1
|
Herman RJ, Schmidt HD. Targeting GLP-1 receptors to reduce nicotine use disorder: Preclinical and clinical evidence. Physiol Behav 2024; 281:114565. [PMID: 38663460 PMCID: PMC11128349 DOI: 10.1016/j.physbeh.2024.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Nicotine use disorder (NUD) remains a leading cause of preventable death in the U.S. Unfortunately, current FDA-approved pharmacotherapies for smoking cessation have limited efficacy and are associated with high rates of relapse. One major barrier to long-term smoking abstinence is body weight gain during withdrawal. Nicotine withdrawal-induced body weight gain can also lead to development of chronic disease states like obesity and type II diabetes mellitus. Therefore, it is critical to identify novel pharmacotherapies for NUD that decrease relapse and nicotine withdrawal symptoms including body weight gain. Recent studies demonstrate that glucagon-like peptide-1 receptor (GLP-1R) agonists attenuate voluntary nicotine taking and seeking and prevent withdrawal-induced hyperphagia and body weight gain. Emerging evidence also suggests that GLP-1R agonists improve cognitive deficits, as well as depressive- and anxiety-like behaviors, which contribute to smoking relapse during withdrawal. While further studies are necessary to fully characterize the effects of GLP-1R agonists on NUD and understand the mechanisms by which GLP-1R agonists decrease nicotine withdrawal-mediated behaviors, the current literature supports GLP-1R-based approaches to treating NUD.
Collapse
Affiliation(s)
- Rae J Herman
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
2
|
Abdelkawy YS, Elharoun M, Sheta E, Abdel-Raheem IT, Nematalla HA. Liraglutide and Naringenin relieve depressive symptoms in mice by enhancing Neurogenesis and reducing inflammation. Eur J Pharmacol 2024; 971:176525. [PMID: 38561101 DOI: 10.1016/j.ejphar.2024.176525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Depression is a debilitating mental disease that negatively impacts individuals' lives and society. Novel hypotheses have been recently proposed to improve our understanding of depression pathogenesis. Impaired neuroplasticity and upregulated neuro-inflammation add-on to the disturbance in monoamine neurotransmitters and therefore require novel anti-depressants to target them simultaneously. Recent reports demonstrate the antidepressant effect of the anti-diabetic drug liraglutide. Similarly, the natural flavonoid naringenin has shown both anti-diabetic and anti-depressant effects. However, the neuro-pharmacological mechanisms underlying their actions remain understudied. The study aims to evaluate the antidepressant effects and neuroprotective mechanisms of liraglutide, naringenin or a combination of both. Depression was induced in mice by administering dexamethasone (32 mcg/kg) for seven consecutive days. Liraglutide (200 mcg/kg), naringenin (50 mg/kg) and a combination of both were administered either simultaneously or after induction of depression for twenty-eight days. Behavioral and molecular assays were used to assess the progression of depressive symptoms and biomarkers. Liraglutide and naringenin alone or in combination alleviated the depressive behavior in mice, manifested by decrease in anxiety, anhedonia, and despair. Mechanistically, liraglutide and naringenin improved neurogenesis, decreased neuroinflammation and comparably restored the monoamines levels to that of the reference drug escitalopram. The drugs protected mice from developing depression when given simultaneously with dexamethasone. Collectively, the results highlight the usability of liraglutide and naringenin in the treatment of depression in mice and emphasize the different pathways that contribute to the pathogenesis of depression.
Collapse
Affiliation(s)
- Yara S Abdelkawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt
| | - Mona Elharoun
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Ihab Talat Abdel-Raheem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt
| | - Hisham A Nematalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt.
| |
Collapse
|
3
|
Bonnet JB, Durieux AT, Tournayre S, Marty L, Sultan A, Avignon A. Semaglutide as a potential treatment for obesity in Smith-Kingsmore syndrome (SKS) patients: A mosaic mutation case report. Obes Res Clin Pract 2024; 18:159-162. [PMID: 38582735 DOI: 10.1016/j.orcp.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
We present for the first-time efficacy and tolerability of GLP-1-RA (Semaglutide) in Smith-Kingsmore syndrome (SKS). SKS is a rare genetic disorder characterized by intellectual disability, macrocephaly, seizures and distinctive facial features due to MTOR gene mutation. We present a 22-year-old woman with mosaic SKS and severe obesity (Body Mass Index ≥40 kg/m²), treated with semaglutide. She achieved a 9 kg (7.44%) weight loss over 12 months without adverse effects.This case highlights semaglutide's potential in managing obesity in SKS patients, emphasizing the need for further research in this rare genetic disorder.
Collapse
Affiliation(s)
- Jean-Baptiste Bonnet
- Nutrition-Diabetes Department, University Hospital of Montpellier, Montpellier, France; UMR 1302, Institute Desbrest of Epidemiology and Public Health, Univ Montpellier, INSERM, University Hospital of Montpellier, Montpellier, France.
| | | | - Sarah Tournayre
- Nutrition-Diabetes Department, University Hospital of Montpellier, Montpellier, France
| | - Lucile Marty
- Nutrition-Diabetes Department, University Hospital of Montpellier, Montpellier, France
| | - Ariane Sultan
- Nutrition-Diabetes Department, University Hospital of Montpellier, Montpellier, France; PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Antoine Avignon
- Nutrition-Diabetes Department, University Hospital of Montpellier, Montpellier, France; UMR 1302, Institute Desbrest of Epidemiology and Public Health, Univ Montpellier, INSERM, University Hospital of Montpellier, Montpellier, France
| |
Collapse
|
4
|
Greco M, Munir A, Musarò D, Coppola C, Maffia M. Restoring autophagic function: a case for type 2 diabetes mellitus drug repurposing in Parkinson's disease. Front Neurosci 2023; 17:1244022. [PMID: 38027497 PMCID: PMC10654753 DOI: 10.3389/fnins.2023.1244022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Parkinson's disease (PD) is a predominantly idiopathic pathological condition characterized by protein aggregation phenomena, whose main component is alpha-synuclein. Although the main risk factor is ageing, numerous evidence points to the role of type 2 diabetes mellitus (T2DM) as an etiological factor. Systemic alterations classically associated with T2DM like insulin resistance and hyperglycemia modify biological processes such as autophagy and mitochondrial homeostasis. High glucose levels also compromise protein stability through the formation of advanced glycation end products, promoting protein aggregation processes. The ability of antidiabetic drugs to act on pathways impaired in both T2DM and PD suggests that they may represent a useful tool to counteract the neurodegeneration process. Several clinical studies now in advanced stages are looking for confirmation in this regard.
Collapse
Affiliation(s)
- Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Anas Munir
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Lecce, Italy
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Chiara Coppola
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| |
Collapse
|
5
|
Tseng YT, Lai R, Oieni F, Standke A, Smyth G, Yang C, Chen M, St John J, Ekberg J. Liraglutide modulates adhesion molecules and enhances cell properties in three-dimensional cultures of olfactory ensheathing cells. Biomed Pharmacother 2023; 165:115084. [PMID: 37399717 DOI: 10.1016/j.biopha.2023.115084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
Cell transplantation using olfactory ensheathing cells (OECs) is a promising approach for nerve repair but there are numerous limitations with their delivery method. Three-dimensional (3D) cell culture systems potentially offer a powerful approach for cell production and delivery options. To further optimise the use of OECs, strategies to promote cell viability and maintain cell behaviours in 3D cultures become important. We previously demonstrated an anti-diabetic drug, liraglutide, could modulate OEC migration and re-model extracellular matrix in two-dimensional (2D) cultures. In the present study, we further investigated its beneficial effects in our 3D culture system using primary OECs. OECs treated with liraglutide at 100 nM showed improved cell viability and had modulated expression of N-cadherin and β1-integrin (two important cell adhesion molecules). When formed into 3D spheroids, the pre-treated OECs generated spheroids with an increased volume and a decreased cell density compared to control spheroids. OECs that subsequently migrated out of the liraglutide pre-treated spheroids had higher capacity for migration with increased duration and length, which was attributed to a reduction in the pauses during the migration. Moreover, OECs that migrated out from liraglutide spheroids had a more bipolar morphology consistent with higher migratory capacity. In summary, liraglutide improved the viability of OECs, modulated cell adhesion molecules, and resulted in stable 3D cell constructs which conferred enhanced migratory capacity on the OECs. Overall, liraglutide may potentially improve the therapeutic use of OECs for neural repair by enhancing the generation of stable 3D constructs and increasing the migratory behaviour of OECs.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Richard Lai
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Francesca Oieni
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Andrea Standke
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Graham Smyth
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Chenying Yang
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Mo Chen
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - James St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Jenny Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
6
|
Machado-Vieira R, Courtes AC, Zarate CA, Henter ID, Manji HK. Non-canonical pathways in the pathophysiology and therapeutics of bipolar disorder. Front Neurosci 2023; 17:1228455. [PMID: 37592949 PMCID: PMC10427509 DOI: 10.3389/fnins.2023.1228455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Bipolar disorder (BD) is characterized by extreme mood swings ranging from manic/hypomanic to depressive episodes. The severity, duration, and frequency of these episodes can vary widely between individuals, significantly impacting quality of life. Individuals with BD spend almost half their lives experiencing mood symptoms, especially depression, as well as associated clinical dimensions such as anhedonia, fatigue, suicidality, anxiety, and neurovegetative symptoms. Persistent mood symptoms have been associated with premature mortality, accelerated aging, and elevated prevalence of treatment-resistant depression. Recent efforts have expanded our understanding of the neurobiology of BD and the downstream targets that may help track clinical outcomes and drug development. However, as a polygenic disorder, the neurobiology of BD is complex and involves biological changes in several organelles and downstream targets (pre-, post-, and extra-synaptic), including mitochondrial dysfunction, oxidative stress, altered monoaminergic and glutamatergic systems, lower neurotrophic factor levels, and changes in immune-inflammatory systems. The field has thus moved toward identifying more precise neurobiological targets that, in turn, may help develop personalized approaches and more reliable biomarkers for treatment prediction. Diverse pharmacological and non-pharmacological approaches targeting neurobiological pathways other than neurotransmission have also been tested in mood disorders. This article reviews different neurobiological targets and pathophysiological findings in non-canonical pathways in BD that may offer opportunities to support drug development and identify new, clinically relevant biological mechanisms. These include: neuroinflammation; mitochondrial function; calcium channels; oxidative stress; the glycogen synthase kinase-3 (GSK3) pathway; protein kinase C (PKC); brain-derived neurotrophic factor (BDNF); histone deacetylase (HDAC); and the purinergic signaling pathway.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, United States
| | - Alan C. Courtes
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, United States
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Ioline D. Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Husseini K. Manji
- Deparment of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Herman RJ, Hayes MR, Audrain-McGovern J, Ashare RL, Schmidt HD. Liraglutide attenuates nicotine self-administration as well as nicotine seeking and hyperphagia during withdrawal in male and female rats. Psychopharmacology (Berl) 2023; 240:1373-1386. [PMID: 37129617 PMCID: PMC11088902 DOI: 10.1007/s00213-023-06376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
RATIONALE Nicotine cessation is associated with increased consumption of highly palatable foods and body weight gain in most smokers. Concerns about body weight gain are a major barrier to maintaining long-term smoking abstinence, and current treatments for nicotine use disorder (NUD) delay, but do not prevent, body weight gain during abstinence. Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce food intake and are FDA-approved for treating obesity. However, the effects of GLP-1R agonist monotherapy on nicotine seeking and withdrawal-induced hyperphagia are unknown. OBJECTIVES We screened the efficacy of the long-lasting GLP-1R agonist liraglutide to reduce nicotine-mediated behaviors including voluntary nicotine taking, as well as nicotine seeking and hyperphagia during withdrawal. METHODS Male and female rats self-administered intravenous nicotine (0.03 mg/kg/inf) for ~21 days. Daily liraglutide administration (25 μg/kg, i.p.) started on the last self-administration day and continued throughout the extinction and reinstatement phases of the experiment. Once nicotine taking was extinguished, the reinstatement of nicotine-seeking behavior was assessed after an acute priming injection of nicotine (0.2 mg/kg, s.c.) and re-exposure to conditioned light cues. Using a novel model of nicotine withdrawal-induced hyperphagia, intake of a high fat diet (HFD) was measured during home cage abstinence in male and female rats with a history of nicotine self-administration. RESULTS Liraglutide attenuated nicotine self-administration and reinstatement in male and female rats. Repeated liraglutide attenuated withdrawal-induced hyperphagia and body weight gain in male and female rats at a dose that was not associated with malaise-like effects. CONCLUSIONS These findings support further studies investigating the translational potential of GLP-1R agonists to treat NUD.
Collapse
Affiliation(s)
- R J Herman
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, TRL Room 2215, Philadelphia, PA, 19104, USA
| | - J Audrain-McGovern
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, TRL Room 2215, Philadelphia, PA, 19104, USA
| | - R L Ashare
- Department of Psychology, College of Arts and Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - H D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, TRL Room 2215, Philadelphia, PA, 19104, USA.
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, 125 South 31st Street, TRL Room 2215, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Kutlu MD, Kose S, Akillioglu K. GLP-1 agonist Liraglutide prevents MK‑801-induced schizophrenia‑like behaviors and BDNF, CREB, p-CREB, Trk-B expressions in the hippocampus and prefrontal cortex in Balb/c mice. Behav Brain Res 2023; 445:114386. [PMID: 36948022 DOI: 10.1016/j.bbr.2023.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) agonists are among the agents that can be used to treat type 2 diabetes mellitus, and they have also been reported to have neuroprotective effects. This study examined the effects of GLP-1 agonist Liraglutide on CREB, BDNF, Trk-B expression and emotional/cognitive behaviors in an experimental schizophrenia-like behavior model induced by MK-801. MK-801 (0.25 mg/kg, 0.1 ml/kg body weight) and/or Liraglutide (300 mcg/kg) were injected intraperitoneally once a day for 7 weeks into 8-10 weeks old male Balb/c mice (n = 78). Mice were randomly divided into 5 groups: Saline+Saline, MK-801 +Saline, Liraglutide+Saline, MK-801 +Liraglutide co-treatment, and Liraglutide+MK-801 co-treatment. A Morris water maze test, an elevated plus maze test, and an open field test were performed after injection. Western blots were performed on mice' hippocampus and PFC for BDNF, Trk-B, CREB, and p-CREB expression. Our study found that MK-801 impaired emotional and cognitive functions in mice. MK-801 administration did not affect Liraglutide's positive effects on spatial learning and memory activity in the Liraglutide+MK-801 group. Liraglutide administration (Liraglutide+MK-801 group) improved the BDNF/Trk-B and p-CREB/CREB ratio in the hippocampus, and the p-CREB/CREB ratio in the PFC to the control group level. The negative effects of MK-801 on cognitive behavior were not reversed by Liraglutide in the MK-801 +Liraglutide group. In conclusion, Liraglutide does not affect NMDA receptor blockade-induced emotional and cognitive behaviors. However, it has a protective effect against cognitive impairment. Furthermore, it is possible that the GLP-1 receptors in the hippocampus and PFC are involved in the modulation of NMDA receptor activity through CREB activation/deactivation.
Collapse
Affiliation(s)
- Meltem Donmez Kutlu
- Çukurova University Faculty of Medicine. Department of Physiology, Department of Neurophysiology, Adana 01330, Turkey.
| | - Seda Kose
- Çukurova University Faculty of Medicine. Department of Physiology, Department of Neurophysiology, Adana 01330, Turkey
| | - Kubra Akillioglu
- Çukurova University Faculty of Medicine. Department of Physiology, Department of Neurophysiology, Adana 01330, Turkey
| |
Collapse
|
9
|
Seo MK, Jeong S, Seog DH, Lee JA, Lee JH, Lee Y, McIntyre RS, Park SW, Lee JG. Effects of liraglutide on depressive behavior in a mouse depression model and cognition in the probe trial of Morris water maze test. J Affect Disord 2023; 324:8-15. [PMID: 36566932 DOI: 10.1016/j.jad.2022.12.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND We investigated the effects of liraglutide, a glucagon-like peptide-1 (GLP-1) agonist, on a depression-like phenotype in mice exposed to chronic unpredictable stress (CUS). Learning and memory were also assessed using the Morris water maze (MWM) test. METHODS Liraglutide (0.3 mg/kg/day for 21 days) was administered to mice with or without exposure to CUS. After 21 days of CUS, the forced swim test (FST) was performed to assess its antidepressant effect. To evaluate cognitive function, liraglutide was administered to mice under stress-free conditions for 21 days, and then the MWM test was performed on 6 consecutive days. RESULTS Chronic liraglutide treatment reduced FST immobility in mice with and without CUS. In the probe trial of the Morris water maze test, the search error rate was reduced and the time spent and path length in the target quadrant and the number of platform crossings were increased. LIMITATION Additional animal model experiments and molecular level studies are needed to support the results obtained in this study. CONCLUSIONS Liraglutide appears to exert antidepressant effects and could improve cognitive function. Based on these results, GLP-1 agonists could have potential as novel antidepressants.
Collapse
Affiliation(s)
- Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Sehoon Jeong
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea; Department of Healthcare Information Technology, Inje University, Gimhae, Republic of Korea; Institute for Digital Antiaging and Healthcare, Inje University, Gimhae, Republic of Korea
| | - Dae-Hyun Seog
- Department of Biochemistry, College of Medicine, Inje University, Busan, Republic of Korea; Dementia and Neurodegenerative Disease Research Center, College of Medicine, Inje University, Busan, Republic of Korea; Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea
| | - Jung An Lee
- Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Jae-Hon Lee
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Yena Lee
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Roger S McIntyre
- Departments of Psychiatry and Pharmacology, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea; Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea.
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea; Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea.
| |
Collapse
|
10
|
Koning E, Vorstman J, McIntyre RS, Brietzke E. Characterizing eating behavioral phenotypes in mood disorders: a narrative review. Psychol Med 2022; 52:2885-2898. [PMID: 36004528 PMCID: PMC9693712 DOI: 10.1017/s0033291722002446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 01/05/2023]
Abstract
Mood disorders, including depressive and bipolar disorders, represent a multidimensional and prevalent group of psychiatric illnesses characterized by disturbances in emotion, cognition and metabolism. Maladaptive eating behaviors in mood disorders are diverse and warrant characterization in order to increase the precision of diagnostic criteria, identify subtypes and improve treatment strategies. The current narrative review synthesizes evidence for Eating Behavioral Phenotypes (EBP) in mood disorders as well as advancements in pathophysiological conceptual frameworks relevant to each phenotype. Phenotypes include maladaptive eating behaviors related to appetite, emotion, reward, impulsivity, diet style and circadian rhythm disruption. Potential treatment strategies for each phenotype are also discussed, including psychotherapeutic, pharmacological and nutritional interventions. Maladaptive eating behaviors related to mood disorders are relevant from both clinical and research perspectives, yet have been somewhat overlooked thus far. A better understanding of this aspect of mood disorders holds promise to improve clinical care in this patient group and contribute to the subtyping of these currently subjectively diagnosed and treated disorders.
Collapse
Affiliation(s)
- Elena Koning
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Jacob Vorstman
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S. McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Elisa Brietzke
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| |
Collapse
|
11
|
Cheng D, Yang S, Zhao X, Wang G. The Role of Glucagon-Like Peptide-1 Receptor Agonists (GLP-1 RA) in Diabetes-Related Neurodegenerative Diseases. Drug Des Devel Ther 2022; 16:665-684. [PMID: 35340338 PMCID: PMC8943601 DOI: 10.2147/dddt.s348055] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Recent clinical guidelines have emphasized the importance of screening for cognitive impairment in older adults with diabetes, however, there is still a lack of understanding about the drug therapy. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are widely used in the treatment of type 2 diabetes and potential applications may include the treatment of obesity as well as the adjunctive treatment of type 1 diabetes mellitus in combination with insulin. Growing evidence suggests that GLP-1 RA has the potential to treat neurodegenerative diseases, particularly in diabetes-related Alzheimer’s disease (AD) and Parkinson’s disease (PD). Here, we review the molecular mechanisms of the neuroprotective effects of GLP-1 RA in diabetes-related degenerative diseases, including AD and PD, and their potential effects.
Collapse
Affiliation(s)
- Dihe Cheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Shuo Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
12
|
Ahn YJ, Shin HJ, Jeong EA, An HS, Lee JY, Jang HM, Kim KE, Lee J, Shin MC, Roh GS. Exendin-4 Pretreatment Attenuates Kainic Acid-Induced Hippocampal Neuronal Death. Cells 2021; 10:cells10102527. [PMID: 34685508 PMCID: PMC8534217 DOI: 10.3390/cells10102527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Exendin-4 (Ex-4) is a glucagon-like peptide-1 receptor (GLP-1R) agonist that protects against brain injury. However, little is known about the effect of Ex-4 on kainic acid (KA)-induced seizures and hippocampal cell death. Therefore, this study evaluated the neuroprotective effects of Ex-4 pretreatment in a mouse model of KA-induced seizures. Three days before KA treatment, mice were intraperitoneally injected with Ex-4. We found that Ex-4 pretreatment reversed KA-induced reduction of GLP-1R expression in the hippocampus and attenuated KA-induced seizure score, hippocampal neuronal death, and neuroinflammation. Ex-4 pretreatment also dramatically reduced hippocampal lipocalin-2 protein in KA-treated mice. Furthermore, immunohistochemical studies showed that Ex-4 pretreatment significantly alleviated blood–brain barrier leakage. Finally, Ex-4 pretreatment stimulated hippocampal expression of phosphorylated cyclic adenosine monophosphate (cAMP) response element-binding protein (p-CREB), a known target of GLP-1/GLP-1R signaling. These findings indicate that Ex-4 pretreatment may protect against KA-induced neuronal damage by regulating GLP-1R/CREB-mediated signaling pathways.
Collapse
Affiliation(s)
- Yu-Jeong Ahn
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
| | - Hyun-Joo Shin
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
| | - Eun-Ae Jeong
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
| | - Hyeong-Seok An
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
| | - Jong-Youl Lee
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
| | - Hye-Min Jang
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
| | - Kyung-Eun Kim
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
| | - Jaewoong Lee
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
| | - Meong-Cheol Shin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gyeongsang National University, Jinju 52828, Korea;
| | - Gu-Seob Roh
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (Y.-J.A.); (H.-J.S.); (E.-A.J.); (H.-S.A.); (J.-Y.L.); (H.-M.J.); (K.-E.K.); (J.L.)
- Correspondence: ; Tel.: +82-55-772-8035; Fax: +82-55-772-8039
| |
Collapse
|
13
|
Kim H, Sim H, Lee JE, Seo MK, Lim J, Bang Y, Nam D, Lee SY, Chung SK, Choi HJ, Park SW, Son I, Kim J, Seol W. Ciliogenesis is Not Directly Regulated by LRRK2 Kinase Activity in Neurons. Exp Neurobiol 2021; 30:232-243. [PMID: 34230223 PMCID: PMC8278138 DOI: 10.5607/en21003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022] Open
Abstract
Mutations in the Leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent cause of familial Parkinson’s disease (PD). The increase in LRRK2 kinase activity observed in the pathogenic G2019S mutation is important for PD development. Several studies have reported that increased LRRK2 kinase activity and treatment with LRRK2 kinase inhibitors decreased and increased ciliogenesis, respectively, in mouse embryonic fibroblasts (MEFs) and retinal pigment epithelium (RPE) cells. In contrast, treatment of SH-SY5Y dopaminergic neuronal cells with PD-causing chemicals increased ciliogenesis. Because these reports were somewhat contradictory, we tested the effect of LRRK2 kinase activity on ciliogenesis in neurons. In SH-SY5Y cells, LRRK2 inhibitor treatment slightly increased ciliogenesis, but serum starvation showed no increase. In rat primary neurons, LRRK2 inhibitor treatment repeatedly showed no significant change. Little difference was observed between primary cortical neurons prepared from wild-type (WT) and G2019S+/- mice. However, a significant increase in ciliogenesis was observed in G2019S+/- compared to WT human fibroblasts, and this pattern was maintained in neural stem cells (NSCs) differentiated from the induced pluripotent stem cells (iPSCs) prepared from the same WT/G2019S fibroblast pair. NSCs differentiated from G2019S and its gene-corrected WT counterpart iPSCs were also used to test ciliogenesis in an isogenic background. The results showed no significant difference between WT and G2019S regardless of kinase inhibitor treatment and B27-deprivation-mimicking serum starvation. These results suggest that LRRK2 kinase activity may be not a direct regulator of ciliogenesis and ciliogenesis varies depending upon the cell type or genetic background.
Collapse
Affiliation(s)
- Hyejung Kim
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea
| | - Hyuna Sim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Korea
| | - Joo-Eun Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan 47392, Korea
| | - Juhee Lim
- College of Pharmacy, CHA University, Seongnam 13496, Korea
| | - Yeojin Bang
- College of Pharmacy, CHA University, Seongnam 13496, Korea
| | - Daleum Nam
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea
| | - Seo-Young Lee
- Division of Clinical Medicine, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Sun-Ku Chung
- Division of Herbal Medicine Research, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Hyun Jin Choi
- College of Pharmacy, CHA University, Seongnam 13496, Korea
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan 47392, Korea.,Department of Convergence Biomedical Science, Inje University College of Medicine, Busan 47392, Korea
| | - Ilhong Son
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea.,Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea
| | - Janghwan Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Korea
| | - Wongi Seol
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea
| |
Collapse
|
14
|
Glucagon transiently stimulates mTORC1 by activation of an EPAC/Rap1 signaling axis. Cell Signal 2021; 84:110010. [PMID: 33872697 PMCID: PMC8169602 DOI: 10.1016/j.cellsig.2021.110010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Activation of the protein kinase mechanistic target of rapamycin (mTOR) in both complexes 1 and 2 (mTORC1/2) in the liver is repressed during fasting and rapidly stimulated in response to a meal. The effect of feeding on hepatic mTORC1/2 is attributed to an increase in plasma levels of nutrients, such as amino acids, and insulin. By contrast, fasting is associated with elevated plasma levels of glucagon, which is conventionally viewed as having a counter-regulatory role to insulin. More recently an expanded role for glucagon action in post-prandial metabolism has been demonstrated. Herein we investigated the impact of insulin and glucagon on mTORC1/2 activation. In H4IIE and HepG2 cultures, insulin enhanced phosphorylation of the mTORC1 substrates S6K1 and 4E-BP1. Surprisingly, the effect of glucagon on mTORC1 was biphasic, wherein there was an acute increase in phosphorylation of S6K1 and 4E-BP1 over the first hour of exposure, followed by latent suppression. The transient stimulatory effect of glucagon on mTORC1 was not additive with insulin, suggesting convergent signaling. Glucagon enhanced cAMP levels and mTORC1 stimulation required activation of the glucagon receptor, PI3K/Akt, and exchange protein activated by cAMP (EPAC). EPAC acts as the guanine nucleotide exchange factor for the small GTPase Rap1. Rap1 expression enhanced S6K1 phosphorylation and glucagon addition to culture medium promoted Rap1-GTP loading. Signaling through mTORC1 acts to regulate protein synthesis and we found that glucagon promoted an EPAC-dependent increase in protein synthesis. Overall, the findings support that glucagon elicits acute activation of mTORC1/2 by an EPAC-dependent increase in Rap1-GTP.
Collapse
|
15
|
Sedky AA. Improvement of cognitive function, glucose and lipid homeostasis and serum osteocalcin levels by liraglutide in diabetic rats. Fundam Clin Pharmacol 2021; 35:989-1003. [PMID: 33683755 DOI: 10.1111/fcp.12664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Glucose and lipid abnormalities, oxidative stress (OXS) and reduced brain-derived neurotrophic factor (BDNF) are involved in cognitive dysfunction in diabetes. Glucagon like peptide 1 (GLP1) receptors modulate glucose and lipid metabolism, cognitive function and serum osteocalcin. On the other hand, osteocalcin modulates cognitive function and glucose and lipid metabolism. This study investigated whether the GLP 1 agonist liraglutide improves cognitive function via modulation of serum osteocalcin and glucose and lipid metabolism. METHODS Effects of 4 weeks liraglutide treatment (100 µg/Kg/d and 300 µg/Kg/d) on changes in cognitive function and bone homeostasis, induced by high fat diet/low-dose streptozotocin (HFD-STZ), were determined in rats. Cognitive function was assessed using Morris water maze (MWM) test. Serum and bone biochemical parameters were determined. RESULTS Liraglutide dose-dependently improved cognitive function in diabetic rats (reduced escape latency, and increased time spent in target quadrant in MWM test, compared to diabetic control). Glucose and lipid abnormalities and the associated changes in serum BDNF and oxidative stress makers were improved. Serum BDNF and glutathione were significantly increased, whereas malondialdehyde level was reduced. Serum osteocalcin was significantly increased and correlated with improvement in cognitive dysfunction. Serum and bone receptor activator of nuclear factor κB ligand (RANKL)/osteoprotegerin ratios were significantly reduced by liraglutide treatment. CONCLUSION Improvement of cognitive dysfunction by liraglutide involves modulation of glucose and lipid metabolism and serum osteocalcin. GLP1 agonists may provide an alternative metabolic approach for cognitive dysfunction in diabetes.
Collapse
|
16
|
Salameh TS, Rhea EM, Talbot K, Banks WA. Brain uptake pharmacokinetics of incretin receptor agonists showing promise as Alzheimer's and Parkinson's disease therapeutics. Biochem Pharmacol 2020; 180:114187. [PMID: 32755557 PMCID: PMC7606641 DOI: 10.1016/j.bcp.2020.114187] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
Abstract
Among the more promising treatments proposed for Alzheimer's disease (AD) and Parkinson's disease (PD) are those reducing brain insulin resistance. The antidiabetics in the class of incretin receptor agonists (IRAs) reduce symptoms and brain pathology in animal models of AD and PD, as well as glucose utilization in AD cases and clinical symptoms in PD cases after their systemic administration. At least 9 different IRAs are showing promise as AD and PD therapeutics, but we still lack quantitative data on their relative ability to cross the blood-brain barrier (BBB) reaching the brain parenchyma. We consequently compared brain uptake pharmacokinetics of intravenous 125I-labeled IRAs in adult CD-1 mice over the course of 60 min. We tested single IRAs (exendin-4, liraglutide, lixisenatide, and semaglutide), which bind receptors for one incretin (glucagon-like peptide-1 [GLP-1]), and dual IRAs, which bind receptors for two incretins (GLP-1 and glucose-dependent insulinotropic polypeptide [GIP]), including unbranched, acylated, PEGylated, or C-terminally modified forms (Finan/Ma Peptides 17, 18, and 20 and Hölscher peptides DA3-CH and DA-JC4). The non-acylated and non-PEGylated IRAs (exendin-4, lixisenatide, Peptide 17, DA3-CH and DA-JC4) had significant rates of blood-to-brain influx (Ki), but the acylated IRAs (liraglutide, semaglutide, and Peptide 18) did not measurably cross the BBB. The brain influx of the non-acylated, non-PEGylated IRAs were not saturable up to 1 μg of these drugs and was most likely mediated by adsorptive transcytosis across brain endothelial cells, as observed for exendin-4. Of the non-acylated, non-PEGylated IRAs tested, exendin-4 and DA-JC4 were best able to cross the BBB based on their rate of brain influx, percentage reaching the brain that accumulated in brain parenchyma, and percentage of the systemic dose taken up per gram of brain tissue. Exendin-4 and DA-JC4 thus merit special attention as IRAs well-suited to enter the central nervous system (CNS), thus reaching areas pathologic in AD and PD.
Collapse
Affiliation(s)
- Therese S Salameh
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA 98108, USA; University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, Department of Medicine, Seattle, WA 98498, USA
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA 98108, USA; University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, Department of Medicine, Seattle, WA 98498, USA
| | - Konrad Talbot
- Loma Linda University School of Medicine, Departments of Neurosurgery, Basic Sciences, and Pathology and Human Anatomy, Loma Linda, CA 92354, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA 98108, USA; University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, Department of Medicine, Seattle, WA 98498, USA.
| |
Collapse
|
17
|
Chaves Filho AJM, Cunha NL, de Souza AG, Soares MVR, Jucá PM, de Queiroz T, Oliveira JVS, Valvassori SS, Barichello T, Quevedo J, de Lucena D, Macedo DS. The GLP-1 receptor agonist liraglutide reverses mania-like alterations and memory deficits induced by D-amphetamine and augments lithium effects in mice: Relevance for bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109872. [PMID: 31954756 DOI: 10.1016/j.pnpbp.2020.109872] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/31/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
Metabolic and psychiatric disorders present a bidirectional relationship. GLP-1 system, known for its insulinotropic effects, has also been associated with numerous regulatory effects in cognitive and emotional processing. GLP-1 receptors (GLP-1R) agonists present neuroprotective and antidepressant/anxiolytic properties. However, the effects of GLP-1R agonism in bipolar disorder (BD) mania and the related cognitive disturbances remains unknown. Here, we investigated the effects of the GLP-1R agonist liraglutide (LIRA) at monotherapy or combined with lithium (Li) against D-amphetamine (AMPH)-induced mania-like symptoms, brain oxidative and BDNF alterations in mice. Swiss mice received AMPH 2 mg/kg or saline for 14 days. Between days 8-14, they received LIRA 120 or 240 μg/kg, Li 47.5 mg/kg or the combination Li + LIRA, on both doses. After behavioral evaluation the brain areas prefrontal cortex (PFC), hippocampus and amygdala were collected. AMPH induced hyperlocomotion, risk-taking behavior and multiple cognitive deficits which resemble mania. LIRA reversed AMPH-induced hyperlocomotion, working and recognition memory impairments, while Li + LIRA240 rescued all behavioral changes induced by AMPH. LIRA reversed AMPH-induced hippocampal oxidative and neurotrophic changes. Li + LIRA240 augmented Li antioxidant effects and greatly reversed AMPH-induced BDNF changes in PFC and hippocampus. LIRA rescued the weight gain induced by Li in the course of mania model. Therefore, LIRA can reverse some mania-like behavioral alterations and combined with Li augmented the mood stabilizing and neuroprotective properties of Li. This study points to LIRA as a promising adjunctive tool for BD treatment and provides the first rationale for the design of clinical trials investigating its possible antimanic effect.
Collapse
Affiliation(s)
- Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Natássia Lopes Cunha
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Alana Gomes de Souza
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Michele Verde-Ramo Soares
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Paloma Marinho Jucá
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Tatiana de Queiroz
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - João Victor Souza Oliveira
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Samira S Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Joao Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - David de Lucena
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
18
|
Abstract
Alzheimer's disease is a chronic neurodegenerative devastating disorder affecting a high percentage of the population over 65 years of age and causing a relevant emotional, social, and economic burden. Clinically, it is characterized by a prominent cognitive deficit associated with language and behavioral impairments. The molecular pathogenesis of Alzheimer's disease is multifaceted and involves changes in neurotransmitter levels together with alterations of inflammatory, oxidative, hormonal, and synaptic pathways, which may represent a drug target for both prevention and treatment; however, an effective treatment for Alzheimer's disease still represents an unmet goal. As neurotrophic factors participate in the modulation of the above-mentioned pathways, they have been highlighted as critical contributors of Alzheimer's disease etiology, whose modulation might be beneficial for Alzheimer's disease. We focused on the neurotrophin brain-derived neurotrophic factor, providing several lines of evidence pointing to brain-derived neurotrophic factor as a plausible endophenotype of cognitive deficits in Alzheimer's disease, illustrating some of the most recent possibilities to modulate the expression of this neurotrophin in the brain in an attempt to ameliorate cognition and delay the progression of Alzheimer's disease. This review shows that otherwise disparate pharmacologic or non-pharmacologic approaches converge on brain-derived neurotrophic factor, providing a means whereby apparently unrelated medical approaches may nevertheless produce similar synaptic and cognitive outcomes in Alzheimer's disease pathogenesis, suggesting that brain-derived neurotrophic factor-based synaptic repair may represent a modifying strategy to ameliorate cognition in Alzheimer's disease.
Collapse
|
19
|
Seo MK, Hien LT, Park MK, Choi AJ, Seog DH, Kim SH, Park SW, Lee JG. AMPA receptor-mTORC1 signaling activation is required for neuroplastic effects of LY341495 in rat hippocampal neurons. Sci Rep 2020; 10:993. [PMID: 31969673 PMCID: PMC6976560 DOI: 10.1038/s41598-020-58017-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
The group II metabotropic glutamate 2/3 (mGlu2/3) receptor antagonist LY341495 produces antidepressant-like effects by acting on mammalian target of rapamycin complex 1 (mTORC1) signaling and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors in rodent. We investigated whether LY341495 affects neuroplasticity via these mechanisms in rat primary hippocampal cultures under conditions of dexamethasone (DEX)-induced neurotoxicity. Ketamine was used for comparison. Hippocampal cultures were treated with LY341495 under conditions of DEX-induced toxicity. Changes in mTORC1-mediated proteins were determined by Western blotting analyses. Changes in dendritic outgrowth and spine density were evaluated via immunostaining. LY341495 significantly prevented DEX-induced decreases in the levels of mTORC1, 4E-BP1, and p70S6K phosphorylation as well as the levels of the synaptic proteins. These effects were blocked by pretreatment with the AMPA receptor inhibitor 2,3-dihydroxy-6-nitro-7sulfamoyl-benzo(f)quinoxaline (NBQX) and the mTORC1 inhibitor rapamycin. LY341495 significantly attenuated DEX-induced decreases in dendritic outgrowth and spine density. Pretreatment with rapamycin and NBQX blocked these effects of LY341495. Further analyses indicted that induction of BDNF expression produced by LY341495 was blocked by pretreatment with NBQX and rapamycin. LY341495 has neuroplastic effects by acting on AMPA receptor-mTORC1 signaling under neurotoxic conditions. Therefore, activation of AMPA receptor and mTORC1 signaling, which enhance neuroplasticity, may be novel targets for new antidepressants.
Collapse
Affiliation(s)
- Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan, 47392, Republic of Korea
| | - Le Thi Hien
- Department of Health Science and Technology, Graduate School, Inje University, Busan, 47392, Republic of Korea
| | - Min Kyung Park
- Departement of Psychiatry, Dong-eui Hospital, Dongeui University, Busan, 47227, Republic of Korea
| | - Ah Jeong Choi
- Paik Institute for Clinical Research, Inje University, Busan, 47392, Republic of Korea
| | - Dae-Hyun Seog
- Department of Biochemistry, College of Medicine, Inje University, Busan, 47392, Republic of Korea
| | - Seong-Ho Kim
- Paik Institute for Clinical Research, Inje University, Busan, 47392, Republic of Korea.,Department of Internal Medicine, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, 48108, Republic of Korea
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan, 47392, Republic of Korea. .,Department of Health Science and Technology, Graduate School, Inje University, Busan, 47392, Republic of Korea. .,Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan, 47392, Republic of Korea.
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, Busan, 47392, Republic of Korea. .,Department of Health Science and Technology, Graduate School, Inje University, Busan, 47392, Republic of Korea. .,Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, 48108, Republic of Korea.
| |
Collapse
|
20
|
The neuroprotection of liraglutide on diabetic cognitive deficits is associated with improved hippocampal synapses and inhibited neuronal apoptosis. Life Sci 2019; 231:116566. [DOI: 10.1016/j.lfs.2019.116566] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 12/27/2022]
|