1
|
Katić A, Brčić Karačonji I, Micek V, Želježić D. Endocrine-Disrupting Effects of Transplacental and Translactational Exposure to Tembotrione on Hormone Status in Wistar Rat Offspring at Different Developmental Stages: A Pilot Study. TOXICS 2024; 12:533. [PMID: 39195635 PMCID: PMC11359872 DOI: 10.3390/toxics12080533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Green agronomy promotes the implementation of natural and naturally derived substances in crop protection. In the present study, we evaluated the endocrine-disrupting potential of the allelopathic herbicide tembotrione in Wistar rats by studying the hormone status of offspring from the treated dams. Three doses of tembotrione (0.0004, 0.0007, and 4.0 mg/kg b.w./day) have been administered to dams during gestation and/or lactation. In the serum of newborn, weaning, and pubertal female and male offspring, 17β-estradiol and testosterone were determined using enzyme-linked immunosorbent assay. A decrease in 17β-estradiol and testosterone was observed in female and male weaning and pubertal offspring exposed to all doses of tembotrione during gestation and lactation. In weaning offspring exposed only during lactation, 17β-estradiol dropped significantly after exposure to the two lower doses and testosterone after exposure to the lowest dose of tembotrione. The greatest effect was observed at the lowest dose of tembotrione. In newborns, we observed increased 17β-estradiol after exposure to two lower doses of tembotrione and significantly increased testosterone after exposure to the lowest dose. The highest dose of tembotrione decreased 17β-estradiol significantly in newborn females. The obtained results suggest that tembotrione might be considered a pro-estrogenic or estrogen agonistic compound under the exposure conditions applied in this investigation.
Collapse
Affiliation(s)
- Anja Katić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (I.B.K.); (D.Ž.)
| | - Irena Brčić Karačonji
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (I.B.K.); (D.Ž.)
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia
| | - Vedran Micek
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia;
| | - Davor Želježić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (I.B.K.); (D.Ž.)
| |
Collapse
|
2
|
Garcia-Segura LM, Méndez P, Arevalo MA, Azcoitia I. Neuroestradiol and neuronal development: Not an exclusive male tale anymore. Front Neuroendocrinol 2023; 71:101102. [PMID: 37689249 DOI: 10.1016/j.yfrne.2023.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The brain synthesizes a variety of neurosteroids, including neuroestradiol. Inhibition of neuroestradiol synthesis results in alterations in basic neurodevelopmental processes, such as neurogenesis, neuroblast migration, neuritogenesis and synaptogenesis. Although the neurodevelopmental actions of neuroestradiol are exerted in both sexes, some of them are sex-specific, such as the well characterized effects of neuroestradiol derived from the metabolism of testicular testosterone during critical periods of male brain development. In addition, recent findings have shown sex-specific actions of neuroestradiol on neuroblast migration, neuritic growth and synaptogenesis in females. Among other factors, the epigenetic regulation exerted by X linked genes, such as Kdm6a/Utx, may determine sex-specific actions of neuroestradiol in the female brain. This review evidences the impact of neuroestradiol on brain formation in both sexes and highlights the interaction of neural steriodogenesis, hormones and sex chromosomes in sex-specific brain development.
Collapse
Affiliation(s)
- Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain.
| | - Pablo Méndez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain
| | - M Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain.
| | - Iñigo Azcoitia
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain; Department of Cell Biology, Universidad Complutense de Madrid, C José Antonio Nováis 12, 28040 Madrid, Spain
| |
Collapse
|
3
|
Sethuram S, Raymond S, Wang C, Barrett ES, Bush NR, Nguyen R, Sathyanarayana S, Swan SH, Evans SF. Early prenatal sex steroids and sex-typed play behavior at 4 years of age. Psychoneuroendocrinology 2023; 156:106288. [PMID: 37480735 DOI: 10.1016/j.psyneuen.2023.106288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/27/2023] [Accepted: 05/02/2023] [Indexed: 07/24/2023]
Abstract
During pregnancy, estrogens and testosterone influence brain development, resulting in sex-typical behavioral phenotypes. Prenatal testosterone exposure is associated with more male-typical behaviors in rodents, monkeys, and humans; however, few studies have examined the relationship between maternal sex hormones within the normal range and sex-dimorphic behaviors. In this study, we examined associations between prenatal estrogens and testosterone and sex-typical play in The Infant Development and the Environment Study (TIDES), a multicenter pregnancy cohort. We collected prenatal serum during the first trimester (mean=11.1 ± 2.6 weeks) and assessed child play behavior using the maternally completed Pre-School Activities Inventory (PSAI) at a mean age of 4.5 ± 0.3 years. This analysis includes mother-child pairs with complete data on hormones, play behavior, and covariates (n = 192 boys and 207 girls). No associations were seen between testosterone and PSAI scores in boys or girls or between estrogens and PSAI scores in boys. In girls, we observed an inverse relationship between feminine PSAI scores and both estradiol (E2) and estriol (E3) in multivariable linear regression analyses (E2: -0.11 [95% CI -0.20, -0.02]; E3: -0.44 [95% CI -0.83,-0.04]). Because the relationship between sex hormones and PSAI scores appeared nonlinear, we fit piecewise regression models to better fit the data and identify inflection points (point at which there is a significant change in slope). Piecewise regression analyses yielded inverse associations between masculine PSAI scores and estrone (E1) at values of E1 > 1340 pg/mL and E2 at values of E2 > 2870 pg/mL in girls. Further studies are needed to better understand the role of prenatal sex steroids on sexually dimorphic behavior.
Collapse
Affiliation(s)
- Swathi Sethuram
- Department of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA, USA.
| | - Samantha Raymond
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christina Wang
- Clinical and Translational Science Institute, The Lundquist Institute and Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Nicole R Bush
- Departments of Psychiatry and Pediatrics, Center for Health and Community, University of California, San Francisco, CA, USA
| | - Ruby Nguyen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Felice Evans
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Kim SA, Jang EH, Lee J, Cho SH. Neonatal Exposure to Valproate Induces Long-Term Alterations in Steroid Hormone Levels in the Brain Cortex of Prepubertal Rats. Int J Mol Sci 2023; 24:ijms24076681. [PMID: 37047656 PMCID: PMC10094755 DOI: 10.3390/ijms24076681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Valproic acid (VPA) is a known drug for treating epilepsy and mood disorders; however, it is not recommended for pregnant women because of its possible teratogenicity. VPA affects neurotransmission and gene expression through epigenetic mechanisms by acting as a histone deacetylase inhibitor and has been used to establish animal models of autism spectrum disorder (ASD). However, studies on the long-term effects of early exposure to VPA on glucocorticoid and neurosteroid synthesis in the brain are lacking. Therefore, this study aimed to investigate the long-term changes in metabolic alterations and gene expression regulation according to sex, using metabolic steroid profiling data from cerebral cortex samples of rats four weeks after VPA exposure (400 mg/kg). In neonatal VPA-exposed models, estradiol levels decreased, and cytochrome P450 19A1 gene (Cyp19a1) expression was reduced in the prepubertal male cortex. Progesterone and allopregnanolone levels decreased, and 3β-hydroxysteroid dehydrogenase 1 gene (Hsd3b1) expression was also downregulated in the prepubertal female cortex. Furthermore, cortisol levels increased, and mRNA expression of the nuclear receptor subfamily 3 group C member 1 gene (Nr3c1) was downregulated in the cortices of both sexes. Unlike the neonatal VPA-exposed models, although a decrease in progestin and estradiol levels was observed in females and males, respectively, no differences were observed in cortisol levels in the cortex tissues of 8-week-old adult rats administered VPA for four weeks. These results indicate that early environmental chemical exposure induces long-term neurosteroid metabolic effects in the brain, with differences according to sex.
Collapse
Affiliation(s)
- Soon-Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Eun-Hye Jang
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Jangjae Lee
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| |
Collapse
|
5
|
Fucic A, Mantovani A, Vena J, Bloom MS, Sincic N, Vazquez M, Aguado-Sierra J. Impact of endocrine disruptors from mother's diet on immuno-hormonal orchestration of brain development and introduction of the virtual human twin tool. Reprod Toxicol 2023; 117:108357. [PMID: 36863570 DOI: 10.1016/j.reprotox.2023.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Diet has long been known to modify physiology during development and adulthood. However, due to a growing number of manufactured contaminants and additives over the last few decades, diet has increasingly become a source of exposure to chemicals that has been associated with adverse health risks. Sources of food contaminants include the environment, crops treated with agrochemicals, inappropriate storage (e.g., mycotoxins) and migration of xenobiotics from food packaging and food production equipment. Hence, consumers are exposed to a mixture of xenobiotics, some of which are endocrine disruptors (EDs). The complex interactions between immune function and brain development and their orchestration by steroid hormones are insufficiently understood in human populations, and little is known about the impact on immune-brain interactions by transplacental fetal exposure to EDs via maternal diet. To help to identify the key data gaps, this paper aims to present (a) how transplacental EDs modify immune system and brain development, and (b) how these mechanisms may correlate with diseases such as autism and disturbances of lateral brain development. Attention is given to disturbances of the subplate, a transient structure of crucial significance in brain development. Additionally, we describe cutting edge approaches to investigate the developmental neurotoxicity of EDs, such as the application of artificial intelligence and comprehensive modelling. In the future, highly complex investigations will be performed using virtual brain models constructed using sophisticated multi-physics/multi-scale modelling strategies based on patient and synthetic data, which will enable a greater understanding of healthy or disturbed brain development.
Collapse
Affiliation(s)
- A Fucic
- Institute for Medical Research and Occupational Health, Ksaverska C 2, Zagreb, Croatia.
| | - A Mantovani
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - J Vena
- Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - M S Bloom
- Global and Community Health, George Mason University, 4400 University Dr., Fairfax, VA, USA
| | - N Sincic
- Medical School, University of Zagreb, Salata 3, Croatia
| | - M Vazquez
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - J Aguado-Sierra
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| |
Collapse
|
6
|
Гаспарян СА, Чотчаева АМ, Карпов СМ. [Cognitive and psychoemotional changes in menopausal transition: The possibility of medical correction]. PROBLEMY ENDOKRINOLOGII 2023; 69:86-95. [PMID: 36842081 PMCID: PMC9978879 DOI: 10.14341/probl13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/27/2023]
Abstract
The increasing of older age group in the population determines studying of age related diseases and emergence of new investigations in this area. In Female body, entering the menopausal transition is the start of «aging» of reproductive function and linked with decreasing of sex hormons levels. A direct connection between changes of estrogen, progesterone, androgen ratios and cognitive function of women was revealed. The anatomical localization of sex hormone receptors, the mechanisms of interaction of hormones with these receptors determine the ways of implementing biological effects of steroids on the CNS. Modern theories of «healthy nerve cells» and «eu-estrogenemia» explains the role of additional criteria, such as the absence of neurological diseases history and the duration of hypoestrogenia, to the outcome of menopausal hormone therapy. Additional factors that can affect to MHT action include: the composition of hormone therapy, administration methods, regimens (cyclic, continuous), duration of treatment, history of endocrine diseases, diabetes mellitus, gynecological history (parity, menarche age, COC use), heredity. The sections present the effect of menopausal transition on the development of depression, mood changes, sleep disturbances and mental disabilities. The explanation of negative effects of menopausal hormone therapy to cognitive health is also described by modern point of view. The ambivalent opinions of researchers, the potential of new reading of the results of earlier studies, confirms the necessity of continuing study of this topic.
Collapse
Affiliation(s)
| | | | - С. М. Карпов
- Ставропольский государственный медицинский университет
| |
Collapse
|
7
|
Wesselman HM, Gatz AE, Pfaff MR, Arceri L, Wingert RA. Estrogen Signaling Influences Nephron Segmentation of the Zebrafish Embryonic Kidney. Cells 2023; 12:666. [PMID: 36831333 PMCID: PMC9955091 DOI: 10.3390/cells12040666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Despite significant advances in understanding nephron segment patterning, many questions remain about the underlying genes and signaling pathways that orchestrate renal progenitor cell fate choices and regulate differentiation. In an effort to identify elusive regulators of nephron segmentation, our lab conducted a high-throughput drug screen using a bioactive chemical library and developing zebrafish, which are a conserved vertebrate model and particularly conducive to large-scale screening approaches. 17β-estradiol (E2), which is the dominant form of estrogen in vertebrates, was a particularly interesting hit from this screen. E2 has been extensively studied in the context of gonad development, but roles for E2 in nephron development were unknown. Here, we report that exogenous estrogen treatments affect distal tubule composition, namely, causing an increase in the distal early segment and a decrease in the neighboring distal late. These changes were noted early in development but were not due to changes in cell dynamics. Interestingly, exposure to the xenoestrogens ethinylestradiol and genistein yielded the same changes in distal segments. Further, upon treatment with an estrogen receptor 2 (Esr2) antagonist, PHTPP, we observed the opposite phenotypes. Similarly, genetic deficiency of the Esr2 analog, esr2b, revealed phenotypes consistent with that of PHTPP treatment. Inhibition of E2 signaling also resulted in decreased expression of essential distal transcription factors, irx3b and its target irx1a. These data suggest that estrogenic compounds are essential for distal segment fate during nephrogenesis in the zebrafish pronephros and expand our fundamental understanding of hormone function during kidney organogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
8
|
Li C, Sang C, Zhang S, Zhang S, Gao H. Effects of bisphenol A and bisphenol analogs on the nervous system. Chin Med J (Engl) 2023; 136:295-304. [PMID: 36848196 PMCID: PMC10106255 DOI: 10.1097/cm9.0000000000002170] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 03/01/2023] Open
Abstract
ABSTRACT Estrogen impacts neural development; meanwhile, it has a protective effect on the brain. Bisphenols, primarily bisphenol A (BPA), can exert estrogen-like or estrogen-interfering effects by binding with estrogen receptors. Extensive studies have suggested that neurobehavioral problems, such as anxiety and depression, can be caused by exposure to BPA during neural development. Increasing attention has been paid to the effects on learning and memory of BPA exposure at different developmental stages and in adulthood. Further research is required to elucidate whether BPA increases the risk of neurodegenerative diseases and the underlying mechanisms, as well as to assess whether BPA analogs, such as bisphenol S and bisphenol F, influence the nervous system.
Collapse
Affiliation(s)
- Chunxia Li
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100730, China
| | - Chen Sang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shuo Zhang
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100730, China
| | - Sai Zhang
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100730, China
| | - Hui Gao
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
9
|
Hilz EN, Lee HJ. Estradiol and progesterone in female reward-learning, addiction, and therapeutic interventions. Front Neuroendocrinol 2023; 68:101043. [PMID: 36356909 DOI: 10.1016/j.yfrne.2022.101043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/24/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Sex steroid hormones like estradiol (E2) and progesterone (P4) guide the sexual organization and activation of the developing brain and control female reproductive behavior throughout the lifecycle; importantly, these hormones modulate functional activity of not just the endocrine system, but most of the nervous system including the brain reward system. The effects of E2 and P4 can be seen in the processing of and memory for rewarding stimuli and in the development of compulsive reward-seeking behaviors like those seen in substance use disorders. Women are at increased risk of developing substance use disorders; however, the origins of this sex difference are not well understood and therapeutic interventions targeting ovarian hormones have produced conflicting results. This article reviews the contribution of the E2 and P4 in females to functional modulation of the brain reward system, their possible roles in origins of addiction vulnerability, and the development and treatment of compulsive reward-seeking behaviors.
Collapse
Affiliation(s)
- Emily N Hilz
- The University of Texas at Austin, Department of Pharmacology, USA.
| | - Hongjoo J Lee
- The University of Texas at Austin, Department of Psychology, USA; The University of Texas at Austin, Institute for Neuroscience, USA
| |
Collapse
|
10
|
Flück CE, Kuiri-Hänninen T, Silvennoinen S, Sankilampi U, Groessl M. The Androgen Metabolome of Preterm Infants Reflects Fetal Adrenal Gland Involution. J Clin Endocrinol Metab 2022; 107:3111-3119. [PMID: 35994776 DOI: 10.1210/clinem/dgac482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT The human adrenal cortex changes with fetal-neonatal transition from the fetal to the adult organ, accompanied by changes in the steroid metabolome. OBJECTIVE As it is unclear how the observed developmental changes differ between preterm and full-term neonates, we investigated whether the involution of the fetal adrenals is following a fixed time course related to postmenstrual age or whether it is triggered by birth. Furthermore, the fetal and postnatal androgen metabolome of preterm infants was characterized in comparison to term babies. METHODS This was a prospective, longitudinal, 2-center study collecting spot urines of preterm and term infants during the first 12 to 18 months of life. Steroid metabolites were measured from spot urines by gas chromatography-mass spectrometry. Data relating were modeled according to established pre- and postnatal pathways. RESULTS Fetal adrenal involution occurs around term-equivalent age in preterm infants and is not triggered by premature birth. Testosterone levels are higher in preterm infants at birth and decline slower until term compared to full-term babies. Dihydrotestosterone levels and the activity of the classic androgen biosynthesis pathway are lower in premature infants as is 5α-reductase activity. No difference was found in the activity of the alternate backdoor pathway for androgen synthesis. CONCLUSION Human adrenal involution follows a strict timing that is not affected by premature birth. By contrast, prematurity is associated with an altered androgen metabolome after birth. Whether this reflects altered androgen biosynthesis in utero remains to be investigated.
Collapse
Affiliation(s)
- Christa E Flück
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Tanja Kuiri-Hänninen
- Department of Pediatrics, Kuopio University Hospital and University of Eastern Finland, 70029 Kuopio, Finland
| | - Sanna Silvennoinen
- Department of Pediatrics, Kuopio University Hospital and University of Eastern Finland, 70029 Kuopio, Finland
| | - Ulla Sankilampi
- Department of Pediatrics, Kuopio University Hospital and University of Eastern Finland, 70029 Kuopio, Finland
| | - Michael Groessl
- Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
11
|
Chachlaki K, Messina A, Delli V, Leysen V, Maurnyi C, Huber C, Ternier G, Skrapits K, Papadakis G, Shruti S, Kapanidou M, Cheng X, Acierno J, Rademaker J, Rasika S, Quinton R, Niedziela M, L'Allemand D, Pignatelli D, Dirlewander M, Lang-Muritano M, Kempf P, Catteau-Jonard S, Niederländer NJ, Ciofi P, Tena-Sempere M, Garthwaite J, Storme L, Avan P, Hrabovszky E, Carleton A, Santoni F, Giacobini P, Pitteloud N, Prevot V. NOS1 mutations cause hypogonadotropic hypogonadism with sensory and cognitive deficits that can be reversed in infantile mice. Sci Transl Med 2022; 14:eabh2369. [PMID: 36197968 PMCID: PMC7613826 DOI: 10.1126/scitranslmed.abh2369] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The nitric oxide (NO) signaling pathway in hypothalamic neurons plays a key role in the regulation of the secretion of gonadotropin-releasing hormone (GnRH), which is crucial for reproduction. We hypothesized that a disruption of neuronal NO synthase (NOS1) activity underlies some forms of hypogonadotropic hypogonadism. Whole-exome sequencing was performed on a cohort of 341 probands with congenital hypogonadotropic hypogonadism to identify ultrarare variants in NOS1. The activity of the identified NOS1 mutant proteins was assessed by their ability to promote nitrite and cGMP production in vitro. In addition, physiological and pharmacological characterization was carried out in a Nos1-deficient mouse model. We identified five heterozygous NOS1 loss-of-function mutations in six probands with congenital hypogonadotropic hypogonadism (2%), who displayed additional phenotypes including anosmia, hearing loss, and intellectual disability. NOS1 was found to be transiently expressed by GnRH neurons in the nose of both humans and mice, and Nos1 deficiency in mice resulted in dose-dependent defects in sexual maturation as well as in olfaction, hearing, and cognition. The pharmacological inhibition of NO production in postnatal mice revealed a critical time window during which Nos1 activity shaped minipuberty and sexual maturation. Inhaled NO treatment at minipuberty rescued both reproductive and behavioral phenotypes in Nos1-deficient mice. In summary, lack of NOS1 activity led to GnRH deficiency associated with sensory and intellectual comorbidities in humans and mice. NO treatment during minipuberty reversed deficits in sexual maturation, olfaction, and cognition in Nos1 mutant mice, suggesting a potential therapy for humans with NO deficiency.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France.,Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland.,University Research Institute of Child Health and Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens 115 27, Greece
| | - Andrea Messina
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Virginia Delli
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Valerie Leysen
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Csilla Maurnyi
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, 43 Szigony St., Budapest 1083, Hungary
| | - Chieko Huber
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva 1211, Switzerland
| | - Gaëtan Ternier
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, 43 Szigony St., Budapest 1083, Hungary
| | - Georgios Papadakis
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Sonal Shruti
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Maria Kapanidou
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Xu Cheng
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - James Acierno
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Jesse Rademaker
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Sowmyalakshmi Rasika
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Richard Quinton
- Translational and Clinical Research Institute and the Royal Victoria Infirmary, University of Newcastle , Tyne NE1 3BZ, UK
| | - Marek Niedziela
- Department of Paediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, Poznan 61-701, Poland
| | - Dagmar L'Allemand
- Department of Endocrinology, Children's Hospital of Eastern Switzerland, St. Gallen 9000, Switzerland
| | - Duarte Pignatelli
- Department of Endocrinology, Hospital S João; Department of Biomedicine, Faculty of Medicine of the University of Porto; IPATIMUP Research Institute, Porto 4200-319, Portugal
| | - Mirjam Dirlewander
- Pediatric Endocrine and Diabetes Unit, Children's Hospital, University Hospitals and Faculty of Medicine, Geneva CH1205, Switzerland
| | - Mariarosaria Lang-Muritano
- Division of Pediatric Endocrinology and Diabetology and Children's Research Centre, University Children's Hospital, Zürich 8032, Switzerland
| | - Patrick Kempf
- Department of Diabetes, Endocrinology, Clinical Nutrition and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Sophie Catteau-Jonard
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France.,Department of Gynaecology and Obstretic, Jeanne de Flandres Hospital, Centre Hospitalier Universitaire de Lille, Lille F-59000, France
| | - Nicolas J Niederländer
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Philippe Ciofi
- Inserm, U1215, Neurocentre Magendie, Université de Bordeaux, Bordeaux F-33077, France
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba 14004, Spain.,Instituto Maimonides de Investigación Biomédica de Cordoba (IMIBIC/HURS), Cordoba 14004, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba 14004, Spain
| | - John Garthwaite
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6DH, UK
| | - Laurent Storme
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France.,Department of Neonatology, Hôpital Jeanne de Flandre, CHU of Lille, Lille F-59000, France
| | - Paul Avan
- Université de Clerremont-Ferrand, Clermont-Ferrand F-63000, France
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, 43 Szigony St., Budapest 1083, Hungary
| | - Alan Carleton
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva 1211, Switzerland
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| |
Collapse
|
12
|
Basseville A, Cordier C, Ben Azzouz F, Gouraud W, Lasla H, Panloup F, Campone M, Jézéquel P. Brain Neural Progenitors are New Predictive Biomarkers for Breast Cancer Hormonotherapy. CANCER RESEARCH COMMUNICATIONS 2022; 2:857-869. [PMID: 36923306 PMCID: PMC10010318 DOI: 10.1158/2767-9764.crc-21-0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/28/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Heterogeneity of the tumor microenvironment (TME) is one of the major causes of treatment resistance in breast cancer. Among TME components, nervous system role in clinical outcome has been underestimated. Identifying neuronal signatures associated with treatment response will help to characterize neuronal influence on tumor progression and identify new treatment targets. The search for hormonotherapy-predictive biomarkers was implemented by supervised machine learning (ML) analysis on merged transcriptomics datasets from public databases. ML-derived genes were investigated by pathway enrichment analysis, and potential gene signatures were curated by removing the variables that were not strictly nervous system specific. The predictive and prognostic abilities of the generated signatures were examined by Cox models, in the initial cohort and seven external cohorts. Generated signature performances were compared with 14 other published signatures, in both the initial and external cohorts. Underlying biological mechanisms were explored using deconvolution tools (CIBERSORTx and xCell). Our pipeline generated two nervous system-related signatures of 24 genes and 97 genes (NervSign24 and NervSign97). These signatures were prognostic and hormonotherapy-predictive, but not chemotherapy-predictive. When comparing their predictive performance with 14 published risk signatures in six hormonotherapy-treated cohorts, NervSign97 and NervSign24 were the two best performers. Pathway enrichment score and deconvolution analysis identified brain neural progenitor presence and perineural invasion as nervous system-related mechanisms positively associated with NervSign97 and poor clinical prognosis in hormonotherapy-treated patients. Transcriptomic profiling has identified two nervous system-related signatures that were validated in clinical samples as hormonotherapy-predictive signatures, meriting further exploration of neuronal component involvement in tumor progression. Significance The development of personalized and precision medicine is the future of cancer therapy. With only two gene expression signatures approved by FDA for breast cancer, we are in need of new ones that can reliably stratify patients for optimal treatment. This study provides two hormonotherapy-predictive and prognostic signatures that are related to nervous system in TME. It highlights tumor neuronal components as potential new targets for breast cancer therapy.
Collapse
Affiliation(s)
- Agnes Basseville
- Omics Data Science Unit, Institut de Cancérologie de l'Ouest (ICO), Angers-Nantes, France.,SIRIC ILIAD, Angers-Nantes, France
| | - Chiara Cordier
- Omics Data Science Unit, Institut de Cancérologie de l'Ouest (ICO), Angers-Nantes, France.,SIRIC ILIAD, Angers-Nantes, France.,Laboratoire Angevin de Recherche en Mathématiques (LAREMA), Université d'Angers, Angers, France
| | - Fadoua Ben Azzouz
- Omics Data Science Unit, Institut de Cancérologie de l'Ouest (ICO), Angers-Nantes, France.,SIRIC ILIAD, Angers-Nantes, France
| | - Wilfried Gouraud
- Omics Data Science Unit, Institut de Cancérologie de l'Ouest (ICO), Angers-Nantes, France.,SIRIC ILIAD, Angers-Nantes, France
| | - Hamza Lasla
- Omics Data Science Unit, Institut de Cancérologie de l'Ouest (ICO), Angers-Nantes, France.,SIRIC ILIAD, Angers-Nantes, France
| | - Fabien Panloup
- Laboratoire Angevin de Recherche en Mathématiques (LAREMA), Université d'Angers, Angers, France
| | - Mario Campone
- SIRIC ILIAD, Angers-Nantes, France.,Institut de Cancérologie de l'Ouest (ICO), Angers-Nantes, France
| | - Pascal Jézéquel
- Omics Data Science Unit, Institut de Cancérologie de l'Ouest (ICO), Angers-Nantes, France.,SIRIC ILIAD, Angers-Nantes, France.,CRCI2NA, Inserm UMR1307/CNRS UMR 6075/Université de Nantes, Nantes, France
| |
Collapse
|
13
|
Fetal Zone Steroids Show Discrete Effects on Hyperoxia-Induced Attenuation of Migration in Cultured Oligodendrocyte Progenitor Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2606880. [PMID: 35585881 PMCID: PMC9110221 DOI: 10.1155/2022/2606880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
Cerebral oxygenation disturbances contribute to the pathogenesis of brain lesions in preterm infants with white matter damage. These children are at risk of developing long-term neurodevelopmental disabilities. Preterm birth is associated with sudden hormonal changes along with an untimely increase in oxygen tissue tension. There is a persistent high postnatal production of fetal zone steroids (FZS), which serve in the fetoplacental unit as precursors for placental estrogen synthesis during pregnancy. The role of FZS in events associated with oxygenation differences and their impact on the developing white matter is not well understood. Therefore, we investigated the effect of hyperoxia (80% O2) and subsequent administration of FZS on the protein composition and migration capabilities of immature oligodendrocytes using the OLN93 (rat-derived OPC) cell line as an experimental model. We tested the effect of the FZS, dehydroepiandrosterone (DHEA), 16α-OH-DHEA, and adiol (5-androstene-3β, 17β-diol). After 24-hour exposure to hyperoxia, we monitored the changes in the proteome profile following treatment and observed significant alterations in pathways regulating cytoskeletal remodelling, cell migration, and cell survival. Additionally, hyperoxia leads to impaired migration of the OLN93 cells in culture. Administration of the FZS showed positive effects on the migration process under normoxic conditions in general. However, under hyperoxic conditions, the trend was less prominent. The observed effects could be related to changes in levels of cofilin/LIMK pathway-associated proteins. Adiol had a negative effect when administered together with estradiol, and the proteomic data reveal the activation of ephrin receptor signalling that might be responsible for the attenuation of migration. The results suggest that FZS can differentially regulate pathways involved in the migration of OLN93 cells. A deeper insight into the precise role of endogenous FZS would be an essential prerequisite for developing new treatment strategies including supplementation of estradiol and other steroids in preterm infants.
Collapse
|
14
|
Haigis AC, Ottermanns R, Schiwy A, Hollert H, Legradi J. Getting more out of the zebrafish light dark transition test. CHEMOSPHERE 2022; 295:133863. [PMID: 35124091 DOI: 10.1016/j.chemosphere.2022.133863] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
In (eco-)toxicological studies the light/dark transition (LDT) test is one of the most frequently used behaviour assays with zebrafish eleutheroembryos. However, study results vary regarding data presentation and analysis and mostly focus on a limited amount of the recorded data. In this study, we investigated whether monitoring two behavioural outcomes (time and distance moved) together with analysing multiple parameters can improve test sensitivity and data interpretation. As a proof of principle 5-day old zebrafish (Danio rerio) eleutheroembryos exposed to either endocrine disruptors (EDs) or acetylcholine esterase (AChE) inhibitors were investigated. We analysed conventional parameters such as mean and sum and implemented additional endpoints such as minimum or maximum distance moved and new parameters assessing the bursting response of eleutheroembryos. Furthermore, changes in eleutheroembryonic behaviour during the moment of the light to dark transition were added. To improve data presentation control-normalised results were displayed in radar charts, enabling the simultaneous presentation of different parameters in relation to each other. This enabled us to identify parameters most relevant to a certain behavioural response. A cut off threshold using control data was applied to identify parameters that were altered in a biological relevant manner. Our approach was able to detect effects on different parameters that remained undetected when analysis was done using conventional bar graphs on - in most cases analysed - averaged, mean distance moved values. By combining the radar charts with additional parameters and by using control-based thresholds, we were able to increase the test sensitivity and promote a deeper understanding of the behaviour response of zebrafish eleutheroembryos in the LDT test and thereby increased its usability for behavioural toxicity studies.
Collapse
Affiliation(s)
- Ann-Cathrin Haigis
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074, Aachen, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Richard Ottermanns
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074, Aachen, Germany.
| | - Andreas Schiwy
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074, Aachen, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Jessica Legradi
- Environment & Health, VU Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Ruhnau J, Hübner S, Sunny D, Ittermann T, Hartmann MF, De Lafollie J, Wudy SA, Heckmann M. Impact of Gestational and Postmenstrual Age on Excretion of Fetal Zone Steroids in Preterm Infants Determined by Gas Chromatography-Mass Spectrometry. J Clin Endocrinol Metab 2021; 106:e3725-e3738. [PMID: 33822093 DOI: 10.1210/clinem/dgab194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Fetal zone steroids (FZSs) are excreted in high concentrations in preterm infants. Experimental data suggest protective effects of FZSs in models of neonatal disease. OBJECTIVE We aimed to characterize the postnatal FZS metabolome of well preterm and term infants. METHODS Twenty-four-hour urinary FZS excretion rates were determined in early preterm (<30 weeks' gestation), preterm (30-36 weeks), and term (>37 weeks) infants. Pregnenolone and 17-OH-pregnenolone metabolites (n = 5), and dehydroepiandrosterone sulfate and metabolites (n = 12) were measured by gas chromatography mass spectrometry. Postnatal concentrations of FZSs were compared with already published prenatal concentrations in amniotic fluid. RESULTS Excretion rates of total FZSs and most of the single metabolites were highest in early preterm infants. In this group, excretion rates approach those of term infants at term equivalent postmenstrual age. Preterm infants of 30-36 weeks had more than half lower median excretion rates of FZSs than early preterm infants at the same time of postmenstrual age. Postnatal concentrations of FZSs were partly more than 100-fold higher in all gestational age groups than prenatal concentrations in amniotic fluid at midgestation. CONCLUSION The excretion rates of FZSs as a proxy of the involution of the fetal zone of the most immature preterm infants approached those of term infants at term equivalent. In contrast, the fetal zone in more mature preterm infants undergoes more rapid involution. These data in exclusively well neonates can serve as a basis to investigate the effects of illness on the FZS metabolome in future studies.
Collapse
Affiliation(s)
- Johanna Ruhnau
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Stephanie Hübner
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, Sauerbruchstraße, 17475, Greifswald, Germany
| | - Donna Sunny
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, Sauerbruchstraße, 17475, Greifswald, Germany
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Michaela F Hartmann
- Paediatric Endocrinology & Diabetology, Laboratory for Translational Hormone Analytics, Steroid Research & Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Jan De Lafollie
- Department of General Pediatrics and Neonatology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Stefan A Wudy
- Paediatric Endocrinology & Diabetology, Laboratory for Translational Hormone Analytics, Steroid Research & Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
- Department of General Pediatrics and Neonatology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Matthias Heckmann
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, Sauerbruchstraße, 17475, Greifswald, Germany
| |
Collapse
|
16
|
Pillerová M, Borbélyová V, Hodosy J, Riljak V, Renczés E, Frick KM, Tóthová Ľ. On the role of sex steroids in biological functions by classical and non-classical pathways. An update. Front Neuroendocrinol 2021; 62:100926. [PMID: 34089761 PMCID: PMC8523217 DOI: 10.1016/j.yfrne.2021.100926] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/02/2022]
Abstract
The sex steroid hormones (SSHs) play several roles in regulation of various processes in the cardiovascular, immune, muscular and neural systems. SSHs affect prenatal and postnatal development of various brain structures, including regions associated with important physiological, behavioral, cognitive, and emotional functions. This action can be mediated by either intracellular or transmembrane receptors. While the classical mechanisms of SSHs action are relatively well examined, the physiological importance of non-classical mechanism of SSHs action through membrane-associated and transmembrane receptors in the brain remains unclear. The most recent summary describing the role of SSHs in different body systems is lacking. Therefore, the aim of this review is to discuss classical and non-classical signaling pathways of testosterone and estradiol action via their receptors at functional, cellular, tissue level and to describe the effects on various body systems and behavior. Particular emphasis will be on brain regions including the hippocampus, hypothalamus, frontal cortex and cerebellum.
Collapse
Affiliation(s)
- Miriam Pillerová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Vladimír Riljak
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Emese Renczés
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
17
|
Gill S, Kumara VMR. Comparative Neurodevelopment Effects of Bisphenol A and Bisphenol F on Rat Fetal Neural Stem Cell Models. Cells 2021; 10:793. [PMID: 33918242 PMCID: PMC8103521 DOI: 10.3390/cells10040793] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA) is considered as one of the most extensively synthesized and used chemicals for industrial and consumer products. Previous investigations have established that exposure to BPA has been linked to developmental, reproductive, cardiovascular, immune, and metabolic effects. Several jurisdictions have imposed restrictions and/or have banned the use of BPA in packaging material and other consumer goods. Hence, manufacturers have replaced BPA with its analogues that have a similar chemical structure. Some of these analogues have shown similar endocrine effects as BPA, while others have not been assessed. In this investigation, we compared the neurodevelopmental effects of BPA and its major replacement Bisphenol F (BPF) on rat fetal neural stem cells (rNSCs). rNSCs were exposed to cell-specific differentiation media with non-cytotoxic doses of BPA or BPF at the range of 0.05 M to 100 M concentrations and measured the degree of cell proliferation, differentiation, and morphometric parameters. Both of these compounds increased cell proliferation and impacted the differentiation rates of oligodendrocytes and neurons, in a concentration-dependent manner. Further, there were concentration-dependent decreases in the maturation of oligodendrocytes and neurons, with a concomitant increase in immature oligodendrocytes and neurons. In contrast, neither BPA nor BPF had any overall effect on cellular proliferation or the cytotoxicity of astrocytes. However, there was a concentration-dependent increase in astrocyte differentiation and morphological changes. Morphometric analysis for the astrocytes, oligodendrocytes, and neurons showed a reduction in the arborization. These data show that fetal rNSCs exposed to either BPA or BPF lead to comparable changes in the cellular differentiation, proliferation, and arborization processes.
Collapse
Affiliation(s)
- Santokh Gill
- Regulatory Toxicology Research Division, Health Products and Food Branch, Tunney’s Pasture, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada;
| | | |
Collapse
|
18
|
Bustamante-Barrientos FA, Méndez-Ruette M, Ortloff A, Luz-Crawford P, Rivera FJ, Figueroa CD, Molina L, Bátiz LF. The Impact of Estrogen and Estrogen-Like Molecules in Neurogenesis and Neurodegeneration: Beneficial or Harmful? Front Cell Neurosci 2021; 15:636176. [PMID: 33762910 PMCID: PMC7984366 DOI: 10.3389/fncel.2021.636176] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Estrogens and estrogen-like molecules can modify the biology of several cell types. Estrogen receptors alpha (ERα) and beta (ERβ) belong to the so-called classical family of estrogen receptors, while the G protein-coupled estrogen receptor 1 (GPER-1) represents a non-classical estrogen receptor mainly located in the plasma membrane. As estrogen receptors are ubiquitously distributed, they can modulate cell proliferation, differentiation, and survival in several tissues and organs, including the central nervous system (CNS). Estrogens can exert neuroprotective roles by acting as anti-oxidants, promoting DNA repair, inducing the expression of growth factors, and modulating cerebral blood flow. Additionally, estrogen-dependent signaling pathways are involved in regulating the balance between proliferation and differentiation of neural stem/progenitor cells (NSPCs), thus influencing neurogenic processes. Since several estrogen-based therapies are used nowadays and estrogen-like molecules, including phytoestrogens and xenoestrogens, are omnipresent in our environment, estrogen-dependent changes in cell biology and tissue homeostasis have gained attention in human health and disease. This article provides a comprehensive literature review on the current knowledge of estrogen and estrogen-like molecules and their impact on cell survival and neurodegeneration, as well as their role in NSPCs proliferation/differentiation balance and neurogenesis.
Collapse
Affiliation(s)
- Felipe A Bustamante-Barrientos
- Immunology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Maxs Méndez-Ruette
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Patricia Luz-Crawford
- Immunology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Facultad de Medicina, School of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisco J Rivera
- Laboratory of Stem Cells and Neuroregeneration, Faculty of Medicine, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Carlos D Figueroa
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Luis Federico Bátiz
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Facultad de Medicina, School of Medicine, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
19
|
Zhang L, Ruan X, Cui Y, Gu M, Mueck AO. Menopausal symptoms among Chinese peri- and postmenopausal women: a large prospective single-center cohort study. Gynecol Endocrinol 2021; 37:185-189. [PMID: 33054449 DOI: 10.1080/09513590.2020.1832070] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The prevalence and intensity of menopausal symptoms differ depending on ethnicity, culture, and country. Epidemiological data from China are scarce. OBJECTIVE To compare the prevalence and severity of menopausal symptoms in peri- and postmenopausal Chinese women. METHODS This was a prospective two year cohort study that included all eligible women from 31 Chinese provinces attending our 'Menopause Clinic', the first official specialized center in China. Structured questionnaires containing seven domains with 41 items in total were used to assess the following menopausal symptoms using descriptive analysis: negative mood, cognitive symptoms, sleep disorder, vasomotor symptoms (VMS), urogenital symptoms, autonomic nervous disorder, and limb pain/paresthesia. RESULTS A total of 4063 women with a mean age of 50.53 ± 6.57 (n = 2107 perimenopausal and 1956 postmenopausal) participated. All menopausal symptoms were more severe in postmenopausal women (p<.05). Independent of menopausal status, urogenital symptoms, often combined with sexual problems, were the most common complaints (in prevalence and severity), followed by sleep disorder, cognitive symptoms (especially hypomnesia), negative mood, autonomic nervous disorder, limb pain/paresthesia and, as the rarest complaint, VMS. CONCLUSIONS Urogenital symptoms among midlife Chinese women are common, frequently also in combination with sexual dysfunction, although many do not often complain about these in the first place. Postmenopausal women presented more prevalent and severe menopausal symptoms. In contrast to Western countries, VMS are rare among our population. A multidisciplinary approach and use of hormonal and non-hormonal therapies should be considered for these women.
Collapse
Affiliation(s)
- Lingyan Zhang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xiangyan Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Department of Women's Health, University Women's Hospital and Research Center for Women's Health, University of Tuebingen, Tuebingen, Germany
| | - Yamei Cui
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Muqing Gu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Alfred O Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Department of Women's Health, University Women's Hospital and Research Center for Women's Health, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
20
|
Hwang WJ, Lee TY, Kim NS, Kwon JS. The Role of Estrogen Receptors and Their Signaling across Psychiatric Disorders. Int J Mol Sci 2020; 22:ijms22010373. [PMID: 33396472 PMCID: PMC7794990 DOI: 10.3390/ijms22010373] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests estrogen and estrogen signaling pathway disturbances across psychiatric disorders. Estrogens are not only crucial in sexual maturation and reproduction but are also highly involved in a wide range of brain functions, such as cognition, memory, neurodevelopment, and neuroplasticity. To add more, the recent findings of its neuroprotective and anti-inflammatory effects have grown interested in investigating its potential therapeutic use to psychiatric disorders. In this review, we analyze the emerging literature on estrogen receptors and psychiatric disorders in cellular, preclinical, and clinical studies. Specifically, we discuss the contribution of estrogen receptor and estrogen signaling to cognition and neuroprotection via mediating multiple neural systems, such as dopaminergic, serotonergic, and glutamatergic systems. Then, we assess their disruptions and their potential implications for pathophysiologies in psychiatric disorders. Further, in this review, current treatment strategies involving estrogen and estrogen signaling are evaluated to suggest a future direction in identifying novel treatment strategies in psychiatric disorders.
Collapse
Affiliation(s)
- Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; (W.J.H.); (J.S.K.)
| | - Tae Young Lee
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
- Correspondence: ; Tel.: +82-55-360-2468
| | - Nahrie Suk Kim
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; (W.J.H.); (J.S.K.)
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
21
|
Vijayakumar N, Youssef GJ, Allen NB, Anderson V, Efron D, Hazell P, Mundy L, Nicholson JM, Patton G, Seal ML, Simmons JG, Whittle S, Silk T. A longitudinal analysis of puberty-related cortical development. Neuroimage 2020; 228:117684. [PMID: 33385548 DOI: 10.1016/j.neuroimage.2020.117684] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 01/27/2023] Open
Abstract
The brain undergoes extensive structural changes during adolescence, concurrent to puberty-related physical and hormonal changes. While animal research suggests these biological processes are related to one another, our knowledge of brain development in humans is largely based on age-related processes. Thus, the current study characterized puberty-related changes in human brain structure, by combining data from two longitudinal neuroimaging cohorts. Beyond normative changes in cortical thickness, we examined whether individual differences in the rate of pubertal maturation (or "pubertal tempo") was associated with variations in cortical trajectories. Participants (N = 192; scans = 366) completed up to three waves of MRI assessments between 8.5 and 14.5 years of age, as well as questionnaire assessments of pubertal stage at each wave. Generalized additive mixture models were used to characterize trajectories of cortical development. Results revealed widespread linear puberty-related changes across much of the cortex. Many of these changes, particularly within the frontal and parietal cortices, were independent of age-related development. Males exhibiting faster pubertal tempo demonstrated greater thinning in the precuneus and frontal cortices than same-aged and -sex peers. Findings suggest that the unique influence of puberty on cortical development may be more extensive than previously identified, and also emphasize important individual differences in the coupling of these developmental processes.
Collapse
Affiliation(s)
| | | | - Nicholas B Allen
- Department of Psychology, University of Oregon, Eugene, USA; Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Vicki Anderson
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia; Clinical Sciences Research, Murdoch Children's Research Institute, Parkville, Australia; Royal Children's Hospital, Melbourne, Australia
| | - Daryl Efron
- Health Services, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Philip Hazell
- Discipline of Psychiatry, The University of Sydney, Sydney, Australia
| | - Lisa Mundy
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Australia
| | - Jan M Nicholson
- Judith Lumley Centre, La Trobe University, Melbourne, Australia
| | - George Patton
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Australia
| | - Marc L Seal
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Parkville, Australia
| | - Julian G Simmons
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Tim Silk
- School of Psychology, Deakin University, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Parkville, Australia
| |
Collapse
|
22
|
Komada M, Nagao T, Kagawa N. Prenatal and postnatal bisphenol A exposure inhibits postnatal neurogenesis in the hippocampal dentate gyrus. J Toxicol Sci 2020; 45:639-650. [PMID: 33012732 DOI: 10.2131/jts.45.639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bisphenol A (BPA), an endocrine disruptor with estrogenic effects, is widely used as a raw material for manufacturing polycarbonate plastic and epoxy resins. Prenatal and postnatal exposure to BPA affects brain morphogenesis. However, the effects of prenatal and postnatal BPA exposure on postnatal neurogenesis in mice are poorly understood. In this study, we developed a mouse model of prenatal and postnatal BPA exposure and analyzed its effects on hippocampal neurogenesis. The hippocampal dentate gyrus is vulnerable to chemical exposure, as neurogenesis continues in this region even after birth. Our results showed that in mice, prenatal and postnatal BPA exposure decreased the number of type-1, 2a, 2b, and 3 neural progenitor cells, as well as in granule cells, in the hippocampal dentate gyrus on postnatal days 16 and 70. The effect of prenatal and postnatal BPA exposure on neural progenitors were affected at all differentiation stages. In addition, prenatal and postnatal BPA exposure affects the maintenance of long-term memory on postnatal day 70. Our results suggest that neurodevelopmental toxicity due to prenatal and postnatal BPA exposure might affect postnatal morphogenesis and functional development of the hippocampal dentate gyrus.
Collapse
Affiliation(s)
| | | | - Nao Kagawa
- Department of Life Science, Kindai University
| |
Collapse
|
23
|
La Rosa P, Bartoli G, Farioli Vecchioli S, Cesari E, Pagliarini V, Sette C. Androgen Receptor signaling promotes the neural progenitor cell pool in the developing cortex. J Neurochem 2020; 157:1153-1166. [PMID: 32959393 DOI: 10.1111/jnc.15192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 01/16/2023]
Abstract
Neural Progenitor Cells (NPCs) are multipotent cells that are able to self-renew and differentiate into neurons. The size of the initial pool of NPCs during the brain development strongly affects the number of neurons that compose cortical multi-layer during development. Gonadal hormones can influence the balance between self-renewal and differentiation processes. Herein, we investigated the role of dihydrotestosterone (DHT), the active metabolite of testosterone, in the regulation of NPC stemness and differentiation. First, we evaluated the expression of the androgen receptor (AR), the transcription factor activated by DHT that mediates the physiological effects of androgens, in NPCs. Western blot analysis showed that DHT-mediated activation of AR induces mitogenic signaling pathways (PI3K/AKT and MAPK/ERK) in NPCs, whereas luciferase activity assays demonstrated the induction of AR transcriptional activity. AR activation mediated by DHT treatment strongly increased the proliferation of NPCs and reduced their propensity to differentiate into neurons. Furthermore, the effects of AR activation were mediated, at least in part, by increased expression of Aldehyde Dehydrogenase 1 Family Member A3 enzyme (ALDH1A3). Pharmacological inhibition of ALDH activity with N,N-diethylaminobenzaldehyde (DEAB) reduced the effect of DHT on NPC proliferation in vitro. Furthermore, inhibition of AR activity by Enzalutamide reduced the NPC pool in the developing cortex of male C57/BL6 mouse embryos. These findings indicate that androgens engage an AR-dependent signaling pathway that impact on neurogenesis by increasing the NPC pool in the developing mouse cortex.
Collapse
Affiliation(s)
- Piergiorgio La Rosa
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Bartoli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Claudio Sette
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
24
|
Estradiol Induces Epithelial to Mesenchymal Transition of Human Glioblastoma Cells. Cells 2020; 9:cells9091930. [PMID: 32825553 PMCID: PMC7564468 DOI: 10.3390/cells9091930] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/02/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
The mesenchymal phenotype of glioblastoma multiforme (GBM), the most frequent and malignant brain tumor, is associated with the worst prognosis. The epithelial–mesenchymal transition (EMT) is a cell plasticity mechanism involved in GBM malignancy. In this study, we determined 17β-estradiol (E2)-induced EMT by changes in cell morphology, expression of EMT markers, and cell migration and invasion assays in human GBM-derived cell lines. E2 (10 nM) modified the shape and size of GBM cells due to a reorganization of actin filaments. We evaluated EMT markers expression by RT-qPCR, Western blot, and immunofluorescence.We found that E2 upregulated the expression of the mesenchymal markers, vimentin, and N-cadherin. Scratch and transwell assays showed that E2 increased migration and invasion of GBM cells. The estrogen receptor-α (ER-α)-selective agonist 4,4’,4’’-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT, 10 nM) affected similarly to E2 in terms of the expression of EMT markers and cell migration, and the treatment with the ER-α antagonist methyl-piperidino-pyrazole (MPP, 1 μM) blocked E2 and PPT effects. ER-β-selective agonist diarylpropionitrile (DNP, 10 nM) and antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazole[1,5-a]pyrimidin-3-yl]phenol (PHTPP, 1 μM) showed no effects on EMT marker expression. These data suggest that E2 induces EMT activation through ER-α in human GBM-derived cells.
Collapse
|
25
|
Single-cell RNA-seq analysis revealed long-lasting adverse effects of tamoxifen on neurogenesis in prenatal and adult brains. Proc Natl Acad Sci U S A 2020; 117:19578-19589. [PMID: 32727894 DOI: 10.1073/pnas.1918883117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The CreER/LoxP system is widely accepted to track neural lineages and study gene functions upon tamoxifen (TAM) administration. We have observed that prenatal TAM treatment caused high rates of delayed delivery and fetal mortality. This substance could produce undesired results, leading to data misinterpretation. Here, we report that administration of TAM during early stages of cortical neurogenesis promoted precocious neural differentiation, while it inhibited neural progenitor cell (NPC) proliferation. The TAM-induced inhibition of NPC proliferation led to deficits in cortical neurogenesis, dendritic morphogenesis, synaptic formation, and cortical patterning in neonatal and postnatal offspring. Mechanistically, by employing single-cell RNA-sequencing (scRNA-seq) analysis combined with in vivo and in vitro assays, we show TAM could exert these drastic effects mainly through dysregulating the Wnt-Dmrta2 signaling pathway. In adult mice, administration of TAM significantly attenuated NPC proliferation in both the subventricular zone and the dentate gyrus. This study revealed the cellular and molecular mechanisms for the adverse effects of TAM on corticogenesis, suggesting that care must be taken when using the TAM-induced CreER/LoxP system for neural lineage tracing and genetic manipulation studies in both embryonic and adult brains.
Collapse
|
26
|
Li Q, Zhang Y, Ge BY, Li N, Sun HL, Ntim M, Sun YP, Wu XF, Yang JY, Li S. GPR50 Distribution in the Mouse Cortex and Hippocampus. Neurochem Res 2020; 45:2312-2323. [PMID: 32696324 DOI: 10.1007/s11064-020-03089-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 11/25/2022]
Abstract
G protein-coupled receptor 50 (GPR50) belongs to the G protein-coupled receptor which is highly homologous with the sequence of melatonin receptor MT1 and MT2. GPR50 expression has previously been reported in many brain regions, like cortex, midbrain, pons, amygdala. But, the distribution of GPR50 in the hippocampus and cortex and the cell types expressing GPR50 is not yet clear. In this study, we examined the distribution of GPR50 in adult male mice by immunofluorescence. Our results showed that GPR50 was localized in the CA1-3 pyramidal cells and the granule cells of the dentate gyrus. GPR50 was also expressed in excitatory and inhibitory neurons. As inhibitory neurons also contain many types, we found that GPR50 was localized in some interneurons in which it was co-expressed with the calcium-binding proteins calbindin, calretinin, and parvalbumin. Besides, similar results were seen in the cortex. The widespread expression of GPR50 in the hippocampus and cortex suggests that GPR50 may be associated with synaptic plasticity and cognitive function.
Collapse
Affiliation(s)
- Qifa Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yue Zhang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Bi-Ying Ge
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Hai- Lun Sun
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Michael Ntim
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yi-Ping Sun
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xue-Fei Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jin-Yi Yang
- Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, 116044, People's Republic of China.
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China.
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, People's Republic of China.
| |
Collapse
|
27
|
Sellers KJ, Denley MCS, Saito A, Foster EM, Salgarella I, Delogu A, Kamiya A, Srivastava DP. Brain-synthesized oestrogens regulate cortical migration in a sexually divergent manner. Eur J Neurosci 2020; 52:2646-2663. [PMID: 32314480 DOI: 10.1111/ejn.14755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 01/11/2023]
Abstract
Oestrogens play an important role in brain development where they have been implicated in controlling various cellular processes. Several lines of evidence have been presented showing that oestrogens can be synthesized locally within the brain. Studies have demonstrated that aromatase, the enzyme responsible for the conversion of androgens to oestrogens, is expressed during early development in both male and female cortices. Furthermore, 17β-oestradiol has been measured in foetal brain tissue from multiple species. 17β-oestradiol regulates neural progenitor proliferation as well as the development of early neuronal morphology. However, what role locally derived oestrogens play in regulating cortical migration and, moreover, whether these effects are the same in males and females are unknown. Here, we investigated the impact of knockdown expression of Cyp19a1, which encodes aromatase, between embryonic day (E) 14.5 and postnatal day 0 (P0) had on neural migration within the cortex. Aromatase was expressed in the developing cortex of both sexes, but at significantly higher levels in male than female mice. Under basal conditions, no obvious differences in cortical migration between male and female mice were observed. However, knockdown of Cyp19a1 resulted in an increase in cells within the cortical plate, and a concurrent decrease in the subventricular zone/ventricular zone in P0 male mice. Interestingly, the opposite effect was observed in females, who displayed a significant reduction in cells migrating to the cortical plate. Together, these findings indicate that brain-derived oestrogens regulate radial migration through distinct mechanisms in males and females.
Collapse
Affiliation(s)
- Katherine J Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Matthew C S Denley
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Atsushi Saito
- The Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evangeline M Foster
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Irene Salgarella
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Atsushi Kamiya
- The Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
28
|
Lupu D, Andersson P, Bornehag CG, Demeneix B, Fritsche E, Gennings C, Lichtensteiger W, Leist M, Leonards PEG, Ponsonby AL, Scholze M, Testa G, Tresguerres JAF, Westerink RHS, Zalc B, Rüegg J. The ENDpoiNTs Project: Novel Testing Strategies for Endocrine Disruptors Linked to Developmental Neurotoxicity. Int J Mol Sci 2020; 21:ijms21113978. [PMID: 32492937 PMCID: PMC7312023 DOI: 10.3390/ijms21113978] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
Ubiquitous exposure to endocrine-disrupting chemicals (EDCs) has caused serious concerns about the ability of these chemicals to affect neurodevelopment, among others. Since endocrine disruption (ED)-induced developmental neurotoxicity (DNT) is hardly covered by the chemical testing tools that are currently in regulatory use, the Horizon 2020 research and innovation action ENDpoiNTs has been launched to fill the scientific and methodological gaps related to the assessment of this type of chemical toxicity. The ENDpoiNTs project will generate new knowledge about ED-induced DNT and aims to develop and improve in vitro, in vivo, and in silico models pertaining to ED-linked DNT outcomes for chemical testing. This will be achieved by establishing correlative and causal links between known and novel neurodevelopmental endpoints and endocrine pathways through integration of molecular, cellular, and organismal data from in vitro and in vivo models. Based on this knowledge, the project aims to provide adverse outcome pathways (AOPs) for ED-induced DNT and to develop and integrate new testing tools with high relevance for human health into European and international regulatory frameworks.
Collapse
Affiliation(s)
- Diana Lupu
- Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
- Institute of Environmental Medicine, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Patrik Andersson
- Faculty of Science and Technology, Umeå University, 90187 Umeå, Sweden;
| | | | - Barbara Demeneix
- Evolution of Endocrine Regulations UMR 7221, Centre National de la Recherche Scientifique, 75005 Paris, France;
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany;
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | | | - Marcel Leist
- In Vitro Toxicology and Biomedicine, University of Konstanz, D-78457 Konstanz, Germany;
| | - Pim E. G. Leonards
- Department Environment and Health, Vrije University, 1081HV Amsterdam, The Netherlands;
| | - Anne-Louise Ponsonby
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria 3052, Australia;
| | - Martin Scholze
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Jesus A. F. Tresguerres
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Remco H. S. Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands;
| | - Bernard Zalc
- Sorbonne Université, Inserm, CNRS, ICM-GH Pitié-Salpêtrière, 75651 Paris, France;
| | - Joëlle Rüegg
- Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
- Institute of Environmental Medicine, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
29
|
Haumann I, Sturm MA, Anstötz M, Rune GM. GPER1 Signaling Initiates Migration of Female V-SVZ-Derived Cells. iScience 2020; 23:101077. [PMID: 32361597 PMCID: PMC7200306 DOI: 10.1016/j.isci.2020.101077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/01/2019] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
In the rodent ventricular-subventricular zone (V-SVZ) neurons are generated throughout life. They migrate along the rostral migratory stream (RMS) into the olfactory bulb before their final differentiation into interneurons and integration into local circuits. Estrogen receptors (ERs) are steroid hormone receptors with important functions in neurogenesis and synaptic plasticity. In this study, we show that the ER GPER1 is expressed in subsets of cells within the V-SVZ of female animals and provide evidence for a potential local estrogen source from aromatase-positive astrocytes surrounding the RMS. Blocking of GPER1 in Matrigel cultures of female animals significantly impairs migration of V-SVZ-derived cells. This outgrowth is accompanied by regulation of phosphorylation of the actin-binding protein cofilin by GPER1 signaling including an involvement of the p21-Ras pathway. Our results point to a prominent role of GPER1 in the initiation of neuronal migration from the V-SVZ to the olfactory bulb. GPER1 is expressed within all cell types of the stem cell lineage in the V-SVZ Blocking of GPER1 leads to a decrease in migration of V-SVZ-derived neuroblasts GPER1 signaling in V-SVZ Matrigel cultures involves Ras-induced p21 Blocking of GPER1 signaling leads to an increase in the ratio of p-cofilin/cofilin
Collapse
Affiliation(s)
- Iris Haumann
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Muriel Anne Sturm
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Max Anstötz
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
30
|
Sahab-Negah S, Hajali V, Moradi HR, Gorji A. The Impact of Estradiol on Neurogenesis and Cognitive Functions in Alzheimer's Disease. Cell Mol Neurobiol 2020; 40:283-299. [PMID: 31502112 DOI: 10.1007/s10571-019-00733-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is described as cognitive and memory impairments with a sex-related epidemiological profile, affecting two times more women than men. There is emerging evidence that alternations in the hippocampal neurogenesis occur at the early stage of AD. Therapies that may effectively slow, stop, or regenerate the dying neurons in AD are being extensively investigated in the last few decades, but none has yet been found to be effective. The regulation of endogenous neurogenesis is one of the main therapeutic targets for AD. Mounting evidence indicates that the neurosteroid estradiol (17β-estradiol) plays a supporting role in neurogenesis, neuronal activity, and synaptic plasticity of AD. This effect may provide preventive and/or therapeutic approaches for AD. In this article, we discuss the molecular mechanism of potential estradiol modulatory action on endogenous neurogenesis, synaptic plasticity, and cognitive function in AD.
Collapse
Affiliation(s)
- Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Vahid Hajali
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Moradi
- Histology and Embryology Group, Basic Science Department, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery and Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, Germany.
| |
Collapse
|
31
|
Patisaul HB. Achieving CLARITY on bisphenol A, brain and behaviour. J Neuroendocrinol 2020; 32:e12730. [PMID: 31063678 PMCID: PMC10947534 DOI: 10.1111/jne.12730] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022]
Abstract
There is perhaps no endocrine disrupting chemical more controversial than bisphenol A (BPA). Comprising a high-volume production chemical used in a variety of applications, BPA has been linked to a litany of adverse health-related outcomes, including effects on brain sexual differentiation and behaviour. Risk assessors preferentially rely on classical guideline-compliant toxicity studies over studies published by academic scientists, and have generally downplayed concerns about the potential risks that BPA poses to human health. It has been argued, however, that, because traditional toxicity studies rarely contain neural endpoints, and only a paucity of endocrine-sensitive endpoints, they are incapable of fully evaluating harm. To address current controversies on the safety of BPA, the United States National Institute of Environmental Health Sciences, the National Toxicology Program (NTP), and the US Food and Drug Administration established the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA). CLARITY-BPA performed a classical regulatory-style toxicology study (Core study) in conjunction with multiple behavioural, molecular and cellular studies conducted by academic laboratories (grantee studies) using a collaboratively devised experimental framework and the same animals and tissues. This review summarises the results from the grantee studies that focused on brain and behaviour. Evidence of altered neuroendocrine development, including age- and sex-specific expression of oestrogen receptor (ER)α and ERβ, and the abrogation of brain and behavioural sexual dimorphisms, supports the conclusion that developmental BPA exposure, even at doses below what regulatory agencies regard as "safe" for humans, contribute to brain and behavioural change. The consistency and the reproducibility of the effects across CLARITY-BPA and prior studies using the same animal strain and almost identical experimental conditions are compelling. Combined analysis of all of the data from the CLARITY-BPA project is underway at the NTP and a final report expected in late 2019.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
32
|
Carrillo B, Collado P, Díaz F, Chowen JA, Grassi D, Pinos H. Blocking of Estradiol Receptors ERα, ERβ and GPER During Development, Differentially Alters Energy Metabolism in Male and Female Rats. Neuroscience 2019; 426:59-68. [PMID: 31805254 DOI: 10.1016/j.neuroscience.2019.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/25/2022]
Abstract
Estradiol not only participates in the regulation of energy metabolism in adulthood, but also during the first stages of life as it modulates the alterations induced by under- and over-nutrition. The objectives of the present study were to determine: 1) If estradiol is involved in the normal programming of energy metabolism in rats; 2) If there is a specific window of time for this programming and 3) If males and females are differentially vulnerable to the action of this hormone. Estrogen receptors (ER) α, ERβ and GPER were blocked by their specific antagonists MPP, PHTPP and G15, respectively, from postnatal day (P) 1 (the day of birth) to P5 or from P5 to P13. Physiological parameters such as body weight, fat depots and caloric intake were then analysed at P90. Hypothalamic AgRP, POMC, MC4R, ERα, ERβ and GPER mRNA levels and plasma levels of estradiol, were also studied. We found that blocking ER receptors from P5 to P13 significantly decreases long-term body weight in males and hypothalamic POMC mRNA levels in females. The blocking of ERs from P1 to P5 only affected plasma estradiol levels in females. The present results indicate programming actions of estradiol from P5 to P13 on body weight in male and POMC expression in female rats and emphasize the importance of including both sexes in metabolic studies. It is necessary to unravel the mechanisms that underlie the actions of estradiol on food intake, both during development and in adulthood, and to determine how this programming differentially takes place in males and females.
Collapse
Affiliation(s)
- Beatriz Carrillo
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain, Instituto Mixto de Investigación Escuela Nacional de Sanidad (IMIENS).
| | - Paloma Collado
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain, Instituto Mixto de Investigación Escuela Nacional de Sanidad (IMIENS).
| | - Francisca Díaz
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Avda. Menéndez Pelayo, N° 65 28009 Madrid, Spain, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, IMDEA Food Institute, CEI UAM + CSIC.
| | - Julie A Chowen
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Avda. Menéndez Pelayo, N° 65 28009 Madrid, Spain, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, IMDEA Food Institute, CEI UAM + CSIC.
| | - Daniela Grassi
- Department of Preclinical odontology, Faculty of Biomedical Science and Health Universidad Europea de Madrid, Calle Tajo s/n, 28670 Villaviciosa de Odón, Madrid, Spain.
| | - Helena Pinos
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain, Instituto Mixto de Investigación Escuela Nacional de Sanidad (IMIENS).
| |
Collapse
|
33
|
Gava G, Orsili I, Alvisi S, Mancini I, Seracchioli R, Meriggiola MC. Cognition, Mood and Sleep in Menopausal Transition: The Role of Menopause Hormone Therapy. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E668. [PMID: 31581598 PMCID: PMC6843314 DOI: 10.3390/medicina55100668] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022]
Abstract
During the menopausal transition, which begins four to six years before cessation of menses, middle-aged women experience a progressive change in ovarian activity and a physiologic deterioration of hypothalamic-pituitary-ovarian axis function associated with fluctuating hormone levels. During this transition, women can suffer symptoms related to menopause (such as hot flushes, sleep disturbance, mood changes, memory complaints and vaginal dryness). Neurological symptoms such as sleep disturbance, "brain fog" and mood changes are a major complaint of women transitioning menopause, with a significant impact on their quality of life, productivity and physical health. In this paper, we consider the associations between menopausal stage and/or hormone levels and sleep problems, mood and reduced cognitive performance. The role of estrogen and menopause hormone therapy (MHT) in cognitive function, sleep and mood are also discussed.
Collapse
Affiliation(s)
- Giulia Gava
- Gynecology and Physiopathology of Human Reproduction, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy.
| | - Isabella Orsili
- Gynecology and Physiopathology of Human Reproduction, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Stefania Alvisi
- Gynecology and Physiopathology of Human Reproduction, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Ilaria Mancini
- Gynecology and Physiopathology of Human Reproduction, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Renato Seracchioli
- Gynecology and Physiopathology of Human Reproduction, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Maria Cristina Meriggiola
- Gynecology and Physiopathology of Human Reproduction, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
34
|
Kandasamy M, Radhakrishnan RK, Poornimai Abirami GP, Roshan SA, Yesudhas A, Balamuthu K, Prahalathan C, Shanmugaapriya S, Moorthy A, Essa MM, Anusuyadevi M. Possible Existence of the Hypothalamic-Pituitary-Hippocampal (HPH) Axis: A Reciprocal Relationship Between Hippocampal Specific Neuroestradiol Synthesis and Neuroblastosis in Ageing Brains with Special Reference to Menopause and Neurocognitive Disorders. Neurochem Res 2019; 44:1781-1795. [PMID: 31254250 DOI: 10.1007/s11064-019-02833-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
|
35
|
Nguyen TV, Jones SL, Gower T, Lew J, Albaugh MD, Botteron KN, Hudziak JJ, Fonov VS, Collins DL, Campbell BC, Booij L, Herba CM, Monnier P, Ducharme S, Waber D, McCracken JT. Age-specific associations between oestradiol, cortico-amygdalar structural covariance, and verbal and spatial skills. J Neuroendocrinol 2019; 31:e12698. [PMID: 30776161 PMCID: PMC6482064 DOI: 10.1111/jne.12698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/19/2019] [Accepted: 02/13/2019] [Indexed: 01/02/2023]
Abstract
Oestradiol is known to play an important role in the developing human brain, although little is known about the entire network of potential regions that might be affected and how these effects may vary from childhood to early adulthood, which in turn can explain sexually differentiated behaviours. In the present study, we examined the relationships between oestradiol, cortico-amygdalar structural covariance, and cognitive or behavioural measures typically showing sex differences (verbal/spatial skills, anxious-depressed symptomatology) in 152 children and adolescents (aged 6-22 years). Cortico-amygdalar structural covariance shifted from positive to negative across the age range. Oestradiol was found to diminish the impact of age on cortico-amygdalar covariance for the pre-supplementary motor area/frontal eye field and retrosplenial cortex (across the age range), as well as for the posterior cingulate cortex (in older children). Moreover, the influence of oestradiol on age-related cortico-amygdalar networks was associated with higher word identification and spatial working memory (across the age range), as well as higher reading comprehension (in older children), although it did not impact anxious-depressed symptoms. There were no significant sex effects on any of the above relationships. These findings confirm the importance of developmental timing on oestradiol-related effects and hint at the non-sexually dimorphic role of oestradiol-related cortico-amygdalar structural networks in aspects of cognition distinct from emotional processes.
Collapse
Affiliation(s)
- Tuong-Vi Nguyen
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A1A1
- Department of Obstetrics-Gynecology, McGill University Health Center, Montreal, QC, Canada, H4A 3J1
- Research Institute of the McGill University Health Center, Montreal, QC, Canada, H4A 3J1
| | - Sherri Lee Jones
- Department of Psychology, McGill University, Montreal, QC, Canada, H4A 3J1
- Douglas Mental Health University Institute, Verdun, QC, Canada, H4H 1R3
| | - Tricia Gower
- Department of Psychology, McGill University, Montreal, QC, Canada, H4A 3J1
| | - Jimin Lew
- Department of Psychology, McGill University, Montreal, QC, Canada, H4A 3J1
| | - Matthew D Albaugh
- Department of Psychology, University of Vermont, College of Medicine, Burlington, VT, USA, 05405
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA, 63110
- Brain Development Cooperative Group
| | - James J Hudziak
- Department of Psychology, University of Vermont, College of Medicine, Burlington, VT, USA, 05405
- Brain Development Cooperative Group
| | - Vladimir S Fonov
- McConnell Brain imaging Centre, Montreal Neurological Institute, Montreal, QC Canada H3A 2B4
| | - D. Louis Collins
- McConnell Brain imaging Centre, Montreal Neurological Institute, Montreal, QC Canada H3A 2B4
| | - Benjamin C Campbell
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA, 53211
| | - Linda Booij
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A1A1
- Department of Psychology, Concordia University, Montreal, QC, Canada, H4B 1R6
- CHU Sainte Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada, H3T1C5
| | - Catherine M. Herba
- CHU Sainte Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada, H3T1C5
- Department of Psychology, Université du Québec à Montréal, Montreal, QC,
Canada
| | - Patricia Monnier
- Department of Obstetrics-Gynecology, McGill University Health Center, Montreal, QC, Canada, H4A 3J1
- Research Institute of the McGill University Health Center, Montreal, QC, Canada, H4A 3J1
| | - Simon Ducharme
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A1A1
- McConnell Brain imaging Centre, Montreal Neurological Institute, Montreal, QC Canada H3A 2B4
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada, H3A 1A1
| | - Deborah Waber
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA, 02115
| | - James T McCracken
- Brain Development Cooperative Group
- Department of Child and Adolescent Psychiatry, University of California in Los Angeles, Los Angeles, CA,
USA, 90024
| |
Collapse
|
36
|
Meseke M, Neumüller F, Brunne B, Li X, Anstötz M, Pohlkamp T, Rogalla MM, Herz J, Rune GM, Bender RA. Distal Dendritic Enrichment of HCN1 Channels in Hippocampal CA1 Is Promoted by Estrogen, but Does Not Require Reelin. eNeuro 2018; 5:ENEURO.0258-18.2018. [PMID: 30406178 PMCID: PMC6220572 DOI: 10.1523/eneuro.0258-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/20/2018] [Accepted: 08/26/2018] [Indexed: 12/28/2022] Open
Abstract
HCN1 compartmentalization in CA1 pyramidal cells, essential for hippocampal information processing, is believed to be controlled by the extracellular matrix protein Reelin. Expression of Reelin, in turn, is stimulated by 17β-estradiol (E2). In this study, we therefore tested whether E2 regulates the compartmentalization of HCN1 in CA1 via Reelin. In organotypic entorhino-hippocampal cultures, we found that E2 promotes HCN1 distal dendritic enrichment via the G protein-coupled estrogen receptor GPER1, but apparently independent of Reelin, because GST-RAP, known to reduce Reelin signaling, did not prevent E2-induced HCN1 enrichment in distal CA1. We therefore re-examined the role of Reelin for the regulation of HCN1 compartmentalization and could not detect effects of reduced Reelin signaling on HCN1 distribution in CA1, either in the (developmental) slice culture model or in tamoxifen-inducible conditional reelin knockout mice during adulthood. We conclude that for HCN1 channel compartmentalization in CA1 pyramidal cells, Reelin is not as essential as previously proposed, and E2 effects on HCN1 distribution in CA1 are mediated by mechanisms that do not involve Reelin. Because HCN1 localization was not altered at different phases of the estrous cycle, gonadally derived estradiol is unlikely to regulate HCN1 channel compartmentalization, while the pattern of immunoreactivity of aromatase, the final enzyme of estradiol synthesis, argues for a role of local hippocampal E2 synthesis.
Collapse
Affiliation(s)
- Maurice Meseke
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Florian Neumüller
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Bianka Brunne
- Institute of Structural Neurobiology, Center of Molecular Neurobiology, Hamburg 20246, Germany
| | - Xiaoyu Li
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Max Anstötz
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Theresa Pohlkamp
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Meike M. Rogalla
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Gabriele M. Rune
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Roland A. Bender
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| |
Collapse
|