdc42 expression decreased significantly. Thus, NH2-GO at 2 μg/mL could influence Netrin-1/DCC signaling and the downstream RhoGTPase pathway, which may be preferred to guide the neurite growth in cortical neurons. It will provide a promising approach for the development of novel therapeutic methods of nerve regeneration.
Collapse
Affiliation(s)
- Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China
| | - Chongquan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China
| | - Zhengtai Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China
| | - Zhijun Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China
| | - Xiongfu Xiao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China
| | - Anqing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China
| | - Xiali Guan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China
- Shenzhen Research institute of Beihang University, Beihang University, Shenzhen 518057, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China
- Shenzhen Research institute of Beihang University, Beihang University, Shenzhen 518057, China
- National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| |
Collapse
|
29
|
Guo R, Ma X, Liao M, Liu Y, Hu Y, Qian X, Tang Q, Guo X, Chai R, Gao X, Tang M. Development and Application of Cochlear Implant-Based Electric-Acoustic Stimulation of Spiral Ganglion Neurons. ACS Biomater Sci Eng 2019; 5:6735-6741. [PMID: 33423491 DOI: 10.1021/acsbiomaterials.9b01265] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cochlear implants are currently the most effective treatment for profound sensorineural hearing loss. However, their therapeutic effect is limited by the survival and proper physiological function of spiral ganglion neurons (SGNs), which are targeted by the cochlear implant. It is therefore critical to explore the mechanism behind the effect of electric-acoustic stimulation (EAS) on the targeted SGNs. In this work, a biocompatible cochlear implant/graphene EAS system was created by combining a cochlear implant to provide the electrically transformed sound stimulation with graphene as the conductive neural interface. SGNs were cultured on the graphene and exposed to EAS from the cochlear implant. Neurite extension of SGNs was accelerated with long-term stimulation, which might contribute to the development of growth cones. Our system allows us to study the effects of cochlear implants on SGNs in a low-cost and time-saving way, and this might provide profound insights into the use of cochlear implants and thus be of benefit to the populations suffering from sensorineural hearing loss.
Collapse
Affiliation(s)
- Rongrong Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Xiaofeng Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China.,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Menghui Liao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Yun Liu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Yangnan Hu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Xiaoyun Qian
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China.,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Qilin Tang
- The First Clinical Medical School, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166 Jiangsu, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Xia Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China.,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| |
Collapse
|
30
|
Fu C, Pan S, Ma Y, Kong W, Qi Z, Yang X. Effect of electrical stimulation combined with graphene-oxide-based membranes on neural stem cell proliferation and differentiation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1867-1876. [PMID: 31076002 DOI: 10.1080/21691401.2019.1613422] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The combination of composite nerve materials prepared using degradable polymer materials with biological or physical factors has received extensive attention as a means to treat nerve injuries. This study focused on the potential application of graphene oxide (GO) composite conductive materials combined with electrical stimulation (ES) in nerve repair. A conductive poly(L-lactic-co-glycolic acid) (PLGA)/GO composite membrane was prepared, and its properties were tested using a scanning electron microscope (SEM), a contact angle meter, and a mechanical tester. Next, neural stem cells (NSCs) were planted on the PLGA/GO conductive composite membrane and ES was applied. NSC proliferation and differentiation and neurite elongation were observed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, immunofluorescence, and PCR, respectively. The results showed that the PLGA/GO membrane had good hydrophilicity, mechanical strength, and protein adsorption. ES combined with the PLGA/GO membrane significantly promoted NSC proliferation and neuronal differentiation on the material surface and promoted significant neurite elongation. Our results suggest that ES combined with GO-related conductive composite materials can be used as a new therapeutic combination to treat nerve injuries.
Collapse
Affiliation(s)
- Chuan Fu
- a Department of Orthopedic Surgery , The Second Hospital of Jilin University , Changchun TX , PR China
| | - Su Pan
- a Department of Orthopedic Surgery , The Second Hospital of Jilin University , Changchun TX , PR China
| | - Yue Ma
- b Department of gynecological oncology, the First Hospital of Jilin University , Changchun TX , PR China
| | - Weijian Kong
- a Department of Orthopedic Surgery , The Second Hospital of Jilin University , Changchun TX , PR China
| | - Zhiping Qi
- a Department of Orthopedic Surgery , The Second Hospital of Jilin University , Changchun TX , PR China
| | - Xiaoyu Yang
- a Department of Orthopedic Surgery , The Second Hospital of Jilin University , Changchun TX , PR China
| |
Collapse
|
31
|
Kitko KE, Zhang Q. Graphene-Based Nanomaterials: From Production to Integration With Modern Tools in Neuroscience. Front Syst Neurosci 2019; 13:26. [PMID: 31379522 PMCID: PMC6646684 DOI: 10.3389/fnsys.2019.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 06/24/2019] [Indexed: 12/02/2022] Open
Abstract
Graphene, a two-dimensional carbon crystal, has emerged as a promising material for sensing and modulating neuronal activity in vitro and in vivo. In this review, we provide a primer for how manufacturing processes to produce graphene and graphene oxide result in materials properties that may be tailored for a variety of applications. We further discuss how graphene may be composited with other bio-compatible materials of interest to make novel hybrid complexes with desired characteristics for bio-interfacing. We then highlight graphene's ever-widen utility and unique properties that may in the future be multiplexed for cross-modal modulation or interrogation of neuronal network. As the biological effects of graphene are still an area of active investigation, we discuss recent development, with special focus on how surface coatings and surface properties of graphene are relevant to its biological effects. We discuss studies conducted in both non-murine and murine systems, and emphasize the preclinical aspect of graphene's potential without undermining its tangible clinical implementation.
Collapse
Affiliation(s)
- Kristina E. Kitko
- Program in Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Qi Zhang
- The Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
32
|
Rastegar S, Stadlbauer J, Pandhi T, Karriem L, Fujimoto K, Kramer K, Estrada D, Cantley KD. Measurement of Signal‐to‐Noise Ratio In Graphene‐based Passive Microelectrode Arrays. ELECTROANAL 2019. [DOI: 10.1002/elan.201800745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sepideh Rastegar
- Department of Electrical and computer EngineeringBoise state University Boise Idaho
| | - Justin Stadlbauer
- Department of Electrical and computer EngineeringBoise state University Boise Idaho
| | - Twinkle Pandhi
- Department of Electrical and computer EngineeringBoise state University Boise Idaho
| | - Lynn Karriem
- Department of Electrical and computer EngineeringBoise state University Boise Idaho
| | - Kiyo Fujimoto
- Department of Electrical and computer EngineeringBoise state University Boise Idaho
| | - Kyle Kramer
- Department of Electrical and computer EngineeringBoise state University Boise Idaho
| | - David Estrada
- Department of Electrical and computer EngineeringBoise state University Boise Idaho
| | - Kurtis D. Cantley
- Department of Electrical and computer EngineeringBoise state University Boise Idaho
| |
Collapse
|
33
|
Wang L, Song D, Zhang X, Ding Z, Kong X, Lu Q, Kaplan DL. Silk-Graphene Hybrid Hydrogels with Multiple Cues to Induce Nerve Cell Behavior. ACS Biomater Sci Eng 2018; 5:613-622. [PMID: 33405825 DOI: 10.1021/acsbiomaterials.8b01481] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cell behavior is dependent in part on chemical and physical cues from the extracellular matrix. Although the influence of various cues on cell behavior has been studied, challenges remain to incorporate multiple cues to matrix systems to optimize and control cell outcomes. Here, aligned silk fibroin (SF)-graphene hydrogels with preferable stiffness were developed through arranging SF nanofibers and SF-modified graphene sheets under an electric field. Different signals, such as bioactive graphene, nanofibrous structure, aligned topography, and mechanical stiffness, were tailored into the hydrogel system, providing niches for nerve cell responses. The desired adhesion, proliferation, differentiation, extensio,n and growth factor secretion of multiple nerve-related cells was achieved on these hydrogels, suggesting strong synergistic action through the combination of different cues. Based on the fabrication strategy, our present study provides a useful materials engineering platform for revealing cooperative influences of different signals on nerve cell behavior, to help in the understanding of cell-biomaterial interactions, with potential toward studies related to nerve regeneration.
Collapse
Affiliation(s)
- Lili Wang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Dawei Song
- Tai'an City Central Hospital, Taian, 271000, People's Republic of China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xiangdong Kong
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
34
|
Yao R, Wang B, Wang G. [Research progress of graphene and its derivatives in repair of peripheral nerve defect]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1483-1487. [PMID: 30417629 DOI: 10.7507/1002-1892.201804096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the research progress of graphene and its derivatives in repair of peripheral nerve defect. Methods The related literature of graphene and its derivatives in repair of peripheral nerve defect in recent years was extensively reviewed. Results It is confirmed by in vitro and in vivo experiments that graphene and its derivatives can promote cell adhesion, proliferation, differentiation and neurite growth effectively. They have good electrical conductivity, excellent mechanical properties, larger specific surface area, and other advantages when compared with traditional materials. The three-dimensional scaffold can improve the effect of nerve repair. Conclusion The metabolic pathways and long-term reaction of graphene and its derivatives in the body are unclear. How to regulate their biodegradation and explain the electric coupling reaction mechanism between cells and materials also need to be further explored.
Collapse
Affiliation(s)
- Ruzhan Yao
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Bingwu Wang
- Department of Spinal Surgery, Weifang People's Hospital, Weifang Shandong, 261000, P.R.China
| | - Guanglin Wang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
35
|
Zhang Z, Klausen LH, Chen M, Dong M. Electroactive Scaffolds for Neurogenesis and Myogenesis: Graphene-Based Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801983. [PMID: 30264534 DOI: 10.1002/smll.201801983] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/28/2018] [Indexed: 05/24/2023]
Abstract
One of the major issues in tissue engineering is constructing a functional scaffold to support cell growth and also provide proper synergistic guidance cues. Graphene-based nanomaterials have emerged as biocompatible and electroactive scaffolds for neurogenesis and myogenesis, due to their excellent tunable chemical, physical, and mechanical properties. This review first assesses the recent investigations focusing on the fabrication and applications of graphene-based nanomaterials for neurogenesis and myogenesis, in the form of either 2D films, 3D scaffolds, or composite architectures. Besides, because of their outstanding electrical properties, graphene family materials are particularly suitable for designing electroactive scaffolds that could provide proper electrical stimulation (i.e., electrical or photo stimuli) to promote the regeneration of excitable neurons and muscle cells. Therefore, the effects and mechanism of electrical and/or photo stimulations on neurogenesis and myogenesis are followed. Furthermore, studies on their biocompatibilities and toxicities especially to neural and muscle cells are evaluated. Finally, the future challenges and perspectives in facilitating the development of clinical translation of graphene-family nanomaterials in treating neurodegenerative and muscle diseases are discussed.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C, Denmark
| | | | - Menglin Chen
- Department of Engineering, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C, Denmark
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|